JP2023548960A - Method for manufacturing hydrogen fuel cell titanium metal bipolar plate base material - Google Patents

Method for manufacturing hydrogen fuel cell titanium metal bipolar plate base material Download PDF

Info

Publication number
JP2023548960A
JP2023548960A JP2023548997A JP2023548997A JP2023548960A JP 2023548960 A JP2023548960 A JP 2023548960A JP 2023548997 A JP2023548997 A JP 2023548997A JP 2023548997 A JP2023548997 A JP 2023548997A JP 2023548960 A JP2023548960 A JP 2023548960A
Authority
JP
Japan
Prior art keywords
titanium
fuel cell
hydrogen fuel
bipolar plate
metal bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023548997A
Other languages
Japanese (ja)
Inventor
リー,ボボ
タオ,フゥイファ
リウ,インチー
ワン,フェイ
ペイ,トン
ハオ,シャオボ
ヂャン,チャン
Original Assignee
ルオヤン スンルイ タイタニウム プレシジョン キャスティング カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルオヤン スンルイ タイタニウム プレシジョン キャスティング カンパニー リミテッド filed Critical ルオヤン スンルイ タイタニウム プレシジョン キャスティング カンパニー リミテッド
Publication of JP2023548960A publication Critical patent/JP2023548960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Metal Rolling (AREA)

Abstract

【課題】【解決手段】水素燃料電池チタン金属バイポーラプレート基材の製造方法は、[O]当をチタンスラブ不純物元素全体の含有量の質量割合と定義し、Fe、C、N、O不純物元素の含有量の質量割合をそれぞれ[Fe]%、[C]%、[N]%、[O]%と定義し、[O]当の計算式は、[O]当=[O]%+0.5*[Fe]%+0.7*[C]%+2.5*[N]%であり、[Fe]%≦0.050%、[C]%≦0.040%、[N]%≦0.010%、[O]%≦0.080%、[O]当≦0.120%のチタンスラブを選択し、それに対して熱間圧延、冷間圧延、中間製品アニーリング、最終製品圧延を順次に行い、チタンテープを得、チタンテープに対して、アルゴンガスの保護下で、連続アニーリング方式で最終製品熱処理を行い、矯正をすることで水素燃料電池チタン金属バイポーラプレート基材を得る。本発明の製造方法で製造される水素燃料電池チタン金属バイポーラプレート基材は、品質が高く、コストが低い。[Problem] [Solution] A method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material defines [O] as the mass percentage of the total content of impurity elements in a titanium slab, and includes Fe, C, N, and O impurity elements. The mass percentage of the content of is defined as [Fe]%, [C]%, [N]%, and [O]%, respectively, and the calculation formula for [O] is: [O] = [O]% + 0 .5*[Fe]%+0.7*[C]%+2.5*[N]%, [Fe]%≦0.050%, [C]%≦0.040%, [N]% Select titanium slabs with ≦0.010%, [O]%≦0.080%, [O]%≦0.120%, and then perform hot rolling, cold rolling, intermediate product annealing, and final product rolling. are carried out sequentially to obtain a titanium tape, and the titanium tape is subjected to a final product heat treatment using a continuous annealing method under the protection of argon gas, and then straightened to obtain a hydrogen fuel cell titanium metal bipolar plate base material. The hydrogen fuel cell titanium metal bipolar plate substrate manufactured by the manufacturing method of the present invention has high quality and low cost.

Description

本発明は、非鉄金属加工の技術分野に関し、具体的には、水素燃料電池チタン金属バイポーラプレート基材の製造方法に関する。 The present invention relates to the technical field of non-ferrous metal processing, and specifically to a method for manufacturing hydrogen fuel cell titanium metal bipolar plate substrates.

水素燃料電池は、水素エネルギーを効率よくクリーンに利用するツールであり、エネルギー変換率が高く、熱放射が低く、騒音が低く、持続時間が長く、ゼロエミッションであるなどの利点があり、自動車、船舶、航空宇宙、及び分散型電源に広く応用可能であり、広い応用見通しがある。バイポーラプレートは、水素燃料電池スタックの主要部材として、集電導電、放熱、反応媒体の均一分散、漏洩防止などの複数の機能を発揮し、蒸し暑い、電気化学腐食、酸腐食などのマルチフィールド結合による複雑で悪い環境下で作動し、バイポーラプレート基材は一旦、腐食漏洩が発生すると、水素燃料電池スタックの無効化及び安全面でのリスクが生じるので、バイポーラプレートは、燃料電池全体の性能、寿命、及び信頼性に大きく影響を及ぼす。 Hydrogen fuel cells are a tool to efficiently and cleanly utilize hydrogen energy, and have the advantages of high energy conversion rate, low heat radiation, low noise, long duration, and zero emissions, and are widely used in automobiles, It is widely applicable to ships, aerospace, and distributed power sources, and has wide application prospects. Bipolar plate, as the main component of hydrogen fuel cell stack, performs multiple functions such as current collection and conduction, heat dissipation, uniform distribution of reaction medium, and leakage prevention, and is protected by multi-field coupling such as steaming, electrochemical corrosion, acid corrosion, etc. Bipolar plates operate under complex and adverse environments, and once corrosion leakage occurs in the bipolar plate substrate, it will disable the hydrogen fuel cell stack and pose a safety risk. , and significantly affect reliability.

現在、水素燃料電池バイポーラプレートは、主に黒鉛バイポーラプレートと金属バイポーラプレートとを含む。黒鉛バイポーラプレートは、脆くなりやすい、組み立てにくい、厚さを薄くしにくい、機械加工効率が低いといった欠点があることにより、黒鉛バイポーラプレート水素燃料電池は体積が大きく、パワー密度が低く、コストが高くなり、乗用車及び他の分野における応用の見通しが制限されている。金属バイポーラプレートの材質は、主にステンレス鋼であるが、ステンレス鋼は、水素燃料電池の酸性環境下で、表面に腐食が発生しやすく、腐食により溶解された金属イオンは触媒被毒を起こしやすく、水素燃料電池の寿命及び信頼性が比較的低くなる。チタン金属は、腐食耐性、低密度などのメリットがあり、水素燃料電池の性能、寿命、及び信頼性の向上に寄与し、水素燃料電池金属バイポーラプレート基材の望ましい材料である。 At present, hydrogen fuel cell bipolar plates mainly include graphite bipolar plates and metal bipolar plates. Graphite bipolar plate has disadvantages such as being easily brittle, difficult to assemble, difficult to reduce thickness, and low machining efficiency, which makes graphite bipolar plate hydrogen fuel cell have a large volume, low power density, and high cost. This limits the application prospects in passenger cars and other fields. The material of metal bipolar plates is mainly stainless steel, but stainless steel is prone to corrosion on its surface in the acidic environment of hydrogen fuel cells, and metal ions dissolved due to corrosion are likely to poison the catalyst. , the lifetime and reliability of hydrogen fuel cells will be relatively low. Titanium metal has advantages such as corrosion resistance and low density, which contributes to improving the performance, lifespan, and reliability of hydrogen fuel cells, making it a desirable material for hydrogen fuel cell metal bipolar plate substrates.

金属バイポーラプレートの重量はスタックの総重量に対して50%以上であり、将来の市場の需要は非常に大きく、水素燃料電池チタン金属バイポーラプレート基材は、厚さが一般的に0.05~0.2mmであり、プレス微細構造流路の深さ及び溝幅が一般的に0.2~2.0mmであり、プレス投影面積が板面の総面積に対して50%以上であり、後で表面コーティング処理が必要となり、基材の成型性能、寸法精度、及び表面品質などが厳しく要求されている。しかし、従来のチタン基材は、生産中、成型性能が比較的低く、水素燃料電池での普及・応用が制限されている。また、従来のチタン基材は、材料選択が厳しいため、生産コストが高く、加工難易度が大きくなり、水素燃料電池での普及・応用がさらに制限されている。水素燃料電池金属バイポーラプレートの後加工及びサービス要件に対して、チタン基材の製造プロセス及び総合性能を設計し、チタン基材を製造する必要がある。したがって、水素燃料電池の使用需要を満たすために、高品質、低コストのチタン金属バイポーラプレート基材を開発することは、業界の発展の急激な需要になった。 The weight of metal bipolar plate is more than 50% of the total weight of the stack, and the future market demand is very large. Hydrogen fuel cell titanium metal bipolar plate base material generally has a thickness of 0.05~ 0.2 mm, the depth and groove width of the press microstructure channel are generally 0.2 to 2.0 mm, the press projected area is 50% or more of the total area of the plate surface, and the Surface coating treatment is required, and strict requirements are placed on the molding performance, dimensional accuracy, and surface quality of the base material. However, conventional titanium substrates have relatively poor molding performance during production, limiting their widespread use and application in hydrogen fuel cells. In addition, conventional titanium base materials require difficult material selection, resulting in high production costs and difficulty in processing, further limiting their widespread use and application in hydrogen fuel cells. For the post-processing and service requirements of hydrogen fuel cell metal bipolar plates, it is necessary to design the manufacturing process and overall performance of the titanium substrate to manufacture the titanium substrate. Therefore, to meet the usage demands of hydrogen fuel cells, developing high-quality, low-cost titanium metal bipolar plate substrates has become a rapid demand in the development of the industry.

本発明は、高品質、低コストのチタン金属バイポーラプレート基材を製造し、水素燃料電池のチタン金属基材への需要を満たすための水素燃料電池チタン金属バイポーラプレート基材の製造方法を提供することを目的とする。 The present invention provides a method for manufacturing hydrogen fuel cell titanium metal bipolar plate substrates to manufacture high quality, low cost titanium metal bipolar plate substrates and meet the demand for titanium metal substrates in hydrogen fuel cells. The purpose is to

本発明で採用される技術方案は、水素燃料電池チタン金属バイポーラプレート基材の製造方法であって、(1)スポンジチタンに対して溶錬及び機械加工を行い、チタンスラブを得る工程であって、[O]をチタンスラブ不純物元素全体の含有量の質量割合と定義し、Fe、C、N、O不純物元素の含有量の質量割合をそれぞれ[Fe]%、[C]%、[N]%、[O]%と定義し、[O]の計算式は、[O]=[O]%+0.5*[Fe]%+0.7*[C]%+2.5*[N]%であり、[Fe]%≦0.050%、[C]%≦0.040%、[N]%≦0.010%、[O]%≦0.080%、[O]≦0.120%のチタンスラブを選択して直接圧延に用いる工程と、(2)工程(1)で選択されたチタンスラブを熱間圧延し、黒皮状態の熱間圧延チタンコイルを得、表面処理をして表面に酸化物皮膜及び欠陥が残留しない熱間圧延チタンコイルを得る工程と、
(3)工程(2)で得た熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、最終製品圧延用マスターテープを得る工程と、(4)工程(3)で得た最終製品圧延用マスターテープに対して最終製品圧延を行い、チタンテープを得る工程と、(5)工程(4)で得たチタンテープに対して、アルゴンガスの保護下で、連続アニーリング方式で最終製品熱処理を行い、矯正をすることで前記水素燃料電池チタン金属バイポーラプレート基材を得る工程と、を含む、水素燃料電池チタン金属バイポーラプレート基材の製造方法である。
The technical solution adopted in the present invention is a method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material, which comprises: (1) melting and machining titanium sponge to obtain a titanium slab; , [O] is defined as the mass percentage of the total content of impurity elements in the titanium slab, and the mass percentage of the content of Fe, C, N, and O impurity elements is defined as [Fe]%, [C]%, and [N], respectively. ]%, [O]%, and the calculation formula for [O] is : [O]% = [O]% + 0.5*[Fe]%+0.7*[C]%+2.5*[ N]%, [Fe]%≦0.050%, [C]%≦0.040%, [N]%≦0.010%, [O]%≦0.080%, [O] % . ≦0.120% titanium slab is selected and used for direct rolling; (2) the titanium slab selected in step (1) is hot-rolled to obtain a hot-rolled titanium coil in a black crust state; Surface treatment to obtain a hot rolled titanium coil with no oxide film or defects remaining on the surface;
(3) performing multi-step cold rolling and intermediate product annealing on the hot rolled titanium coil obtained in step (2) to obtain a master tape for final product rolling; (5) The titanium tape obtained in step (4) is subjected to continuous annealing under the protection of argon gas. A method for producing a hydrogen fuel cell titanium metal bipolar plate base material, comprising the steps of performing final product heat treatment and straightening to obtain the hydrogen fuel cell titanium metal bipolar plate base material.

さらに、工程(1)において、スポンジチタンは、0グレード以上のスポンジチタンである。 Furthermore, in step (1), the titanium sponge is a titanium sponge of grade 0 or higher.

さらに、工程(1)において、前記溶錬は、EB炉によって1回行われる。 Furthermore, in step (1), the smelting is performed once in an EB furnace.

さらに、工程(2)において、前記表面処理のプロセスは、連続アニーリングショットピーニング酸洗ラインにより黒皮状態の熱間圧延チタンコイルに対してアニーリングを1回、ショットピーニング酸洗を2回行ってから、研磨及びショットピーニング酸洗処理を行うことである。 Furthermore, in step (2), the surface treatment process includes performing annealing once and shot peening pickling twice on the hot-rolled titanium coil in a black scale state using a continuous annealing shot peening pickling line. , polishing and shot peening pickling treatment.

さらに、工程(3)において、中間製品アニーリングの温度は600~850℃である。 Further, in step (3), the temperature for annealing the intermediate product is 600 to 850°C.

さらに、工程(4)において、圧延工程の変形量は50%~65%であり、単位張力は200~400kg/mmであり、圧延速度は50~150m/minであり、圧延力は200~400トンである。 Further, in step (4), the amount of deformation in the rolling process is 50% to 65%, the unit tension is 200 to 400 kg/ mm2 , the rolling speed is 50 to 150 m/min, and the rolling force is 200 to 65%. It is 400 tons.

さらに、工程(5)において、連続アニーリングの熱処理温度は600~800℃であり、保温時間は0.5~2.5minであり、アニーリング張力は0.5~2.5KNである。 Furthermore, in step (5), the heat treatment temperature for continuous annealing is 600 to 800°C, the heat retention time is 0.5 to 2.5 min, and the annealing tension is 0.5 to 2.5 KN.

さらに、工程(5)において、アルゴンガスは、純度≧99.99%である。 Furthermore, in step (5), the argon gas has a purity of ≧99.99%.

さらに、工程(5)において、矯正の張力は500~1500KNであり、矯正の引張変形率は0.1%~0.3%である。 Further, in step (5), the tension of straightening is 500 to 1500 KN, and the tensile deformation rate of straightening is 0.1% to 0.3%.

さらに、工程(5)で得た水素燃料電池チタン金属バイポーラプレート基材は、厚さ精度≦±0.003mmであり、うねり≦1.5mm/mであり、降伏強度(RP0.2)≦260MPaであり、伸び率(A50mm)≧30%であり、結晶粒度6~10であり、カッピング値≧6.0mmである。 Furthermore, the hydrogen fuel cell titanium metal bipolar plate base material obtained in step (5) has a thickness accuracy ≦±0.003 mm, a waviness ≦1.5 mm/m, and a yield strength (R P0.2 ) ≦ 260 MPa, elongation rate (A 50 mm ) ≧30%, grain size 6 to 10, and cupping value ≧6.0 mm.

本発明の有利な効果は以下のとおりである。 The advantageous effects of the present invention are as follows.

1.本発明の製造方法は、応用時、単一の不純物元素の含有量と総合的な不純物元素の含有量とを採用し、2重制御を行い、チタン金属バイポーラプレート基材の成型性能を確保し、元素によっては影響強度が互いに異なるため、[O]量を不純物元素の含有量のプレス成型の性能への影響を総合的に評価するインデックスとして採用することによって、成型性能が良好なバイポーラプレート基材を製造することを確保するとともに、単一の不純物元素の含有量の上限を緩くし、材料選択の基準を低く、スポンジチタンの選択範囲がより広くなり、幅広い素材の取得に有利であり、製造コストが低下する。 1. When applied, the manufacturing method of the present invention adopts a single impurity element content and a comprehensive impurity element content, performs dual control, and ensures the molding performance of the titanium metal bipolar plate base material. Since the influence strength differs depending on the element, by using [O] equivalent as an index to comprehensively evaluate the influence of impurity element content on press forming performance, bipolar plates with good forming performance can be achieved. While ensuring that the base material is manufactured, the upper limit of the content of a single impurity element is relaxed, the standard of material selection is lowered, the selection range of sponge titanium is wider, and it is advantageous to obtain a wide range of materials. , manufacturing costs are reduced.

2.本発明の製造方法は、応用時、アニーリング温度及び時間を制御することにより、最適な最終製品の結晶粒度の範囲を取得し、材料の伸び率が向上し、プレスプロセスにおいて結晶粒が一様に変形するようになるとともに、金属バイポーラプレートの成型特性に対して、成分、結晶粒度、降伏強度、伸び率、及びカッピング値からなる総合的な制御インデックスを設計し、チタン基材の成型性能をさらに大幅に向上させ、金属バイポーラプレートの特別なマイクロチャネルの成型要求を保証している。 2. During application, the manufacturing method of the present invention can obtain the optimal grain size range of the final product by controlling the annealing temperature and time, improve the elongation rate of the material, and ensure that the grains are uniform in the pressing process. Along with deformation, we designed a comprehensive control index consisting of composition, grain size, yield strength, elongation, and cupping value for the forming properties of metal bipolar plates, and further improved the forming performance of titanium base materials. The special microchannel molding requirements of metal bipolar plates have been greatly improved and warranted.

3.本発明の製造方法は、応用時、生産効率が高く、コストが低い。一方、真空度が高く、過熱度が大きく、高・低密度混在による除去の効果が良好であるとともに、精錬作用があるEB溶錬を1回採用することにより、不純物元素の増加量を減少し、チタンスラブの品質を品質管理の要求に合わせるようにすることができ、かつ、スラブ製造フローは従来の2~3回VAR溶錬に対して40%以上短縮し、収率は5%以上向上する。他方、高温短時間アニーリングプロセス方法を採用することにより、アニーリング生産の効率が向上し、アルゴンガスの消費量が低下し、基材のアニーリングのコストがさらに低下する。 3. The manufacturing method of the present invention has high production efficiency and low cost when applied. On the other hand, the increase in impurity elements can be reduced by using EB smelting, which has a high degree of vacuum, a large degree of superheating, a good removal effect due to the mixture of high and low densities, and has a refining effect. , the quality of the titanium slab can be made to meet the requirements of quality control, and the slab manufacturing flow is shortened by more than 40% compared to the conventional 2-3 times VAR smelting, and the yield is improved by more than 5%. do. On the other hand, by adopting the high temperature short time annealing process method, the efficiency of annealing production is improved, the consumption of argon gas is reduced, and the cost of annealing the substrate is further reduced.

4.本発明の製造方法は、応用時、チタン金属バイポーラプレート基材は、表面品質に優れ、品質が均一で安定性が良好である。一方、当該製造方法は、溶錬真空度が高く、過熱度が大きく、高・低密度混在による除去の効果が良好であるとともに、精錬作用があるEB炉によりスラブを製造することで、冶金品質の問題による超薄いテープ・コイルの最終製品の混在、ポーラス等の欠陥を顕著に減少することができる。他方、熱間圧延チタンコイルの製造プロセスにおいて、当該製造方法は、2回の酸洗、研磨、及び再酸洗の方法を採用するものであり、酸化皮膜を徹底的に除去することを確保できるだけでなく、同時に機械的研磨及び複数回のショットピーニング酸洗化学法により観察しにくいほど微小な欠陥を除去し、最終製品における欠陥の残存をできる限り減少する。 4. When the manufacturing method of the present invention is applied, the titanium metal bipolar plate substrate has excellent surface quality, uniform quality, and good stability. On the other hand, this manufacturing method has a high smelting vacuum degree, a large degree of superheating, a good removal effect due to the mixture of high and low densities, and the metallurgical quality is improved by manufacturing the slab in an EB furnace that has a refining action. Defects such as mixing, porous, etc. in the final product of ultra-thin tape/coil due to the problem of porosity can be significantly reduced. On the other hand, in the manufacturing process of hot-rolled titanium coils, the manufacturing method adopts the method of pickling twice, polishing, and re-pickling, which can ensure thorough removal of the oxide film. At the same time, mechanical polishing and multiple shot peening pickling chemical methods are used to remove minute defects that are difficult to observe, thereby reducing the remaining defects in the final product as much as possible.

5.本発明の製造方法は、応用時、最終製品チタンコイルは、アルゴンガス高温短時間アニーリングを採用し、高純度のアルゴンガスで保護することにより、アニーリング時間を減少させ、チタンコイルの酸化層の厚さを顕著に改善し、後でチタン金属バイポーラプレートをコーティングする前に酸化層を除去する難しさ及びコストを大幅に低下させる。 5. When the manufacturing method of the present invention is applied, the final product titanium coil adopts argon gas high temperature short time annealing, and is protected by high purity argon gas to reduce the annealing time and reduce the thickness of the oxide layer of the titanium coil. This significantly improves the quality and significantly reduces the difficulty and cost of removing the oxide layer before later coating the titanium metal bipolar plate.

6.本発明の製造方法で得たチタン金属バイポーラプレート基材は、水素燃料電池の性能、寿命、及び信頼性の向上に有利である。一方、チタン材は、密度がステンレス鋼に対して40%以上低いため、電池の単位質量あたりの電力密度を大幅に高くし、電池の性能を向上させることができる。また、チタンは、優れた耐腐食性を有し、ステンレス鋼金属バイポーラプレートに比べ、蒸し暑い環境及び酸性環境下で、チタン金属バイポーラプレートのコートが一部脱落しても、バイポーラプレートの腐食穿孔及びFeイオンによる膜電極触媒の被毒が起こらないので、水素燃料電池の寿命を大幅に長くすることができる。他方、水素燃料電池スタックは、数百枚のバイポーラプレートと膜電極とからなり、積算誤差及び応力作用により、一旦、バイポーラプレートの漏洩、又は、うねり及び厚さの精度が基準を超えることが発生すると、スタックが損なわれてしまう。本発明の製造方法で得たチタン基材は、成型性能が良好で、うねり及び厚さの精度に優れ、応用時、水素燃料電池の信頼性を大幅に向上させることができる。 6. The titanium metal bipolar plate substrate obtained by the manufacturing method of the present invention is advantageous in improving the performance, lifespan, and reliability of hydrogen fuel cells. On the other hand, since titanium material has a density that is 40% or more lower than that of stainless steel, it is possible to significantly increase the power density per unit mass of the battery and improve the performance of the battery. In addition, titanium has excellent corrosion resistance, and compared to stainless steel metal bipolar plates, even if some of the coating on the titanium metal bipolar plate falls off in hot, humid and acidic environments, the corrosion perforation of the bipolar plate does not occur. Since poisoning of the membrane electrode catalyst by Fe ions does not occur, the life of the hydrogen fuel cell can be significantly extended. On the other hand, a hydrogen fuel cell stack consists of hundreds of bipolar plates and membrane electrodes, and due to integration errors and stress effects, bipolar plates may leak or the accuracy of waviness and thickness may exceed standards. Then, the stack will be damaged. The titanium base material obtained by the manufacturing method of the present invention has good molding performance, excellent waviness and thickness accuracy, and can significantly improve the reliability of hydrogen fuel cells when applied.

実施例1でレベリングした後、サンプリングしたミクロ組織である。This is a microstructure sampled after leveling in Example 1. 実施例2でレベリングした後、サンプリングしたミクロ組織である。This is a microstructure sampled after leveling in Example 2. 実施例3でレベリングした後、サンプリングしたミクロ組織である。This is a microstructure sampled after leveling in Example 3.

本発明の目的、技術方案、及び利点をさらに明確にするため、以下において、実施例により、本発明をさらに詳しく説明する。なお、ここで説明した具体的な実施例は、本発明を解釈するためのものに過ぎず、本発明を限定するためのものではない。 In order to further clarify the objectives, technical solutions and advantages of the present invention, the present invention will be explained in more detail by way of examples below. Note that the specific examples described here are only for interpreting the present invention, and are not for limiting the present invention.

実施例1:0.15mm水素燃料電池チタン金属バイポーラプレート基材の製造
0グレード以上のスポンジチタンを選択し、0.15mm水素燃料電池チタン金属バイポーラプレート基材を生産した。スポンジチタンに対してEB炉溶錬及び機械加工を1回行い、Fe含有量が0.020%であり、C含有量が0.010%であり、N含有量が0.010%であり、O含有量が0.020%であり、[O]が0.062%であるチタンスラブを得、それを直接圧延に用いることができる。ステッケルミルを使用してチタンスラブ元材を厚さ3.0mmに熱間圧延し、連続アニーリングショットピーニング酸洗ラインにより、黒皮状態の熱間圧延チタンコイルに対して熱処理及び酸化皮膜の除去を行い、ここで、アニーリングを1回、ショットピーニング酸洗を2回行った。20段圧延機及び熱処理炉を使用して熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、0.3mmアニーリング状態のマスターテープを得、中間製品アニーリング温度は600℃とする。さらに、20段圧延機によりアニーリング状態のマスターテープを0.15mmのチタンテープに圧延し、圧延工程の変形率は50%であり、圧延パラメータは表1に示されるとおりである。アルゴンガス保護による連続アニーリング炉によりチタンテープに対して最終製品熱処理を行い、熱処理のアニーリング温度は750℃、保温時間は2minとし、ここで、アルゴンガスは純度≧99.99%とし、アニーリング張力は2KNとする。アニーリング後、テンションレベラを使用してチタンテープを矯正し、矯正張力は1000KN、引張変形率は0.20%とする。レベリングした後、サンプリングし、そのミクロ組織は図1に示されるとおりであり、物理的及び化学的性能は表2に示されるとおりである。最終製品は、物理的及び化学的性能に優れ、プレス成型性能が良好で、プレス後は合格し、チタンテープのうねり≦1.2mm/mであり、厚さ精度≦±0.002mmである。最終製品は、厚さ精度≦±0.003mm、うねり≦1.5mm/m、降伏強度(RP0.2)≦260MPa、伸び率(A50mm)≧30%、結晶粒度6~10、カッピング値≧6.0mmという要求を満たした。
Example 1: Production of 0.15mm hydrogen fuel cell titanium metal bipolar plate base material Sponge titanium of grade 0 or higher was selected to produce a 0.15mm hydrogen fuel cell titanium metal bipolar plate base material. Sponge titanium was subjected to EB furnace smelting and machining once, and the Fe content was 0.020%, the C content was 0.010%, and the N content was 0.010%. A titanium slab with an O content of 0.020% and an [O] weight of 0.062% is obtained, which can be used directly for rolling. The raw titanium slab material was hot rolled to a thickness of 3.0 mm using a Steckel mill, and the hot rolled titanium coil in a blackened state was heat treated and the oxide film removed using a continuous annealing shot peening pickling line. Here, annealing was performed once and shot peening and pickling were performed twice. Multi-step cold rolling and intermediate product annealing were performed on the hot rolled titanium coil using a 20-high rolling mill and a heat treatment furnace to obtain a master tape in a 0.3 mm annealed state, and the intermediate product annealing temperature was 600 ° C. do. Further, the annealed master tape was rolled into a 0.15 mm titanium tape using a 20-high rolling mill, the deformation rate in the rolling process was 50%, and the rolling parameters were as shown in Table 1. The final product heat treatment is performed on the titanium tape in a continuous annealing furnace with argon gas protection.The annealing temperature of the heat treatment is 750℃, and the heat retention time is 2 min.The argon gas has a purity of ≧99.99%, and the annealing tension is It will be 2KN. After annealing, the titanium tape is straightened using a tension leveler, with a straightening tension of 1000 KN and a tensile deformation rate of 0.20%. After leveling and sampling, the microstructure is as shown in Figure 1, and the physical and chemical performance is as shown in Table 2. The final product has excellent physical and chemical performance, good press molding performance, passes after pressing, titanium tape waviness ≦1.2 mm/m, and thickness accuracy ≦±0.002 mm. The final product has thickness accuracy ≦±0.003 mm, waviness ≦1.5 mm/m, yield strength (R P0.2 ) ≦260 MPa, elongation rate (A 50 mm ) ≧30%, grain size 6-10, and cupping value. The requirement of ≧6.0 mm was met.

比較例1:2回の溶錬によりスラブを鍛造し、Fe含有量が0.040%であり、C含有量が0.030%であり、N含有量が0.007%であり、O含有量が0.070%であり、[O]が0.129である0.15mm水素燃料電池チタン金属バイポーラプレート基材を生産し、その以外の生産プロセス及びプロセスパラメータは実施例1と同じであり、比較例1の物理的及び化学的性能は表2に示されるとおりである。 Comparative Example 1: A slab was forged by smelting twice, and the Fe content was 0.040%, the C content was 0.030%, the N content was 0.007%, and the O content was A 0.15 mm hydrogen fuel cell titanium metal bipolar plate base material with an amount of 0.070% and an [O] weight of 0.129 was produced, and the other production process and process parameters were the same as in Example 1. The physical and chemical properties of Comparative Example 1 are as shown in Table 2.

Figure 2023548960000002
Figure 2023548960000002

Figure 2023548960000003
Figure 2023548960000003

表2から分かるように、比較例1のチタンスラブ不純物元素の成分は、実施例1に対して比較的高いことから、チタン金属バイポーラプレート基材の最終製品の降伏強度、伸び率、及びカッピング値が要求に達しておらず、最終製品の降伏強度が高く、伸び率が低いため、成型性能が比較的低く、カッピング値が低くなるので、プレス成型後は不合格になり、成型後は広い面積で割れが発生する場合がある。 As can be seen from Table 2, the content of impurity elements in the titanium slab of Comparative Example 1 is relatively high compared to Example 1, so the yield strength, elongation rate, and cupping value of the final product of the titanium metal bipolar plate base material are does not meet the requirements, the yield strength of the final product is high and the elongation rate is low, so the forming performance is relatively low and the cupping value is low, so it will be rejected after press forming, and a large area will be rejected after forming. Cracks may occur.

実施例2:0.10mm水素燃料電池チタン金属バイポーラプレート基材の製造
0グレード以上のスポンジチタンを選択し、0.15mm水素燃料電池チタン金属バイポーラプレート基材を生産した。スポンジチタンに対してEB炉溶錬及び機械加工を1回行い、Fe含有量が0.037%であり、C含有量が0.040%であり、N含有量が0.004%であり、O含有量が0.050%であり、[O]が0.107%であるチタンスラブを得、それを直接圧延に用いることができる。ステッケルミルを使用して元材を厚さ3.0mmに熱間圧延し、黒皮状態の熱間圧延チタンコイルに対して熱処理及び酸化皮膜の除去を行い、ここで、アニーリングを1回、ショットピーニング酸洗を2回行った。20段圧延機及び熱処理炉を使用して熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、0.2mmアニーリング状態のマスターテープを得、中間製品アニーリング温度は750℃とする。20段圧延機によりアニーリング状態のマスターテープを0.10mmに圧延し、圧延工程の変形量は50%であり、圧延パラメータ表は表3のとおりである。アルゴンガス保護による連続アニーリング炉によりチタンテープに対して最終製品熱処理を行い、熱処理のアニーリング温度は700℃、保温時間は1.5minとし、ここで、アルゴンガスは純度≧99.99%とし、アニーリング張力は2KNとする。アニーリング後、テンションレベラを使用してチタンテープをレベリングし、矯正張力は1500KN、引張変形率は0.30%とする。レベリングした後、サンプリングし、そのミクロ組織は図2に示されるとおりであり、物理的及び化学的性能は表4に示されるとおりである。最終製品は、物理的及び化学的性能に優れ、プレス成型性能が良好で、プレス後は合格し、チタンテープのうねり≦1.0mm/mであり、厚さ精度≦±0.0016mmである。最終製品は、厚さ精度≦±0.003mm、うねり≦1.5mm/m、降伏強度(RP0.2)≦260MPa、伸び率(A50mm)≧30%、結晶粒度6~10、カッピング値≧6.0mmという要求を満たした。
Example 2: Production of 0.10 mm hydrogen fuel cell titanium metal bipolar plate base material Sponge titanium of grade 0 or higher was selected to produce a 0.15 mm hydrogen fuel cell titanium metal bipolar plate base material. Sponge titanium was subjected to EB furnace smelting and machining once, and the Fe content was 0.037%, the C content was 0.040%, and the N content was 0.004%. A titanium slab with an O content of 0.050% and an [O] weight of 0.107% is obtained, which can be used directly for rolling. The original material was hot-rolled to a thickness of 3.0 mm using a Steckel mill, and the hot-rolled titanium coil in a black-skinned state was heat-treated and the oxide film removed.Here, it was annealed once and shot peened. Acid washing was performed twice. Multi-step cold rolling and intermediate product annealing were performed on the hot rolled titanium coil using a 20-high rolling mill and heat treatment furnace to obtain a master tape in a 0.2 mm annealed state, and the intermediate product annealing temperature was 750 ° C. do. The annealed master tape was rolled to a thickness of 0.10 mm using a 20-high rolling mill, and the amount of deformation in the rolling process was 50%, and the rolling parameters are as shown in Table 3. The final product heat treatment is performed on the titanium tape in a continuous annealing furnace with argon gas protection, the annealing temperature of the heat treatment is 700 ° C, the heat retention time is 1.5 min, where the argon gas has a purity of ≧99.99%, and the annealing temperature is 700 ° C. The tension is 2KN. After annealing, the titanium tape is leveled using a tension leveler, with a straightening tension of 1500 KN and a tensile deformation rate of 0.30%. After leveling and sampling, the microstructure is as shown in FIG. 2, and the physical and chemical performance is as shown in Table 4. The final product has excellent physical and chemical performance, good press molding performance, passes after pressing, titanium tape waviness ≦1.0 mm/m, and thickness accuracy ≦±0.0016 mm. The final product has thickness accuracy ≦±0.003 mm, waviness ≦1.5 mm/m, yield strength (R P0.2 ) ≦260 MPa, elongation rate (A 50 mm ) ≧30%, grain size 6-10, and cupping value. The requirement of ≧6.0 mm was met.

Figure 2023548960000004
Figure 2023548960000004

比較例2:2回の溶錬によりスラブを鍛造し、Fe含有量が0.030%であり、C含有量が0.030%であり、N含有量が0.012%であり、O含有量が0.04%であり、[O]が0.106である0.10mm水素燃料電池チタン金属バイポーラプレート基材を生産し、20段圧延機により0.10mmに圧延した後、真空カバー式アニーリング方式により最終製品アニーリングを行い、保温温度は630℃とし、2時間保温した。比較例2の物理的及び化学的性能は表4に示されるとおりである。 Comparative Example 2: A slab was forged by smelting twice, and the Fe content was 0.030%, the C content was 0.030%, the N content was 0.012%, and the O content was A 0.10mm hydrogen fuel cell titanium metal bipolar plate base material with an amount of 0.04% and an [O] weight of 0.106 was produced, and after being rolled to 0.10mm by a 20-high rolling mill, it was rolled with a vacuum cover. The final product was annealed using the formula annealing method, and the temperature was kept at 630° C. for 2 hours. The physical and chemical performance of Comparative Example 2 is as shown in Table 4.

Figure 2023548960000005
Figure 2023548960000005

表4から分かるように、比較例2のチタンスラブ不純物元素の成分は、実施例2に対して比較的高く、かつ、従来の低温カバー式アニーリング方式を採用したことから、チタン金属バイポーラプレート基材の最終製品は、降伏強度、伸び率、及びカッピング値がいずれも要求に達しておらず、成型性能が比較的低く、プレス成型後は不合格になり、成型後は広い面積で割れが発生する場合がある。 As can be seen from Table 4, the content of impurity elements in the titanium slab of Comparative Example 2 was relatively higher than that of Example 2, and since the conventional low-temperature cover annealing method was adopted, the titanium metal bipolar plate base material The final product does not meet the requirements for yield strength, elongation, and cupping value, has relatively low molding performance, is rejected after press molding, and cracks occur over a large area after molding. There are cases.

実施例3:0.075mm水素燃料電池チタン金属バイポーラプレート基材の製造
0グレード以上のスポンジチタンを選択し、0.15mm水素燃料電池チタン金属バイポーラプレート基材を生産した。スポンジチタンに対してEB炉溶錬及び機械加工を1回行い、Fe含有量が0.050%であり、C含有量が0.020%であり、N含有量が0.004%であり、O含有量が0.070%であり、[O]が0.119%であるチタンスラブを得、それを直接圧延に用いることができる。ステッケルミルを使用して元材を厚さ3.0mmに熱間圧延し、黒皮状態の熱間圧延チタンコイルに対して熱処理及び酸化皮膜の除去を行い、ここで、アニーリングを1回、ショットピーニング酸洗を2回行った。20段圧延機及び熱処理炉を使用して熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、0.20mmアニーリング状態のマスターテープを得、中間製品アニーリング温度は850℃とする。20段圧延機により0.075mmに圧延し、ここで、圧延工程の変形率は62.5%であり、圧延パラメータ表は表5のとおりである。アルゴンガス保護による連続アニーリング炉によりチタンテープに対して最終製品熱処理を行い、熱処理のアニーリング温度は650℃、保温時間は1minとし、ここで、アルゴンガスは純度≧99.99%とし、アニーリング張力は1KNとする。アニーリング後、テンションレベラを使用してチタンテープをレベリングし、矯正張力は500KN、引張変形率は0.10%とする。レベリングした後、サンプリングし、そのミクロ組織は図3に示されるとおりであり、物理的及び化学的性能は表6に示されるとおりである。最終製品は、物理的及び化学的性能に優れ、プレス成型性能が良好で、プレス後は合格し、チタンテープのうねり≦1.0mm/mであり、厚さ精度≦±0.0012mmである。最終製品は、厚さ精度≦±0.003mm、うねり≦1.5mm/m、降伏強度(RP0.2)≦260MPa、伸び率(A50mm)≧30%、結晶粒度6~10、カッピング値≧6.0mmという要求を満たした。
Example 3: Production of 0.075 mm hydrogen fuel cell titanium metal bipolar plate base material Sponge titanium of grade 0 or higher was selected to produce a 0.15 mm hydrogen fuel cell titanium metal bipolar plate base material. Sponge titanium was subjected to EB furnace smelting and machining once, and the Fe content was 0.050%, the C content was 0.020%, and the N content was 0.004%. A titanium slab with an O content of 0.070% and an [O] weight of 0.119% is obtained, which can be used directly for rolling. The original material was hot-rolled to a thickness of 3.0 mm using a Steckel mill, and the hot-rolled titanium coil in a black-skinned state was heat-treated and the oxide film removed.Here, it was annealed once and shot peened. Acid washing was performed twice. Multi-step cold rolling and intermediate product annealing were performed on the hot rolled titanium coil using a 20-high rolling mill and a heat treatment furnace to obtain a master tape in a 0.20 mm annealed state, and the intermediate product annealing temperature was 850 ° C. do. It was rolled to 0.075 mm using a 20-high rolling mill, where the deformation rate in the rolling process was 62.5%, and the rolling parameter table is as shown in Table 5. Final product heat treatment is performed on the titanium tape in a continuous annealing furnace with argon gas protection, the annealing temperature of the heat treatment is 650 ° C, the heat retention time is 1 min, where the argon gas purity is ≧99.99%, and the annealing tension is It will be 1KN. After annealing, the titanium tape is leveled using a tension leveler, with a straightening tension of 500 KN and a tensile deformation rate of 0.10%. After leveling and sampling, the microstructure is as shown in FIG. 3, and the physical and chemical performance is as shown in Table 6. The final product has excellent physical and chemical performance, good press molding performance, passes after pressing, titanium tape waviness ≦1.0 mm/m, and thickness accuracy ≦±0.0012 mm. The final product has thickness accuracy ≦±0.003 mm, waviness ≦1.5 mm/m, yield strength (R P0.2 ) ≦260 MPa, elongation rate (A 50 mm ) ≧30%, grain size 6-10, and cupping value. The requirement of ≧6.0 mm was met.

Figure 2023548960000006
Figure 2023548960000006

比較例3:2回の溶錬によりスラブを鍛造し、Fe含有量が0.050%であり、C含有量が0.020%であり、N含有量が0.004%であり、O含有量が0.098%であり、[O]が0.147である0.075mm水素燃料電池チタン金属バイポーラプレート基材を生産し、20段圧延機及び熱処理炉を使用して熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、0.50mmアニーリング状態のマスターテープを得、20段圧延機により0.075mmに圧延し、最終製品の圧延工程の変形率は85%であり、アニーリング後は矯正を行わなかった。比較例3の物理的及び化学的性能は表6に示されるとおりである。 Comparative Example 3: A slab was forged by smelting twice, and the Fe content was 0.050%, the C content was 0.020%, the N content was 0.004%, and the O content was Producing 0.075mm hydrogen fuel cell titanium metal bipolar plate substrate with an amount of 0.098% and an [O] weight of 0.147, hot-rolled titanium using a 20-high rolling mill and a heat treatment furnace. The coil was subjected to multi-step cold rolling and intermediate product annealing to obtain a master tape in an annealed state of 0.50 mm, which was rolled to 0.075 mm using a 20-high rolling mill, and the deformation rate of the final product during the rolling process was 85%. , and no correction was performed after annealing. The physical and chemical performance of Comparative Example 3 is as shown in Table 6.

Figure 2023548960000007
Figure 2023548960000007

表6から分かるように、比較例3のチタンスラブ不純物元素の成分は、実施例3に対して比較的高く、かつ、最終製品の圧延工程の変形量が比較的大きいことから、チタン金属バイポーラプレート基材の最終製品は、降伏強度、伸び率、及びカッピング値がいずれも要求に達しておらず、成型性能が比較的低く、プレス成型後は不合格になり、成型後は広い面積で割れが発生する場合がある。 As can be seen from Table 6, the content of impurity elements in the titanium slab of Comparative Example 3 is relatively high compared to Example 3, and the amount of deformation in the rolling process of the final product is relatively large. The final product of the base material does not meet the requirements for yield strength, elongation, and cupping value, has relatively low molding performance, is rejected after press molding, and has cracks in a wide area after molding. This may occur.

説明すべきものとして、以上の実施例は、本発明を説明するためのものに過ぎず、本発明は、以上の実施例に限定されない。本発明の技術実質により以上の実施例に対する簡単な変更、等価変化及び修飾は、全て本発明の保護範囲に入っている。 It should be noted that the above examples are only for illustrating the invention, and the invention is not limited to the above examples. Simple changes, equivalent changes and modifications to the above embodiments according to the technical substance of the present invention all fall within the protection scope of the present invention.

Claims (10)

水素燃料電池チタン金属バイポーラプレート基材の製造方法であって、
(1)スポンジチタンに対して溶錬及び機械加工を行い、チタンスラブを得る工程であって、[O]をチタンスラブ不純物元素全体の含有量の質量割合と定義し、Fe、C、N、O不純物元素の含有量の質量割合をそれぞれ[Fe]%、[C]%、[N]%、[O]%と定義し、[O]の計算式は、
[O]=[O]%+0.5*[Fe]%+0.7*[C]%+2.5*[N]%であり、
[Fe]%≦0.050%、[C]%≦0.040%、[N]%≦0.010%、[O]%≦0.080%、[O]≦0.120%のチタンスラブを選択して直接圧延に用いる工程と、
(2)工程(1)で選択されたチタンスラブを熱間圧延し、黒皮状態の熱間圧延チタンコイルを得、表面処理をして表面に酸化物皮膜及び欠陥が残留しない熱間圧延チタンコイルを得る工程と、
(3)工程(2)で得た熱間圧延チタンコイルに対して多工程冷間圧延及び中間製品アニーリングを行い、最終製品圧延用マスターテープを得る工程と、
(4)工程(3)で得た最終製品圧延用マスターテープに対して最終製品圧延を行い、チタンテープを得る工程と、
(5)工程(4)で得たチタンテープに対して、アルゴンガスの保護下で、連続アニーリング方式で最終製品熱処理を行い、矯正をすることで前記水素燃料電池チタン金属バイポーラプレート基材を得る工程と、
を含むことを特徴とする、水素燃料電池チタン金属バイポーラプレート基材の製造方法。
A method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material, the method comprising:
(1) A process of melting and machining titanium sponge to obtain a titanium slab, where [O] is defined as the mass percentage of the total content of impurity elements in the titanium slab, including Fe, C, and N. , the mass percentage of the content of the O impurity element is defined as [Fe]%, [C]%, [N]%, and [O]%, respectively, and the calculation formula for [O] is:
[O] weight = [O]% + 0.5 * [Fe]% + 0.7 * [C]% + 2.5 * [N]%,
[Fe]%≦0.050%, [C]%≦0.040%, [N]%≦0.010%, [O] % ≦0.080%, [O]%≦0.120% A process of selecting a titanium slab and using it for direct rolling;
(2) Hot-roll the titanium slab selected in step (1) to obtain a hot-rolled titanium coil with a black crust, and then perform surface treatment to ensure that no oxide film or defects remain on the surface of the hot-rolled titanium coil. A process of obtaining a coil;
(3) performing multi-step cold rolling and intermediate product annealing on the hot rolled titanium coil obtained in step (2) to obtain a master tape for final product rolling;
(4) performing final product rolling on the final product rolling master tape obtained in step (3) to obtain a titanium tape;
(5) The titanium tape obtained in step (4) is subjected to final product heat treatment using a continuous annealing method under the protection of argon gas, and is then straightened to obtain the hydrogen fuel cell titanium metal bipolar plate base material. process and
A method for producing a hydrogen fuel cell titanium metal bipolar plate substrate, comprising:
工程(1)において、スポンジチタンは、0グレード以上のスポンジチタンであることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material according to claim 1, wherein in step (1), the sponge titanium is sponge titanium of grade 0 or higher. 工程(1)において、前記溶錬は、EB炉によって1回行われることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material according to claim 1, wherein in step (1), the smelting is performed once in an EB furnace. 工程(2)において、前記表面処理のプロセスは、連続アニーリングショットピーニング酸洗ラインにより黒皮状態の熱間圧延チタンコイルに対してアニーリングを1回、ショットピーニング酸洗を2回行ってから、研磨及びショットピーニング酸洗処理を行うことであることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 In step (2), the surface treatment process includes performing annealing once and shot peening pickling twice on the hot rolled titanium coil in a black scale state using a continuous annealing shot peening pickling line, and then polishing the hot rolled titanium coil. 2. The method for producing a hydrogen fuel cell titanium metal bipolar plate base material according to claim 1, further comprising performing a shot peening pickling treatment. 工程(3)において、中間製品アニーリングの温度は600~850℃であることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate substrate according to claim 1, wherein in step (3), the temperature of the intermediate product annealing is 600 to 850°C. 工程(4)において、圧延工程の変形量は50%~65%であり、単位張力は200~400kg/mmであり、圧延速度は50~150m/minであり、圧延力は200~400トンであることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 In step (4), the amount of deformation in the rolling process is 50% to 65%, the unit tension is 200 to 400 kg/ mm2 , the rolling speed is 50 to 150 m/min, and the rolling force is 200 to 400 tons. The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate base material according to claim 1, characterized in that: 工程(5)において、連続アニーリングの熱処理温度は600~800℃であり、保温時間は0.5~2.5minであり、アニーリング張力は0.5~2.5KNであることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 In step (5), the continuous annealing heat treatment temperature is 600 to 800°C, the heat retention time is 0.5 to 2.5 min, and the annealing tension is 0.5 to 2.5 KN, The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate substrate according to claim 1. 工程(5)において、アルゴンガスは、純度≧99.99%であることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The method for manufacturing a hydrogen fuel cell titanium metal bipolar plate substrate according to claim 1, wherein in step (5), the argon gas has a purity of ≧99.99%. 工程(5)において、矯正の張力は500~1500KNであり、矯正の引張変形率は0.1%~0.3%であることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The hydrogen fuel cell titanium metal according to claim 1, wherein in step (5), the tension of the straightening is 500 to 1500 KN, and the tensile deformation rate of the straightening is 0.1% to 0.3%. A method for manufacturing a bipolar plate base material. 工程(5)で得た水素燃料電池チタン金属バイポーラプレート基材は、厚さ精度≦±0.003mmであり、うねり≦1.5mm/mであり、降伏強度(RP0.2)≦260MPaであり、伸び率(A50mm)≧30%であり、結晶粒度6~10であり、カッピング値≧6.0mmであることを特徴とする、請求項1に記載の水素燃料電池チタン金属バイポーラプレート基材の製造方法。 The hydrogen fuel cell titanium metal bipolar plate base material obtained in step (5) has a thickness accuracy ≦±0.003 mm, a waviness ≦1.5 mm/m, and a yield strength (R P0.2 ) ≦260 MPa. The hydrogen fuel cell titanium metal bipolar plate base according to claim 1, characterized in that the elongation rate (A 50mm )≧30%, the grain size is 6-10, and the cupping value≧6.0mm. Method of manufacturing wood.
JP2023548997A 2021-09-08 2022-09-07 Method for manufacturing hydrogen fuel cell titanium metal bipolar plate base material Pending JP2023548960A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111051730.0A CN113948721A (en) 2021-09-08 2021-09-08 Preparation method of titanium metal bipolar plate substrate of hydrogen fuel cell
CN202111051730.0 2021-09-08
PCT/CN2022/117653 WO2023036206A1 (en) 2021-09-08 2022-09-07 Preparation method for titanium metal bipolar plate substrate of hydrogen fuel cell

Publications (1)

Publication Number Publication Date
JP2023548960A true JP2023548960A (en) 2023-11-21

Family

ID=79327893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023548997A Pending JP2023548960A (en) 2021-09-08 2022-09-07 Method for manufacturing hydrogen fuel cell titanium metal bipolar plate base material

Country Status (3)

Country Link
JP (1) JP2023548960A (en)
CN (1) CN113948721A (en)
WO (1) WO2023036206A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948721A (en) * 2021-09-08 2022-01-18 洛阳双瑞精铸钛业有限公司 Preparation method of titanium metal bipolar plate substrate of hydrogen fuel cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348827B2 (en) * 2000-04-24 2009-10-21 住友金属工業株式会社 Manufacturing method of titanium plate with excellent formability
JP4062132B2 (en) * 2003-03-11 2008-03-19 住友金属工業株式会社 Titanium-based material for fuel cell separator and manufacturing method thereof
CN103409642B (en) * 2013-05-27 2015-06-24 洛阳双瑞精铸钛业有限公司 Processing method of low yield ratio high strength titanium coiled plate for heat exchanger
CN105170686A (en) * 2015-07-21 2015-12-23 洛阳双瑞精铸钛业有限公司 Processing method for high-purity titanium sheet for coating titanium anode base material
CN105886983B (en) * 2016-06-01 2017-11-03 洛阳双瑞精铸钛业有限公司 A kind of rolling production method of titanium palldium alloy
CN107502751B (en) * 2017-07-17 2019-03-01 洛阳双瑞精铸钛业有限公司 A method of TA2 slab ingot is obtained with bits shape and the pure titanium defective material melting recycling of plate
CN107723638B (en) * 2017-09-08 2019-09-06 洛阳双瑞精铸钛业有限公司 A kind of preparation method of deep-draw titanium plate
CN108165822B (en) * 2018-02-10 2020-04-14 洛阳双瑞精铸钛业有限公司 Preparation method of TA2 cold-rolled titanium strip for low-strength and easy-to-form welded pipe
CN112122382B (en) * 2020-07-23 2022-04-12 洛阳双瑞精铸钛业有限公司 Preparation process method of wide and ultrathin cold-rolled titanium strip coil for rolling compounding
CN112122340A (en) * 2020-07-23 2020-12-25 洛阳双瑞精铸钛业有限公司 Process method for improving material yield of cold-rolled titanium strip coil
CN113948721A (en) * 2021-09-08 2022-01-18 洛阳双瑞精铸钛业有限公司 Preparation method of titanium metal bipolar plate substrate of hydrogen fuel cell

Also Published As

Publication number Publication date
WO2023036206A1 (en) 2023-03-16
WO2023036206A9 (en) 2023-05-04
WO2023036206A8 (en) 2023-11-02
CN113948721A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
CA2851084C (en) Titanium material for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell using the same
CA2559589C (en) Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
CN110814079A (en) Preparation process of titanium strip coil for high-end anode
KR20020068964A (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
KR101839280B1 (en) Separator for solid polymer type fuel cell and manufacturing method thereof
CN114589213B (en) Preparation method of ultrathin titanium strip for bipolar plate of hydrogen fuel cell
CN103194705B (en) Preparation method of zinc-niobium (Zr-Nb) alloy
CN112239825B (en) Production method of aluminum foil for high-performance lithium ion battery
JP2023548960A (en) Method for manufacturing hydrogen fuel cell titanium metal bipolar plate base material
JP2004273370A (en) Titanium system material for fuel cell separator, and manufacturing method therefor
CN113182353A (en) Preparation method of nickel-based high-temperature alloy cold-rolled foil for aircraft engine
WO2024051206A1 (en) Hydrogen fuel cell bipolar plate base material and preparation method for foil thereof
CA2469410C (en) Metal separator for fuel cell and its production method
CN115896896A (en) Ferritic stainless steel for fuel cell bipolar plates, method for controlling surface roughness, method for forming passive film and use
CN117551936A (en) Fuel cell bipolar plate tungsten-nitrogen-containing high corrosion resistance stainless steel and preparation method thereof
CN109732087B (en) Preparation method of powder metallurgy Ti-Ta binary metal-based layered composite material
CN114737036B (en) Preparation method of high-plasticity titanium alloy ultrathin plate for bipolar plate of hydrogen fuel cell
CN112322934B (en) Titanium alloy for bipolar plate of proton exchange membrane fuel cell
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP2017061731A (en) Titanium made substrate, titanium material and cell member for solid polymer type fuel cell
CN115369284B (en) Preparation method of titanium belt for manufacturing bipolar plate
CN109182906A (en) A kind of high temperature resistance and high strength nut and its production method
KR20230095260A (en) Method for manufacturing ultra-fine grain titanium plate, ultra-fine grain titanium plate and electrode for water electrolysis comprising the same
JP2024513272A (en) Ferritic stainless steel for bipolar plates of fuel cells, surface roughness adjustment control method, passivation film formation method and use
CN117363929A (en) Corrosion-resistant high-plasticity titanium alloy foil for wide bipolar plate and industrial preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240828