JP2023513862A - Use of genes to improve tomato gray mold resistance - Google Patents

Use of genes to improve tomato gray mold resistance Download PDF

Info

Publication number
JP2023513862A
JP2023513862A JP2022520494A JP2022520494A JP2023513862A JP 2023513862 A JP2023513862 A JP 2023513862A JP 2022520494 A JP2022520494 A JP 2022520494A JP 2022520494 A JP2022520494 A JP 2022520494A JP 2023513862 A JP2023513862 A JP 2023513862A
Authority
JP
Japan
Prior art keywords
gene
tomato
plants
botrytis
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022520494A
Other languages
Japanese (ja)
Other versions
JP7383136B2 (en
Inventor
析豊 陳
淑容 沈
以霊 許
伯軍 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Publication of JP2023513862A publication Critical patent/JP2023513862A/en
Application granted granted Critical
Publication of JP7383136B2 publication Critical patent/JP7383136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本発明は、トマト灰色かび病抵抗性の向上のための遺伝子の使用に関するものであり、作物の耐病性育種分野に属する。本発明では、トマトにおいて遺伝子Solyc05g004600をノックアウトすることにより、トマトの葉の灰色かび病菌に対する抵抗性が効果的に向上されるトマト遺伝子Solyc05g004600の使用が開示されている。さらに、本発明では、トマトにおいて遺伝子Solyc05g004600をノックアウトする方法も開示されている。The present invention relates to the use of genes for improving tomato botrytis resistance, and belongs to the field of disease resistance breeding of crops. The present invention discloses the use of the tomato gene Solyc05g004600 to effectively improve the resistance of tomato leaves to botrytis by knocking out the gene Solyc05g004600 in tomato. Further, the present invention also discloses a method of knocking out the gene Solyc05g004600 in tomato.

Description

本発明は、トマト灰色かび病抵抗性の向上のための遺伝子の使用に関するものであり、作物の耐病性育種分野に属する。 The present invention relates to the use of genes for improving tomato botrytis resistance, and belongs to the field of disease resistance breeding of crops.

トマトは、食用、薬用、及び経済的価値が高いため、世界で重要な果菜類作物となっている。灰色かび病は、トマトにおいて一般的かつ被害が深刻な真菌病であり、植物の茎、葉、花、果実のいずれも発病する可能性がある。通常、病菌は植物の傷や老化組織から侵入し、徐々に他の健康な部分に広がり、トマトの収量や品質に多大なる影響を与える。作物の病害を防除するために耐病性遺伝子を使用することは、最も経済的で効果的な方法である。近年、トマトの耐病性に関連する遺伝子がますます多く発見されている。例えば、Yuら(2018)は、エチレン応答因子SlERF2が灰色かび病に対するトマトの防御制御に関与し、SlERF2の過剰発現により、トマト果実の灰色かび病抵抗性が向上されることを発見した;Sunら(2017)は、トマトにおけるDND1遺伝子のサイレンシングにより、対照植物に比べて、サイレンシング植物は、灰色かび病の病斑の直径が顕著に減少し、葉における灰色かび病菌の分生子の数が顕著に低下し、菌糸成長が抑制されたことを発見した。これにより、植物の耐病性に関連するより多くの遺伝子を発見するための遺伝子編集技術の使用は、作物の抵抗性の向上や経済的損失の低減のための効果的な手段であることが分かる。 Tomatoes have become an important fruit vegetable crop in the world because of their high edible, medicinal and economic value. Botrytis is a common and devastating fungal disease in tomatoes, and can affect any of the plant's stems, leaves, flowers and fruits. The disease usually enters the plant through wounds and aging tissue and gradually spreads to other healthy parts, significantly affecting tomato yield and quality. The use of disease resistance genes to control crop diseases is the most economical and effective method. In recent years, more and more genes related to disease resistance in tomato have been discovered. For example, Yu et al. (2018) found that the ethylene responsive factor SlERF2 is involved in tomato defense regulation against gray mold, and overexpression of SlERF2 improves the resistance of tomato fruits to gray mold; (2017) showed that silencing the DND1 gene in tomato resulted in a marked reduction in the diameter of Botrytis blight lesions and the number of Botrytis conidia on leaves in silenced plants compared to control plants. was found to be significantly reduced and mycelial growth was suppressed. This indicates that the use of gene editing techniques to discover more genes associated with disease resistance in plants is an effective tool for improving crop resistance and reducing economic losses. .

本発明の解決しようとする課題は、如何にトマト灰色かび病抵抗性を効果的に向上させるかである。 The problem to be solved by the present invention is how to effectively improve tomato gray mold resistance.

上記課題を解決するために、本発明は、ヌクレオチド配列が配列番号1で示されるトマトの遺伝子Solyc05g004600を提供する。 In order to solve the above problems, the present invention provides tomato gene Solyc05g004600 whose nucleotide sequence is shown in SEQ ID NO:1.

また、本発明は、トマトにおいてSolyc05g004600遺伝子をノックアウトすることにより、トマトの葉の灰色かび病抵抗性が効果的に向上される前記遺伝子の使用、及び
mu-1のSolyc05g004600遺伝子のヌクレオチド配列が配列番号2で示され、mu-2のSolyc05g004600遺伝子のヌクレオチド配列が配列番号3で示される、本発明のトマト遺伝子Solyc05g004600の使用の改良を提供する。
In addition, the present invention also provides the use of the Solyc05g004600 gene, which effectively improves the botrytis resistance of tomato leaves, by knocking out the Solyc05g004600 gene in tomato, and the nucleotide sequence of the Solyc05g004600 gene of mu-1 is SEQ ID NO: 2 and the nucleotide sequence of the mu-2 Solyc05g004600 gene is shown in SEQ ID NO:3.

さらに、本発明は、以下のステップを含む、トマトにおいて変異遺伝子Solyc05g004600をノックアウトする方法を提供する。
1)、CRISPR/Cas9編集における標的配列sgRNA:5’-GTTGTTCAACATGAGCAGAG-3’を設計するステップ、
2)、ステップ1)で得られた配列でプライマーを合成し、CRISPR/Cas9ベクターを構築するステップ、
3)、ステップ2)で得られたベクターでトマト(野生型トマト品種MicroTom)を形質転換して、相応のSolyc05g004600遺伝子がノックアウトされたトマト植物であるトランスジェニックトマト植物mu-1とmu-2を得る(前記トランスジェニックトマト植物からSolyc05g004600遺伝子の変異が生じた植物が同定される)ステップ。
Further, the present invention provides a method of knocking out the mutant gene Solyc05g004600 in tomato, comprising the following steps.
1), designing the target sequence sgRNA in CRISPR/Cas9 editing: 5′-GTTGTTCAACATGAGCAGAG-3′;
2), synthesizing a primer with the sequence obtained in step 1) and constructing a CRISPR/Cas9 vector;
3), transforming tomatoes (wild-type tomato cultivar MicroTom) with the vectors obtained in step 2) to produce transgenic tomato plants mu-1 and mu-2, which are tomato plants in which the corresponding Solyc05g004600 gene has been knocked out; obtaining (identifying a plant having a mutation of the Solyc05g004600 gene from said transgenic tomato plant).

遺伝子Solyc05g004600の配列が既にデータベースに登録されているが、現在、当該遺伝子に関する機能や作用について研究も報告もされていないため、当該遺伝子がトマトの灰色かび病菌に対して抵抗性があることは、本発明が初めて発見したことである。 Although the sequence of the gene Solyc05g004600 has already been registered in the database, there is currently no research or report on the function or action of this gene. This is the first discovery made by the present invention.

本発明の技術案は、以下のとおりである。
CRISPR/Cas9遺伝子編集技術により、Solyc05g004600遺伝子のヌクレオチド配列(配列番号1)に基づき、Solyc05g004600遺伝子を特異的に標的とするsgRNA配列を合成し、相応のCRISPR/Cas9ベクターを構築し、野生型トマト品種MicroTomを遺伝形質転換し、ゲノム内のSolyc05g004600遺伝子を指向性編集し、トランスジェニック植物を得て、これらのトランスジェニック植物内のSolyc05g004600遺伝子に対してPCR増幅と配列決定を行い、同定した結果、Solyc05g004600遺伝子の2種のタイプの異なる変異株mu-1とmu-2(図1)が得られた。mu-1植物内のSolyc05g004600遺伝子の変異配列は配列番号2であり、mu-2植物内のSolyc05g004600遺伝子の変異配列は配列番号3である。トマトの灰色かび病菌を接種した後、野生型対照品種MicroTomが発病したのに対し、Solyc05g004600遺伝子の変異が生じた2つの株は、いずれも耐病性が向上し(図2)、葉における病斑の面積が対照品種MicroTomに比べて顕著に小さい(図3)。トマトにおけるSolyc05g004600遺伝子の変異は、トマトの灰色かび病抵抗性を効果的に向上させることができることが明らかとなった。
The technical solution of the present invention is as follows.
Using CRISPR/Cas9 gene editing technology, based on the nucleotide sequence of Solyc05g004600 gene (SEQ ID NO: 1), synthesizing an sgRNA sequence specifically targeting the Solyc05g004600 gene, constructing a corresponding CRISPR/Cas9 vector, wild-type tomato varieties MicroTom was genetically transformed, the Solyc05g004600 gene in the genome was directed edited to obtain transgenic plants, and the Solyc05g004600 gene in these transgenic plants was PCR amplified and sequenced to identify Solyc05g004600. Mutants mu-1 and mu-2 (Fig. 1) with two different types of genes were obtained. The mutated sequence of the Solyc05g004600 gene in mu-1 plants is SEQ ID NO:2 and the mutated sequence of the Solyc05g004600 gene in mu-2 plants is SEQ ID NO:3. After inoculation with botrytis of tomato, the wild-type control cultivar MicroTom developed the disease, whereas the two strains in which the Solyc05g004600 gene was mutated showed improved disease resistance (Fig. area is significantly smaller than that of the control cultivar MicroTom (Fig. 3). It was found that mutation of the Solyc05g004600 gene in tomato can effectively improve the resistance to botrytis in tomato.

以下、図面を参照しながら、本発明の具体的な実施形態を更に詳細に説明する。
トマトSolyc05g004600遺伝子変異体のCRISPR/Cas9標的部位のシーケンス解析である。 MicroTom:野生型対照品種;mu-1とmu-2:Solyc05g004600遺伝子の2種のタイプの異なる変異株。 トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomとの、灰色かび病菌が接種された葉の表現型の対比図である。 トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomの葉における病斑の統計結果である。 図3では、数値は、平均値±標準偏差であり、**は、トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomとの比較において、t検定が顕著な有意差がある(P<0.01)ことを示す。
Specific embodiments of the present invention will be described in further detail below with reference to the drawings.
Sequence analysis of CRISPR/Cas9 target sites in tomato Solyc05g004600 gene mutant. MicroTom: wild-type control cultivar; mu-1 and mu-2: two different types of mutants of the Solyc05g004600 gene. FIG. 10 is a phenotype comparison of botrytis-inoculated leaves of tomato Solyc05g004600 gene mutant plants and wild-type control MicroTom. Statistical results of lesions on leaves of tomato Solyc05g004600 gene mutant plants and wild-type control MicroTom. In FIG. 3, the values are the mean ± standard deviation, and ** indicates significant difference (P<0.01) by t-test in comparison between tomato Solyc05g004600 gene mutant plants and wild-type control MicroTom. indicates that

以下、具体的な実施例を参照しながら、本発明を更に説明するが、本発明の保護範囲はそれらに限定されない。 The present invention is further described below with reference to specific examples, but the scope of protection of the present invention is not limited thereto.

実施例1:
ステップ1、Solyc05g004600遺伝子ノックアウトベクターの構築
Solyc05g004600遺伝子のコード配列(配列番号1)に基づき、CRISPR/Cas9標的部位解析ソフトウェア(http://crispr.mit.edu/)により、Solyc05g004600遺伝子に対してCRISPR/Cas9編集におけるsgRNA配列:5’-GTTGTTCAACATGAGCAGAG-3’を設計し、当該配列に基づいて相応のプライマーを合成した。
Example 1:
Step 1, Construction of Solyc05g004600 Gene Knockout Vector Based on the coding sequence (SEQ ID NO: 1) of the Solyc05g004600 gene, CRISPR/Cas9 target site analysis software (http://crispr.mit.edu/) was applied to the Solyc05g004600 gene. The sgRNA sequence in Cas9 editing: 5'-GTTGTTCAACATGAGCAGAG-3' was designed, and the corresponding primers were synthesized based on the sequence.

上流5’-TGATTGTTGTTCAACATGAGCAGAG-3’、
下流5’-AAACCTCTGCTCATGTTGAACAACA-3’。
upstream 5′-TGATTGTTGTTCAACATGAGCAGAG-3′,
Downstream 5′-AAACCTCTGCTCATGTTGAACAACA-3′.

次に、CRISPR/Cas9キット(Biogle,China)で相応のCRISPR/Cas9ベクターを構築した。構築方法は、製品の説明書に準じて行った。 Then, the corresponding CRISPR/Cas9 vector was constructed with CRISPR/Cas9 kit (Biogle, China). The construction method was performed according to the instruction manual of the product.

ステップ2、Solyc05g004600遺伝子ノックアウトベクターのトマトへの遺伝形質転換
ステップ1で構築したCRISPR/Cas9ベクターでトマト品種MicroTomを遺伝形質転換した。トランスジェニック方法については、Kimuraらの方法(Kimura S et al, CHS Protoc, 2008)により、相応の一連の未同定のトランスジェニックトマト植物が得られた。
Step 2, Genetic Transformation of Solyc05g004600 Gene Knockout Vector into Tomato Tomato cultivar MicroTom was genetically transformed with the CRISPR/Cas9 vector constructed in Step 1. For the transgenic method, the method of Kimura et al. (Kimura S et al, CHS Protoc, 2008) yielded a corresponding series of unidentified transgenic tomato plants.

ステップ3、Solyc05g004600遺伝子ノックアウト植物の同定
トマトの葉0.1gを取り、液体窒素で粉砕した後、抽出液(Tris-cl 15.76g、Nacl 29.22g、SDS粉末15.0gを超純水に添加して1Lに定容し、pH=8.0となるように調節したもの)600μlを加え、65℃で60分インキュベートした。5M KAC 200μlを加え、均一に混合した後、氷浴で10分冷却した。更に、クロロホルム500μlを加え、均一に混合し、10000 rpmで5分遠心した。上澄みを取り、イソプロパノール500μlを加え、均一に混合し、12000 rpmで3分遠心し、上澄みを捨てた。75%エタノールで沈殿を洗浄し、12000 rpmで3分遠心し、上澄みを捨てた。室温で上下を反転させて置き、DNAを風乾した後、純水30μlを添加してDNAを溶解した。
Step 3, Identification of Solyc05g004600 gene knockout plant 0.1 g of tomato leaves were taken and pulverized with liquid nitrogen. 600 µl of the solution was added to make the volume constant to 1 L and the pH was adjusted to 8.0, and incubated at 65°C for 60 minutes. After adding 200 μl of 5 M KAC and uniformly mixing, the mixture was cooled in an ice bath for 10 minutes. Further, 500 µl of chloroform was added, mixed uniformly, and centrifuged at 10,000 rpm for 5 minutes. The supernatant was taken, 500 μl of isopropanol was added, mixed uniformly, centrifuged at 12000 rpm for 3 minutes, and the supernatant was discarded. The precipitate was washed with 75% ethanol, centrifuged at 12000 rpm for 3 minutes, and the supernatant was discarded. After placing the plate upside down at room temperature and air-drying the DNA, 30 μl of pure water was added to dissolve the DNA.

Solyc05g004600遺伝子のPCR増幅のプライマー(上流5’-GCCTCTATTAATGACATC-3’、下流5’-ATAAGCTAAAATCGACTA-3’)を合成し、トランスジェニックトマト植物およびその対照品種MicroTomのゲノムDNAをテンプレートとし、GoTaq(商標登録) Master Mix(Promega, USA)によりPCR増幅を行った。PCR増幅系は、製品の説明書に準じて操作した。 Primers for PCR amplification of the Solyc05g004600 gene (upstream 5'-GCCTCTATTAATGACATC-3', downstream 5'-ATAAGCTAAATCGACTA-3') were synthesized, and genomic DNAs of transgenic tomato plants and their control variety MicroTom were used as templates, and GoTaq (registered trademark) was used. ) PCR amplification was performed by Master Mix (Promega, USA). The PCR amplification system was operated according to the manufacturer's instructions.

PCR増幅プログラムにおいて、94℃で5分初期変性を行い;94℃での30秒の変性、55℃での30秒のアニーリング、72℃での30秒の伸長を35サイクル行い;72℃で10分伸長させる。 In the PCR amplification program, initial denaturation at 94°C for 5 minutes; 35 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, extension at 72°C for 30 seconds; minutes.

PCR増幅系を、2×Mix 10μl、上流プライマー0.5μl、下流プライマー0.5μl、テンプレート2μl、ddHO 7μlのものとする。 The PCR amplification system is 10 μl 2×Mix, 0.5 μl upstream primer, 0.5 μl downstream primer, 2 μl template, 7 μl ddH 2 O.

PCR産物に対してシーケンス解析を行ったところ、Solyc05g004600遺伝子の、mu-1とmu-2という2種の変異タイプの同定に成功した。mu-1植物では、Solyc05g004600遺伝子のコード領域に1つの塩基が挿入され(図1)、そのヌクレオチド配列は配列番号2である。mu-2植物では、Solyc05g004600遺伝子のコード領域の3つの塩基が欠失し(図1)、そのヌクレオチド配列は配列番号3である。 Sequence analysis of the PCR product successfully identified two mutation types, mu-1 and mu-2, in the Solyc05g004600 gene. In mu-1 plants, a single base was inserted into the coding region of the Solyc05g004600 gene (FIG. 1), the nucleotide sequence of which is SEQ ID NO:2. In mu-2 plants, 3 bases in the coding region of the Solyc05g004600 gene are deleted (Fig. 1), the nucleotide sequence of which is SEQ ID NO:3.

ステップ4、Solyc05g004600遺伝子ノックアウト植物の灰色かび病菌に対する抵抗性の同定
上記で同定されたSolyc05g004600遺伝子変異株mu-1、mu-2および対照品種MicroTomを温室で植え、25℃、16時間光照射、8時間暗黒条件で培養した。約45日間成長したのち、mu-1、mu-2および対照品種から3株を無作為に選択し、株あたり4枚の葉を取り、それらを0.8%の寒天(8g寒天粉を超純水に加えて1Lに定容したもの)シャーレに固定させた。体積が約2mlの灰色かび病菌を選択し、5mlの1%SMB(10gカビ用ペプトン、40gマルトースを超純水に加えて1Lに定容したもの)溶液に入れ、均一に振とうし、濾過して、濾液として胞子原液が得られた。25×16規格の血球計算盤で胞子原液の濃度を計算し、25個の中ブロックのうちの各中ブロックに約16個の胞子があるように1%SMB溶液で希釈し、接種時にさらに4倍希釈した後、胞子懸濁液が得られた。胞子無しの1%SMB溶液を対照とし、各一枚の葉に5μlの胞子懸濁液を滴下し、蓋をし、トマトの成長に適した環境に置いた。2日後、菌が接種された葉を摘み取り、Image Jソフトウェアで病斑の面積を計算した。その結果、Solyc05g004600遺伝子変異株mu-1、mu-2は、対照品種に比べて、葉の発病程度が低く(図2)、葉における病斑の面積が顕著に小さい(図3)ことが示された。
Step 4, Identification of resistance of Solyc05g004600 gene knockout plants to botrytis fungus Solyc05g004600 gene mutant strains mu-1, mu-2 and control variety MicroTom identified above were planted in a greenhouse, exposed to light at 25°C for 16 hours, 8 Cultured in the dark for hours. After about 45 days of growth, 3 plants were randomly selected from mu-1, mu-2 and control cultivars, 4 leaves were taken per plant and they were sprinkled with 0.8% agar (more than 8 g agar powder). It was added to pure water and fixed to 1 L) and fixed in a Petri dish. Select a botrytis with a volume of about 2 ml, put it in 5 ml of 1% SMB (10 g mold peptone, 40 g maltose added to ultrapure water to make 1 L) solution, shake evenly, and filter. A spore stock solution was obtained as a filtrate. Calculate the concentration of the spore stock solution in a 25×16 standard hemocytometer, dilute with a 1% SMB solution so that each of the 25 medium blocks has approximately 16 spores, and add an additional 4 at the time of inoculation. After 2-fold dilution a spore suspension was obtained. A 1% SMB solution without spores served as a control, and each single leaf was dripped with 5 μl of the spore suspension, covered and placed in an environment suitable for tomato growth. Two days later, the fungus-inoculated leaves were picked and the lesion area was calculated with Image J software. As a result, the Solyc05g004600 gene mutant strains mu-1 and mu-2 showed a lower degree of disease on the leaves (Fig. 2) and a significantly smaller area of lesions on the leaves (Fig. 3) than the control cultivar. was done.

上記のことにより、Solyc05g004600遺伝子がノックアウトされたトマト植物mu-1、mu-2は、葉の灰色かび病菌に対する抵抗性が効果的に向上したことが証明された。 From the above, it was proved that tomato plants mu-1 and mu-2 in which the Solyc05g004600 gene was knocked out had effectively improved resistance to botrytis in the leaves.

なお、上記で挙げたものは、本発明のいくつかの具体的な実施例にすぎない。本発明が上記の実施例に限定されず、多くの変形が可能であることは明らかである。当業者が本発明の開示内容に基づいて直接に導き出す、または想到する変形は、いずれも本発明の保護範囲に属する。 It should be noted that the above are only some specific examples of the present invention. It is clear that the invention is not limited to the examples described above, but that many variants are possible. Any variation directly derived or conceived by a person skilled in the art based on the disclosure content of the present invention shall fall within the protection scope of the present invention.

トマトは、食用、薬用、及び経済的価値が高いため、世界で重要な果菜類作物となっている。灰色かび病は、トマトにおいて一般的かつ被害が深刻な真菌病であり、植物の茎、葉、花、果実のいずれも発病する可能性がある。通常、病菌は植物の傷や老化組織から侵入し、徐々に他の健康な部分に広がり、トマトの収量や品質に多大なる影響を与える。作物の病害を防除するために耐病性遺伝子を使用することは、最も経済的で効果的な方法である。近年、トマトの耐病性に関連する遺伝子がますます多く発見されている。例えば、Yuら(2018)(Yu WQ, Zhao RR, Sheng JP, et al. SlERF2 is associated with Methyl Jasmonate-mediated defense response against Botrytis cinerea in tomato fruit. J Agric Food Chem, 2018, 66(38): 9923-9932.)は、エチレン応答因子SlERF2が灰色かび病に対するトマトの防御制御に関与し、SlERF2の過剰発現により、トマト果実の灰色かび病抵抗性が向上されることを発見した;Sunら(2017)(Sun K, Tuinen A, van Kan JA, et al. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biol, 2017, 17(1): 235.)は、トマトにおけるDND1遺伝子のサイレンシングにより、対照植物に比べて、サイレンシング植物は、灰色かび病の病斑の直径が顕著に減少し、葉における灰色かび病菌の分生子の数が顕著に低下し、菌糸成長が抑制されたことを発見した。これにより、植物の耐病性に関連するより多くの遺伝子を発見するための遺伝子編集技術の使用は、作物の抵抗性の向上や経済的損失の低減のための効果的な手段であることが分かる。 Tomatoes have become an important fruit vegetable crop in the world because of their high edible, medicinal and economic value. Botrytis is a common and devastating fungal disease in tomatoes, and can affect any of the plant's stems, leaves, flowers and fruits. The disease usually enters the plant through wounds and aging tissue and gradually spreads to other healthy parts, significantly affecting tomato yield and quality. The use of disease resistance genes to control crop diseases is the most economical and effective method. In recent years, more and more genes related to disease resistance in tomato have been discovered.例えば、Yuら(2018) (Yu WQ, Zhao RR, Sheng JP, et al. SlERF2 is associated with Methyl Jasmonate-mediated defense response against Botrytis cinerea in tomato fruit. J Agric Food Chem, 2018, 66(38): 9923 -9932.) found that the ethylene responsive factor SlERF2 is involved in tomato defense regulation against gray mold, and overexpression of SlERF2 enhances the resistance of tomato fruits to gray mold; Sun et al. (2017). ) (Sun K, Tuinen A, van Kan JA, et al. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biol, 2017, 17(1): 235.)は、 Silencing of the DND1 gene in tomato resulted in significantly reduced Botrytis lesion diameters and a significantly reduced number of Botrytis conidia on leaves in silenced plants compared to control plants; It was found that mycelial growth was suppressed. This indicates that the use of gene editing techniques to discover more genes associated with disease resistance in plants is an effective tool for improving crop resistance and reducing economic losses. .

さらに、本発明は、以下のステップを含む、トマトにおいて遺伝子Solyc05g004600をノックアウトする方法を提供する。
1)、CRISPR/Cas9編集における標的配列sgRNA:5’-GTTGTTCAACATGAGCAGAG-3’を設計するステップ、
2)、ステップ1)で得られた配列でプライマーを合成し、CRISPR/Cas9ベクターを構築するステップ、
3)、ステップ2)で得られたベクターでトマト(野生型トマト品種MicroTom)を形質転換して、相応のSolyc05g004600遺伝子がノックアウトされたトマト植物であるトランスジェニックトマト植物mu-1とmu-2を得る(前記トランスジェニックトマト植物からSolyc05g004600遺伝子の変異が生じた植物が同定される)ステップ。
Further, the present invention provides a method of knocking out gene Solyc05g004600 in tomato, comprising the following steps.
1), designing the target sequence sgRNA in CRISPR/Cas9 editing: 5′-GTTGTTCAACATGAGCAGAG-3′;
2), synthesizing a primer with the sequence obtained in step 1) and constructing a CRISPR/Cas9 vector;
3), transforming tomatoes (wild-type tomato cultivar MicroTom) with the vectors obtained in step 2) to produce transgenic tomato plants mu-1 and mu-2, which are tomato plants in which the corresponding Solyc05g004600 gene has been knocked out; obtaining (identifying a plant having a mutation of the Solyc05g004600 gene from said transgenic tomato plant).

遺伝子Solyc05g004600の配列が既にデータベースに登録されているが、現在、当該遺伝子に関する機能や作用について研究も報告もされていないため、当該遺伝子がトマトの灰色かび病菌に対する抵抗性に関係することは、本発明が初めて発見したことである。 Although the sequence of the gene Solyc05g004600 has already been registered in a database, there is currently no research or report on the function or action of this gene. This is the first discovery made by the present invention.

Claims (4)

ヌクレオチド配列が配列番号1で示されることを特徴とする、トマトの遺伝子Solyc05g004600。 Gene Solyc05g004600 of tomato, characterized in that the nucleotide sequence is given by SEQ ID NO:1. トマトにおいて遺伝子Solyc05g004600をノックアウトすることにより、トマトの葉の灰色かび病菌に対する抵抗性が効果的に向上されることを特徴とする、請求項1に記載のトマトの遺伝子Solyc05g004600の使用。 Use of the tomato gene Solyc05g004600 according to claim 1, characterized in that knocking out the gene Solyc05g004600 in tomato effectively improves the resistance of tomato leaves to botrytis. mu-1のSolyc05g004600遺伝子のヌクレオチド配列が配列番号2で示され、
mu-2のSolyc05g004600遺伝子のヌクレオチド配列が配列番号3で示されることを特徴とする、請求項2に記載のトマトの遺伝子Solyc05g004600の使用。
The nucleotide sequence of the mu-1 Solyc05g004600 gene is shown in SEQ ID NO: 2,
Use of tomato gene Solyc05g004600 according to claim 2, characterized in that the nucleotide sequence of the Solyc05g004600 gene of mu-2 is given in SEQ ID NO:3.
以下のステップを含むことを特徴とする、トマトにおいて変異遺伝子Solyc05g004600をノックアウトする方法。
1)、CRISPR/Cas9編集における標的配列sgRNA:5’-GTTGTTCAACATGAGCAGAG-3’を設計するステップ、
2)、ステップ1)で得られた配列でプライマーを合成し、CRISPR/Cas9ベクターを構築するステップ、
3)、ステップ2)で得られたベクターでトマトを形質転換して、相応のSolyc05g004600遺伝子がノックアウトされたトマト植物であるトランスジェニックトマト植物mu-1とmu-2を得るステップ。
A method of knocking out the mutant gene Solyc05g004600 in tomato, characterized by comprising the following steps.
1), designing the target sequence sgRNA in CRISPR/Cas9 editing: 5′-GTTGTTCAACATGAGCAGAG-3′;
2), synthesizing a primer with the sequence obtained in step 1) and constructing a CRISPR/Cas9 vector;
3), transforming tomatoes with the vector obtained in step 2) to obtain transgenic tomato plants mu-1 and mu-2, which are tomato plants in which the corresponding Solyc05g004600 gene is knocked out.
JP2022520494A 2021-01-17 2021-04-19 Use of genes to improve tomato Botrytis blight resistance Active JP7383136B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110058943.XA CN112646819B (en) 2021-01-17 2021-01-17 Use of gene to enhance resistance to tomato gray mold
CN202110058943.X 2021-01-17
PCT/CN2021/087986 WO2022151607A1 (en) 2021-01-17 2021-04-19 Use of gene enhancement for tomato gray mold resistance

Publications (2)

Publication Number Publication Date
JP2023513862A true JP2023513862A (en) 2023-04-04
JP7383136B2 JP7383136B2 (en) 2023-11-17

Family

ID=75368393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520494A Active JP7383136B2 (en) 2021-01-17 2021-04-19 Use of genes to improve tomato Botrytis blight resistance

Country Status (3)

Country Link
JP (1) JP7383136B2 (en)
CN (1) CN112646819B (en)
WO (1) WO2022151607A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646819B (en) * 2021-01-17 2023-04-18 浙江师范大学 Use of gene to enhance resistance to tomato gray mold
CN116286942A (en) * 2022-07-15 2023-06-23 浙江师范大学 Gene use for promoting lycopene biosynthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212315A1 (en) * 2016-06-08 2017-12-14 Lotan Agrosciences Llc Rnai for control of fungi by cytb gene inhibition
WO2019041034A1 (en) * 2017-08-30 2019-03-07 The Governing Council Of The University Of Toronto Methods of increasing disease resistance in a plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667265B (en) * 2012-09-06 2015-10-28 中国科学院遗传与发育生物学研究所 The application of tomato LoxD gene in regulating plant resistance
CN107164403A (en) * 2017-06-16 2017-09-15 浙江理工大学 Applications of the miR319 in botrytis resistant plant is cultivated
CN107699579B (en) * 2017-11-03 2020-12-15 南京农业大学 Gene for improving disease resistance of plants and application thereof
CN110734481B (en) * 2019-11-12 2021-02-19 中国农业大学 Application of tomato SlMIP protein and coding gene thereof in regulation and control of plant gray mold resistance
CN112646821B (en) * 2020-02-07 2022-04-01 浙江大学 Pathogenicity-related botrytis cinerea gene Bcmet16 and application thereof
CN111635908B (en) * 2020-05-11 2021-03-23 青岛农业大学 A kind ofKDA2Application of gene in improving plant resistance to botrytis cinerea infection
CN112048510B (en) * 2020-09-11 2022-12-20 浙江师范大学 Application of one gene in enlarging tomato fruit
CN112195186B (en) * 2020-10-06 2022-05-27 华中农业大学 Application of SlBBX20 gene in regulation and control of tomato gray mold resistance
CN112646819B (en) * 2021-01-17 2023-04-18 浙江师范大学 Use of gene to enhance resistance to tomato gray mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212315A1 (en) * 2016-06-08 2017-12-14 Lotan Agrosciences Llc Rnai for control of fungi by cytb gene inhibition
WO2019041034A1 (en) * 2017-08-30 2019-03-07 The Governing Council Of The University Of Toronto Methods of increasing disease resistance in a plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [ONLINE], ACCESSION NO.XM_004249477 08-AUG-2018, [検索日 2023.4.11], JPN6023015346, ISSN: 0005046053 *

Also Published As

Publication number Publication date
CN112646819A (en) 2021-04-13
WO2022151607A1 (en) 2022-07-21
JP7383136B2 (en) 2023-11-17
CN112646819B (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JP2023513862A (en) Use of genes to improve tomato gray mold resistance
CN107475210B (en) Rice bacterial leaf blight resistance related gene OsABA2 and application thereof
CN107034223B (en) The anti-plant hopper gene BGIOSGA015651 of adjusting and controlling rice and its application
CN111303259B (en) Application of rice transcription factor gene OsBEAR1 in cultivation of rice variety with increased coleoptile or suitable for direct seeding in field
CN107245495A (en) The method for creating of the common line with genic sterile of paddy rice and application
CN111909936B (en) Application of GT1 gene in regulation and control of maize male inflorescence sex determination and/or multi-spike development
CN109609527A (en) CDPK18L gene is improving the application in tomato bacterial leaf spot resistance and high temperature resistance as negative regulatory factor
Xu et al. Different effects of DEP1 on vascular bundle-and panicle-related traits under indica and japonica genetic backgrounds
CN110577964A (en) Application of UB2/UB3 gene in regulation and control of multiple-ear development of corn
JP2011120597A (en) Method for selecting genomic dna fragment
CN113373166A (en) Application of tobacco NtAAP3 gene in tobacco
CN115125219B (en) Application of OsJMJ718 gene and encoding protein thereof in regulation and control of rice grain types
CN110592255B (en) Indel molecular marker closely linked with pepper cluster inflorescence gene, primer and application
CN115942868A (en) Cannabis plant with increased yield
CN108668884A (en) The method for formulating ornamental type rice germplasm using two kinds of transcription factor genes
CN117304288B (en) Rice tillering angle related protein OsITAND, coding gene and application thereof
CN116064567B (en) Corn small kernel mutant and application thereof
CN113322266B (en) Application of rice OsRHD1-1 gene in rice male sterile line cultivation
CN114164228B (en) Method for improving disease resistance of rice through gene editing and application thereof
CN114317597B (en) Application of gene OsBEAR1 in cultivation of early-flowering and early-maturing crop variety
CN114292859B (en) Cucumber MYB111 MULE-InDel Gene and application thereof
Cui et al. Dissecting the subtropical adaptation traits and cuticle synthesis pathways via the genome of the subtropical blueberry Vaccinium darrowii
CN116042637A (en) Novel glufosinate-ammonium-resistant herbicide genetic locus for rice and application thereof
CN116042638A (en) Novel glufosinate-ammonium-resistant herbicide genetic locus for rice and application thereof
CN115896084A (en) Application of rice OsRHD1-3 gene in regulation and control of rice pollen fertility

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7383136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150