JP2024000011A - 掘削方法 - Google Patents

掘削方法 Download PDF

Info

Publication number
JP2024000011A
JP2024000011A JP2022098507A JP2022098507A JP2024000011A JP 2024000011 A JP2024000011 A JP 2024000011A JP 2022098507 A JP2022098507 A JP 2022098507A JP 2022098507 A JP2022098507 A JP 2022098507A JP 2024000011 A JP2024000011 A JP 2024000011A
Authority
JP
Japan
Prior art keywords
shaft
heat
heat medium
heat storage
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022098507A
Other languages
English (en)
Inventor
憲正 清田
Norimasa Kiyota
栄二 米谷
Eiji Yonetani
昌弘 清田
Masahiro Kiyota
芳博 藤田
Yoshihiro Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Npo Kuramae Bioenergy
Original Assignee
Npo Kuramae Bioenergy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Npo Kuramae Bioenergy filed Critical Npo Kuramae Bioenergy
Priority to JP2022098507A priority Critical patent/JP2024000011A/ja
Publication of JP2024000011A publication Critical patent/JP2024000011A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

【課題】火山性マグマに依存せず、長期安定的な発電を行うことができるように、立坑内の熱媒管を内部圧力で破裂させることなく、熱媒が深層地殻熱域に近づく位置から地表側に至る位置まで連続した流路軌跡を確保できるようにした掘削方法を提供する。【解決手段】地表面から所定の深さまで、センター立坑と共にサテライト立坑、連結立坑、エレベータ立坑を掘削する第1のステップと、センター立坑に交差する第1の横坑を掘削する第2のステップと、排土をエレベータ立坑より地表へ排出すると共に、第1の横坑に作業員室および作業設備室の少なくとも一方、並びに蓄熱室を設置可能なスペースを備える第1の作業床面を形成する第3のステップと、を深層地殻熱域に近づくまで順次行い、地表面から最も離れた作業床面からセンター立坑を深層地殻熱域に近づく位置まで掘削する第4のステップと、を有する。【選択図】図1

Description

本発明は、火山性マグマに依存せず、長期安定的な発電を行うことができるようにするために必要な掘削方法に関する。
一般的な地熱発電は、タービンで電力を得るものとして知られており(特許文献1)、火山系の溶岩マグマが水と接触して発生する高温蒸気を発電所に導き、タービンで電力を得る。このマグマ水蒸気による発電も貴重な自然エネルギーに拠るものであるが、規模が小さく、大規模な電力事業に対して基幹技術とはなり難い。また、マグマが移動することもあるため。長期安定的な発電事業は期待し難い。
特許第6587118号公報
一般的な地熱発電では、様々な限定条件があり、小規模な発電しか期待できない。また、動きやすい火山性マグマに依存しているため、発電の長期安定的な事業性は期待できない。更に、新規開発を行って蒸気が出るか出ないか事前には分からないというリスクも常に付きまとう。
本発明の目的は、火山性マグマに依存せず、長期安定的な発電を行うことができるように、立坑内の熱媒管を内部圧力で破裂させることなく、熱媒が深層地殻熱域に近づく位置から地表側に至る位置まで連続した流路軌跡を確保できるようにした掘削方法を提供することにある。
上記目的を達成するため、本発明に係る掘削方法は、地表から深層地殻熱域に近づく位置までセンター立坑を掘削する掘削方法であって、地表面から所定の深さまで、前記センター立坑と共にサテライト立坑と、前記サテライト立坑と前記センター立坑を連結する連結立坑と、エレベータ立坑を前記センター立坑の周りに掘削する第1のステップと、前記立坑のいずれかから搬入された、もしくは搬入され組み立てられた掘削装置を用いて、前記第1のステップで形成されたセンター立坑に交差する第1の横坑を掘削する第2のステップと、前記第2のステップで掘削された排土を前記エレベータ立坑より地表へ排出すると共に、前記第1の横坑に作業員室および作業設備室の少なくとも一方、並びに前記センター立坑の中に配置されて250℃乃至500℃の深層地殻熱をポンプにより移動される熱媒を介して地表に向け伝搬するための熱媒管を前記連結立坑を介して前記サテライト立坑に引き込んで中継する蓄熱室を設置可能なスペースを備える第1の作業床面を形成する第3のステップと、地表面を前記第1の作業床面に置き換えて、第2の横坑に第2の作業床面を形成するように、前記第1乃至第3のステップを前記深層地殻熱域に近づくまで順次行い、地表面から最も離れた作業床面から前記センター立坑を深層地殻熱域に近づく位置まで掘削する第4のステップと、を有することを特徴とする。
本発明によれば、火山性マグマに依存せず、長期安定的な発電を行うことができるようにするために必要な掘削を行うことができる。
本発明の実施形態に係る掘削方法を示す概略図 深層地殻熱を用いた発電所に係る全体イメージ図 (a)は熱媒管のサテライト立坑を介した蓄熱室への引き込みと配管ユニットを介した下層階への熱媒管の連結を説明する図、(b)は蓄熱室とサテライト立坑の関係図 (a)は折り畳んだ熱媒管を蓄熱室へ設置する説明図、(b)は蓄熱室と熱媒管の関係図、(c)は蓄熱室の構造図 熱媒を気体状態で使用する最下層の熱媒管の説明図 (a)は熱媒管の断面構成並びに最下層の構成を示す説明図、(b)は深さ方向で隣り合う階の間における熱媒の流れを示す図 冷房設備を備える作業員室と、冷却設備を備える作業設備室の説明図 (a)は同時に掘削される立坑の説明図、(b)は立坑掘削による排土の排出の説明図 (a)は長い熱媒管の組立場のイメージ図、(b)は熱媒管を束ねる大フランジを用いた熱媒管の地下への搬入を示す図、(c)は大フランジのサイズを示す図 (a)はセンター立坑とサテライト立坑を連結する連結立坑の説明図、(b)は連結立坑のA-A視図 熱電発電素子ユニットをトロッコ上に積載してトンネルに格納するイメージ図 (a)はそれぞれのトンネル内に複数熱電発電素子ユニットを設けたものを3次元的に集積した巨大発電所のイメージ図、(b)は各階床面における側線の役割を説明する図 (a)は温度差発電に係る熱電発電素子を複数備えた素子盤のイメージと作り方を示す図、(b)は熱電発電素子が1次元状に配置される説明図 (a)は熱電発電素子が2次元状に配置される説明図、(b)は素子盤、熱媒管、冷水管の交差状態イメージ図 (a)は熱電発電素子の発電量測定に係る実験方法、回路を示す図、(b)は実験結果を示す図
以下、本発明の実施形態について、図面を用いて説明する。
(第1の実施形態)
(熱媒管を用いた深層地殻熱の利用)
本発明の実施形態に係る掘削方法を図1、図8、図9、図10に基づいて説明する前に、事前の理解のため、掘削の目的を含む全体イメージに関して図2、各階の作業床面に設置される蓄熱室に関して図3乃至図5、熱媒管に関して図6、各階の作業床面に設置される作業員室および作業設備室に関して図7に基づいて説明する。
図2は、本実施形態の掘削方法を用いた発電方法に係る無燃料発電を行う概要イメージ図である。1は深層地殻高温帯(深層地殻熱域)、3は蓄熱室、4は熱電発電素子ユニット、9は発電所、10は地上階(地表面)、20は熱媒管を示す。ここで、熱媒管とは、深層地殻熱域からの地殻熱を熱媒を介して地表に向け伝搬するための管をいう。
熱源として、火山性のマグマでなく、深層地殻熱域(深さは地表から8~15km)を用い、地球の外核に含まれる放射性同位元素が崩壊する際に発する熱が、マントル、地殻を通じて地表にまで流れる伝導熱を利用して発電(より好ましくは温度差発電(ゼーペック効果を利用)を行うものである。
深層地殻高温帯1の近くにまで位置する熱媒管20の内部を移動する(ポンプによって引き上げられる)流体としての熱媒を介して、深層地殻高温帯1の熱が地表側へ引き上げられ、発電に利用される。具体的な発電として、好ましくは温度差発電が考えられ、深層地殻高温帯1の熱は温度差発電における高温部側に供される。
(深さが異なる各作業床面に設置される蓄熱室)
ここで、熱媒管20は、200~500mの深さ毎に設けられる蓄熱室3を中継する。熱媒管20を各蓄熱室3で中継させる理由は、熱媒管20の長さが所定値以上に長くなると、熱媒管20の内部の熱媒の圧力が高まって熱媒管20が破裂してしまうからであり、これを回避するため200~500mの深さ毎に設けられる蓄熱室3を中継するように、熱媒管30の長さが設定されている。
そして、後述する立坑(図8乃至図10)を介して、地表から最も近い深さの蓄熱室3へ地表面から熱媒管20を引き込んでおくことで、地表面から最も近い深さの蓄熱室3から地表側への深層地殻熱の引き上げが可能となる。
同様に、後述する立坑(図8乃至図10)を介して、地表面から、更に下の階の蓄熱室3へ熱媒管20を引き込んでおくことで、下の階の蓄熱室3から上の階の蓄熱室(地表から最も近い深さの蓄熱室)を介した深層地殻熱の引き上げが可能となる。
このようにして、地表面から、後述する立坑(図8乃至図10)を介して、各階の蓄熱室3(図3(b))へ熱媒管20を引き込んでおくことで、各階の蓄熱室3を介して地表面側への深層地殻熱の引き上げが可能となる。
そして、地表面から最も深い位置に設けられる蓄熱室3からの熱媒管20は、深層地殻域近くにまで伸びて、深層地殻熱が地表から最も深い位置に設けられる蓄熱室3への深層地殻熱の引き上げが可能となる。このようにして、深層地殻熱はそれぞれの蓄熱室3を中継して地表側に引き上げられる。
そして、それぞれの蓄熱室3の内部では、効率的な熱の授受が行われて熱損失を抑えるように、下の階へ向かう熱媒管20(下階からの熱媒管20でもある)が蓄熱室3に設けられる。また、上の階へ向かう熱媒管20(上の階からの熱媒管20でもある)が、蓄熱室3に設けられる。
図4(a)は折り畳んだ熱媒管38を横長の穴39から蓄熱室へ設置する説明図である。蓄熱室3の内部には、水平面内で縦方向に配置される熱媒A配管が40本、水平面内で横方向に配置される熱媒B配管が40本、計80本が配管される。
図4(b)は、蓄熱室3の内部を示すと共に、それぞれの熱媒管20の内部において熱媒がポンプPによって下の階の蓄熱室3から上の階の蓄熱室3へ引き上げられることを示している。
図4(c)に示す蓄熱室3は、蓄熱煉瓦(耐熱煉瓦として比熱を高める素材を混入)のブロックで下層、中間層、上層として複数層が積み上げられ、下層および上層に断熱材を設け、中間層においてブロックに設けられる穴部を介して第1群の熱媒管(熱媒A配管28)と第2群の熱媒管(熱媒B配管29)が互いに交差(直交)するように交互に積層配置されている。
蓄熱室3の組立に関しては、地上階(地表面)において、縦、横、高さがそれぞれ2mの立方体状の蓄熱煉瓦で造ったブロックを大量に造り、それらブロックの横壁に熱媒管が入る横長の穴を開けておく。そして、ブロックをエレベータで各階に持込み、フォークリフトで横持ちし、整地した作業床面に積み上げる。
ブロックの低層階(例えば1階、2階)には断熱材を詰め込み、中層階(例えば3階~6階)には、図4(a)に示すように複数回折り畳んだ熱媒管38として熱媒管A、Bを上述した横長の穴39から横方向、その上の階では縦方向、更にその上の階では横方向と交互に差し込む。折り畳んだ熱媒管A、Bは、それぞれ折り畳んだ一方側が上の階からの熱媒管、折り畳んだ他方側が下の階へ向かう熱媒管となる。
そして、高層階(例えば7階)のブロックにも断熱材を詰め込む。そして、蓄熱室の周りと上部にも断熱材で分厚く覆い、断熱効果を高めるとより好ましい。
図4(c)の左側に示す半円状の小窓からは、一番下に差し込まれた熱媒管が見える。
なお、図4(c)において、25は蓄熱材壁部、26は蓄熱材梁部、27は蓄熱材仕切り壁部を示す。蓄熱材仕切り壁部27は、熱媒A配管28、熱媒B配管29を貫通する壁となっている。
ここで、図4(b)において、それぞれの熱媒管20の内部において熱媒がポンプPによって下の階の蓄熱室3から上の階の蓄熱室3へ引き上げられることを示したが、図5に地表から最も深い蓄熱室3の様子を示す。
図5において、地表から最も深い蓄熱室(最下段の蓄熱室)3が設置される作業床面より下側に掘削されるセンター立坑の内部にある熱媒管20が深層地殻熱域の近くまで伸びており、深層地殻熱が当該蓄熱室並びにその上方の蓄熱室を経由して地表側に持ち上げられる。
図5では、冷水塔18に備わる液体の熱媒2を気体(蒸気)17とし、熱媒を液体でなく気体として使用する場合を示している。高温のため液体であった熱媒2が忽ち気体(蒸気)17となり、比重が小さくなることで熱媒管を長く設定しても内部にかかる圧力を小さく抑えられ、熱媒管20の破裂を回避できる。最下段の作業床面では、高熱に晒され作業が困難となることが考えられるため、最下段の作業床面を深層地殻熱域から離す(より長い熱媒管を用いる)というこの方法を採用するメリットがある。
地表面から深層地殻帯近くに至る熱媒管の断面構成は、図6(a)に示すように、中央の熱回収管22(管の内部を熱媒がポンプPの作用で移動)の周りに熱媒で集熱する集熱管21(高圧に耐える特殊配管材料を使わなくても安価なSUS一般鋼管を使用可能)を円周状に複数設け、その外側に全体を保護する保護管23を設ける。
このような3層構造で、高温になった熱媒の温度が下がらないように、回収管の周りを集熱管が取り囲み、周りの地殻に熱を放熱し難いよう保温の役割を担わせることができる。
そして、このような熱媒管の長手方向の構成として、最下層においては200~500m程度の集中集熱管を付けるようにし、集中集熱管の内部に集熱効果を上げるため多重螺旋管を内蔵させる(図6(a))。
そして、最下層においては、図5に関して上述した構成(高温のため液体であった熱媒2が忽ち気体(蒸気)17となり、比重が小さくなることで熱媒管を長く設定しても内部にかかる圧力を小さく抑えられ、熱媒管の破裂を回避できる)を用いるが、その液体熱媒としては、水または水銀を用いる。
ここで、図6(b)は、深さ方向で隣り合う階の間における熱媒の流れを示す。深さ方向で下側から上がってくる温度の高い熱媒αと、上側から降りてくる温度が下がった熱媒βが、同じ熱媒管の内部で熱交換され発電の効率化に供するようにできる。すなわち、熱媒αと熱媒βは、蓄熱室の内部において、また蓄熱室の外部において熱交換がされる。図6(b)では、蓄熱室の外部において、熱媒管を構成する熱回収管22とその周りの集熱管21との間で熱交換がされることを示す。
(深さが異なる各作業床面に設置される作業員室および作業設備室)
深さが異なる各作業床面のスペースには、蓄熱室の他に、工事中および完成後のメンテナンス作業を安心、安全に行えるように、作業員室および作業設備室の少なくとも一方が設置される。図7は、作業員室および作業設備室を備え、作業員室に冷房設備を備え、作業設備室に冷却設備を備えた場合を示す。
冷房もしくは冷却に関しては、電気で自家生産できる液体空気(空気を低温にして得られる液体)が気化器に送られ、気体の空気(気体空気)と混合すると、液体空気が気化し蒸発熱を奪い、気体空気の温度を下げることができる。
この原理を用い、図7に示すものは、液体空気の替わりに人工液体空気を用いる。すなわち、酸素ボンベ44と窒素タンク45を設置し、人工空気として酸素と窒素をそれぞれ79%、21%の割合で混合する。液体酸素ボンベ44は液体酸素供給弁を介して混合気化器46に連結し、液体窒素タンク45は液体窒素供給弁を介して混合気化器46に連絡している。そして、混合気化器46は外気吸入調整弁などを通して常温空気(気体空気)を取り入れることが可能である。液体が気体となって蒸発熱を奪うことにより、温度が下がった低温空気(冷却空気)47は、混合気化器46から供給される。
図7で、低温空気47により冷房が効き、またヒートパイプシステム51で更なる冷房や暖房も効き、作業員が休息できる作業員室として、ゆっくり休息室50が設置される。また、掘削機52、AIロボットおよび地中服48、搬送装置としてのエアベアリング等49等が冷却保管される作業設備室が配置されている。
(立坑および横坑の掘削)
図1、図8、図9、図10で、11はセンター立坑、12はサテライト立坑、13はエレベータ立坑である。図8(a)に示すように、地表面から深層地殻熱域の近くまで一直線に貫くセンター立坑11の周りに、上下に隣り合う上の階と下の階をつなぐサテライト立坑12、エレベータ立坑13が設けられる。地表面とすぐ下の階(地下1階)をつなぐサテライト立坑12-1の下端部と、地下1階とすぐ下の階(地下2階)をつなぐサテライト立坑12-2の上端部とは、余裕分として深さ方向で重なりを持つように掘削される。
図10(a)、(b)に示す33は、センター立坑11とサテライト立坑12を連結(接続)する連結立坑である。それぞれの立坑は地上階(地表面)10から200~500mの深さに掘削される。
連結立坑33は、熱媒管を地表面から蓄熱室に引き込むとき、センター立坑11からサテライト立坑12へ熱媒管を横方向へ変位させことができるようにするためのものである。そして、深さ方向に関し、図10(b)に示すように、A-A矢視で中間部が幅6500mm(図9(c)の大フランジ32の直径6000mmより大きい)、最上部側と最下部側でそれぞれ幅8500mmの横坑となっている。
最上部側で幅8500mmの横坑となっている理由は、Y1は立坑(縦坑)用掘削装置Y1(図1)をセンター立坑11からサテライト立坑12へ移動させるために必要であるからである。また、最下部側で幅8500mmの横坑となっている理由は、Y1は立坑(縦坑)用掘削装置Y1(図1)をサテライト立坑12からセンター立坑11へ移動させるために必要であるからである。
なお、連結立坑33に関し、最上部、通関部、最下部を全て幅8500mmで統一することもできる。
図1で、Y1は立坑(縦坑)用掘削装置、Y2は横坑用掘削装置であり、Y3は土砂等回収装置で、図8(b)に示すようにエレベータ立坑の内部に設けられるエレベータゲージ14へ排土などを作業床面16上で運搬する排土運搬車15を含む。
なお、エレベータ立坑の位置は、サテライト立坑12に対しセンター立坑と反対側に示されているが、これに限られず、サテライト立坑12の位置と共にセンター立坑の周りに設けられれば良い。
サテライト立坑12は、地上階(地表面)で組み立てた長大な熱媒管を連絡立坑33を通して蓄熱室3に引き込むための開放空間として重要である。
蓄熱室3に持ち込む物は主にエレベータ立坑13に設けられるエレベータで運び込むが、長尺の熱媒管はセンター立坑11、連絡立坑33、サテライト立坑12を通して蓄熱室3に引き込むこととなる。
このための掘削として、先ず地表面から所定の深さまで、センター立坑と共にサテライト立坑と、サテライト立坑とセンター立坑を連結する連結立坑と、エレベータ立坑をセンター立坑の周りに掘削する(図1(a)に示す第1のステップ)。
そして、これら立坑のいずれかから搬入された、もしくは搬入され組み立てられた掘削装置を用いて、第1のステップで形成されたセンター立坑に交差する第1の横坑を掘削する(第2のステップ)。
そして、第2のステップで掘削された排土をエレベータ立坑より地表へ排出すると共に、第1の横坑に作業員室および作業設備室の少なくとも一方、並びにセンター立坑の中に配置されて250℃乃至500℃の深層地殻熱をポンプにより移動される熱媒を介して地表に向け伝搬するための熱媒管を連結立坑を介してサテライト立坑に引き込んで中継する蓄熱室を設置可能なスペースを備える第1の作業床面16aを形成する(図1(b)に示す第3のステップ)。
そして、地表面を第1の作業床面に置き換えて、センター立坑の位置をずらさないようにして、第2の横坑に第2の作業床面16bを形成するように(図1(c)、(d))、第1乃至第3のステップを深層地殻熱域に近づくまで順次行い、地表面から最も離れた作業床面からセンター立坑を深層地殻熱域に近づく位置まで掘削する(図2に示す第4のステップ)。
ここで、それぞれの作業床面に形成される蓄熱室3のサイズは、図4(a)に示すように縦方向、横方向、高さ方向にそれぞれ20mである。また、それぞれの作業床面に形成される作業員室、作業設備室のそれぞれのサイズは、縦横が10m、高さが10mである。
このようにして、それぞれの作業床面における図1に示すスペースX1、X2の大きさは、それぞれ少なくとも縦横が30m以上、高さが20m以上となる。
横坑を掘削する第2のステップにおいては、固い岩盤の場合はドリリング装置で穴を開け、ダイナマイトを差し込んで爆破し、ショベルローダーで砕石を運び出す。なお、より大きなスペースを確保する場合、シールドマシンを用いることもできる。
(熱媒管の組立)
先ず、図9(a)に示すように、地上階(地表面)においてセンター立坑11の上に櫓(ヤグラ)を組み、素管を熔接しながら地下1階用含め各階用の熱媒管を組立て、地下1階用の熱媒管に関しては、センター立坑11から降ろして第1のサテライト立坑12-1(図8(a))へ横移動させて地下1階用の作業床面に形成される地下1階用の蓄熱室へ引き込む。
同様に、地下2階用の熱媒管に関しては、センター立坑11から降ろして第2のサテライト立坑12-2(図8(a))へ横移動させて地下2階用の作業床面に形成される地下1階用の蓄熱室へ引き込む。
そして、最下層用の熱媒管に関しては、センター立坑11から降ろして第nのサテライト立坑12-nへ横移動させて最下層用の作業床面に形成される最下層用の蓄熱室へ引き込む。
そして、それぞれの作業床面に配管ユニット100(図3(a)が設けられ、その作業床面の蓄熱室から出てすぐ下の下層階に向かう熱媒管の端部(先端)と、センター立坑11から降ろしてすぐ下の下層階に向かう熱媒管の端部(後端)とが配管ユニット100を介して連結(接続)される。
センター立坑11、サテライト立坑12の直径は8m、連絡立坑33の最大幅は8.5mであるところ、熱媒管20(長さが250~500mで本数が40本程で大フランジ32で束ねられる。大フランジ32の外径は、図9(b)に示すように6m(6000mm)であり、熱媒管20の重量は大変大きくなる。このため、熱媒管20を10本程の回転する鎖(チェーン)63に支持された円盤に載せて、回転する滑車62を介して徐々に下していき、目的階に達したらセンター立坑11からサテライト立坑12に横移動させて蓄熱室3と連結(接続)する。
(深層地殻熱の温度差発電への利用のためのトンネル横坑の掘削)
更に本実施形態では、発電システム(発電装置)を形成できるよう、発電部として深層地殻熱を利用した温度差発電を行う熱電発電素子ユニットを多数用いた巨大発電所を形成するため、多数のトンネル横坑を更に掘削する。なお、既存のトンネルが利用できる場合は、それを利用する。
図11に示すトンネル42に関して、より具体的には、図12(a)に示すように、それぞれの直径が8mで、第1の方向(X方向)に互いに所定の間隔(例えば16m)を空けて複数形成するステップと、第1トンネル横坑に対し深さ方向(Z方向)で所定の間隔(例えば16m)を空けた第2トンネル横坑を第1の方向に交差する第2の方向(Y方向)に互いに所定の間隔(例えば16m)を空けて複数形成するステップと、を順に備える。
このようにして、第1群のトンネルと第2群のトンネルが互いに交差(直交)するように交互に積層配置される(図12(a))。
図11,図12(b)に示す側線53は、各トンネル横坑の内部で移動車両が移動できるように敷かれる線路(レール)とは別に設けられる各トンネル横坑への引き込み線路もしくは操車用の線路をいう。図12(b)の9階床面では、トンネル横坑に引き込まれた後の状態を示し、図12(b)の10階床面では、保守交換用の車両により熱電素子ユニット4が新たにトンネル横坑に引き込まれる前の状態を示す。
そして、それぞれのトンネル42の全体配置スペースとしては、X方向、Y方向がそれぞれ3500m、Z方向が300m(10階建て)のスケールとする。
それぞれのトンネル42内においては、互いに間隔が16mの複数の熱電発電素子ユニット4が互いに接続された状態で、図11に示すトロッコなど移動車両72で搬入設置される。そして、異なるトンネル42の熱電発電素子が互いに側線53で接続される。
(熱電発電素子ユニット)
一般に熱電発電素子(温度差発電素子)としては、以下の文献に知られている。
・ 2021年1月13日号Journal of physics
D; Applied physics pp.115503
Mixed-Phase effect of the high Seebeck coefficient and low electrical resistivity in the Ag2S
2)2019年8月21日 日本経済新聞 NEDO、アイシン精機、茨城大学は、ありふれた材料のみで構成し、体温などわずかな温度差を使って発電する技術の開発に成功したと発表した。鉄とアルミニウム、シリコンから構成し、従来のような希少元素や毒性のある元素は含まず、材料コストは5分の1以下に削減可能。
このような熱電発電素子は、今後更なる研究開発が進められるものとして期待される。
本実施形態では、ゼーペック効果を用いた熱電発電素子を熱電発電素子ユニット(素子ユニット)としてユニット化し、熱媒管によって地表側に伝搬される地殻熱を高温部側に流す一方、低温部側に冷水を流して両者の温度差で発電させ、この素子ユニットを多数用いることで数百万KWのレベルの巨大発電所を構成する。
図13(a)は、温度差発電に係る熱電発電素子を複数備えた素子盤のイメージと作り方を示す。線径が1mmのアルメル線を縦線密度23322本/75000mmで断面がU字形のSUS材に巻き付け、両端をセラミック材で固定したものである。そして、このような素子盤が複数配置されることとなる。
図13(b)では、素子盤37は1次元状に長手方向に配置され、かつ長手方向と交差する方向に複数配置され、長手方向と交差する方向において、それぞれの熱電発電素子を挟んで熱媒流路35と冷水流路36とが交互に平行配置される。
また、図14(a)では、素子盤37は2次元状に配置され、熱媒流路と冷水流路とは直交して配置される。図14(a)、(b)の38は熱媒の流れ、39は冷水の流れ、40は排水、41は蓄熱室への戻りを示す。
図15(a)は熱電発電素子の発電量測定に係る実験方法、回路図を示し、図15(b)は実験結果を示す。図中、54はやかん(ヤカン)、55は氷枕、56はアルメル線、57は銅板、58はベークライト板、59は松材、60は電流計、61は電圧計である。この実験結果から高温部側に100℃、低温部側に0℃を用い、ゼーペック効果による熱電発電素子による電力が0.2mW出力されたことが実証できた。
このような熱電発電素子を多数(温度差が100℃では、例えば1000億個)設け、図11に示した巨大発電所において高い電力(例えば200万kW)を出力することができる。
以上、述べた本発明の実施形態によれば、マグマが移動することもあって不安定となるマグマ水蒸気を利用する発電と異なり、超長期安定的な発電、更には大規模発電が期待できる掘削方法を提供できる。
そして、本実施形態に係る掘削方法を用いることにより、石炭や天然ガスなどの化石燃料を用いない無燃料発電が可能となるため、燃料輸入が不要(自前のエメルギー源)となる。そして、郊外の発電所から首都圏の需要を満たすことができるため、送電距離が近くなることで送電ロスが少なくなる。また、殆どの設備において可動部が無く、長寿命でメンテナンス費用も抑えられる。
更に、火山地帯や地殻変動の起き易い場所を除けば、世界中の殆どの場所で利用でき、
砂漠においても発電を行い、大河や湖から水を引き込んで緑化し、大規模な発電でオアシス都市を建設することもできる。そして、砂漠を耕地に加えることで、世界の食料不足を解消するように食料の増産にもつなげられる。
(変形例)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
上述した実施形態では、センター立坑は地表から深層地殻熱域に近づく位置まで貫通して設けられるものとして説明したが、熱媒管が深層地殻熱域に近づく位置から複数の蓄熱室を中継して地表側に至る連続した軌跡に適宜沿うようにセンター立坑が設けられれば良い。例えば、蓄熱室の数を多くして、深さ方向で隣り合う蓄熱室をつなぐ熱媒管を短くして、作業床面の高さをもたせることで、作業床面に熱媒管を立てるようにして、センター立坑11が異なる作業床面の間で平行にずれて設けられるものであっても良い。
また、上述した各立坑は地表面から同時に掘削されるものであっても良いし、非同時に掘削されるものであっても良い。
また、サテライト立坑12がセンター立坑11とエレベータ立坑13の間に形成される(図8(a))ものに限られず、センター立坑11がサテライト立坑12とエレベータ立坑13の間に形成されるものであっても良い。
そして、本発明は温度差発電用に限られず、火山性マグマに依存せず深層地殻熱を回収して蒸気タービンを回す方式の発電用にも適用できる。
1・・深層地殻高温帯、3・・蓄熱室、4・・熱電発電素子ユニット、11・・センター立坑、12・・サテライト立坑、13‥エレベータ立坑、16‥作業床面、20・・熱媒管、28・・熱媒A配管、29・・熱媒B配管、33・・連結立坑、50・・ゆっくり休息室、P・・ポンプ

Claims (4)

  1. 地表から深層地殻熱域に近づく位置までセンター立坑を掘削する掘削方法であって、
    地表面から所定の深さまで、前記センター立坑と共にサテライト立坑と、前記サテライト立坑と前記センター立坑を連結する連結立坑と、エレベータ立坑を前記センター立坑の周りに掘削する第1のステップと、
    前記立坑のいずれかから搬入された、もしくは搬入され組み立てられた掘削装置を用いて、前記第1のステップで形成されたセンター立坑に交差する第1の横坑を掘削する第2のステップと、
    前記第2のステップで掘削された排土を前記エレベータ立坑より地表へ排出すると共に、前記第1の横坑に作業員室および作業設備室の少なくとも一方、並びに前記センター立坑の中に配置されて250℃乃至500℃の深層地殻熱をポンプにより移動される熱媒を介して地表に向け伝搬するための熱媒管を前記連結立坑を介して前記サテライト立坑に引き込んで中継する蓄熱室を設置可能なスペースを備える第1の作業床面を形成する第3のステップと、
    地表面を前記第1の作業床面に置き換えて、第2の横坑に第2の作業床面を形成するように、前記第1乃至第3のステップを前記深層地殻熱域に近づくまで順次行い、地表面から最も離れた作業床面から前記センター立坑を深層地殻熱域に近づく位置まで掘削する第4のステップと、
    を有することを特徴とする掘削方法。
  2. 前記センター立坑は、地表から深層地殻熱域に近づく位置まで貫通して設けられることを特徴とする請求項1に記載の掘削方法。
  3. 一方の端部を高温部側とし、他方の端部を低温部側として、両者の温度差で発電し、前記高温部側に前記複数の蓄熱室を経由した前記熱媒管によって地表側に伝搬される前記地殻熱を流す複数の熱電発電素子を坑内で移動可能とする第1トンネル横坑を第1の方向に互いに所定の間隔を空けて複数形成するステップと、前記第1トンネル横坑に対し深さ方向で所定の間隔を空けた第2トンネル横坑を前記第1の方向に交差する第2の方向に互いに所定の間隔を空けて複数形成するステップと、を順に備えることを特徴とする請求項1または2に記載の掘削方法。
  4. 前記作業床面は、前記熱媒管として上層階の前記蓄熱室から出た端部と、下層側の前記蓄熱室へ向かう前記熱媒管の端部を連結する配管ユニットを形成するスペースを備えることを特徴とする請求項3に記載の掘削方法。
JP2022098507A 2022-06-20 2022-06-20 掘削方法 Pending JP2024000011A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022098507A JP2024000011A (ja) 2022-06-20 2022-06-20 掘削方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022098507A JP2024000011A (ja) 2022-06-20 2022-06-20 掘削方法

Publications (1)

Publication Number Publication Date
JP2024000011A true JP2024000011A (ja) 2024-01-05

Family

ID=89384745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022098507A Pending JP2024000011A (ja) 2022-06-20 2022-06-20 掘削方法

Country Status (1)

Country Link
JP (1) JP2024000011A (ja)

Similar Documents

Publication Publication Date Title
US11131484B2 (en) Geothermal energy collection system
US10330348B2 (en) Closed-loop geothermal energy collection system
US11692530B2 (en) Method, system and apparatus for extracting heat energy from geothermal briny fluid
US8381523B2 (en) Geothermal electricity production methods and geothermal energy collection systems
Lee et al. Concept of a Korean reference disposal system for spent fuels
JP2021107712A (ja) 地熱を発生させるプロセスおよび方法
US4054176A (en) Multiple-completion geothermal energy production systems
JP5048067B2 (ja) 発電装置
US9995286B2 (en) Self-contained in-ground geothermal generator and heat exchanger with in-line pump and several alternative applications
US9978466B2 (en) Self-contained in-ground geothermal generator and heat exchanger with in-line pump
JP2023536644A (ja) 複数の作動流体を使用する地熱エネルギー生成
JP2024000010A (ja) 発電システムおよび発電方法
CN110030745A (zh) 一种地热开发系统及其施工方法
JP2010101144A (ja) 既設地下空洞を再利用したエネルギー供給システム
Rudakov et al. Effectiveness evaluation for geothermal heat recovery in closed mines of Donbas
JP2024000011A (ja) 掘削方法
EP2102490B1 (en) Geothermal energy system
BR112014006963A2 (pt) dispositivo de transferência de fluidos verticalmente compactáveis
Anand et al. Super-long gravity heat pipe for geothermal energy exploitation-A comprehensive review
SE528104C2 (sv) Kärnkraftanläggning och sätt att uppföra en sådan
WO2019021066A1 (en) METHOD AND SYSTEM FOR COLLECTING THERMAL ENERGY FROM GEOLOGICAL FORMATIONS
RU2529769C2 (ru) Петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции
RU2056597C1 (ru) Геотермальная установка
Abbasy An investigation into application of geothermal energy in underground mines
Banwell The New Zealand thermal area and its development for power production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240122