JP2024003378A - detection device - Google Patents

detection device Download PDF

Info

Publication number
JP2024003378A
JP2024003378A JP2022102480A JP2022102480A JP2024003378A JP 2024003378 A JP2024003378 A JP 2024003378A JP 2022102480 A JP2022102480 A JP 2022102480A JP 2022102480 A JP2022102480 A JP 2022102480A JP 2024003378 A JP2024003378 A JP 2024003378A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
magnetic
sensor
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022102480A
Other languages
Japanese (ja)
Inventor
洋嗣 勢野
Hirotsugu Seno
健太郎 大森
Kentaro Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiyama Manufacturing Corp
Original Assignee
Uchiyama Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiyama Manufacturing Corp filed Critical Uchiyama Manufacturing Corp
Priority to JP2022102480A priority Critical patent/JP2024003378A/en
Priority to DE102023115680.2A priority patent/DE102023115680A1/en
Publication of JP2024003378A publication Critical patent/JP2024003378A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detection device capable of detecting deformation of a rotating body while having a simple configuration.
SOLUTION: A detection device 100 includes: a magnetic body 1 that is attached to a rotating body (10) that rotates around an axis, and consists of an annular body in which north poles and south poles are alternately arranged in a circumferential direction; a sensor 2 that detects magnetic flux density of the magnetic body; and a processing unit 4 that detects deformation of the rotating body based on a detection result by the sensor. The sensor detects first magnetic flux density (By) emitted from a magnetized surface of the magnetic body in a direction perpendicular to the circumferential direction of the magnetized surface, and the processing unit detects deformation of the rotating body based on a change in the first magnetic flux density.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、軸回転する回転体に装着される磁性体と、磁束密度を検出するセンサとによって、回転体の変形を検出する検出装置に関する。 The present invention relates to a detection device that detects deformation of a rotating body using a magnetic body attached to a rotating body that rotates on an axis and a sensor that detects magnetic flux density.

従来、自動車等の車輪の軸受装置における回転側部材には、アンチロックブレーキシステム(ABS)等を制御するため、磁気エンコーダを構成する磁性体が装着されており、回転速度や回転角度を検出することがなされている。 Conventionally, in order to control an anti-lock braking system (ABS), etc., a magnetic body constituting a magnetic encoder is attached to the rotating side member of a bearing device for a wheel of an automobile, etc., and it detects the rotation speed and rotation angle. Things are being done.

下記特許文献1には、磁性体の被検出面の特性変化に対応して出力信号を変化させるセンサを備え、外輪やハブとの間に加わる荷重を変位センサ等の荷重測定専用の部品を使用せずに測定できるものが開示されている。下記特許文献2には、磁性体の外周面のうち、円周方向の位相が互いに180度異なる部位に第1センサ、第2センサを配し、位相差に基づいてラジアル荷重を測定するものが開示されている。 Patent Document 1 below discloses a sensor that is equipped with a sensor that changes the output signal in response to changes in the characteristics of the detected surface of a magnetic body, and uses parts dedicated to load measurement such as a displacement sensor to measure the load applied between the outer ring and the hub. It discloses things that can be measured without Patent Document 2 below discloses a device in which a first sensor and a second sensor are arranged on the outer circumferential surface of a magnetic body at a portion where the phases in the circumferential direction are different from each other by 180 degrees, and the radial load is measured based on the phase difference. Disclosed.

特開2006-317420号公報Japanese Patent Application Publication No. 2006-317420 特開2007-225106号公報Japanese Patent Application Publication No. 2007-225106

ところで軸受装置にかかる荷重は、回転体の自重による荷重、他部品から負荷される荷重、回転体の回転によって発生する荷重等があり、過剰な荷重が負荷されると回転体に変形が発生し、気づかず使用を継続していると、回転軸の破損に繋がる。そこで簡易な構成でありながら、早期に回転体の変形を検出できるものが求められている。 By the way, the loads that are applied to bearing devices include the load due to the weight of the rotating body, the load applied from other parts, the load generated by the rotation of the rotating body, etc. If an excessive load is applied, deformation will occur in the rotating body. If you continue to use it without noticing, it will lead to damage to the rotating shaft. Therefore, there is a need for a device that can detect deformation of a rotating body at an early stage while having a simple configuration.

本発明は、上記実情に鑑みてなされたものであり、簡易な構成でありながら、回転体の変形を検出可能な検出装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a detection device capable of detecting deformation of a rotating body while having a simple configuration.

上記目的を達成するために、本発明に係る検出装置は、軸回転する回転体に装着され周方向にN極とS極とが交互に複数着磁された環状体からなる磁性体と、前記磁性体の磁束密度を検出するセンサと、前記センサによる検出結果に基づき前記回転体の変形を検出する処理部とを備えた検出装置であって、前記センサは、前記磁性体の着磁面から前記着磁面の周方向に対して垂直方向に発する第1磁束密度(By)を検出し、前記処理部は、前記第1磁束密度の変化に基づき、前記回転体の変形を検出することを特徴とする。
上記構成において、前記センサは、前記着磁面から周方向に発する第2磁束密度(Bx)または、前記着磁面から前記着磁面に対して垂直方向に発する第3磁束密度(Bz)を検出し、前記処理部は、前記第2磁束密度または前記第3磁束密度に基づき、前記回転体の回転速度及び回転角度を検出するようにしてもよい。
また上記構成において、前記センサは、前記着磁面に対向し複数個が間隔を空けて設けられてもよい。
さらに上記構成において、回転体は、車両の軸受装置の回転側部材であってもよい。
In order to achieve the above object, a detection device according to the present invention includes a magnetic body made of an annular body attached to a rotating body that rotates on an axis and having a plurality of N poles and S poles alternately magnetized in the circumferential direction; A detection device comprising: a sensor that detects magnetic flux density of a magnetic body; and a processing unit that detects deformation of the rotating body based on a detection result by the sensor, wherein the sensor detects a deformation of the rotating body from a magnetized surface of the magnetic body. A first magnetic flux density (By) emitted in a direction perpendicular to the circumferential direction of the magnetized surface is detected, and the processing unit detects a deformation of the rotating body based on a change in the first magnetic flux density. Features.
In the above configuration, the sensor has a second magnetic flux density (Bx) emitted from the magnetized surface in a circumferential direction or a third magnetic flux density (Bz) emitted from the magnetized surface in a direction perpendicular to the magnetized surface. The processing unit may detect the rotation speed and rotation angle of the rotating body based on the second magnetic flux density or the third magnetic flux density.
Further, in the above configuration, a plurality of the sensors may be provided facing the magnetized surface and spaced apart from each other.
Further, in the above configuration, the rotating body may be a rotating member of a bearing device of a vehicle.

本発明に係る検出装置は、上述の構成としたことで、簡易な構成でありながら、回転体の変形を検出することができる。 By having the above-described configuration, the detection device according to the present invention can detect deformation of a rotating body despite having a simple configuration.

本発明の一実施形態に係る検出装置を構成する磁性体を説明するための図であり、回転体への装着状態を模式的に示した概略的斜視図であり、アキシャルタイプの磁性体の例を示している。FIG. 2 is a diagram for explaining a magnetic body constituting a detection device according to an embodiment of the present invention, and is a schematic perspective view schematically showing a state of attachment to a rotating body, and is an example of an axial type magnetic body. It shows. 同検出装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the detection device. (a)は、図1に示す磁性体の測定径<1>~<3>(図3(b)参照)における第1磁束密度の波形をグラフ化して示したものであり、(b)は同磁性体の測定径<1>~<3>を説明するための図である。(a) is a graph showing the waveform of the first magnetic flux density at the measured diameters <1> to <3> (see FIG. 3(b)) of the magnetic material shown in FIG. FIG. 3 is a diagram for explaining measurement diameters <1> to <3> of the magnetic material. (a)及び(b)は同磁性体が発する第1磁束密度(By)の特性を説明するためのグラフである。(a) and (b) are graphs for explaining the characteristics of the first magnetic flux density (By) emitted by the same magnetic material. 同実施形態の変形例として、ラジアルタイプの磁性体の例を示している。As a modification of the embodiment, an example of a radial type magnetic body is shown. (a)~(d)は、同検出装置を構成する磁性体とセンサの配置例を説明するために模式的に示した概略的平面図である。(a) to (d) are schematic plan views schematically shown to explain examples of arrangement of magnetic bodies and sensors constituting the detection device.

以下に本発明の実施の形態について、図面に基づいて説明する。なお、一部の図では、他図に付している詳細な符号の一部を省略している。
本実施形態に係る検出装置100は、軸回転する回転体10に装着され周方向にN極とS極とが交互に複数着磁された環状体からなる磁性体1と、磁性体1の磁束密度を検出するセンサ2と、センサ2による検出結果に基づき回転体10の変形を検出する処理部4とを備えている。センサ2は、磁性体1の着磁面1aから着磁面1aの周方向に対して垂直方向に発する第1磁束密度(By)を検知し、処理部4は、第1磁束密度の変化に基づき、回転体10の変形を検出する。
Embodiments of the present invention will be described below based on the drawings. Note that in some of the figures, some detailed symbols attached to other figures are omitted.
The detection device 100 according to the present embodiment includes a magnetic body 1 made of an annular body mounted on a rotating body 10 that rotates on an axis and having a plurality of N poles and S poles alternately magnetized in the circumferential direction, and a magnetic flux of the magnetic body 1. It includes a sensor 2 that detects density, and a processing section 4 that detects deformation of the rotating body 10 based on the detection result by the sensor 2. The sensor 2 detects a first magnetic flux density (By) emitted from the magnetized surface 1a of the magnetic body 1 in a direction perpendicular to the circumferential direction of the magnetized surface 1a, and the processing section 4 detects a change in the first magnetic flux density. Based on this, deformation of the rotating body 10 is detected.

<第1実施形態>
まずは図1~図4を参照しながら、第1実施形態に係る検出装置100について説明する。図1及び図2に示すように検出装置100は、軸回転する回転体に装着される磁性体1と、磁束密度を検出するセンサ2と、センサ2による検出結果に基づき前記回転体の変形を検出する処理部4を有する演算装置30とを備える。以下では、検出装置100が適用される例として、車両の軸受装置に適用された例を説明する。軸受装置は、車輪(不図示)を軸回りに回転(軸回転)可能に支持するように設けられ、外側の固定側部材となる外輪(不図示)と、内側の回転側部材となる内輪10とを備える。よって、本実施形態におおいて、内輪10が回転体であり、内輪10に負荷される荷重等により、内輪10の変形を早期に検出するために検出装置100が設けられている。
<First embodiment>
First, a detection device 100 according to a first embodiment will be described with reference to FIGS. 1 to 4. As shown in FIGS. 1 and 2, the detection device 100 includes a magnetic body 1 attached to a rotary body that rotates on an axis, a sensor 2 that detects magnetic flux density, and a deformation of the rotary body based on the detection result by the sensor 2. and an arithmetic device 30 having a processing section 4 for detection. Below, as an example to which the detection device 100 is applied, an example in which the detection device 100 is applied to a bearing device of a vehicle will be described. The bearing device is provided to support a wheel (not shown) so as to be able to rotate around an axis (shaft rotation), and includes an outer ring (not shown) that is an outer stationary member and an inner ring 10 that is an inner rotating member. Equipped with. Therefore, in this embodiment, the inner ring 10 is a rotating body, and the detection device 100 is provided to detect deformation of the inner ring 10 at an early stage due to a load applied to the inner ring 10 or the like.

磁性体1は、N極及びS極が周方向に交互に複数着磁され中央に貫通孔を備えた環状体で、円板の径方向または面方向に磁化されている。磁性体1の構成は特に限定されないが、フェライト、ネオジム等の磁性粉がゴム材により結合されたゴム磁石、焼結磁石、プラスチック磁石等が用いられる。磁性体1は、芯金部材11を介して内輪10に取り付けられる。芯金部材11は、SPCC等の鋼板をプレス加工して片側の断面が略L字形状に形成される。芯金部材11は、内輪10の端部に嵌合される円筒部12と、円筒部12における軸方向Aの一方端部から径方向の外側に延出する円板部13とを有している。円板部13の軸方向Aの外側面13aには、磁性体1が加硫接着、もしくは後接着されている。磁性体1の形状や芯金部材11への固着態様は図例に限定されないが、本実施形態では、円板部13の外側面13aと、円板部41の径方向Rの外側端部13bを覆うように配されている。これによれば、芯金部材11に磁性体1を強固に固着でき、長期の使用に耐えることができる。N極及びS極の極幅は特に限定されず、図例のように等間隔としてもよいし、極と極の境界が斜め湾曲したスパイラル状としてもよい。 The magnetic body 1 is an annular body having a plurality of N poles and S poles alternately magnetized in the circumferential direction and having a through hole in the center, and is magnetized in the radial direction or surface direction of the disk. The structure of the magnetic body 1 is not particularly limited, but a rubber magnet, a sintered magnet, a plastic magnet, etc., in which magnetic powder such as ferrite or neodymium is bonded with a rubber material, is used. The magnetic body 1 is attached to the inner ring 10 via the core metal member 11. The core member 11 is formed by pressing a steel plate such as SPCC to have a substantially L-shaped cross section on one side. The core metal member 11 has a cylindrical portion 12 that is fitted into an end of the inner ring 10, and a disk portion 13 that extends radially outward from one end of the cylindrical portion 12 in the axial direction A. There is. The magnetic body 1 is vulcanized or post-bonded to the outer surface 13a of the disk portion 13 in the axial direction A. Although the shape of the magnetic body 1 and the manner in which it is fixed to the core metal member 11 are not limited to the illustrated example, in this embodiment, the outer surface 13a of the disk portion 13 and the outer end portion 13b of the disk portion 41 in the radial direction R It is arranged to cover the According to this, the magnetic body 1 can be firmly fixed to the core metal member 11, and it can withstand long-term use. The widths of the north and south poles are not particularly limited, and may be equally spaced as shown in the figure, or may be spiral-shaped with obliquely curved boundaries between the poles.

磁性体1の磁束密度を検出するセンサ2は、磁気式センサを用いた例を説明する。センサ2は、磁性体1の着磁面1aと対峙するように近接して配置され、センサ2は、不図示の固定部材に固定されている。センサ2が磁性体1から検出する磁束密度は、内輪10の回転に伴って変化し、センサ2は、演算装置30と電気的に接続されている。センサ2は、回転体である内輪10の変形を検出するため、図1に示すように磁性体1の着磁面1aから着磁面1aの周方向に対して垂直方向に発する第1磁束密度(By)を検出する。またセンサ2は、内輪10の回転速度及び回転角度(回転位置)を検出するため、着磁面1aから周方向に発する第2磁束密度(Bx)と、着磁面1aから着磁面1aに対して垂直方向に発する第3磁束密度(Bz)とを検知する。センサ2に用いられる検知素子としては、ホール素子、MR素子(磁気抵抗効果素子)等が用いられ、従来の着磁面1aから周方向に発する第2磁束密度(Bx)と、着磁面1aから着磁面1aに対して垂直方向に発する第3磁束密度(Bz)に加え、着磁面1aから着磁面1aの周方向に対して垂直方向に発する第1磁束密度(By)も検知できる高感度のものが好適である。例えば、ホール素子の場合は、着磁面1aのX軸成分の強さBxを検知するためのホール素子または、Z軸成分の強さBz を検知するためのホール素子とに加え、荷重、変位量を検出するため、着磁面1aのY軸成分の強さByを検知するためのホール素子を要する。 An example in which a magnetic sensor is used as the sensor 2 that detects the magnetic flux density of the magnetic body 1 will be described. The sensor 2 is arranged close to and facing the magnetized surface 1a of the magnetic body 1, and the sensor 2 is fixed to a fixing member (not shown). The magnetic flux density detected by the sensor 2 from the magnetic body 1 changes as the inner ring 10 rotates, and the sensor 2 is electrically connected to the arithmetic device 30 . In order to detect the deformation of the inner ring 10, which is a rotating body, the sensor 2 detects a first magnetic flux density emitted from the magnetized surface 1a of the magnetic body 1 in a direction perpendicular to the circumferential direction of the magnetized surface 1a, as shown in FIG. (By) is detected. Furthermore, in order to detect the rotational speed and rotational angle (rotational position) of the inner ring 10, the sensor 2 detects a second magnetic flux density (Bx) emitted in the circumferential direction from the magnetized surface 1a, and a second magnetic flux density (Bx) emitted from the magnetized surface 1a to the A third magnetic flux density (Bz) emitted in a direction perpendicular to the magnetic field is detected. As the detection element used in the sensor 2, a Hall element, an MR element (magnetoresistive element), etc. are used, and the second magnetic flux density (Bx) emitted in the circumferential direction from the conventional magnetized surface 1a and the magnetized surface 1a In addition to the third magnetic flux density (Bz) emitted from the magnetized surface 1a in a direction perpendicular to the circumferential direction of the magnetized surface 1a, the first magnetic flux density (By) emitted from the magnetized surface 1a in a direction perpendicular to the circumferential direction of the magnetized surface 1a is also detected. A highly sensitive one is preferred. For example, in the case of a Hall element, in addition to the Hall element for detecting the strength Bx of the X-axis component of the magnetized surface 1a or the strength Bz of the Z-axis component, load and displacement In order to detect the amount, a Hall element is required to detect the strength By of the Y-axis component of the magnetized surface 1a.

図2は、本実施形態に係る検出装置100の一例を示すブロック図である。
検出装置100は、上述したとおり、内輪10に取り付けられた磁性体1と、磁性体1から発生する磁束密度を検出可能なセンサ2と、演算装置30とを備える。演算装置30は、CPUで構成され各種制御を実行する制御部3と、センサ2が検出する各種磁束密度(Bx~Bz)に基づき各種演算処理を行う処理部4と、処理部4での演算処理を実行するために必要な各種プログラムやデータが記憶される記憶部5と、センサ2からの信号を受信する受信部6と、演算装置30を操作する操作部7と、測定・算出結果を表示する表示部8と、内輪10の変形等、異常を検出した際に警告音やランプを点灯・点滅させる等を報知する報知部9等を備える。記憶部5は、ROM、RAM等のメモリやHDDで構成され、各種演算結果を適宜、記憶される。処理部4は、荷重・変形量算出部40と、速度・角度算出部41とを備える。荷重・変形量算出部40は、測定径が変わることによる第1磁束密度(By)の変化率を使用して算出する。具体的には、図4(a)及び図4(b)に示した第1磁束密度(By)と測定径(図3(b)参照)との後記する特性に基づき、センサ2によって検出された第1磁束密度(By)の値の変化率を算出し、そこから変形量を算出する。そしてその変形量から荷重を算出する。速度・角度算出部41は、第2磁束密度(Bx)及び第3磁束密度(Bz)の2つの磁気パターンをデジタル信号に変換し、演算処理を行って絶対位置検出から回転位置(回転角度)情報を算出する。また速度・角度算出部41は、第2磁束密度(Bx)及び第3磁束密度(Bz)の2相のパルス信号から距離を算出し、内輪10の回転速度の算出も実行する。
FIG. 2 is a block diagram showing an example of the detection device 100 according to this embodiment.
As described above, the detection device 100 includes the magnetic body 1 attached to the inner ring 10, the sensor 2 capable of detecting the magnetic flux density generated from the magnetic body 1, and the arithmetic device 30. The arithmetic unit 30 includes a control unit 3 that is configured with a CPU and executes various controls, a processing unit 4 that performs various arithmetic processes based on various magnetic flux densities (Bx to Bz) detected by the sensor 2, and a A storage unit 5 stores various programs and data necessary to execute processing, a reception unit 6 receives signals from the sensor 2, an operation unit 7 operates the arithmetic device 30, and a storage unit 5 stores measurement and calculation results. It includes a display section 8 for displaying a display, and a notification section 9 for notifying a warning sound, lighting/flashing a lamp, etc. when an abnormality such as deformation of the inner ring 10 is detected. The storage unit 5 is composed of a memory such as a ROM or a RAM, or an HDD, and stores various calculation results as appropriate. The processing section 4 includes a load/deformation calculation section 40 and a speed/angle calculation section 41. The load/deformation calculation unit 40 performs calculation using the rate of change in the first magnetic flux density (By) due to a change in the measurement diameter. Specifically, it is detected by the sensor 2 based on the characteristics described later of the first magnetic flux density (By) shown in FIGS. 4(a) and 4(b) and the measurement diameter (see FIG. 3(b)). The rate of change in the value of the first magnetic flux density (By) is calculated, and the amount of deformation is calculated from there. Then, the load is calculated from the amount of deformation. The speed/angle calculation unit 41 converts the two magnetic patterns of the second magnetic flux density (Bx) and the third magnetic flux density (Bz) into digital signals, performs arithmetic processing, and calculates the rotational position (rotation angle) from absolute position detection. Calculate information. The speed/angle calculation unit 41 also calculates the distance from the two-phase pulse signals of the second magnetic flux density (Bx) and the third magnetic flux density (Bz), and also calculates the rotational speed of the inner ring 10.

次に図3及び図4を参照しながら、回転体である内輪10の変形検出に用いられる着磁面1aから着磁面1aの周方向に対して垂直方向に発する第1磁束密度(By)の特性についての分析結果について説明する。ここでは、フェライトのゴム磁石を用いて測定を行った。 Next, with reference to FIGS. 3 and 4, the first magnetic flux density (By) emitted from the magnetized surface 1a in a direction perpendicular to the circumferential direction of the magnetized surface 1a used for detecting deformation of the inner ring 10, which is a rotating body. We will explain the analysis results regarding the characteristics of. Here, measurements were performed using a ferrite rubber magnet.

図3(a)のグラフは、図3(b)に示す磁性体1の測定径<1>~<3>の位置における第1磁束密度(By)を検知した結果を示すものであり、ここでは横軸を回転角度(°)、縦軸を磁束密度(mT)としている。図3(b)に示すとおり、測定径<1>が3つの測定径の中では一番径が小さく、測定径<3>が3つの測定径の中では一番径が大きい位置である。図3(a)によれば、いずれの測定径<1>~<3>においても、磁束密度の振幅は大小あるが、sin波が確認され、1回転につき、sin信号が1周期ずつ生成されていることが確認できた。 The graph in FIG. 3(a) shows the results of detecting the first magnetic flux density (By) at the positions of the measurement diameter <1> to <3> of the magnetic body 1 shown in FIG. 3(b). Here, the horizontal axis is the rotation angle (°), and the vertical axis is the magnetic flux density (mT). As shown in FIG. 3(b), the measurement diameter <1> is the smallest of the three measurement diameters, and the measurement diameter <3> is the largest of the three measurement diameters. According to FIG. 3(a), although the amplitude of the magnetic flux density is large and small for all measurement diameters <1> to <3>, a sine wave is confirmed, and a sine signal is generated one cycle per rotation. It was confirmed that

図4(a)のグラフは、図3(a)のsin波を示す同じ磁性体1に対し、同じ測定径<1>~<3>における第1磁束密度(By)を検知した結果を示す。ここでは横軸を測定径(mm)、縦軸を磁束密度(mT)とし、第1磁束密度(By)だけでなく、測定径<1>~<3>の位置で第2磁束密度(Bx)及び第3磁束密度(Bz)についても測定を行った。この測定結果から第2磁束密度(Bx)及び第3磁束密度(Bz)は、いずれの位置でもほぼ同じ測定値を示す一方、第1磁束密度(By)は、測定径<1>において急激に低下する大きな変化率を示すことがわかった。 The graph in FIG. 4(a) shows the results of detecting the first magnetic flux density (By) at the same measurement diameters <1> to <3> for the same magnetic body 1 exhibiting the sine wave in FIG. 3(a). . Here, the horizontal axis is the measurement diameter (mm), and the vertical axis is the magnetic flux density (mT).In addition to the first magnetic flux density (By), the second magnetic flux density (Bx ) and the third magnetic flux density (Bz) were also measured. From this measurement result, the second magnetic flux density (Bx) and the third magnetic flux density (Bz) show almost the same measurement value at any position, while the first magnetic flux density (By) suddenly changes at the measurement diameter <1>. It was found that a large rate of change was observed.

図4(b)は、それぞれの磁束密度の変化率をより明らかに示したグラフである。ここでは、横軸は測定径(mm)、縦軸は図4(a)の測定結果を比にしたものである。縦軸は、一番変化率が大きかった測定径<1>を基準(「1」)とし、その基準からどの程度変化しているかを示している。比にすると第2磁束密度(Bx)及び第3磁束密度(Bz)にほとんど変化がないことが明らかである。一方、第1磁束密度(By)は、径方向の変化に対して、磁束密度の変化率が非常に大きいといえる。
以上より、第1磁束密度(By)、すなわち着磁面1aのY軸成分の強さByをセンサ2で検知することで、回転体の径方向の変化が加わると、第1磁束密度(By)に大きな変化が生じるので、この特性から荷重、変形量を検出することができる。
FIG. 4(b) is a graph that more clearly shows the rate of change in each magnetic flux density. Here, the horizontal axis is the measured diameter (mm), and the vertical axis is the ratio of the measurement results in FIG. 4(a). The vertical axis indicates the degree of change from the standard ("1"), which is the measured diameter <1> with the largest rate of change. In terms of ratio, it is clear that there is almost no change in the second magnetic flux density (Bx) and the third magnetic flux density (Bz). On the other hand, it can be said that the first magnetic flux density (By) has a very large rate of change in magnetic flux density with respect to a change in the radial direction.
From the above, by detecting the first magnetic flux density (By), that is, the strength By of the Y-axis component of the magnetized surface 1a with the sensor 2, when a change in the radial direction of the rotating body is applied, the first magnetic flux density (By) ), the load and amount of deformation can be detected from this characteristic.

本実施形態に係る検出装置100によれば、第1磁束密度(By)の特性を活かし、センサ2によって第1磁束密度(By)を検知することで、内輪10の変形(傾き)を検出できる。よって、検出装置100による検出結果から、内輪10に過剰な(ラジアル)荷重が加わったことが推測できる。また第1磁束密度(By)を検知結果に基づく荷重・変形量算出部40の演算結果に閾値を設定し、閾値を超えると荷重・変形量の異常とみなして、検出装置100の報知部9で警告音等を報知させる態様とすれば、回転軸の破損等を未然に防止できる。また上記構成によれば、ひとつの磁性体1を用いて、内輪10の変形に加え、内輪10の回転速度及び回転角度を検出できる。 According to the detection device 100 according to the present embodiment, the deformation (tilt) of the inner ring 10 can be detected by utilizing the characteristics of the first magnetic flux density (By) and detecting the first magnetic flux density (By) with the sensor 2. . Therefore, from the detection result by the detection device 100, it can be inferred that an excessive (radial) load has been applied to the inner ring 10. In addition, a threshold value is set in the calculation result of the load/deformation amount calculation unit 40 based on the detection result of the first magnetic flux density (By), and when the threshold value is exceeded, it is regarded as an abnormality in the load/deformation amount, and the notification unit 9 of the detection device 100 If the system is configured to issue a warning sound or the like, damage to the rotating shaft can be prevented. Further, according to the above configuration, using one magnetic body 1, in addition to the deformation of the inner ring 10, the rotation speed and rotation angle of the inner ring 10 can be detected.

図5は、ラジアルタイプの磁性体1Aの例を示す図である。上記実施形態と共通の箇所には共通の符号を付し、共通する事項の説明は省略する。上記実施形態では、アキシャルタイプの磁性体1について説明したが、これに限定されず、図5に示すような内輪10の一側面10bに設けられる磁性体1Aとして適用可能である。この場合も、アキシャルタイプのものと同様に着磁面1aから周方向に発する第2磁束密度(Bx)と、着磁面1aから着磁面1aに対して垂直方向に発する第3磁束密度(Bz)だけでなく、着磁面1aから着磁面1aの周方向に対して垂直方向に発する第1磁束密度(By)を検知し、処理部4は、第1磁束密度の変化に基づき、回転体である内輪10の軸方向の変形を検出する。 FIG. 5 is a diagram showing an example of a radial type magnetic body 1A. The same parts as in the above embodiment are given the same reference numerals, and the explanation of the common items will be omitted. In the above embodiment, the axial type magnetic body 1 has been described, but the present invention is not limited thereto, and can be applied as a magnetic body 1A provided on one side 10b of the inner ring 10 as shown in FIG. In this case, as in the case of the axial type, the second magnetic flux density (Bx) is emitted from the magnetized surface 1a in the circumferential direction, and the third magnetic flux density (Bx) is emitted from the magnetized surface 1a in the perpendicular direction to the magnetized surface 1a. Bz) as well as the first magnetic flux density (By) emitted from the magnetized surface 1a in a direction perpendicular to the circumferential direction of the magnetized surface 1a, and the processing section 4 detects, based on the change in the first magnetic flux density, Deformation in the axial direction of the inner ring 10, which is a rotating body, is detected.

次に図6(a)~図6(d)を参照しながら、検出装置100を構成する磁性体1とセンサ2の配置例について説明する。磁性体1とセンサ2とは、図1に示すようにセンサ2が磁性体1の着磁面1aに対して対向して配備され、図6(a)に示すように、環状のひとつの磁性体1に対しひとつのセンサ2で上記検出を行うようにしてもよいし、図6(b)に示すように例えば図6(a)に設けられたセンサ2の位置を基準に90°異なる位置にセンサ2を設けてもよい。また図6(c)に示すように図6(b)の例に加えて、さらに180°異なる位置にセンサ2を設けてもよい。また図6(d)に示すように磁性体1の周方向における同じ位置に磁性体1の縁部に幅方向に対向して2つのセンサ2,2を設置してもよい。センサ2の設置は、図例に限定されず、等間隔に複数設置してもよい。このように着磁面1aに対向してセンサ2が複数個間隔を空けて設けられているようにすれば、複数の箇所で回転体(内輪10等)の変形の検出を行うことができるので、検出精度の向上を図ることができる。 Next, an example of the arrangement of the magnetic body 1 and the sensor 2 that constitute the detection device 100 will be described with reference to FIGS. 6(a) to 6(d). As shown in FIG. 1, the magnetic body 1 and the sensor 2 are arranged so that the sensor 2 faces the magnetized surface 1a of the magnetic body 1, and as shown in FIG. The above detection may be performed with one sensor 2 for the body 1, or the detection may be performed at a position 90° different from the position of the sensor 2 provided in FIG. 6(a), as shown in FIG. 6(b). The sensor 2 may be provided in the. Further, as shown in FIG. 6(c), in addition to the example of FIG. 6(b), the sensor 2 may be provided at a position further 180° different. Further, as shown in FIG. 6(d), two sensors 2, 2 may be installed at the same position in the circumferential direction of the magnetic body 1 and facing each other in the width direction at the edge of the magnetic body 1. The installation of the sensors 2 is not limited to the illustrated example, and a plurality of sensors 2 may be installed at equal intervals. By arranging a plurality of sensors 2 at intervals facing the magnetized surface 1a in this manner, deformation of the rotating body (inner ring 10, etc.) can be detected at multiple locations. , it is possible to improve detection accuracy.

上述したとおり、実施形態に係る検出装置100の構成・態様は上記実施形態に限定されない。例えば磁性体1の形状は、図例のような薄状の環状体に限定されず、円筒体でもよい。また回転体の変形検出を行う対象は軸受装置の内輪10に限定されず、例えば、シートの巻き取り設備等、軸回転する機械装置の回転部材等に適用できる。 As described above, the configuration and aspects of the detection device 100 according to the embodiment are not limited to the above embodiment. For example, the shape of the magnetic body 1 is not limited to the thin annular body as shown in the figure, but may be a cylindrical body. Furthermore, the object for detecting deformation of a rotating body is not limited to the inner ring 10 of a bearing device, but can be applied to, for example, a rotating member of a mechanical device that rotates around an axis, such as sheet winding equipment.

100 検出装置
10 内輪(回転体)
1,1A 磁性体
1a 着磁面
2 センサ
By 第1磁束密度
Bx 第2磁束密度
bz 第3磁束密度
100 Detection device 10 Inner ring (rotating body)
1,1A Magnetic body 1a Magnetized surface 2 Sensor By 1st magnetic flux density Bx 2nd magnetic flux density bz 3rd magnetic flux density

Claims (4)

軸回転する回転体に装着され周方向にN極とS極とが交互に複数着磁された環状体からなる磁性体と、前記磁性体の磁束密度を検出するセンサと、前記センサによる検出結果に基づき前記回転体の変形を検出する処理部とを備えた検出装置であって、
前記センサは、前記磁性体の着磁面から前記着磁面の周方向に対して垂直方向に発する第1磁束密度を検出し、
前記処理部は、前記第1磁束密度の変化に基づき、前記回転体の変形を検出することを特徴とする検出装置。
A magnetic body consisting of an annular body attached to a rotating body that rotates on an axis and having a plurality of N poles and S poles alternately magnetized in the circumferential direction, a sensor that detects the magnetic flux density of the magnetic body, and a detection result by the sensor. A detection device comprising: a processing unit that detects deformation of the rotating body based on the
The sensor detects a first magnetic flux density emitted from the magnetized surface of the magnetic body in a direction perpendicular to the circumferential direction of the magnetized surface,
The detection device is characterized in that the processing section detects deformation of the rotating body based on a change in the first magnetic flux density.
請求項1において、
前記センサは、前記着磁面から周方向に発する第2磁束密度または、前記着磁面から前記着磁面に対して垂直方向に発する第3磁束密度を検出し、
前記処理部は、前記第2磁束密度または前記第3磁束密度に基づき、前記回転体の回転速度及び回転角度を検出することを特徴とする検出装置。
In claim 1,
The sensor detects a second magnetic flux density emitted from the magnetized surface in a circumferential direction or a third magnetic flux density emitted from the magnetized surface in a direction perpendicular to the magnetized surface,
The detection device is characterized in that the processing unit detects the rotation speed and rotation angle of the rotating body based on the second magnetic flux density or the third magnetic flux density.
請求項1または請求項2において、
前記センサは、前記着磁面に対向し複数個が間隔を空けて設けられていることを特徴とする検出装置。
In claim 1 or claim 2,
The detection device is characterized in that a plurality of the sensors are provided facing the magnetized surface and spaced apart from each other.
請求項1または請求項2において、
前記回転体は、車両の軸受装置の回転側部材であることを特徴とする検出装置。
In claim 1 or claim 2,
A detection device characterized in that the rotating body is a rotating member of a bearing device of a vehicle.
JP2022102480A 2022-06-27 2022-06-27 detection device Pending JP2024003378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022102480A JP2024003378A (en) 2022-06-27 2022-06-27 detection device
DE102023115680.2A DE102023115680A1 (en) 2022-06-27 2023-06-15 DETECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022102480A JP2024003378A (en) 2022-06-27 2022-06-27 detection device

Publications (1)

Publication Number Publication Date
JP2024003378A true JP2024003378A (en) 2024-01-15

Family

ID=89075770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022102480A Pending JP2024003378A (en) 2022-06-27 2022-06-27 detection device

Country Status (2)

Country Link
JP (1) JP2024003378A (en)
DE (1) DE102023115680A1 (en)

Also Published As

Publication number Publication date
DE102023115680A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US20090219016A1 (en) System for Detecting an Absolute Angular Position by Differential Comparison, Rolling Bearing and Rotary Machine
JP5231365B2 (en) Rotation angle detection sensor
JP2012506553A (en) Magnetic position sensor using measured values of magnetic field direction and flux collector
JP5131537B2 (en) Angle detector
EP2103910B1 (en) Rotation angle detector
CN109655632B (en) Hub assembly with dual angular position sensor
WO2008075620A1 (en) Rotation angle detection device
JP7122182B2 (en) MAGNETIC POSITION DETECTION SYSTEM, MANUFACTURING METHOD OF MAGNETIC POSITION DETECTION SYSTEM, AND METHOD OF ESTIMATING POSITION OF ROTATING BODY
JP2001201362A (en) Rotation detecting device
JP2008128740A (en) Rotation sensor
JP2004077159A (en) Pulser ring and bearing unit having sensor
JP2011047765A (en) Encoder
US7034524B2 (en) Measuring device for the angle of rotation of a rotating machine member
JP5857470B2 (en) Rolling bearing device with sensor
JP2024003378A (en) detection device
JP2006177865A (en) Magnetic encoder and bearing for wheel equipped with it
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
JP4325381B2 (en) Rolling bearing with sensor for motor
CN106471378B (en) Sensor bearing unit, mechanical system comprising such a unit and method for manufacturing such a unit
KR102419301B1 (en) Absolute position detection device and detection method of rotating body
JP5045490B2 (en) Magnetizing method and magnetizing apparatus for encoder
JP5424253B2 (en) Magnetic encoder and rotation detection device
JP2008064633A (en) Bearing device with sensor
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP2012007706A (en) Rolling bearing with sensor