JP2008064633A - Bearing device with sensor - Google Patents

Bearing device with sensor Download PDF

Info

Publication number
JP2008064633A
JP2008064633A JP2006243373A JP2006243373A JP2008064633A JP 2008064633 A JP2008064633 A JP 2008064633A JP 2006243373 A JP2006243373 A JP 2006243373A JP 2006243373 A JP2006243373 A JP 2006243373A JP 2008064633 A JP2008064633 A JP 2008064633A
Authority
JP
Japan
Prior art keywords
rotating member
rotation state
sensor
rotating
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243373A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ohira
和広 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006243373A priority Critical patent/JP2008064633A/en
Publication of JP2008064633A publication Critical patent/JP2008064633A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device with a sensor which is resistant to an external magnetic flux, capable of outputting a high-resolution rotation state signal. <P>SOLUTION: This device includes a bearing 12 wherein balls 20 are arranged between an inner ring 16 and an outer ring 18; a rotating member 22 supported by the inner ring 16 as a rotating ring, or formed integrally therewith; a cylindrical member 26 supported by the outer ring 18 as a static ring, for enclosing the outer circumferential surface of the rotating member 22; a pair of detection coils 28, 30 arranged on the cylindrical member 26; and a rotation state detector for detecting the rotation state of the rotating member 22 following outputs from each detection coil 28, 30. The rotating member 22 is constituted of a magnetic material, and a plurality of grooves 24 elongating in the axial direction are formed on the rotating member 22, and a plurality of windows 32, 34 are formed on the cylindrical member 26 so that the overlapping degree with the grooves 24 is changed corresponding to a relative rotation position of the rotating member 22, and windows 32, 34 in each row are enclosed by each detection coil 28, 30, and two-phase signals showing the rotation state of the rotating member 22 are output from the detection coils 28, 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、センサ付軸受装置に係り、特に、ロボットアームや自動車のハブなどの回転支持部分に組み込んで、角度や回転角速度などを検出することに利用することができるセンサ付軸受装置に関する。   The present invention relates to a sensor-equipped bearing device, and more particularly, to a sensor-equipped bearing device that can be incorporated into a rotation support portion such as a robot arm or an automobile hub to detect an angle, a rotation angular velocity, and the like.

従来、センサとしては、回転軸の角度や回転角速度を検出するものが知られている。これらセンサのうち回転状態検出機能を有するセンサを軸受に付加したセンサ付軸受装置が提案されている。例えば、特許文献1に開示されているように多極に着磁されたマグネットの磁極をホールICで検出し、回転状態を検知するものが公知である。
特許昭63−111416
2. Description of the Related Art Conventionally, sensors that detect the angle of a rotating shaft and the rotational angular velocity are known. Among these sensors, a sensor-equipped bearing device in which a sensor having a rotation state detection function is added to a bearing has been proposed. For example, as disclosed in Patent Document 1, a magnetic pole of a magnet magnetized in multiple poles is detected by a Hall IC to detect a rotation state.
Patent Sho 63-111416

しかしながら、上述した従来のセンサ付軸受装置では、高分解能化しようとするにも、エンコーダのN・S極のピッチを小さくするには限界がある。またマグネットにより回転状態を検出する方式では、外部磁束に影響されやすいという課題がある。   However, the conventional sensor-equipped bearing device described above has a limit in reducing the pitch of the N / S poles of the encoder in order to increase the resolution. Further, the method of detecting the rotation state with a magnet has a problem that it is easily influenced by external magnetic flux.

そこで、本発明は、前記従来技術の課題に鑑みて為されたものであり、外部磁束に強く、高分解能な回転状態信号を出力可能なセンサ付軸受装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a sensor-equipped bearing device that is strong against external magnetic flux and can output a high-resolution rotation state signal.

前記目的を達成するために、本発明は、静止輪と回転輪との間に複数の転動体が配置された軸受と、前記回転輪に支持または一体に形成された回転部材と、前記静止輪に支持されて前記回転部材の外周面を包囲する円筒部材と、前記円筒部材に配置された一対の検出コイルと、前記一対の検出コイルの出力に従って前記回転部材の回転状態を検出する回転状態検出器とを備え、前記回転部材は、磁性材料で構成され、前記回転部材には軸方向に延びる溝が複数条形成され、前記円筒部材には前記回転部材との相対回転位置に応じて前記溝との重なり具合が変化するように窓が複数列形成され、前記各列の窓が形成された領域を包囲するように前記各検出コイルが配置されてなることを特徴とするセンサ付軸受装置を構成したものである。   In order to achieve the above object, the present invention provides a bearing in which a plurality of rolling elements are disposed between a stationary wheel and a rotating wheel, a rotating member that is supported or integrally formed with the rotating wheel, and the stationary wheel. Rotating state detection for detecting a rotating state of the rotating member according to outputs of the pair of detection coils and a pair of detection coils arranged on the cylindrical member, a cylindrical member supported on the outer periphery of the rotating member The rotating member is made of a magnetic material, the rotating member has a plurality of grooves extending in the axial direction, and the cylindrical member has the groove according to a relative rotational position with respect to the rotating member. A sensor-equipped bearing device, wherein a plurality of windows are formed so that the degree of overlap with each other changes, and each of the detection coils is arranged so as to surround a region where the windows of the respective rows are formed. It is composed.

本発明によれば、円筒部材の内側には磁性材料からなる回転部材が配置され、回転部材には複数状の溝が円筒部材の窓と同期を持って形成されており、磁界中に置かれた磁性材料により回転部材が磁化されて、磁束を発生する際に、その量は飽和に至るまで磁界の強さに応じて大きくなる。このため、円筒部材によって作られる円周方向に周期的な強弱と半径方向に勾配を有する磁界によって、回転部材の磁束は円筒部材との相対的な位相によって増減する。この磁束が最大となる位相は窓の中心と、溝と溝との間の凸部の中心とが一致した状態であり、磁束の増減に応じて、一対の検出コイルのインダクタンスも増減し、その変化は、ほぼ正弦波状となる。しかも、各窓は互いに位相差を持つように形成されているので、各検出コイルからは、回転部材の回転状態として、位相差を持った2相信号が出力されることになり、2相信号を回転状態検出器で演算することにより高分解能化が可能である。また、磁気エンコーダを使用しない構造のため、外部磁束に強く回転部材の回転状態を高精度に検出することができる。   According to the present invention, a rotating member made of a magnetic material is disposed inside the cylindrical member, and a plurality of grooves are formed in the rotating member in synchronization with the window of the cylindrical member, and are placed in a magnetic field. When the rotating member is magnetized by the magnetic material to generate magnetic flux, the amount increases according to the strength of the magnetic field until saturation. For this reason, the magnetic flux of the rotating member is increased or decreased by the relative phase with the cylindrical member by a magnetic field having a periodic strength in the circumferential direction and a gradient in the radial direction formed by the cylindrical member. The phase at which the magnetic flux is maximum is a state in which the center of the window and the center of the convex portion between the grooves coincide with each other. The change is almost sinusoidal. In addition, since the windows are formed to have a phase difference from each other, a two-phase signal having a phase difference is output from each detection coil as the rotation state of the rotating member. Can be increased by calculating with a rotation state detector. In addition, since the structure does not use a magnetic encoder, the rotational state of the rotating member can be detected with high accuracy against external magnetic flux.

本発明によれば、外部磁束に強く高分解能化が可能となり、回転部材の回転状態を高精度に検出することができる。   According to the present invention, it is strong against external magnetic flux and high resolution can be achieved, and the rotation state of the rotating member can be detected with high accuracy.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の一実施例を示すセンサ付軸受装置の斜視図、図2は、本発明の一実施例を示すセンサ付軸受装置の分解斜視図である。図1および図2において、センサ付軸受装置10は、軸受12を備え、軸受12には、軸受12の回転状態を検出するためのセンサ14が付加されている。軸受12は、内輪16と、外輪18と、内輪16と外輪18との間に装着された転動体としてのボール20を複数個備えて構成されており、内輪16、外輪18のうち一方が静止輪となり、他方が回転輪となって軸受装置を構成するようになっている。内輪16を回転輪とした場合、内輪16にはほぼ円筒状に形成された回転部材22が支持される。回転部材22は磁性体として、磁性材料を用いて構成されており、その外周側には複数の凹凸部が等間隔で周方向に沿って形成されている。各凹凸部のうち凹部は溝24として形成され、凸部は溝24と溝24との間に形成されている。すなわち回転部材22の外周側には、軸方向に伸びる溝24が複数条形成されており、各条の溝24は回転部材22の周方向において等間隔で形成されている。回転部材22の外側には円筒部材26が配置されており、円筒部材26の外周側には一対の検出コイル28、30が配置されている。円筒部材26、検出コイル28、30は静止輪としての外輪18に支持されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a sensor-equipped bearing device according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the sensor-equipped bearing device according to an embodiment of the present invention. 1 and 2, the sensor-equipped bearing device 10 includes a bearing 12, and a sensor 14 for detecting the rotation state of the bearing 12 is added to the bearing 12. The bearing 12 includes a plurality of balls 20 as rolling elements mounted between the inner ring 16, the outer ring 18, and the inner ring 16 and the outer ring 18, and one of the inner ring 16 and the outer ring 18 is stationary. The bearing device is configured as a ring and the other as a rotating wheel. When the inner ring 16 is a rotating ring, the inner ring 16 supports a rotating member 22 formed in a substantially cylindrical shape. The rotating member 22 is configured using a magnetic material as a magnetic body, and a plurality of concave and convex portions are formed at equal intervals along the circumferential direction on the outer peripheral side thereof. Of each uneven portion, the concave portion is formed as a groove 24, and the convex portion is formed between the groove 24 and the groove 24. That is, a plurality of grooves 24 extending in the axial direction are formed on the outer peripheral side of the rotating member 22, and the grooves 24 of each line are formed at equal intervals in the circumferential direction of the rotating member 22. A cylindrical member 26 is disposed outside the rotating member 22, and a pair of detection coils 28 and 30 are disposed on the outer peripheral side of the cylindrical member 26. The cylindrical member 26 and the detection coils 28 and 30 are supported by the outer ring 18 as a stationary ring.

円筒部材26は、導電性で且つ非磁性の材料から形成されており、この円筒部材26には、その周方向に沿って等間隔に離隔した長方形の複数の窓32、34が複数列、位相が互いに90度ずれるように形成されている。そして、検出コイル28、30は、各列の窓32、34をそれぞれ包囲するように配置されている。各検出コイル28、30は、回転状態検出器(図示せず)に接続されており、各検出コイル28、30には、回転状態検出器から正弦波状の電圧が印加されるようになっている。回転状態検出器は、各検出コイル28、30に正弦波状の電圧を印加して各検出コイル28、30に起電力を誘導させて、この起電力を基に回転部材22の回転状態としてその角度を算出するように構成されている。   The cylindrical member 26 is formed of a conductive and non-magnetic material, and the cylindrical member 26 includes a plurality of rows of rectangular windows 32 and 34 spaced at equal intervals along the circumferential direction. Are formed so as to be shifted from each other by 90 degrees. The detection coils 28 and 30 are arranged so as to surround the windows 32 and 34 in each row, respectively. Each detection coil 28, 30 is connected to a rotation state detector (not shown), and a sinusoidal voltage is applied to each detection coil 28, 30 from the rotation state detector. . The rotation state detector applies a sinusoidal voltage to each of the detection coils 28 and 30 to induce an electromotive force in each of the detection coils 28 and 30, and based on this electromotive force, the rotation state of the rotary member 22 is set to the angle. Is calculated.

上記構成において、内輪16が回転輪として回転すると、それに伴って回転部材22が回転する。この際、円筒部材26に窓32、34がない状態では、円筒部材26は導電性で且つ非磁性の材料で構成されていることから、検出コイル28、30に交流電流を流して検出コイル28、30内部に交番磁界を生じさせると、円筒部材26の外周面には各検出コイル28、30に流れるコイル電流とは反対方向の渦電流が発生する。この渦電流による磁界と検出コイル28、30による磁界とを重ね合わせると、円筒部材26の内側の磁界は相殺される。   In the above configuration, when the inner ring 16 rotates as a rotating wheel, the rotating member 22 rotates accordingly. At this time, when the cylindrical member 26 does not have the windows 32 and 34, the cylindrical member 26 is made of a conductive and nonmagnetic material. Therefore, an alternating current is passed through the detection coils 28 and 30 to detect the detection coil 28. When an alternating magnetic field is generated inside 30, an eddy current is generated on the outer peripheral surface of the cylindrical member 26 in a direction opposite to the coil current flowing through the detection coils 28 and 30. When the magnetic field generated by the eddy current and the magnetic field generated by the detection coils 28 and 30 are overlapped, the magnetic field inside the cylindrical member 26 is canceled.

これに対して、円筒部材26に、窓32、34を2列に設けた場合、円筒部材26の外周面に生じた渦電流は、窓32、34によって外周面を周回できないため、窓32、34の端面に沿って円筒部材26の内周面側に回りこみ、その内周面をコイル電流と同一方向に流れ、さらに相隣接する窓32または窓34の端面に沿って外周面側に戻り、ループを形成する。つまり、検出コイル28、30の内側に、渦電流のループを周方向に周期的に配置した状態となる。   On the other hand, when the windows 32 and 34 are provided in the cylindrical member 26 in two rows, the eddy current generated on the outer peripheral surface of the cylindrical member 26 cannot go around the outer peripheral surface by the windows 32 and 34. 34 wraps around the inner peripheral surface side of the cylindrical member 26 along the end surface of 34, flows in the same direction as the coil current on the inner peripheral surface, and returns to the outer peripheral surface side along the end surface of the adjacent window 32 or window 34. Form a loop. In other words, eddy current loops are periodically arranged in the circumferential direction inside the detection coils 28 and 30.

円筒部材26の内側には、磁性材料からなる回転部材22が同軸に配置され、その回転部材22には軸方向に沿って溝24が、窓32、34と同じ周期で形成されているので、磁界中に置かれた回転部材22は磁化されて磁束を発生するが、その量は飽和に至るまでには磁界の強さに応じて大きくなる。   A rotating member 22 made of a magnetic material is coaxially arranged inside the cylindrical member 26, and grooves 24 are formed in the rotating member 22 along the axial direction at the same period as the windows 32 and 34. The rotating member 22 placed in the magnetic field is magnetized to generate a magnetic flux, but the amount increases according to the strength of the magnetic field before saturation.

このため、円筒部材26によって作られる周方向に周期的な強弱と半径方向に勾配を有する磁界によって、回転部材22の磁束は、円筒部材26との相対的な位相によって増減する。このとき、磁束が最大となる位相は、各窓32、34の中心と、溝24と溝24との間の凸部の中心とが一致した状態であり、磁束の増減に応じて、検出コイル28、30のインダクタンスも増減する。その変化は、ほぼ正弦波状となる。このとき、窓32、34は互いに90度の位相を持つように形成されているので、検出コイル28、30からは、回転部材22の回転状態を示す信号として、90度の位相差をもった2相信号が出力される。回転状態検出器は、入力された2相信号を基に回転部材22の回転状態として、回転部材22の角度・回転速度・回転方向などを演算することができ、角度・回転速度・回転方向などの演算結果をアナログ信号、デジタル信号あるいはパルス信号で出力する。この際、回転状態検出器において、特に1周期を分割してパルスを生成すれば、「1周期のパルス数×周期数」のパルスを生成することができ、高分解能化が可能である。   For this reason, the magnetic flux of the rotating member 22 increases / decreases depending on the relative phase with the cylindrical member 26 by a magnetic field having a periodic strength in the circumferential direction and a gradient in the radial direction created by the cylindrical member 26. At this time, the phase at which the magnetic flux becomes maximum is a state in which the center of each of the windows 32 and 34 and the center of the convex portion between the groove 24 and the groove 24 coincide with each other. The inductances 28 and 30 also increase or decrease. The change is almost sinusoidal. At this time, since the windows 32 and 34 are formed so as to have a phase of 90 degrees, the detection coils 28 and 30 have a phase difference of 90 degrees as a signal indicating the rotation state of the rotating member 22. A two-phase signal is output. The rotation state detector can calculate the angle, rotation speed, rotation direction, and the like of the rotation member 22 as the rotation state of the rotation member 22 based on the input two-phase signal, and the angle, rotation speed, rotation direction, etc. The calculation result is output as an analog signal, a digital signal, or a pulse signal. In this case, if the rotation state detector generates a pulse by dividing one period in particular, it is possible to generate a pulse of “number of pulses of one period × number of periods”, and high resolution can be achieved.

また回転状態検出器は軸受に組み込んでもよいし、外付けであってもよい。
また、上記実施の形態においては、玉軸受に適用した例を示したが、これに限定するものではなく、円錐ころ軸受・ニードル軸受・ころ軸受・複列軸受・その他任意の種類の軸受に適用してもよい。
The rotation state detector may be incorporated in the bearing or may be externally attached.
Further, in the above embodiment, an example of application to a ball bearing has been shown, but the present invention is not limited to this. May be.

また、上記実態の形態において、回転部材22は、内輪16に支持された構造としているが、回転部材22と内輪16を一体で形成すると、部品点数が削減できるので好ましい。また、上記実施の形態においては窓32・34の位相差は90度で形成しているが、これに限定するものではない。しかし、位相差を90度にすると2相信号の位相差が90度となり、角度の算出が容易となるので、90度の位相差が好ましい。   Moreover, in the said actual form, although the rotation member 22 is made into the structure supported by the inner ring | wheel 16, when the rotation member 22 and the inner ring | wheel 16 are formed integrally, since a number of parts can be reduced, it is preferable. Moreover, in the said embodiment, although the phase difference of the windows 32 and 34 is formed at 90 degree | times, it is not limited to this. However, if the phase difference is 90 degrees, the phase difference between the two-phase signals is 90 degrees, and the angle can be easily calculated. Therefore, a phase difference of 90 degrees is preferable.

本実施の形態によれば、磁気エンコーダ方式とは異なり、外部磁束に強く、高分解能化が可能であって、回転部材22の回転状態を高精度に検出することができる。   According to the present embodiment, unlike the magnetic encoder system, it is strong against external magnetic flux, can have high resolution, and can detect the rotation state of the rotating member 22 with high accuracy.

本発明の一実施例を示すセンサ付軸受装置の斜視図である。It is a perspective view of the bearing apparatus with a sensor which shows one Example of this invention. 本発明の一実施例を示すセンサ付軸受装置の分解斜視図である。It is a disassembled perspective view of the bearing apparatus with a sensor which shows one Example of this invention.

符号の説明Explanation of symbols

10 センサ付軸受装置
12 軸受
14 センサ
16 内輪
18 外輪
20 ボール
22 回転部材
24 溝
26 円筒部材
28、30 検出コイル
32、34 窓
DESCRIPTION OF SYMBOLS 10 Bearing apparatus with a sensor 12 Bearing 14 Sensor 16 Inner ring 18 Outer ring 20 Ball 22 Rotating member 24 Groove 26 Cylindrical member 28, 30 Detection coil 32, 34 Window

Claims (5)

静止輪と回転輪との間に複数の転動体が配置された軸受と、前記回転輪に支持または、一体に成形された回転部材と、前記静止輪に支持されて前記回転部材の外周面を包囲する円筒部材と、前記円筒部材に配置された一対の検出コイルと、前記一対の検出コイルの出力に従って前記回転部材の回転状態を検出する回転状態検出器とを備え、前記回転部材は、磁性材料で構成され、前記回転部材には軸方向に延びる溝が複数条形成され、前記円筒部材には前記回転部材との相対回転位置に応じて前記溝との重なり具合が変化するように窓が複数列形成され、前記各列の窓が形成された領域を包囲するように前記各検出コイルが配置されてなることを特徴とするセンサ付軸受装置。   A bearing in which a plurality of rolling elements are disposed between a stationary wheel and a rotating wheel, a rotating member that is supported by or integrally formed with the rotating wheel, and an outer peripheral surface of the rotating member that is supported by the stationary wheel. A surrounding cylindrical member; a pair of detection coils disposed on the cylindrical member; and a rotation state detector that detects a rotation state of the rotation member in accordance with outputs of the pair of detection coils. The rotating member is formed with a plurality of axially extending grooves, and the cylindrical member has a window so that the overlapping state with the groove changes according to the relative rotational position of the rotating member. A sensor-equipped bearing device, wherein the detection coils are arranged so as to surround a region where a plurality of rows are formed and the windows of the rows are formed. 前記回転状態検出器は、前記各検出コイルの出力の比から前記回転部材の回転状態を検出してなることを特徴とする請求項1に記載のセンサ付軸受装置。   The sensor-equipped bearing device according to claim 1, wherein the rotation state detector detects a rotation state of the rotating member from a ratio of outputs of the detection coils. 前記回転状態検出器は、前記回転部材の回転状態をアナログ信号で出力してなることを特徴とする請求項1または2に記載のセンサ付軸受装置。   3. The sensor-equipped bearing device according to claim 1, wherein the rotation state detector outputs the rotation state of the rotating member as an analog signal. 前記回転状態検出器は、前記回転部材の回転状態をデジタル信号で出力してなることを特徴とする請求項1または2に記載のセンサ付軸受装置。   3. The sensor-equipped bearing device according to claim 1, wherein the rotation state detector outputs a rotation state of the rotation member as a digital signal. 前記回転状態検出器は、前記回転部材の回転状態をパルス信号で出力してなることを特徴とする請求項1または2に記載のセンサ付軸受装置。   The sensor-equipped bearing device according to claim 1, wherein the rotation state detector outputs a rotation state of the rotating member by a pulse signal.
JP2006243373A 2006-09-07 2006-09-07 Bearing device with sensor Pending JP2008064633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243373A JP2008064633A (en) 2006-09-07 2006-09-07 Bearing device with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243373A JP2008064633A (en) 2006-09-07 2006-09-07 Bearing device with sensor

Publications (1)

Publication Number Publication Date
JP2008064633A true JP2008064633A (en) 2008-03-21

Family

ID=39287469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243373A Pending JP2008064633A (en) 2006-09-07 2006-09-07 Bearing device with sensor

Country Status (1)

Country Link
JP (1) JP2008064633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918845A1 (en) * 2014-03-11 2015-09-16 Skf Magnetic Mechatronics Rotary machine, bearing and method for manufacturing a rotary machine
GB2524061A (en) * 2014-03-13 2015-09-16 Salunda Ltd Sensor arrangement for a rotatable element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918845A1 (en) * 2014-03-11 2015-09-16 Skf Magnetic Mechatronics Rotary machine, bearing and method for manufacturing a rotary machine
CN104917333A (en) * 2014-03-11 2015-09-16 Skf磁性机械技术公司 Rotary machine, bearing and method for manufacturing a rotary machine
EP2918845B1 (en) 2014-03-11 2018-11-28 Skf Magnetic Mechatronics Rotary machine and method for manufacturing a rotary machine
US10260557B2 (en) 2014-03-11 2019-04-16 Skf Magnetic Mechatronics Rotary machine, bearing and method for manufacturing a rotary machine
GB2524061A (en) * 2014-03-13 2015-09-16 Salunda Ltd Sensor arrangement for a rotatable element
US9587657B2 (en) 2014-03-13 2017-03-07 Salunda Limited Sensor arrangement for a rotatable element
GB2524061B (en) * 2014-03-13 2018-08-29 Salunda Ltd Sensor arrangement for a rotatable element

Similar Documents

Publication Publication Date Title
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
JP4052798B2 (en) Relative position measuring instrument
JP5247545B2 (en) Rotation position sensor for detecting torsion of steering column
US11041739B2 (en) Rotation sensor
JP2017156266A (en) Rotation angle sensor and correction method therefor
JP4941707B2 (en) Angle detector
JP4275444B2 (en) Bearing with absolute encoder
JP2008045881A (en) Rotation angle position detector
JP2009168679A (en) Rotation detector
JP2008064633A (en) Bearing device with sensor
JP4862336B2 (en) Rotation angle sensor
US10794780B2 (en) Magnetic support structure of a torque sensor assembly including a central hub and a plurality of spoke segments extending radially outwardly from the central hub
JP2008224248A (en) Bearing device with sensor
CN105890833B (en) Axial flux focusing type small-diameter low-cost torque sensor
JPH1164354A (en) Rotational speed detector
JP2018048870A (en) Rotation angle detector
JP2006125594A (en) Bearing device with sensor
JP2003097971A (en) Rolling bearing and pulser ring
JP7336329B2 (en) MOTOR, MOTOR DRIVE CONTROL DEVICE, AND MOTOR DRIVE CONTROL METHOD
JP2006029517A (en) Bearing with sensor
JP5808846B2 (en) Torque sensor
JP2003315092A (en) Rotation angle sensor and torque sensor
JP2018105757A (en) Magnetic encoder device
JP2011064569A (en) Physical quantity measuring device of rolling bearing unit
WO2019188570A1 (en) Rotation angle detection device