JP2024011190A - Refractory brick and molten-metal container using the same - Google Patents

Refractory brick and molten-metal container using the same Download PDF

Info

Publication number
JP2024011190A
JP2024011190A JP2022113006A JP2022113006A JP2024011190A JP 2024011190 A JP2024011190 A JP 2024011190A JP 2022113006 A JP2022113006 A JP 2022113006A JP 2022113006 A JP2022113006 A JP 2022113006A JP 2024011190 A JP2024011190 A JP 2024011190A
Authority
JP
Japan
Prior art keywords
mass
less
raw material
magnesia
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022113006A
Other languages
Japanese (ja)
Inventor
晃陽 村上
Koyo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2022113006A priority Critical patent/JP2024011190A/en
Publication of JP2024011190A publication Critical patent/JP2024011190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance and slag infiltration resistance of an alumina-magnesia-based refractory brick, and suppress crack or peeling.
SOLUTION: The present invention relates to a refractory brick that contains an alumina raw material of 65 mass% or more and 85 mass% or less, 1 mm or less spinel raw material of 14 mass% or more and 34 mass% or less, 300 μm or less magnesia raw material of 3 mass% or less (excluding zero) and a binder of 5 mass% or less (excluding zero), and has a residual dimensional change rate after heating to 1500°C of 0% or more and 0.65% or less.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、溶融金属容器の内張り、特に電気炉二次精錬用取鍋に好適に使用できる耐火れんがに関する。 The present invention relates to a refractory brick that can be suitably used as a lining for a molten metal container, particularly as a ladle for secondary refining in an electric furnace.

溶融金属容器の内張り、特に電気炉二次精錬用取鍋の内張りには、主としてアルミナ-マグネシア系の耐火れんがが使用される。 Alumina-magnesia-based refractory bricks are mainly used for the lining of molten metal containers, especially for the lining of ladles for secondary refining in electric furnaces.

例えば、特許文献1は、「組成が、Al:80~95重量%、MgO:2~10重量%、SiO:0~10重量%、不可避成分:0~3重量%からなり、マグネシア原料として、粒度3.36~1.0mmの電融マグネシアを1~5重量%、および粒度1.0mm以下の電融スピネルを5~20重量%配合することを特徴とする不焼成アルミナ-マグネシア系れんが。」を開示する。 For example, Patent Document 1 states, ``The composition consists of Al 2 O 3 : 80 to 95% by weight, MgO: 2 to 10% by weight, SiO 2 : 0 to 10% by weight, inevitable components: 0 to 3% by weight, An unfired alumina characterized by blending 1 to 5% by weight of fused magnesia with a particle size of 3.36 to 1.0 mm and 5 to 20% by weight of fused spinel with a particle size of 1.0 mm or less as magnesia raw materials. Magnesia brick.''

また、特許文献2は、「アルミナ原料と0.5mm以下の微粉を90質量%以上含有するマグネシア原料を使用し、AlとMgOとの合量が90質量%以上であり、MgOを4~16質量%、SiOを0.5~5質量%、NaOとKOの合量を0.3~2質量%含有し、残部が不可避不純物とAlである、プレス成形された後100℃以上1150℃以下で加熱処理された耐火れんが。」を開示する。 Furthermore, Patent Document 2 states that ``alumina raw material and magnesia raw material containing 90% by mass or more of fine powder of 0.5 mm or less are used, the total amount of Al 2 O 3 and MgO is 90% by mass or more, and MgO is 4 to 16% by mass, 0.5 to 5% by mass of SiO 2 , a total of 0.3 to 2% by mass of Na 2 O and K 2 O, and the remainder being unavoidable impurities and Al 2 O 3 . A refractory brick that is press-formed and then heat-treated at a temperature of 100°C or higher and 1150°C or lower."

特開2000-272956JP2000-272956 特開2007-145684JP2007-145684

特許文献1は、1mm以上の粗粒部にMgOを配合し、高温におけるスピネル化膨張を利用して目地開きを防止するとしている。しかしこの場合マグネシアの粒径が大きく、量も多いため膨張が過大となり、亀裂・剥離が発生する問題があった。 Patent Document 1 states that MgO is blended into coarse grains of 1 mm or more to prevent joint opening by utilizing spinel expansion at high temperatures. However, in this case, since the particle size of magnesia is large and the amount thereof is large, expansion becomes excessive and there is a problem that cracking and peeling occur.

また特許文献2は、アルミナとマグネシアの反応によりスピネル生成反応を生じさせるため、0.5mm以下の微粉を90質量%以上含むマグネシア原料をれんが中のMgO成分量として4~16質量%使用している。この場合もマグネシアの量が多いため、弾性率が上昇し、熱スポールによる亀裂・剥離が発生する問題があった。 Further, Patent Document 2 discloses that in order to generate a spinel production reaction through the reaction of alumina and magnesia, a magnesia raw material containing 90% by mass or more of fine powder of 0.5 mm or less is used as an MgO component amount of 4 to 16% by mass in the brick. There is. In this case as well, since the amount of magnesia is large, the elastic modulus increases and there is a problem of cracking and peeling due to thermal spalling.

本発明は上記従来の事情に鑑みて提案されたものであって、膨張率と弾性率を制御することによって亀裂・剥離を抑制したアルミナ-マグネシア系の耐火れんがを提供することを目的とする。 The present invention was proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide an alumina-magnesia-based refractory brick that suppresses cracking and peeling by controlling the expansion coefficient and elastic modulus.

本発明の耐火れんがは、アルミナ原料65質量%以上85質量%以下、粒径1mm以下のスピネル原料14質量%以上34質量%以下、粒径300μm以下のマグネシア原料3質量%以下(ゼロを除く)およびバインダー成分よりなる。 The refractory brick of the present invention includes an alumina raw material of 65% to 85% by mass, a spinel raw material of 14% to 34% by mass with a particle size of 1 mm or less, and a magnesia raw material of 300 μm or less in particle size of 3% by mass or less (excluding zero). and a binder component.

また、上記耐火れんがを内張りすることによって電気炉二次精錬用取鍋を構成することができる。 Furthermore, a ladle for secondary refining in an electric furnace can be constructed by lining the refractory bricks.

アルミナ-マグネシア系の耐火れんがに関し、膨張率と弾性率を制御することによって亀裂・剥離を抑制することができる。 Regarding alumina-magnesia refractory bricks, cracking and peeling can be suppressed by controlling the expansion coefficient and elastic modulus.

本発明の耐火れんがは、上記したようにアルミナ原料65質量%以上85質量%以下、粒径1mm以下のスピネル原料14質量%以上34質量%以下、粒径300μm以下のマグネシア原料3質量%以下(ゼロを除く)およびバインダー成分よりなる。 As mentioned above, the refractory brick of the present invention is made of alumina raw materials of 65% to 85% by mass, spinel raw materials of 14% to 34% by mass with a grain size of 1 mm or less, magnesia raw materials of 300 μm or less in grain size of 3% by mass or less ( (excluding zero) and a binder component.

以下更に詳しく説明する。 This will be explained in more detail below.

<アルミナ原料>
前記アルミナ原料は基材となる原料である。アルミナ原料の使用量は65質量%以上85質量%以下とする。アルミナ原料の使用量が65質量%を下回ると相対的にMgO成分が多くなって熱膨張係数が大きくなり、85質量%を上回ると相対的にMgO成分が少なくなってスラグ耐食性・スラグ耐浸潤性が低下する。
<Alumina raw material>
The alumina raw material is a raw material that becomes a base material. The amount of alumina raw material used is 65% by mass or more and 85% by mass or less. If the amount of alumina raw material used is less than 65% by mass, the MgO component will be relatively large and the coefficient of thermal expansion will be large, and if it exceeds 85% by mass, the MgO component will be relatively small, resulting in improved slag corrosion resistance and slag infiltration resistance. decreases.

アルミナ原料の粒径は特に限定されず、公知の最密充填が得られる粒度構成、例えば、粒径5-3mmを15質量%、3-1mmを33質量%、1mm以下を13質量%、45μm以下を12質量%とすることができる。 The particle size of the alumina raw material is not particularly limited, and the particle size structure that can obtain the known closest packing, for example, 15% by mass of particles with a particle size of 5-3 mm, 33% by mass of 3-1 mm, 13% by mass of 1 mm or less, 45 μm. The following can be 12% by mass.

アルミナ原料の種類は公知の電融アルミナ、焼結アルミナ、ばん土頁岩等が使用できる。アルミナ原料の純度はAlとして90質量%以上とすれば耐食性が向上するので好ましい。 As the type of alumina raw material, publicly known fused alumina, sintered alumina, clay shale, etc. can be used. It is preferable that the purity of the alumina raw material is 90% by mass or more as Al 2 O 3 because corrosion resistance will be improved.

<スピネル原料>
前記スピネル原料は公知のアルミニウムマグネシウムスピネル(MgAl)が使用できる。スピネル組成は化学量論組成(MgO:Al=28:72)の他、Alが化学量論組成より多いもの、MgOが化学量論組成より多いものも使用できる。化学量論組成(MgO:Al=28:72)に近いものを使用すると膨張率、弾性率の制御がしやすくなり好ましい。
<Spinel raw material>
As the spinel raw material, a known aluminum magnesium spinel (MgAl 2 O 4 ) can be used. As for the spinel composition, in addition to the stoichiometric composition (MgO:Al 2 O 3 =28:72), those containing more Al 2 O 3 than the stoichiometric composition, and those containing more MgO than the stoichiometric composition can also be used. It is preferable to use a material having a composition close to the stoichiometric composition (MgO:Al 2 O 3 =28:72) because it makes it easier to control the expansion coefficient and elastic modulus.

スピネル原料の粒径は1mm以下とし、使用量は14質量%以上34質量%以下とする。スピネル原料の粒径が1mmより大きいと、れんが組織の中でスピネルが偏在し、スラグ耐食性が低下する。一方で、スピネル原料の粒径が1mmより小さいと、スピネル原料が均一に分散し、スラグ耐食性が向上する。スピネル原料の使用量が14%を下回ると相対的にMgO成分が少なくなってスラグ耐食性、スラグ耐浸潤性が低下する。スピネル使用量が34%を上回ると、相対的にMgO成分が多くなって熱膨張係数が大きくなり耐スポーリング性が低下する。 The particle size of the spinel raw material is 1 mm or less, and the amount used is 14% by mass or more and 34% by mass or less. If the particle size of the spinel raw material is larger than 1 mm, spinel will be unevenly distributed in the brick structure, resulting in a decrease in slag corrosion resistance. On the other hand, when the particle size of the spinel raw material is smaller than 1 mm, the spinel raw material is uniformly dispersed and slag corrosion resistance is improved. When the amount of spinel raw material used is less than 14%, the MgO component becomes relatively small, resulting in a decrease in slag corrosion resistance and slag infiltration resistance. When the amount of spinel used exceeds 34%, the MgO component becomes relatively large, the coefficient of thermal expansion increases, and the spalling resistance decreases.

<マグネシア原料>
前記マグネシア原料は、公知の電融マグネシア、海水マグネシア、天然マグネシアなどが使用できる。MgOの純度は90質量%以上が好ましい。マグネシア原料の粒径は300μm以下であり、65μm以下がより好ましい。マグネシア原料の粒径が300μmより大きいと、熱膨張係数が大きくなり耐スポーリング性が低下する。
<Magnesia raw material>
As the magnesia raw material, known electrofused magnesia, seawater magnesia, natural magnesia, etc. can be used. The purity of MgO is preferably 90% by mass or more. The particle size of the magnesia raw material is 300 μm or less, more preferably 65 μm or less. If the particle size of the magnesia raw material is larger than 300 μm, the coefficient of thermal expansion will increase and the spalling resistance will decrease.

マグネシア原料の使用量は3質量%以下(ゼロを除く)とする。マグネシア原料の使用量が3質量%より上回ると、熱膨張係数が大きくなり耐スポーリング性が低下する。 The amount of magnesia raw material used shall be 3% by mass or less (excluding zero). When the amount of magnesia raw material used exceeds 3% by mass, the coefficient of thermal expansion increases and the spalling resistance decreases.

<バインダー>
バインダーは公知の耐火れんがに適用されるものが使用できる。例えばけい酸ナトリウム、フェノールレジン、りん酸塩などが例示できる。バインダーの使用量は、前記アルミナ原料、マグネシア原料、スピネル原料の合量に対して外掛けで5質量%以下が好ましい。
<Binder>
As the binder, those applicable to known refractory bricks can be used. Examples include sodium silicate, phenol resin, and phosphate. The amount of the binder used is preferably 5% by mass or less based on the total amount of the alumina raw material, magnesia raw material, and spinel raw material.

以下に実施例及び比較例を示し、本発明を詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
アルミナ原料は、粒度5mm以下で純度99質量%の電融アルミナを使用した。スピネル原料は、粒度1mm以下でAl:MgO質量比が72:28の電融スピネルを使用した。マグネシア原料は、純度95質量%の電融マグネシアで、粒度が500μm以下、300μm以下、65μm以下のいずれかを使用した。
EXAMPLES The present invention will be explained in detail by showing Examples and Comparative Examples below. Note that the present invention is not limited to the following examples.
As the alumina raw material, fused alumina with a particle size of 5 mm or less and a purity of 99% by mass was used. As the spinel raw material, fused spinel with a particle size of 1 mm or less and an Al 2 O 3 :MgO mass ratio of 72:28 was used. The magnesia raw material used was fused magnesia with a purity of 95% by mass and a particle size of 500 μm or less, 300 μm or less, or 65 μm or less.

バインダーとして、液体ケイ酸ソーダを用い、前記アルミナ原料、スピネル原料、マグネシア原料の合量を100質量%とした場合に、外掛けで2.5質量%添加した。 Liquid sodium silicate was used as the binder, and when the total amount of the alumina raw material, spinel raw material, and magnesia raw material was 100 mass%, it was added in an amount of 2.5% by mass.

表1の配合率に従い、耐火原料混合物を作成し、フリクションプレスを用いて177MPaで加圧成形し、当該成形品を熱風乾燥機を使用し180℃で12時間乾燥することによって耐火れんがを作成した。 A refractory raw material mixture was prepared according to the blending ratio in Table 1, pressure molded using a friction press at 177 MPa, and the molded product was dried at 180° C. for 12 hours using a hot air dryer to create refractory bricks. .

前記作成された各耐火れんが試料について、残存寸法変化率、弾性率、スラグ耐食性、スラグ耐浸潤性、耐熱スポーリング性を評価した。 For each refractory brick sample prepared above, residual dimensional change rate, elastic modulus, slag corrosion resistance, slag infiltration resistance, and heat spalling resistance were evaluated.

残存寸法変化率は、JIS R2208に準じて測定した。試験温度は1500℃とし、雰囲気は大気とした。残存寸法変化率は0%以上0.65%以下が好ましい。残存寸法変化率が0%以上であると目地開きが抑制され、0.65%以下であれば亀裂や剥離が低減する。 The residual dimensional change rate was measured according to JIS R2208. The test temperature was 1500°C and the atmosphere was air. The residual dimensional change rate is preferably 0% or more and 0.65% or less. When the residual dimensional change rate is 0% or more, joint opening is suppressed, and when it is 0.65% or less, cracking and peeling are reduced.

弾性率は、J.W.LEMMENS-ELEKTONIKA製MK5を用い、試験片に衝撃を与えて発生する固有振動数から計算するグラインドソニック法により求めた。弾性率は80GPa以下とすれば耐スポーリング性が向上するので好ましい。 The elastic modulus was determined using MK5 manufactured by J.W. LEMMENS-ELEKTONIKA by the grind sonic method, which is calculated from the natural frequency generated by applying an impact to the test piece. It is preferable to set the elastic modulus to 80 GPa or less because this improves spalling resistance.

スラグ耐食性、スラグ耐浸潤性は、高周波誘導炉を用いた内張り侵食法により評価した。試料の耐火れんがを高周波誘導炉に内張りし、当該高周波誘導炉内で鋼を溶解して1600℃に保持し、溶鋼表面にCaO:SiO=6:4の組成のスラグを投入した。試験時間は5時間とし、途中1時間毎にスラグを入れ替えた。 Slag corrosion resistance and slag infiltration resistance were evaluated by the lining erosion method using a high frequency induction furnace. A high-frequency induction furnace was lined with refractory bricks as a sample, and the steel was melted in the high-frequency induction furnace and maintained at 1600° C., and slag having a composition of CaO:SiO 2 =6:4 was introduced onto the surface of the molten steel. The test time was 5 hours, and the slag was replaced every hour during the test.

スラグ耐食性は、試験前試料の厚みと試験後試料の厚み(スラグ浸食厚み)の差から求めた。スラグ耐浸潤性は、試験後切断面写真の浸潤層の厚み(スラグ浸食厚み)から求めた。スラグ侵食厚み、スラグ浸潤厚み共、数字が小さいほど耐食性、耐浸潤性が高いことを示す。 Slag corrosion resistance was determined from the difference between the thickness of the sample before the test and the thickness of the sample after the test (slag corrosion thickness). The slag infiltration resistance was determined from the thickness of the infiltrated layer (slag erosion thickness) in the photograph of the cut surface after the test. For both the slag erosion thickness and the slag infiltration thickness, the smaller the number, the higher the corrosion resistance and infiltration resistance.

耐熱スポーリング性は、急加熱-冷却による弾性率の変化で評価した。すなわち急加熱-冷却の熱衝撃で生じる亀裂が少ないほど試験前後での弾性率低下が小さく、耐スポーリング性に優れると評価できる。試験方法は溶銑浸漬法によった。40mm×40mm×230mmの試験片を準備し、あらかじめ試験前の弾性率を測定しておく。 Heat spalling resistance was evaluated by the change in elastic modulus due to rapid heating and cooling. In other words, the fewer the cracks that occur due to the thermal shock of rapid heating and cooling, the smaller the decrease in the elastic modulus before and after the test, and the better the spalling resistance can be evaluated. The test method was the hot metal immersion method. A test piece of 40 mm x 40 mm x 230 mm is prepared, and its elastic modulus is measured in advance before the test.

前記試験片は1700℃の溶銑に1分間浸漬後、自然空冷する。冷却後に試験後の弾性率を測定する。そして、前記試験前の弾性率と試験後の弾性率から以下の式(1)に示す弾性率変化率を求める。 The test piece is immersed in hot metal at 1700° C. for 1 minute and then cooled in the air. After cooling, measure the elastic modulus after the test. Then, from the elastic modulus before the test and the elastic modulus after the test, the rate of change in the elastic modulus shown in the following equation (1) is determined.

弾性率変化率=(試験前弾性率-試験後弾性率)/試験前弾性率×100・・・(1) Elastic modulus change rate = (elastic modulus before test - elastic modulus after test) / elastic modulus before test x 100... (1)

表1に示す各実施例の配合は、アルミナ原料65質量%以上85質量%以下、1mm以下のスピネル原料14質量%以上35質量%以下、300μm以下のマグネシア原料3質量%以下(ゼロを除く)およびバインダー5質量%以下(ゼロを除く)を含む耐火れんがである。 The composition of each example shown in Table 1 is as follows: alumina raw material 65% to 85% by mass, spinel raw material 1 mm or less 14% to 35% by mass, magnesia raw material 300 μm or less 3% by mass or less (excluding zero). and a refractory brick containing 5% by mass or less (excluding zero) of binder.

Figure 2024011190000001
Figure 2024011190000001

実施例1-5は、本発明範囲内でアルミナ原料、スピネル原料、マグネシア原料の量を変化させたものである。比較例1および2はアルミナ原料、スピネル原料の量が本発明の範囲外のものである。比較例3および4はマグネシア原料の量が本発明の範囲外のものである。比較例5はマグネシア原料の粒度が本発明の範囲外のものである。 In Examples 1-5, the amounts of the alumina raw material, spinel raw material, and magnesia raw material were varied within the scope of the present invention. In Comparative Examples 1 and 2, the amounts of alumina raw material and spinel raw material were outside the range of the present invention. In Comparative Examples 3 and 4, the amount of magnesia raw material was outside the range of the present invention. In Comparative Example 5, the particle size of the magnesia raw material is outside the range of the present invention.

実施例1-5は、弾性率変化率が39.8~49.4%であり、比較例1、4、5に比べて耐スポーリング性に優れる。 Example 1-5 has an elastic modulus change rate of 39.8 to 49.4%, and is superior in spalling resistance compared to Comparative Examples 1, 4, and 5.

実施例1-5は、スラグ侵食厚みが2.3~2.8mmであり、比較例2に比べてスラグ耐食性に優れる。 Example 1-5 has a slag corrosion thickness of 2.3 to 2.8 mm, and is superior to Comparative Example 2 in slag corrosion resistance.

実施例1-5は、スラグ浸潤厚みが0.9~1.8mmであり、比較例1に比べてスラグ耐浸潤性に優れる。 Example 1-5 has a slag infiltration thickness of 0.9 to 1.8 mm, and is superior to Comparative Example 1 in slag infiltration resistance.

実施例1-5は、残存寸法変化率が0.08~0.57%であるのに対し、比較例3は0%未満であり、比較例4および5は0.65%を超えている。 In Example 1-5, the residual dimensional change rate is 0.08 to 0.57%, whereas in Comparative Example 3 it is less than 0%, and in Comparative Examples 4 and 5 it is over 0.65%. .

以上説明したように、本発明によれば、スラグ耐侵食性及びスラグ耐浸潤性の向上と、耐スポーリング性の向上を両立させた耐火れんがを実現することができる。当該耐火れんがは、例えば、電気炉二次製錬取鍋の内張りれんがとして適用する事で、耐用性を向上させる事ができる。
As explained above, according to the present invention, it is possible to realize a refractory brick that achieves both improvement in slag erosion resistance and slag infiltration resistance, and improvement in spalling resistance. The refractory brick can be used as a lining brick for an electric furnace secondary smelting ladle, for example, to improve its durability.

Claims (2)

アルミナ原料65質量%以上85質量%以下、粒径1mm以下のスピネル原料14質量%以上34質量%以下、粒径300μm以下のマグネシア原料3質量%以下(ゼロを除く)およびバインダーを前記アルミナ原料、スピネル原料マグネシア原料の合量に対して外掛けで5質量%以下(ゼロを除く)を含み、1500℃加熱後の残存寸法変化率が0%以上0.65%以下である耐火れんが。 The alumina raw material contains 65% by mass or more and 85% by mass or less of an alumina raw material, 14% by mass or more and 34% by mass or less of a spinel raw material with a particle size of 1 mm or less, 3% by mass or less (excluding zero) of a magnesia raw material with a particle size of 300 μm or less, and the binder, A refractory brick that contains 5% by mass or less (excluding zero) of the total amount of spinel raw material magnesia raw material, and has a residual dimensional change rate of 0% or more and 0.65% or less after heating at 1500°C. 請求項1の耐火れんがを内張りした電気炉二次精錬用取鍋。
A ladle for secondary refining in an electric furnace lined with the refractory brick of claim 1.
JP2022113006A 2022-07-14 2022-07-14 Refractory brick and molten-metal container using the same Pending JP2024011190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022113006A JP2024011190A (en) 2022-07-14 2022-07-14 Refractory brick and molten-metal container using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022113006A JP2024011190A (en) 2022-07-14 2022-07-14 Refractory brick and molten-metal container using the same

Publications (1)

Publication Number Publication Date
JP2024011190A true JP2024011190A (en) 2024-01-25

Family

ID=89621631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022113006A Pending JP2024011190A (en) 2022-07-14 2022-07-14 Refractory brick and molten-metal container using the same

Country Status (1)

Country Link
JP (1) JP2024011190A (en)

Similar Documents

Publication Publication Date Title
US5925585A (en) Materials formed by refractory grains bound in a matrix of aluminum nitride or sialon containing titanium nitride
US3879210A (en) Fused-cast refractory
JP5361795B2 (en) Lined casting material
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP7377635B2 (en) Bricks for hot metal ladle and hot metal ladle lined with the bricks
JP2024011190A (en) Refractory brick and molten-metal container using the same
EP0583466A1 (en) Vibratable refractory composition.
JPH0687667A (en) Zirconia-mullite containing castable refractory
JP6036796B2 (en) Slide plate and manufacturing method thereof
JP2012192430A (en) Alumina carbon-based slide gate plate
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JPH0323275A (en) Monolithic refractory for casting
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JPH07315913A (en) Magnesia refractory brick
JPH07291715A (en) Spinel refractory brick
JP4475724B2 (en) Method for manufacturing amorphous refractory having a close-packed structure excellent in strength and spall resistance
JPH06144939A (en) Basic castable refractory
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JP7157326B2 (en) Magnesia/carbon refractories
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
JPH06287057A (en) Carbon-containing refractory
JPH0437466A (en) Non-calcined plate brick for sliding nozzle
JP2872670B2 (en) Irregular refractories for lining of molten metal containers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240613