JP2024005109A - Polyimide resin and method for producing polyimide resin composition - Google Patents

Polyimide resin and method for producing polyimide resin composition Download PDF

Info

Publication number
JP2024005109A
JP2024005109A JP2022105136A JP2022105136A JP2024005109A JP 2024005109 A JP2024005109 A JP 2024005109A JP 2022105136 A JP2022105136 A JP 2022105136A JP 2022105136 A JP2022105136 A JP 2022105136A JP 2024005109 A JP2024005109 A JP 2024005109A
Authority
JP
Japan
Prior art keywords
polyimide resin
producing
polyimide
diamine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022105136A
Other languages
Japanese (ja)
Inventor
浩二 遠藤
Koji Endo
モーソー ウィン
Mose Win
敏之 五島
Toshiyuki Goshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wingo Technology Co Ltd
Original Assignee
Wingo Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wingo Technology Co Ltd filed Critical Wingo Technology Co Ltd
Priority to JP2022105136A priority Critical patent/JP2024005109A/en
Publication of JP2024005109A publication Critical patent/JP2024005109A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a soluble polyimide resin that does not solidify even at room temperature and has a low glass transition temperature, and to provide a method for producing a polyimide resin composition with enhanced adhesion and hardness, as well as improved solvent resistance and storage stability.
SOLUTION: The present invention provides a method for producing a polyimide resin in which an acid anhydride and a diamine are reacted in a reaction solvent to prepare the polyimide. The diamine includes a dimer diamine, and the reaction solvent includes an ester solvent.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、ポリイミド樹脂及びポリイミド樹脂組成物の製造方法に関する。 The present invention relates to a polyimide resin and a method for producing a polyimide resin composition.

ポリイミド樹脂は、その高弾性、耐熱性の特徴を生かし、従来電気・電子分野を中心に広く使用されているが、近年ポリイミド結合自体の化学的安定性を生かし、絶縁インキの成分として使用されることが増えている。
インキとして使用される場合、耐溶剤性、耐湿性が求められることが多い。また耐熱性を必要としないインキは、耐熱性を持たない被着体に塗られるケースが多く、インキを乾燥する温度も150℃程度以下の温度を要求されることが多い。そのためには、溶剤揮発のみで塗膜を形成できる溶剤可溶性ポリイミドを用いることや、ポリイミド樹脂のガラス転移温度と乾燥温度を下げ、樹脂内部での溶剤の拡散速度を上げること等によって乾燥を容易にすることが行われてきた。
Polyimide resin has traditionally been widely used mainly in the electrical and electronic fields due to its high elasticity and heat resistance, but in recent years it has been used as a component of insulating ink, taking advantage of the chemical stability of the polyimide bond itself. This is happening more and more.
When used as ink, solvent resistance and moisture resistance are often required. Further, inks that do not require heat resistance are often applied to adherends that do not have heat resistance, and the ink is often required to be dried at a temperature of about 150° C. or lower. To achieve this, it is possible to make drying easier by using solvent-soluble polyimide that can form a coating film only by volatilization of the solvent, by lowering the glass transition temperature and drying temperature of the polyimide resin, and by increasing the diffusion rate of the solvent inside the resin. things have been done.

耐溶剤性や耐湿性に優れるポリイミド樹脂塗膜を得るには、飽和もしくは不飽和の脂肪族系ジアミン、デカンジアミン、ドデカンジアミンなど石油化学系の合成品はポリイミド樹脂を構成するモノマーとして好適であるが、分岐の少ない脂肪族系のモノマーを用いたポリイミド樹脂はインクとして使用する際の樹脂の溶解可能な溶剤が少なく、インキなどとして使用するのは困難である。 In order to obtain a polyimide resin coating film with excellent solvent resistance and moisture resistance, petrochemical-based synthetic products such as saturated or unsaturated aliphatic diamine, decane diamine, and dodecane diamine are suitable as monomers constituting the polyimide resin. However, polyimide resins using aliphatic monomers with little branching are difficult to use as inks because there are few solvents in which the resin can be dissolved when used as inks.

不飽和脂肪酸の二量体を変性した、いわゆるダイマージアミンは、非常に嵩高い分岐構造を有するため、溶剤への溶解性が高く、インキとして塗膜を形成した後、幅広い溶剤に対して耐久性を有し最適である。
しかし、ダイマージアミンを用いたポリイミド樹脂の製造時には、反応中間体であるポリアミック酸の溶解性が低いため、高濃度での反応中にはポリアミック酸が析出し反応液全体がゲル化し、流動性が失われてしまうという問題があった。特に、反応容器に酸無水物とダイマージアミンを同時に仕込むと、ポリアミック酸による反応液のゲル化が顕著になる。このゲル化状態は、反応液を120℃以上に加熱しポリアミック酸のイミド化が進むにつれて再溶解し、均一な溶解状態となるが、不均一な状態で全体の反応が進行するため、重合反応後の粘度が一定とはならない。また、反応後の樹脂溶液に経時でゲル化物の生成などが起こり、安定した製造方法ではない。
このような問題の解決手段として、例えば特許文献1に例示されるように、先に酸無水物と反応溶剤を仕込み、撹拌しながら加温して、しかる後に反応容器中にダイマージアミンを徐々に滴下し反応させる方法は、反応異常を防ぐために有効な方法である。
The so-called dimer diamine, which is a modified unsaturated fatty acid dimer, has a very bulky branched structure, so it has high solubility in solvents, and after forming a coating film as an ink, it is durable against a wide range of solvents. This is the best choice.
However, during the production of polyimide resin using dimer diamine, the solubility of polyamic acid, which is a reaction intermediate, is low, so during the reaction at high concentrations, polyamic acid precipitates, causing the entire reaction solution to gel, resulting in poor fluidity. The problem was that it was lost. In particular, when an acid anhydride and a dimer diamine are simultaneously charged into a reaction vessel, gelation of the reaction solution by the polyamic acid becomes noticeable. This gelling state occurs when the reaction solution is heated to 120°C or higher and as imidization of the polyamic acid progresses, it redissolves and becomes a uniform dissolution state, but since the entire reaction proceeds in a non-uniform state, the polymerization reaction The subsequent viscosity is not constant. In addition, gelation occurs in the resin solution after the reaction over time, and this is not a stable manufacturing method.
As a solution to this problem, for example, as exemplified in Patent Document 1, an acid anhydride and a reaction solvent are first charged, heated while stirring, and then dimer diamine is gradually added to a reaction vessel. The dropping reaction method is an effective method for preventing reaction abnormalities.

しかし、溶剤可溶性ポリイミドは、溶剤溶解性の観点から、n-メチルピロリドンやジメチルホルムアミドやガンマブチロラクトンのような高極性溶剤を溶剤として用いるので、ダイマージアミンを含む溶剤可溶性ポリイミドでは、室温状態で、ゲル化もしくは固化しまう課題があった。
また、ポリイミド樹脂を含むインキを使用する印刷では、ポリイミド樹脂硬化物の厚膜が要求されており、溶剤可溶性ポリイミド樹脂のみの固形分は、30~50%程度が上限であり、厚膜への対応が難しい。そのため、有機や無機の充填剤を入れ、対応しているが、保存時間の経過に伴い、充填剤の沈降や粘度変化が起こり、使用出来ない状態になってしまう課題があった。
However, from the viewpoint of solvent solubility, solvent-soluble polyimides use highly polar solvents such as n-methylpyrrolidone, dimethylformamide, and gamma-butyrolactone, so solvent-soluble polyimides containing dimer diamines do not gel at room temperature. There was an issue where it could become solidified or solidified.
In addition, printing using ink containing polyimide resin requires a thick film of cured polyimide resin, and the upper limit of the solid content of solvent-soluble polyimide resin alone is about 30 to 50%. Difficult to deal with. To address this issue, organic or inorganic fillers have been added, but as the storage time elapses, the fillers tend to settle or change in viscosity, making them unusable.

2020-2039812020-203981

上記に鑑み、本発明が解決しようとする課題は、室温状態でも固化せず、ガラス移転温度が低い可溶性ポリイミド樹脂の製造方法及び密着性、硬度に優れ、耐溶剤性及び保存安定性が良いポリイミド樹脂組成物の製造方法を提供することである。 In view of the above, the problems to be solved by the present invention are a method for producing a soluble polyimide resin that does not solidify even at room temperature and has a low glass transition temperature, and a polyimide resin that has excellent adhesion and hardness, and has good solvent resistance and storage stability. An object of the present invention is to provide a method for producing a resin composition.

本発明者は、鋭意研究した結果、エステル系溶剤を使用することにより、室温状態でも固化しない可溶性ポリイミド樹脂の製造方法及び密着性、硬度に優れ、耐溶剤性及び保存安定性が良いポリイミド樹脂組成物の製造方法を提供することができる。 As a result of extensive research, the present inventor has discovered a method for producing a soluble polyimide resin that does not solidify even at room temperature by using an ester solvent, and a polyimide resin composition that has excellent adhesion and hardness, and has good solvent resistance and storage stability. It is possible to provide a method for manufacturing a product.

即ち、本発明の要旨は以下のとおりである。
[1] 酸無水物とジアミンとを反応溶剤中で反応させてポリイミドを製造する方法であって、
前記ジアミンがダイマージアミンを含み、
前記反応溶剤がエステル系溶剤を含む、ことを特徴とする、ポリイミド樹脂の製造方法。
[2] 前記酸無水物を前記反応溶剤に溶解させ、前記酸無水物が溶解した反応溶剤中に前記ジアミンを滴下してイミド反応を行う工程を含む、[1]に記載のポリイミド樹脂の製造方法。
[3] イミド化反応により形成されたポリアミック酸の濃度が5質量%以下の状態を維持しながら閉環反応を行い、ポリアミドを得ることを含む、[1]又は[2]に記載のポリイミド樹脂の製造方法。
[4] 前記ジアミンの配合量は、前記酸無水物のモル当量1に対し、0.95~1.05モル当量である、[1]又は[2]のいずれか一項に記載のポリイミド樹脂の製造方法。
[5] 前記エステル系溶剤が、安息香酸エステル類である、[1]又は[2]のいずれか一項に記載のポリイミド樹脂の製造方法。
[6] ポリイミド樹脂組成物を製造する方法であって、
[1]又は[2]のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含む、ポリイミド樹脂組成物の製造方法。
[7] ポリイミド樹脂組成物を製造する方法であって、
[1]又は[2]のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含み、
前記充填剤を、前記ポリイミド樹脂の固形分量100質量部に対して10~4000質量部の割合で混合する、ポリイミド樹脂組成物の製造方法。
[8] ポリイミド樹脂硬化物を製造する方法であって、
[1]又は[2]のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含み、
前記充填剤を、前記ポリイミド樹脂の固形分量100質量部に対して10~4000質量部の割合で混合し、ポリイミド樹脂組成物を製造し、
前記ポリイミド樹脂組成物を50~200℃の温度で加熱乾燥すること含む、ポリイミド樹脂硬化物の製造方法。
That is, the gist of the present invention is as follows.
[1] A method for producing polyimide by reacting an acid anhydride and a diamine in a reaction solvent, the method comprising:
the diamine includes a dimer diamine,
A method for producing a polyimide resin, characterized in that the reaction solvent contains an ester solvent.
[2] The production of the polyimide resin according to [1], which includes the step of dissolving the acid anhydride in the reaction solvent and dropping the diamine dropwise into the reaction solvent in which the acid anhydride is dissolved to perform an imide reaction. Method.
[3] The polyimide resin according to [1] or [2], which comprises performing a ring-closing reaction while maintaining the concentration of the polyamic acid formed by the imidization reaction at 5% by mass or less to obtain a polyamide. Production method.
[4] The polyimide resin according to any one of [1] or [2], wherein the diamine is blended in an amount of 0.95 to 1.05 molar equivalent per 1 molar equivalent of the acid anhydride. manufacturing method.
[5] The method for producing a polyimide resin according to any one of [1] or [2], wherein the ester solvent is a benzoic acid ester.
[6] A method for producing a polyimide resin composition, comprising:
Producing polyimide by the method described in either [1] or [2],
A method for producing a polyimide resin composition, comprising a step of mixing a filler having an average particle size of 0.3 to 1.0 μm into the polyimide resin.
[7] A method for producing a polyimide resin composition, comprising:
Producing polyimide by the method described in either [1] or [2],
A step of mixing a filler with an average particle size of 0.3 to 1.0 μm into the polyimide resin,
A method for producing a polyimide resin composition, wherein the filler is mixed in a proportion of 10 to 4000 parts by mass based on 100 parts by mass of solid content of the polyimide resin.
[8] A method for producing a cured polyimide resin, comprising:
Producing polyimide by the method described in either [1] or [2],
A step of mixing a filler with an average particle size of 0.3 to 1.0 μm into the polyimide resin,
The filler is mixed at a ratio of 10 to 4000 parts by mass with respect to 100 parts by mass of solid content of the polyimide resin to produce a polyimide resin composition,
A method for producing a cured polyimide resin product, which comprises heating and drying the polyimide resin composition at a temperature of 50 to 200°C.

本発明のポリイミドの製造方法によれば、ポリアミック酸の濃度を低く保ちかつ速やかに脱水イミド化反応を進め、均一な反応場でポリイミドの重合を行うことができる。これにより得られたポリイミド樹脂溶液は、ガラス移転温度が低く、室温でもゲル状になることなく、均一な液状態を保つことができ、このような均一な液状態のポリイミド樹脂を使用して充填剤を添加し、得られる組成物は時間の経過に伴い、充填剤の沈降や粘度変化が起こることなく、保存安定性に優れる。 According to the method for producing polyimide of the present invention, it is possible to keep the concentration of polyamic acid low and rapidly proceed with the dehydration imidization reaction, thereby polymerizing polyimide in a uniform reaction field. The polyimide resin solution obtained by this method has a low glass transition temperature and can maintain a uniform liquid state without becoming gelatinous even at room temperature. The composition obtained by adding the filler has excellent storage stability without sedimentation of the filler or change in viscosity over time.

本発明は、酸無水物とジアミンとを反応溶剤中で反応させてポリイミドを製造する方法であって、ジアミンがダイマージアミンを含み、反応溶剤がエステル系溶剤を含むことを特徴とする、ポリイミド樹脂の製造方法である。 The present invention is a method for producing polyimide by reacting an acid anhydride and a diamine in a reaction solvent, the diamine containing a dimer diamine, and the reaction solvent containing an ester solvent. This is a manufacturing method.

<ポリイミド樹脂>
本発明におけるポリイミドとは、ポリイミド結合を繰り返し単位として持つポリマーを意味し、ポリイミド樹脂とは、ポリイミドを含む樹脂をいう。
<Polyimide resin>
In the present invention, polyimide refers to a polymer having polyimide bonds as repeating units, and polyimide resin refers to a resin containing polyimide.

<ポリイミド樹脂の製造方法>
本発明のポリイミド樹脂の製造方法において、特に製造条件が制限されるものではないが、通常、反応温度は150~210℃であり、好ましくは160~200℃である。また、製造量にもよるが、滴下反応時間は30~120分程度であり、好ましくは60~90分程度である。
<Production method of polyimide resin>
In the method for producing a polyimide resin of the present invention, the production conditions are not particularly limited, but the reaction temperature is usually 150 to 210°C, preferably 160 to 200°C. Although it depends on the production amount, the dropwise reaction time is about 30 to 120 minutes, preferably about 60 to 90 minutes.

本発明の一つ実施態様としては、酸無水物を反応溶剤に溶解させ、酸無水物が溶解した反応溶剤中にジアミンを滴下してイミド反応を行う工程を含むことが好ましい。酸無水物先に反応溶剤に仕込み、ジアミンを徐々に滴下することによって、ポリアミック酸の濃度が5質量%以下の状態を維持しながら閉環反応を行い、速やかに脱水イミド化反応を進め、ポリアミック酸によるゲル化を防ぐことができる。 One embodiment of the present invention preferably includes a step of dissolving an acid anhydride in a reaction solvent and dropping a diamine into the reaction solvent in which the acid anhydride is dissolved to perform an imide reaction. By first adding the acid anhydride to a reaction solvent and gradually dropping the diamine, the ring-closing reaction is carried out while maintaining the concentration of the polyamic acid at 5% by mass or less, and the dehydration imidization reaction is rapidly proceeded to form the polyamic acid. can prevent gelation caused by

<酸無水物>
本発明において、酸無水物としては特に限定されないが、脂肪族テトラカルボン酸無水物、芳香族カルボン酸無水物等を挙げることができる。酸無水物は、単独でまたは2種以上を組合せて使用できる。
<Acid anhydride>
In the present invention, the acid anhydride is not particularly limited, but includes aliphatic tetracarboxylic acid anhydrides, aromatic carboxylic acid anhydrides, and the like. Acid anhydrides can be used alone or in combination of two or more.

脂肪族テトラカルボン酸無水物としては、環式または非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物(HBPDA)およびこれらの位置異性体等が挙げられる。これらは単独または2種以上を組合せて使用できる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、および1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独または2種以上を組合せて使用できる。また、環式脂肪族テトラカルボン酸二無水物および非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 Examples of the aliphatic tetracarboxylic anhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydride. Cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. Cycloalkanetetracarboxylic dianhydride such as (HPMDA), 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), and 1,2,3,4-cyclopentanetetracarboxylic dianhydride , bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3',4,4'-tetracarboxylic dianhydride (HBPDA) ) and their positional isomers. These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-pentanetetracarboxylic dianhydride. These can be used alone or in combination of two or more. Furthermore, a combination of a cycloaliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used.

芳香族カルボン酸無水物としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物および縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、4,4’-オキシジフタル酸二無水物(ODPA)、3,4-オキシジフタル酸二無水物(aODPA)、4,4‘-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸二無水物(BPADA)3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(sBPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(aBPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物および4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物等が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、1,2,4,5-ベンゼンテトラカルボン酸二無水物(PMDA)等が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。 Examples of the aromatic carboxylic anhydride include non-fused polycyclic aromatic tetracarboxylic dianhydride, monocyclic aromatic tetracarboxylic dianhydride, and fused polycyclic aromatic tetracarboxylic dianhydride. can be mentioned. Examples of the non-fused polycyclic aromatic tetracarboxylic dianhydride include 4,4'-oxydiphthalic dianhydride (ODPA), 3,4-oxydiphthalic dianhydride (aODPA), 4,4'-( 4,4'-isopropylidenediphenoxy)diphthalic dianhydride (BPADA) 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic acid Dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (sBPDA), 2,2',3,3'-biphenyltetracarboxylic dianhydride (aBPDA), 3,3' , 4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride Anhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), 1,2-bis(2 , 3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4 , 4'-(p-phenylenedioxy)diphthalic dianhydride and 4,4'-(m-phenylenedioxy)diphthalic dianhydride. Examples of monocyclic aromatic tetracarboxylic dianhydrides include 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), and fused polycyclic aromatic tetracarboxylic dianhydrides. Examples of the dianhydride include 2,3,6,7-naphthalenetetracarboxylic dianhydride.

<ジアミン>
本発明において、ジアミンは、ダイマージアミンを含む。ジアミン中のダイマージアミンの含有量は、柔軟性、接着性及び耐溶剤性の観点から、50~100質量%であり、ガラス転移点を低く抑えることにより、溶剤乾燥を容易にする観点から、好ましくは75~100質量である。
<Diamine>
In the present invention, diamine includes dimer diamine. The content of dimer diamine in the diamine is preferably 50 to 100% by mass from the viewpoint of flexibility, adhesiveness and solvent resistance, and from the viewpoint of facilitating solvent drying by suppressing the glass transition point. is 75-100 mass.

ダイマージアミンとは、不飽和脂肪酸の二量体として得られる環式又は非環式ダイマー酸の全てのカルボキシル基を一級アミノ基に置換したものであり、各種公知のものを特に限定されることなく使用できる。 Dimer diamine is a cyclic or acyclic dimer acid obtained as a dimer of unsaturated fatty acids in which all carboxyl groups are substituted with primary amino groups, and various known ones can be used without particular limitation. Can be used.

ダイマージアミンは市販品を使用してもよい。ダイマージアミンの市販品としては、バーサミン551(コグニクスジャパン(株)製)、バーサミン552(コグニクスジャパン(株)製;バーサミン551の水添物)、PRIAMINE1075、PRIAMINE1074(いずれもクローダジャパン(株)製)等を挙げることができる。 A commercially available dimer diamine may be used. Commercial products of dimer diamine include Versamine 551 (manufactured by Cognix Japan Co., Ltd.), Versamine 552 (manufactured by Cognix Japan Co., Ltd.; hydrogenated product of Versamine 551), PRIAMINE 1075, and PRIAMINE 1074 (all manufactured by Croda Japan Co., Ltd.). (manufactured by).

本発明において、ジアミンはダイマージアミン以外のジアミンを含むことができる。ダイマージアミン以外のジアミンとしては、2官能のジアミンであれば、特に限定されないが、例えば、芳香族ジアミン、脂肪族ジアミン等を挙げることができる。 In the present invention, the diamine can include diamines other than dimer diamine. Diamines other than dimer diamine are not particularly limited as long as they are bifunctional diamines, and examples include aromatic diamines and aliphatic diamines.

芳香族ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独でまたは2種以上を組合せて使用できる。 Specific examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 2,6-diamino Aromatic diamines having one aromatic ring such as naphthalene; 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3 '-Diamino diphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis (4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy) phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)benzidine (TFMB), 4,4' -bis(4-aminophenoxy)biphenyl, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene, 9,9-bis(4-amino- Examples include aromatic diamines having two or more aromatic rings, such as 3-chlorophenyl)fluorene and 9,9-bis(4-amino-3-fluorophenyl)fluorene. These can be used alone or in combination of two or more.

脂肪族ジアミンの具体例としては、ヘキサメチレンジアミン等の非環式脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独でまたは2種以上を組合せて使用できる。 Specific examples of aliphatic diamines include acyclic aliphatic diamines such as hexamethylene diamine; 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, 4,4' - Cycloaliphatic diamines such as diaminodicyclohexylmethane and the like. These can be used alone or in combination of two or more.

ジアミンの配合量は、酸無水物のモル当量1に対し、ジアミンのモル当量は0.95~1.05であり、好ましくは0.97~1.03である。 The molar equivalent of diamine is 0.95 to 1.05, preferably 0.97 to 1.03 per molar equivalent of acid anhydride.

<エステル系溶剤>
エステル系溶剤とは、-COO-を含む溶剤をいう。本発明において、エステル系溶剤としては、反応に影響を与えない限り特に限定されないが、例えば、乳酸メチル、乳酸エチル、乳酸ブチル等の乳酸エステル類;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸イソペンチル等の酢酸エステル類;酪酸イソプロピル、酪酸エチル、酪酸ブチル等の酪酸エステル類;ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル等のピルビン酸エステル類;安息香酸メチル、安息香酸エチル等の安息香酸エステル類;アセト酢酸メチル、アセト酢酸エチル等のアセト酢酸エステル類を挙げることができる。これらは単独でまたは2種以上を組合せて使用できる。
<Ester solvent>
The ester solvent refers to a solvent containing -COO-. In the present invention, the ester solvent is not particularly limited as long as it does not affect the reaction, but examples include lactic acid esters such as methyl lactate, ethyl lactate, and butyl lactate; ethyl acetate, n-butyl acetate, isobutyl acetate, and acetic acid. Acetate esters such as isopentyl; Butyrate esters such as isopropyl butyrate, ethyl butyrate, and butyl butyrate; Pyruvate esters such as methyl pyruvate, ethyl pyruvate, and propyl pyruvate; Benzoic acids such as methyl benzoate and ethyl benzoate Esters: Examples include acetoacetate esters such as methyl acetoacetate and ethyl acetoacetate. These can be used alone or in combination of two or more.

脱水溶媒としては、トルエン、メチルベンゼンのような水と共沸混合物をものであれば、特に制約はなく、反応溶剤が安息香酸エステルのような水と共沸するものであれば添加しなくともよい。 There are no particular restrictions on the dehydration solvent as long as it is an azeotrope with water, such as toluene or methylbenzene, and there is no need to add it as long as the reaction solvent is an azeotrope with water, such as benzoic acid ester. good.

本発明により製造されたポリイミド樹脂は、そのままインキとして用いることもできるが、インキ化する際には、使用する印刷機の特性に合わせて、添加剤を加えて調整を行うことができる。例えば、粘度調整に関しては、エステル系溶剤、ナフテン系溶剤、テルピネオール、酢酸エチルカルビトール、シクロヘキサノン、酢酸エチル、トルエンなどの汎用溶剤で希釈することができる。 The polyimide resin produced according to the present invention can be used as an ink as it is, but when it is made into an ink, it can be adjusted by adding additives according to the characteristics of the printing machine used. For example, to adjust the viscosity, it can be diluted with a general-purpose solvent such as an ester solvent, a naphthenic solvent, terpineol, ethyl acetate carbitol, cyclohexanone, ethyl acetate, or toluene.

本発明のポリイミド樹脂組成物の製造方法は、上記のポリイミド樹脂の製造方法によりポリイミド樹脂を製造し、得られたポリイミド樹脂に、充填剤を混合する工程を含む The method for producing a polyimide resin composition of the present invention includes the steps of producing a polyimide resin by the above-described method for producing a polyimide resin, and mixing a filler into the obtained polyimide resin.

本発明のポリイミド樹脂組成物の製造方法は、上記のポリイミド樹脂の製造方法によりポリイミド樹脂溶液を製造し、塗膜の厚み調整や各種の性能付与のために、得られたポリイミド樹脂溶液に無機系又は有機系充填剤を混合する工程を含む。 In the method for producing a polyimide resin composition of the present invention, a polyimide resin solution is produced by the above-mentioned method for producing a polyimide resin, and an inorganic resin is added to the obtained polyimide resin solution in order to adjust the thickness of the coating film and impart various properties. Or it includes a step of mixing an organic filler.

無機系充填材としては特に種類を選ばず絶縁性の塗膜を得たい場合にはシリカ・アルミナ・硫酸バリウム・炭酸カルシウムなどを使用できる。熱伝導性を付与する場合にはアルミナ・窒化ホウ素・窒化アルミニウム・酸化マグネシウム・黒鉛粉・銀粉・銅粉などを使用することができる。電気伝導性を付与する場合には、銀粉・銅粉・カーボンブラック・インジウム錫混合酸化物粉などが使用できる。 Any type of inorganic filler can be used, and silica, alumina, barium sulfate, calcium carbonate, etc. can be used if an insulating coating film is desired. When imparting thermal conductivity, alumina, boron nitride, aluminum nitride, magnesium oxide, graphite powder, silver powder, copper powder, etc. can be used. When imparting electrical conductivity, silver powder, copper powder, carbon black, indium-tin mixed oxide powder, etc. can be used.

有機系充填材としては、ポリマー溶液に使用する溶剤に溶解しないものであれば使用することができる。例えば、架橋アクリル粒子、架橋スチレン粒子、メラミン樹脂粒子、ポリエチレン粒子、ポリイミド粒子などがあげられる。 Any organic filler can be used as long as it does not dissolve in the solvent used for the polymer solution. Examples include crosslinked acrylic particles, crosslinked styrene particles, melamine resin particles, polyethylene particles, and polyimide particles.

充填剤は球状のものが好ましい。充填剤の粒径は、組成物の長期的な安定性の観点から、好ましくは平均粒径が0.3~1.0umであり、より好ましくは0.4~0.8umである。このような粒径を有する充填剤を使用することにより、沈降や粘度上昇が抑えられる。また、充填剤に球状で平均粒径が1.0~5.0um充填剤を混合することで、更に粘度上昇が抑えられる。充填剤は、単独もしくは2種以上混合してもよい。なお、本明細書において「平均粒径」とは、レーザー回折散乱式粒度分布測定法を用いて得られる体積累積50%における粒径(D50)を意味する。 The filler is preferably spherical. From the viewpoint of long-term stability of the composition, the average particle size of the filler is preferably 0.3 to 1.0 um, more preferably 0.4 to 0.8 um. By using a filler having such a particle size, sedimentation and viscosity increase can be suppressed. Further, by mixing a spherical filler with an average particle size of 1.0 to 5.0 um, the increase in viscosity can be further suppressed. The fillers may be used alone or in combination of two or more. In addition, in this specification, the "average particle size" means the particle size at 50% cumulative volume (D50) obtained using a laser diffraction scattering particle size distribution measuring method.

充填剤の混合量は、ポリイミド樹脂組成物の用途に応じて特に限定されることなく、適宜調整することができ、ポリイミド樹脂の固形分量100質量部に対して10~4000質量部の割合で配合してよい。例えば、充填剤がアルミナである場合、ポリイミド樹脂の固形分量100質量部に対して、アルミナを50~500重量部の割合で混合してもよい。 The amount of the filler to be mixed is not particularly limited depending on the use of the polyimide resin composition, and can be adjusted as appropriate. You may do so. For example, when the filler is alumina, 50 to 500 parts by weight of alumina may be mixed with 100 parts by weight of the solid content of the polyimide resin.

本発明により製造されたポリイミド樹脂及びその組成物の粘度は、特に限定されることなく、用途に応じて適宜に調整することができるが、例えば、50000~100000mPa・s、好ましくは、60000~80000mPa・sである。ポリイミド樹脂の粘度は、樹脂の分子量により調整でき、また、樹脂組成物の粘度は、溶剤等により調整することができる。なお、粘度は、例えばコーンプレート型粘度計等の粘度計を用いて、25℃で測定した際の粘度をいうものとする。 The viscosity of the polyimide resin and its composition produced according to the present invention is not particularly limited and can be adjusted as appropriate depending on the intended use.・It is s. The viscosity of the polyimide resin can be adjusted by adjusting the molecular weight of the resin, and the viscosity of the resin composition can be adjusted by using a solvent or the like. Note that the viscosity refers to the viscosity measured at 25° C. using, for example, a viscometer such as a cone-plate viscometer.

本発明により製造されたポリイミド樹脂組成物の用途は、特に限定されることなく、フィルム、コーティング剤、保護膜、電気絶縁材料全般、ベアリング、耐熱塗料、断熱軸、断熱トレー、電子部品、自動車部品、インキ等様々な分野で使用することができる。また、用途に応じて、粘性調整剤、消泡剤、架橋剤、顔料、染料、可塑剤、酸化防止剤を添加する工程を含むことができる。 Applications of the polyimide resin composition produced according to the present invention are not particularly limited, and include films, coating agents, protective films, electrical insulation materials in general, bearings, heat-resistant paints, heat-insulating shafts, heat-insulating trays, electronic parts, and automobile parts. It can be used in various fields such as , ink, etc. Further, depending on the application, it may include a step of adding a viscosity modifier, an antifoaming agent, a crosslinking agent, a pigment, a dye, a plasticizer, and an antioxidant.

本発明のポリイミド樹脂硬化物の製造方法は、上記ポリイミド樹脂組成物の製造方法によりポリイミド樹脂組成物を製造し、得られたポリイミド樹脂組成物を50℃~200℃、好ましくは50~180℃、より好ましくは50~150℃の温度で加熱乾燥することを含む。本発明により製造されたポリイミド樹脂より、従来の公知方法から製造されたポリイミド樹脂より比較的低い温度で硬化物を形成することができるため、耐熱性を必要としないインキとして好適である。 The method for producing a cured polyimide resin product of the present invention includes producing a polyimide resin composition by the above method for producing a polyimide resin composition, and heating the obtained polyimide resin composition at 50 to 200 °C, preferably 50 to 180 °C. More preferably, it includes heating and drying at a temperature of 50 to 150°C. Since the polyimide resin produced according to the present invention can form a cured product at a relatively lower temperature than the polyimide resin produced by conventionally known methods, it is suitable as an ink that does not require heat resistance.

(実施例1)
撹拌羽根、水抜き還流管、窒素導入口及び滴下ロトをセットした1Lの反応器に安息香酸メチル449.73gとピロメリット酸二無水物87.25gを仕込み、窒素置換した後、撹拌しなから185℃に保持したオイルバスで加温した。ダイマージアミン(P1075、クローダジャパン社製)214.40gを滴下ロトに測り取った。反応器の内部は、加温開始後約30分でPMDAが溶解し、透明な溶液状態となった。反応器の中にダイマ―ジアミンを約60分かけて滴下反応した。滴下終了後4時間反応させた後、反応液は透明な褐色粘調液体となり、固形分は39.8%で粘度は55000mPa*sであった。温度が室温に下がっても、反応液はほぼ透明状態を保ち、取り出し後もゲル化物などの生成もなく均一な液状態を保っていた。
(Example 1)
449.73 g of methyl benzoate and 87.25 g of pyromellitic dianhydride were placed in a 1 L reactor equipped with a stirring blade, a water drain reflux pipe, a nitrogen inlet, and a dropping funnel, and after purging with nitrogen, without stirring. It was heated in an oil bath maintained at 185°C. 214.40 g of dimer diamine (P1075, manufactured by Croda Japan) was weighed into a dropping funnel. PMDA was dissolved in the inside of the reactor approximately 30 minutes after the start of heating, and a transparent solution state was formed. Dimer diamine was added dropwise into the reactor over a period of about 60 minutes. After reacting for 4 hours after the completion of the dropwise addition, the reaction liquid became a transparent brown viscous liquid with a solid content of 39.8% and a viscosity of 55000 mPa*s. Even when the temperature dropped to room temperature, the reaction solution remained almost transparent, and even after it was taken out, it remained uniform with no gelation.

(比較例1)
撹拌羽根、水抜き還流管、窒素導入口及び滴下ロトをセットした1Lの反応器にn-メチルピロリドン449.73gとPMDA87.25gを仕込み、窒素置換した後、撹拌しなから185℃に保持したオイルバスで加温した。ダイマージアミン(P1075、クローダジャパン社製、)214.40gを滴下ロトに測り取った。反応器の内部は、加温開始後約30分でPMDAが溶解し、透明な溶液状態となった。反応器の中にダイマ―ジアミンを約60分かけて滴下反応した。滴下終了後4時間反応させた後、反応液は透明な褐色粘調液体になったが、温度が室温に下がると、ゲル状になり、最終的には固化してしまった。
(Comparative example 1)
449.73 g of n-methylpyrrolidone and 87.25 g of PMDA were charged into a 1 L reactor equipped with a stirring blade, a water drain reflux pipe, a nitrogen inlet, and a dropping funnel, and after purging with nitrogen, the reactor was maintained at 185°C without stirring. It was heated in an oil bath. 214.40 g of dimer diamine (P1075, manufactured by Croda Japan) was weighed into a dropping funnel. PMDA was dissolved in the inside of the reactor approximately 30 minutes after the start of heating, and a transparent solution state was formed. Dimer diamine was added dropwise into the reactor over a period of about 60 minutes. After reacting for 4 hours after the completion of the dropwise addition, the reaction solution became a transparent brown viscous liquid, but when the temperature dropped to room temperature, it became gel-like and finally solidified.

(実施例3)PMDA+アルミナ
0.3Lのプラネタリーミキサーに実施例1で得られたポリイミド樹脂90gとASFP-40(デンカ製球状アルミナ)300gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後ポリイミド樹脂90gと安息香酸へキシル20gを入れ、再度減圧撹拌を30分行い、粘度72000mPa*sのポリイミド樹脂組成物を得た。
(Example 3) PMDA + Alumina 90 g of the polyimide resin obtained in Example 1 and 300 g of ASFP-40 (spherical alumina manufactured by Denka) were charged into a 0.3 L planetary mixer, and the mixture was kneaded for 1 hour under reduced pressure to form a filler. was dispersed. Thereafter, 90 g of polyimide resin and 20 g of hexyl benzoate were added, and stirring under reduced pressure was performed again for 30 minutes to obtain a polyimide resin composition with a viscosity of 72,000 mPa*s.

(実施例4)PMDA+アクリルフィラー
0.3Lのプラネタリーミキサーに実施例1の樹脂溶液100gと架橋アクリル粉KMR-3TA(綜研化学製)90gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後ポリイミド樹脂100gとナフテン系溶剤D-110(安藤パラケミー製)30gを入れ、再度減圧撹拌を30分行い、粘度70000mPa*sのポリイミド樹脂組成物を得た。
(Example 4) PMDA + acrylic filler 100 g of the resin solution of Example 1 and 90 g of cross-linked acrylic powder KMR-3TA (manufactured by Soken Kagaku) were placed in a 0.3 L planetary mixer, and the mixture was kneaded for 1 hour under reduced pressure to form the filler. was dispersed. Thereafter, 100 g of polyimide resin and 30 g of naphthenic solvent D-110 (manufactured by Ando Parachemy) were added, and stirring under reduced pressure was performed again for 30 minutes to obtain a polyimide resin composition with a viscosity of 70,000 mPa*s.

(実施例5)PMDA+アルミナ
0.3Lのプラネタリーミキサーに実施例1の樹脂溶液90gとASFP-05S(平均粒径:0.55umデンカ製球状アルミナ)300gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後ポリイミド樹脂90gと安息香酸へキシル20gを入れ、再度減圧撹拌を30分行った。その後、安息香酸へキシルを入れ、ポリイミド樹脂組成物の粘度を60000mPa*sに調整した。
(Example 5) PMDA + Alumina 90 g of the resin solution of Example 1 and 300 g of ASFP-05S (average particle size: 0.55 um spherical alumina made by Denka) were charged into a 0.3 L planetary mixer, and mixed for 1 hour under reduced pressure. The filler was dispersed by melding. Thereafter, 90 g of polyimide resin and 20 g of hexyl benzoate were added, and the mixture was again stirred under reduced pressure for 30 minutes. Thereafter, hexyl benzoate was added to adjust the viscosity of the polyimide resin composition to 60,000 mPa*s.

(実施例6)MDA+アルミナ
0.3Lのプラネタリーミキサーに実施例1の樹脂溶液90gとASFP-07S(平均粒径:0.8umデンカ製球状アルミナ)300gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後樹脂溶液90gと安息香酸へキシル20gを入れ、再度減圧撹拌を30分行った。その後、安息香酸へキシルを入れ、ポリイミド樹脂組成物の粘度を60000mPa*sに調整した。
(Example 6) MDA + Alumina 90 g of the resin solution of Example 1 and 300 g of ASFP-07S (average particle size: 0.8 um spherical alumina made by Denka) were charged into a 0.3 L planetary mixer, and mixed for 1 hour under reduced pressure. The filler was dispersed by melding. Thereafter, 90 g of the resin solution and 20 g of hexyl benzoate were added, and the mixture was again stirred under reduced pressure for 30 minutes. Thereafter, hexyl benzoate was added to adjust the viscosity of the polyimide resin composition to 60,000 mPa*s.

(実施例7)PMDA+アルミナ
0.3Lのプラネタリーミキサーに実施例1の樹脂溶液90gとDAW-01(平均粒径:2umデンカ製球状アルミナ)300gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後樹脂溶液90gと安息香酸へキシル20gを入れ、再度減圧撹拌を30分行った。その後、安息香酸へキシルを入れ、ポリイミド樹脂組成物の粘度を60000mPa*sに調整した。
(Example 7) PMDA + Alumina 90 g of the resin solution of Example 1 and 300 g of DAW-01 (average particle size: 2 um spherical alumina made by Denka) were charged into a 0.3 L planetary mixer, and kneaded for 1 hour under reduced pressure. to disperse the filler. Thereafter, 90 g of the resin solution and 20 g of hexyl benzoate were added, and the mixture was again stirred under reduced pressure for 30 minutes. Thereafter, hexyl benzoate was added to adjust the viscosity of the polyimide resin composition to 60,000 mPa*s.

(実施例8)PMDA+アルミナ
0.3Lのプラネタリーミキサーに合成例1の樹脂溶液100gとFB-3SDC(平均粒径:3umデンカ製球状シリカ)100gとASFP-07S(平均粒径:0.8umデンカ製球状アルミナ)175gを仕込み、減圧しながら、1時間混錬してフィラーを分散させた。その後樹脂溶液100gと安息香酸へキシル25gを入れ、再度減圧撹拌を30分行った。その後、安息香酸へキシルを入れ、ポリイミド樹脂組成物の粘度を60000mPa*sに調整した。
(Example 8) PMDA + Alumina In a 0.3 L planetary mixer, 100 g of the resin solution of Synthesis Example 1, 100 g of FB-3SDC (average particle size: 3 um spherical silica manufactured by Denka) and ASFP-07S (average particle size: 0.8 um) were added. 175 g of spherical alumina manufactured by Denka Co., Ltd.) was charged and kneaded for 1 hour under reduced pressure to disperse the filler. Thereafter, 100 g of the resin solution and 25 g of hexyl benzoate were added, and the mixture was again stirred under reduced pressure for 30 minutes. Thereafter, hexyl benzoate was added to adjust the viscosity of the polyimide resin composition to 60,000 mPa*s.

(塗布膜の密着性評価)
実施例1のポリイミド樹脂及び実施例2、3のポリイミド樹脂組成物を100μmのスペーサーを介して、スライドグラス上にスキージ塗布し、その後120℃30分間熱風オーブン内で乾燥した後、JIS K5600-5-6に準じて1mm碁盤目セロテープ剥離試験を行い、塗布膜の密着性を評価した。密着性評価の結果を表1に示す。
(Evaluation of adhesion of coating film)
The polyimide resin of Example 1 and the polyimide resin compositions of Examples 2 and 3 were applied with a squeegee onto a slide glass via a 100 μm spacer, and then dried in a hot air oven at 120° C. for 30 minutes, and then JIS K5600-5. A 1 mm grid Cellotape peeling test was conducted in accordance with 1-6 to evaluate the adhesion of the coating film. Table 1 shows the results of the adhesion evaluation.

(塗布膜の鉛筆硬度性評価)
実施例1のポリイミド樹脂及び実施例2、3のポリイミド樹脂組成物を100μmのスペーサーを介して、スライドグラス上にスキージ塗布し、その後120℃30分間熱風オーブン内で乾燥した後、鉛筆硬度はJIS K5600-5-4に準じて、塗布膜の鉛筆硬度性を評価した。鉛筆硬度性評価の結果を表1に示す。
(Pencil hardness evaluation of coating film)
The polyimide resin of Example 1 and the polyimide resin compositions of Examples 2 and 3 were applied with a squeegee onto a slide glass through a 100 μm spacer, and then dried in a hot air oven at 120°C for 30 minutes, and the pencil hardness was JIS. The pencil hardness of the coating film was evaluated according to K5600-5-4. Table 1 shows the results of pencil hardness evaluation.

(塗布膜の耐溶剤性評価)
リチウムイオン電池の電解液に用いられている溶剤を用い、離型フィルム上に実施例1及び実施例2、3のポリイミド樹脂組成物を200μmのスペーサーを介してスキージ塗布した後、同じく120℃30分間乾燥した試験片を、幅1cm長さ4cmに切りだし、初期の重量を精秤した後、実施例1~3それぞれの試験片を炭酸エチレン・炭酸プロピレン(EC・PC)混合溶剤(質量比1:1)及び炭酸エチレン・ジメチルカーボネート(EC・DMC)混合溶剤(質量比3:7)に室温で24時間浸漬した。その後、試験片を溶剤から取り出し、試験片表面の溶剤を良く拭き取ったのちに、再び試験片の重量を測定した。耐溶剤性としては、初期質量と浸漬後質量の差から質量の変化率を百分率で表し、膨潤率とした。耐溶剤性評価(膨潤率)の結果を表1に示す。
(Solvent resistance evaluation of coating film)
Using a solvent used in the electrolyte of lithium ion batteries, the polyimide resin compositions of Example 1 and Examples 2 and 3 were applied onto the release film with a squeegee through a 200 μm spacer, and then heated at 120°C and 30°C. After drying the test piece for 1 minute, the test piece was cut into pieces 1 cm wide and 4 cm long, and the initial weight was accurately weighed. 1:1) and ethylene carbonate/dimethyl carbonate (EC/DMC) mixed solvent (mass ratio 3:7) for 24 hours at room temperature. Thereafter, the test piece was taken out from the solvent, the solvent on the surface of the test piece was thoroughly wiped off, and then the weight of the test piece was measured again. As for solvent resistance, the rate of change in mass was expressed as a percentage from the difference between the initial mass and the mass after immersion, and was taken as the swelling ratio. Table 1 shows the results of solvent resistance evaluation (swelling rate).

いずれもガラスへの密着性は良好でかつ柔軟な塗膜であった。炭酸エチレン・炭酸プロピレン(EC・PC)混合溶剤に対してはいずれも膨潤しないが、炭酸エチレン・炭酸ジメチル(EC・DMC)混合溶剤に対しては、いずれも実用的に充分に良い耐溶剤性を示している。 In all cases, the coating film had good adhesion to glass and was flexible. None of them swells in a mixed solvent of ethylene carbonate and propylene carbonate (EC/PC), but both have sufficiently good solvent resistance for practical use in a mixed solvent of ethylene carbonate and dimethyl carbonate (EC/DMC). It shows.

(ポリイミド樹脂組成物の安定性評価)
実施例4~7それぞれのポリイミド樹脂組成物を保存容器に入れ、室温にて保存し、粘度変化と充填物の沈降の確認を行った。粘度は、ステージ温度25℃,回転数5rpmで測定を行い、沈降の確認は、ヘラの先端を容器の底の外側から中心までを直線で1回掻き取って、確認を行った。粘度変化の評価結果は表2、沈降の評価結果は表3に示す。
(Stability evaluation of polyimide resin composition)
Each of the polyimide resin compositions of Examples 4 to 7 was placed in a storage container and stored at room temperature, and changes in viscosity and sedimentation of the filler were confirmed. The viscosity was measured at a stage temperature of 25° C. and a rotation speed of 5 rpm, and sedimentation was confirmed by scraping the bottom of the container once in a straight line from the outside to the center with the tip of a spatula. The evaluation results of viscosity change are shown in Table 2, and the evaluation results of sedimentation are shown in Table 3.

粘度変化が30%以下を良好とし、実施例4では、粘度変化は、1ヶ月までは、良好であり、3ヶ月以上沈降が見られなかったことが判る。
実施例5では、粘度変化が3ヶ月まで、良好な結果であり、3ヶ月以上沈降が見られなかったことが判る。
実施例6については、粘度変化は、3ヶ月以上良好な結果が得られているが、沈降に関しては、平均粒径2μmと大きいため、沈降が1週間で見られ、良好な結果が得られなかった。
実施例7については、粘度変化は、3ヶ月以上良好な結果が得られ、実施例4~6のポリイミド樹脂組成物に対して粘度変化が少ない結果が得られた。また、平均粒径3μmと大きな粒径が入っていても、2ヵ月まで良好な結果が得られた。
A viscosity change of 30% or less is considered good, and it can be seen that in Example 4, the viscosity change was good up to 1 month, and no sedimentation was observed for 3 months or more.
It can be seen that in Example 5, the viscosity change was good for up to 3 months, and no sedimentation was observed for more than 3 months.
Regarding Example 6, good results were obtained regarding viscosity change for more than 3 months, but regarding sedimentation, sedimentation was observed in one week due to the large average particle size of 2 μm, and good results were not obtained. Ta.
Regarding Example 7, good results were obtained regarding the viscosity change over a period of 3 months or more, and results were obtained in which the viscosity change was smaller than that of the polyimide resin compositions of Examples 4 to 6. In addition, good results were obtained for up to 2 months even when large particles with an average particle size of 3 μm were included.

Claims (8)

酸無水物とジアミンとを反応溶剤中で反応させてポリイミドを製造する方法であって、
前記ジアミンがダイマージアミンを含み、
前記反応溶剤がエステル系溶剤を含む、ことを特徴とする、ポリイミド樹脂の製造方法。
A method for producing polyimide by reacting an acid anhydride and a diamine in a reaction solvent, the method comprising:
the diamine includes a dimer diamine,
A method for producing a polyimide resin, characterized in that the reaction solvent contains an ester solvent.
前記酸無水物を前記反応溶剤に溶解させ、前記酸無水物が溶解した反応溶剤中に前記ジアミンを滴下してイミド反応を行う工程を含む、請求項1に記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 1, comprising the steps of dissolving the acid anhydride in the reaction solvent and dropping the diamine dropwise into the reaction solvent in which the acid anhydride is dissolved to perform an imide reaction. イミド化反応により形成されたポリアミック酸の濃度が5質量%以下の状態を維持しながら閉環反応を行い、ポリアミドを得ることを含む、請求項1又は2に記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 1 or 2, comprising performing a ring-closing reaction while maintaining a concentration of the polyamic acid formed by the imidization reaction at 5% by mass or less to obtain a polyamide. 前記ジアミンの配合量は、前記酸無水物のモル当量1に対し、0.95~1.05モル当量である、請求項1又は請求項2のいずれか一項に記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 1 or 2, wherein the amount of the diamine is 0.95 to 1.05 molar equivalent per 1 molar equivalent of the acid anhydride. . 前記エステル系溶剤が、安息香酸エステル類である、請求項1又は請求項2のいずれか一項に記載のポリイミド樹脂の製造方法。 The method for producing a polyimide resin according to claim 1, wherein the ester solvent is a benzoic acid ester. ポリイミド樹脂組成物を製造する方法であって、
請求項1又は請求項2のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含む、ポリイミド樹脂組成物の製造方法。
A method for producing a polyimide resin composition, comprising:
Producing polyimide by the method according to any one of claims 1 or 2,
A method for producing a polyimide resin composition, comprising a step of mixing a filler having an average particle size of 0.3 to 1.0 μm into the polyimide resin.
ポリイミド樹脂組成物を製造する方法であって、
請求項1又は請求項2のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含み、
前記充填剤を、前記ポリイミド樹脂の固形分量100質量部に対して10~4000質量部の割合で混合する、ポリイミド樹脂組成物の製造方法。
A method for producing a polyimide resin composition, comprising:
Producing polyimide by the method according to any one of claims 1 or 2,
A step of mixing a filler with an average particle size of 0.3 to 1.0 μm into the polyimide resin,
A method for producing a polyimide resin composition, wherein the filler is mixed in a proportion of 10 to 4000 parts by mass based on 100 parts by mass of solid content of the polyimide resin.
ポリイミド樹脂硬化物を製造する方法であって、
請求項1又は請求項2のいずれか一項に記載の方法によりポリイミドを製造し、
前記ポリイミド樹脂に、平均粒径が0.3~1.0μmである充填剤を混合する工程を含み、
前記充填剤を、前記ポリイミド樹脂の固形分量100質量部に対して10~4000質量部の割合で混合し、ポリイミド樹脂組成物を製造し、
前記ポリイミド樹脂組成物を50~200℃の温度で加熱乾燥すること含む、ポリイミド樹脂硬化物の製造方法。
A method for producing a cured polyimide resin, the method comprising:
Producing polyimide by the method according to any one of claims 1 or 2,
A step of mixing a filler with an average particle size of 0.3 to 1.0 μm into the polyimide resin,
The filler is mixed at a ratio of 10 to 4000 parts by mass with respect to 100 parts by mass of solid content of the polyimide resin to produce a polyimide resin composition,
A method for producing a cured polyimide resin product, which comprises heating and drying the polyimide resin composition at a temperature of 50 to 200°C.
JP2022105136A 2022-06-29 2022-06-29 Polyimide resin and method for producing polyimide resin composition Pending JP2024005109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022105136A JP2024005109A (en) 2022-06-29 2022-06-29 Polyimide resin and method for producing polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022105136A JP2024005109A (en) 2022-06-29 2022-06-29 Polyimide resin and method for producing polyimide resin composition

Publications (1)

Publication Number Publication Date
JP2024005109A true JP2024005109A (en) 2024-01-17

Family

ID=89540217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022105136A Pending JP2024005109A (en) 2022-06-29 2022-06-29 Polyimide resin and method for producing polyimide resin composition

Country Status (1)

Country Link
JP (1) JP2024005109A (en)

Similar Documents

Publication Publication Date Title
TWI770374B (en) Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
TWI769157B (en) Optical film, flexible device member comprising the optical film, and resin composition
JP2020090681A (en) Polyamide-imide precursor, polyamide-imide film and display device including the same
WO2010050491A1 (en) Polyimide precursor solution composition
JP5510545B2 (en) Method for producing polyimide film laminate, polyimide film laminate
JP5473601B2 (en) POLYIMIDE RESIN COMPOSITION, POLYIMIDE PRECURSOR RESIN COMPOSITION PROVIDING THE POLYIMIDE RESIN COMPOSITION AND METHOD FOR PRODUCING THEM, POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME
TWI773889B (en) Polyimide precursor composition for improving adhesion property of polyimide film, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
TWI728163B (en) Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and manufacturing method of polyimide film
JP5136441B2 (en) Method for producing polyimide film using amido acid oligomer solution composition, and amido acid oligomer solution composition
JP2017052877A (en) Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
JP2017149796A (en) Polyimide precursor composition, and method for producing polyimide precursor composition
TWI714944B (en) Polyamic acid composition with improved storage stability, method for preparing polyimide film by using the same, polyimide film prepared by the same and electronic device
JP3216849B2 (en) Polyimide precursor composition, polyimide composition and method for producing the same
JP5326253B2 (en) Method for producing polyimide film and aromatic polyimide
TWI723360B (en) Polyimide precursor composition comprising crosslinkable dianhydride compound and antioxidant, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
JP6152688B2 (en) Polyamic acid solution composition and method for producing polyimide film using the same
CN113439101A (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for preparing polyamideimide film using the same, and polyamideimide film prepared by the same
JP2024005109A (en) Polyimide resin and method for producing polyimide resin composition
TW201718735A (en) Polyimide resin and polyimide film
TWI778125B (en) Polyimide, polyimide varnish, and polyimide film
JP2023550951A (en) Polyamic acid composition and polyimide containing the same
JP6994712B2 (en) Soluble transparent polyimide polymerized in γ-butyrolactone solvent
WO2023058288A1 (en) Resin composition and insulated wire
JP2915301B2 (en) Polyimide precursor composition, polyimide composition and method for producing the same
WO2023218512A1 (en) Poly(amic acid)-containing liquid and method for producing poly(amic acid)-containing liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240327