JP7383136B2 - Use of genes to improve tomato Botrytis blight resistance - Google Patents

Use of genes to improve tomato Botrytis blight resistance Download PDF

Info

Publication number
JP7383136B2
JP7383136B2 JP2022520494A JP2022520494A JP7383136B2 JP 7383136 B2 JP7383136 B2 JP 7383136B2 JP 2022520494 A JP2022520494 A JP 2022520494A JP 2022520494 A JP2022520494 A JP 2022520494A JP 7383136 B2 JP7383136 B2 JP 7383136B2
Authority
JP
Japan
Prior art keywords
gene
tomato
seq
nucleotide sequence
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022520494A
Other languages
Japanese (ja)
Other versions
JP2023513862A (en
Inventor
析豊 陳
淑容 沈
以霊 許
伯軍 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Publication of JP2023513862A publication Critical patent/JP2023513862A/en
Application granted granted Critical
Publication of JP7383136B2 publication Critical patent/JP7383136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

本発明は、トマト灰色かび病抵抗性の向上のための遺伝子の使用に関するものであり、作物の耐病性育種分野に属する。 The present invention relates to the use of genes to improve tomato Botrytis blight resistance and belongs to the field of crop disease resistance breeding.

トマトは、食用、薬用、及び経済的価値が高いため、世界で重要な果菜類作物となっている。灰色かび病は、トマトにおいて一般的かつ被害が深刻な真菌病であり、植物の茎、葉、花、果実のいずれも発病する可能性がある。通常、病菌は植物の傷や老化組織から侵入し、徐々に他の健康な部分に広がり、トマトの収量や品質に多大なる影響を与える。作物の病害を防除するために耐病性遺伝子を使用することは、最も経済的で効果的な方法である。近年、トマトの耐病性に関連する遺伝子がますます多く発見されている。例えば、Yuら(2018)(Yu WQ, Zhao RR, Sheng JP, et al. SlERF2 is associated with Methyl Jasmonate-mediated defense response against Botrytis cinerea in tomato fruit. J Agric Food Chem, 2018, 66(38): 9923-9932.)は、エチレン応答因子SlERF2が灰色かび病に対するトマトの防御制御に関与し、SlERF2の過剰発現により、トマト果実の灰色かび病抵抗性が向上されることを発見した;Sunら(2017)(Sun K, Tuinen A, van Kan JA, et al. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biol, 2017, 17(1): 235.)は、トマトにおけるDND1遺伝子のサイレンシングにより、対照植物に比べて、サイレンシング植物は、灰色かび病の病斑の直径が顕著に減少し、葉における灰色かび病菌の分生子の数が顕著に低下し、菌糸成長が抑制されたことを発見した。これにより、植物の耐病性に関連するより多くの遺伝子を発見するための遺伝子編集技術の使用は、作物の抵抗性の向上や経済的損失の低減のための効果的な手段であることが分かる。 Tomatoes are an important fruit crop in the world due to their high edible, medicinal and economic value. Botrytis is a common and serious fungal disease of tomatoes that can affect the stems, leaves, flowers, and fruits of the plant. Usually, the pathogen enters the plant through wounds or aging tissue and gradually spreads to other healthy parts of the plant, severely impacting tomato yield and quality. Using disease resistance genes to control crop diseases is the most economical and effective method. In recent years, more and more genes related to disease resistance in tomato have been discovered. For example, Yu et al. (2018) (Yu WQ, Zhao RR, Sheng JP, et al. SlERF2 is associated with Methyl Jasmonate-mediated defense response again t Botrytis cinerea in tomato fruit. J Agric Food Chem, 2018, 66(38): 9923 -9932.) found that the ethylene response factor SlERF2 is involved in regulating the defense of tomato against botrytis, and overexpression of SlERF2 improves the resistance to botrytis in tomato fruits; Sun et al. (2017) ) (Sun K, Tuinen A, van Kan JA, et al. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biol, 2017, 17(1): 235.) Silencing of the DND1 gene in tomato resulted in the silenced plants having a significantly reduced diameter of Botrytis blight lesions and a significant reduction in the number of Botrytis conidia on leaves, compared to control plants; It was discovered that hyphal growth was suppressed. This shows that the use of gene editing technology to discover more genes related to disease resistance in plants is an effective means for improving crop resistance and reducing economic losses. .

本発明の解決しようとする課題は、如何にトマト灰色かび病抵抗性を効果的に向上させるかである。 The problem to be solved by the present invention is how to effectively improve tomato Botrytis blight resistance.

上記課題を解決するために、本発明は、ヌクレオチド配列が配列番号1で示されるトマトの遺伝子Solyc05g004600を提供する。 In order to solve the above problems, the present invention provides a tomato gene Solyc05g004600 whose nucleotide sequence is represented by SEQ ID NO: 1.

また、本発明は、トマトにおいてSolyc05g004600遺伝子をノックアウトすることにより、トマトの葉の灰色かび病抵抗性が効果的に向上される前記遺伝子の使用、及び
mu-1のSolyc05g004600遺伝子のヌクレオチド配列が配列番号2で示され、mu-2のSolyc05g004600遺伝子のヌクレオチド配列が配列番号3で示される、本発明のトマト遺伝子Solyc05g004600の使用の改良を提供する。
The present invention also provides the use of the Solyc05g004600 gene in tomato to effectively improve botrytis leaf mold resistance by knocking out the gene, and the nucleotide sequence of the mu-1 Solyc05g004600 gene as shown in SEQ ID NO: 2 and the nucleotide sequence of the Solyc05g004600 gene of mu-2 is shown in SEQ ID NO:3.

さらに、本発明は、以下のステップを含む、トマトにおいて遺伝子Solyc05g004600をノックアウトする方法を提供する。
1)、CRISPR/Cas9編集における標的配列sgRNA:5’-GTTGTTCAACATGAGCAGAG-3’を設計するステップ、
2)、ステップ1)で得られた配列でプライマーを合成し、CRISPR/Cas9ベクターを構築するステップ、
3)、ステップ2)で得られたベクターでトマト(野生型トマト品種MicroTom)を形質転換して、相応のSolyc05g004600遺伝子がノックアウトされたトマト植物であるトランスジェニックトマト植物mu-1とmu-2を得る(前記トランスジェニックトマト植物からSolyc05g004600遺伝子の変異が生じた植物が同定される)ステップ。
Furthermore, the present invention provides a method for knocking out the gene Solyc05g004600 in tomato, comprising the following steps.
1), designing the target sequence sgRNA: 5'-GTTGTTCAACATGAGCAGAG-3' in CRISPR/Cas9 editing;
2), a step of synthesizing primers with the sequence obtained in step 1) and constructing a CRISPR/Cas9 vector;
3) Transform tomatoes (wild type tomato cultivar MicroTom) with the vector obtained in step 2) to generate transgenic tomato plants mu-1 and mu-2, which are tomato plants in which the corresponding Solyc05g004600 gene has been knocked out. (Identification of plants in which the Solyc05g004600 gene mutation has occurred from the transgenic tomato plants).

遺伝子Solyc05g004600の配列が既にデータベースに登録されているが、現在、当該遺伝子に関する機能や作用について研究も報告もされていないため、当該遺伝子がトマトの灰色かび病菌に対する抵抗性に関係することは、本発明が初めて発見したことである。 Although the sequence of the gene Solyc05g004600 has already been registered in the database, there are currently no studies or reports on the function or action of the gene, so it is unlikely that the gene is related to the resistance of tomato to Botrytis. This is the first discovery made by the present invention.

本発明の技術案は、以下のとおりである。
CRISPR/Cas9遺伝子編集技術により、Solyc05g004600遺伝子のヌクレオチド配列(配列番号1)に基づき、Solyc05g004600遺伝子を特異的に標的とするsgRNA配列を合成し、相応のCRISPR/Cas9ベクターを構築し、野生型トマト品種MicroTomを遺伝形質転換し、ゲノム内のSolyc05g004600遺伝子を指向性編集し、トランスジェニック植物を得て、これらのトランスジェニック植物内のSolyc05g004600遺伝子に対してPCR増幅と配列決定を行い、同定した結果、Solyc05g004600遺伝子の2種のタイプの異なる変異株mu-1とmu-2(図1)が得られた。mu-1植物内のSolyc05g004600遺伝子の変異配列は配列番号2であり、mu-2植物内のSolyc05g004600遺伝子の変異配列は配列番号3である。トマトの灰色かび病菌を接種した後、野生型対照品種MicroTomが発病したのに対し、Solyc05g004600遺伝子の変異が生じた2つの株は、いずれも耐病性が向上し(図2)、葉における病斑の面積が対照品種MicroTomに比べて顕著に小さい(図3)。トマトにおけるSolyc05g004600遺伝子の変異は、トマトの灰色かび病抵抗性を効果的に向上させることができることが明らかとなった。
The technical solution of the present invention is as follows.
Using CRISPR/Cas9 gene editing technology, an sgRNA sequence that specifically targets the Solyc05g004600 gene was synthesized based on the nucleotide sequence of the Solyc05g004600 gene (SEQ ID NO: 1), a corresponding CRISPR/Cas9 vector was constructed, and a wild-type tomato variety MicroTom was genetically transformed, the Solyc05g004600 gene in the genome was directionally edited, transgenic plants were obtained, and the Solyc05g004600 gene in these transgenic plants was subjected to PCR amplification and sequencing, and as a result, Solyc05g004600 was identified. Mutant strains mu-1 and mu-2 (Fig. 1) with two different types of genes were obtained. The mutant sequence of the Solyc05g004600 gene in mu-1 plants is SEQ ID NO: 2, and the mutant sequence of the Solyc05g004600 gene in mu-2 plants is SEQ ID NO: 3. After inoculation with Botrytis tomato fungus, the wild-type control cultivar MicroTom developed disease, whereas the two strains with mutations in the Solyc05g004600 gene both had improved disease resistance (Fig. 2) and lesions on leaves. The area of MicroTom is significantly smaller than that of the control variety MicroTom (Figure 3). It has been revealed that mutation of the Solyc05g004600 gene in tomato can effectively improve Botrytis blight resistance in tomato.

以下、図面を参照しながら、本発明の具体的な実施形態を更に詳細に説明する。
トマトSolyc05g004600遺伝子変異体のCRISPR/Cas9標的部位のシーケンス解析である。 MicroTom:野生型対照品種;mu-1とmu-2:Solyc05g004600遺伝子の2種のタイプの異なる変異株。 トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomとの、灰色かび病菌が接種された葉の表現型の対比図である。 トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomの葉における病斑の統計結果である。 図3では、数値は、平均値±標準偏差であり、**は、トマトSolyc05g004600遺伝子変異植物と野生型対照MicroTomとの比較において、t検定が顕著な有意差がある(P<0.01)ことを示す。
Hereinafter, specific embodiments of the present invention will be described in further detail with reference to the drawings.
Sequence analysis of CRISPR/Cas9 target site of tomato Solyc05g004600 gene mutant. MicroTom: wild-type control variety; mu-1 and mu-2: two different types of mutant strains of the Solyc05g004600 gene. It is a comparison diagram of the phenotypes of leaves inoculated with Botrytis mold fungus between a tomato Solyc05g004600 gene mutant plant and a wild-type control MicroTom. Fig. 2 shows statistical results of lesions on leaves of tomato Solyc05g004600 gene mutant plants and wild type control MicroTom. In Figure 3, the values are mean ± standard deviation, and ** indicates a significant difference determined by t-test in the comparison between tomato Solyc05g004600 gene mutant plants and wild-type control MicroTom (P<0.01). Show that.

以下、具体的な実施例を参照しながら、本発明を更に説明するが、本発明の保護範囲はそれらに限定されない。 Hereinafter, the present invention will be further explained with reference to specific examples, but the protection scope of the present invention is not limited thereto.

実施例1:
ステップ1、Solyc05g004600遺伝子ノックアウトベクターの構築
Solyc05g004600遺伝子のコード配列(配列番号1)に基づき、CRISPR/Cas9標的部位解析ソフトウェア(http://crispr.mit.edu/)により、Solyc05g004600遺伝子に対してCRISPR/Cas9編集におけるsgRNA配列:5’-GTTGTTCAACATGAGCAGAG-3’を設計し、当該配列に基づいて相応のプライマーを合成した。
Example 1:
Step 1, Construction of Solyc05g004600 gene knockout vector Based on the coding sequence of Solyc05g004600 gene (SEQ ID NO: 1), CRISPR/Cas9 target site analysis software (http://crispr.mit.edu/) is used to perform CRISPR/Cas9 on Solyc05g004600 gene. The sgRNA sequence for Cas9 editing: 5'-GTTGTTCAACATGAGCAGAG-3' was designed, and corresponding primers were synthesized based on the sequence.

上流5’-TGATTGTTGTTCAACATGAGCAGAG-3’、
下流5’-AAACCTCTGCTCATGTTGAACAACA-3’。
upstream 5'-TGATTGTTGTTCAACATGAGCAGAG-3',
Downstream 5'-AAACCTCTGCTCATGTTGAACAACA-3'.

次に、CRISPR/Cas9キット(Biogle,China)で相応のCRISPR/Cas9ベクターを構築した。構築方法は、製品の説明書に準じて行った。 Then, the corresponding CRISPR/Cas9 vector was constructed with a CRISPR/Cas9 kit (Biogle, China). The construction method was performed according to the product instructions.

ステップ2、Solyc05g004600遺伝子ノックアウトベクターのトマトへの遺伝形質転換
ステップ1で構築したCRISPR/Cas9ベクターでトマト品種MicroTomを遺伝形質転換した。トランスジェニック方法については、Kimuraらの方法(Kimura S et al, CHS Protoc, 2008)により、相応の一連の未同定のトランスジェニックトマト植物が得られた。
Step 2: Genetic transformation of Solyc05g004600 gene knockout vector into tomato Tomato cultivar MicroTom was genetically transformed with the CRISPR/Cas9 vector constructed in Step 1. Regarding the transgenic method, a corresponding series of unidentified transgenic tomato plants were obtained by the method of Kimura et al. (Kimura et al, CHS Protoc, 2008).

ステップ3、Solyc05g004600遺伝子ノックアウト植物の同定
トマトの葉0.1gを取り、液体窒素で粉砕した後、抽出液(Tris-cl 15.76g、Nacl 29.22g、SDS粉末15.0gを超純水に添加して1Lに定容し、pH=8.0となるように調節したもの)600μlを加え、65℃で60分インキュベートした。5M KAC 200μlを加え、均一に混合した後、氷浴で10分冷却した。更に、クロロホルム500μlを加え、均一に混合し、10000 rpmで5分遠心した。上澄みを取り、イソプロパノール500μlを加え、均一に混合し、12000 rpmで3分遠心し、上澄みを捨てた。75%エタノールで沈殿を洗浄し、12000 rpmで3分遠心し、上澄みを捨てた。室温で上下を反転させて置き、DNAを風乾した後、純水30μlを添加してDNAを溶解した。
Step 3, Identification of Solyc05g004600 gene knockout plants Take 0.1g of tomato leaves, crush them with liquid nitrogen, and add the extracts (Tris-cl 15.76g, Nacl 29.22g, SDS powder 15.0g to ultrapure water. 600 μl of the solution was added and the volume was adjusted to 1 L, and the pH was adjusted to 8.0), and the mixture was incubated at 65° C. for 60 minutes. After adding 200 μl of 5M KAC and mixing uniformly, the mixture was cooled in an ice bath for 10 minutes. Furthermore, 500 μl of chloroform was added, mixed uniformly, and centrifuged at 10,000 rpm for 5 minutes. The supernatant was taken, 500 μl of isopropanol was added, mixed uniformly, centrifuged at 12,000 rpm for 3 minutes, and the supernatant was discarded. The precipitate was washed with 75% ethanol, centrifuged at 12,000 rpm for 3 minutes, and the supernatant was discarded. After the DNA was left upside down at room temperature and air-dried, 30 μl of pure water was added to dissolve the DNA.

Solyc05g004600遺伝子のPCR増幅のプライマー(上流5’-GCCTCTATTAATGACATC-3’、下流5’-ATAAGCTAAAATCGACTA-3’)を合成し、トランスジェニックトマト植物およびその対照品種MicroTomのゲノムDNAをテンプレートとし、GoTaq(商標登録) Master Mix(Promega, USA)によりPCR増幅を行った。PCR増幅系は、製品の説明書に準じて操作した。 Primers for PCR amplification of the Solyc05g004600 gene (upstream 5'-GCCTCTATTAATGACATC-3', downstream 5'-ATAAGCTAAATCGACTA-3') were synthesized, the genomic DNA of the transgenic tomato plant and its control variety MicroTom were used as templates, and GoTaq (registered trademark) was used. ) PCR amplification was performed using Master Mix (Promega, USA). The PCR amplification system was operated according to the product instructions.

PCR増幅プログラムにおいて、94℃で5分初期変性を行い;94℃での30秒の変性、55℃での30秒のアニーリング、72℃での30秒の伸長を35サイクル行い;72℃で10分伸長させる。 In the PCR amplification program, an initial denaturation of 5 min at 94°C; 35 cycles of 30 s denaturation at 94°C, 30 s annealing at 55°C, and 30 s extension at 72°C; 10 s at 72°C; Extend by a minute.

PCR増幅系を、2×Mix 10μl、上流プライマー0.5μl、下流プライマー0.5μl、テンプレート2μl、ddHO 7μlのものとする。 The PCR amplification system consists of 10 μl of 2×Mix, 0.5 μl of upstream primer, 0.5 μl of downstream primer, 2 μl of template, and 7 μl of ddH 2 O.

PCR産物に対してシーケンス解析を行ったところ、Solyc05g004600遺伝子の、mu-1とmu-2という2種の変異タイプの同定に成功した。mu-1植物では、Solyc05g004600遺伝子のコード領域に1つの塩基が挿入され(図1)、そのヌクレオチド配列は配列番号2である。mu-2植物では、Solyc05g004600遺伝子のコード領域の3つの塩基が欠失し(図1)、そのヌクレオチド配列は配列番号3である。 When sequence analysis was performed on the PCR product, two types of mutations, mu-1 and mu-2, in the Solyc05g004600 gene were successfully identified. In mu-1 plants, one base was inserted into the coding region of the Solyc05g004600 gene (Figure 1), and its nucleotide sequence is SEQ ID NO: 2. In mu-2 plants, three bases in the coding region of the Solyc05g004600 gene are deleted (Fig. 1), and the nucleotide sequence thereof is SEQ ID NO: 3.

ステップ4、Solyc05g004600遺伝子ノックアウト植物の灰色かび病菌に対する抵抗性の同定
上記で同定されたSolyc05g004600遺伝子変異株mu-1、mu-2および対照品種MicroTomを温室で植え、25℃、16時間光照射、8時間暗黒条件で培養した。約45日間成長したのち、mu-1、mu-2および対照品種から3株を無作為に選択し、株あたり4枚の葉を取り、それらを0.8%の寒天(8g寒天粉を超純水に加えて1Lに定容したもの)シャーレに固定させた。体積が約2mlの灰色かび病菌を選択し、5mlの1%SMB(10gカビ用ペプトン、40gマルトースを超純水に加えて1Lに定容したもの)溶液に入れ、均一に振とうし、濾過して、濾液として胞子原液が得られた。25×16規格の血球計算盤で胞子原液の濃度を計算し、25個の中ブロックのうちの各中ブロックに約16個の胞子があるように1%SMB溶液で希釈し、接種時にさらに4倍希釈した後、胞子懸濁液が得られた。胞子無しの1%SMB溶液を対照とし、各一枚の葉に5μlの胞子懸濁液を滴下し、蓋をし、トマトの成長に適した環境に置いた。2日後、菌が接種された葉を摘み取り、Image Jソフトウェアで病斑の面積を計算した。その結果、Solyc05g004600遺伝子変異株mu-1、mu-2は、対照品種に比べて、葉の発病程度が低く(図2)、葉における病斑の面積が顕著に小さい(図3)ことが示された。
Step 4. Identification of resistance of Solyc05g004600 gene knockout plants to gray mold fungus The Solyc05g004600 gene mutant strains mu-1, mu-2 and control variety MicroTom identified above were planted in a greenhouse, irradiated with light for 16 hours at 25°C, Cultured in the dark for hours. After about 45 days of growth, randomly select 3 plants from mu-1, mu-2 and the control variety, take 4 leaves per plant and soak them in 0.8% agar (more than 8g agar powder). (added to pure water to make a constant volume of 1 L) and fixed in a petri dish. Select a botrytis fungus with a volume of approximately 2 ml, put it in 5 ml of 1% SMB (10 g peptone for mold, 40 g maltose added to ultrapure water to make a constant volume of 1 L) solution, shake evenly, and filter. As a result, a spore stock solution was obtained as a filtrate. Calculate the concentration of the spore stock solution with a 25 × 16 standard hemocytometer, dilute it with 1% SMB solution so that there are approximately 16 spores in each medium block out of 25 medium blocks, and add an additional 4 spores at the time of inoculation. After dilution, a spore suspension was obtained. Using a 1% SMB solution without spores as a control, 5 μl of the spore suspension was dropped onto each leaf, covered with a lid, and placed in an environment suitable for tomato growth. Two days later, the leaves inoculated with the fungus were picked, and the area of the lesion was calculated using Image J software. The results showed that the Solyc05g004600 gene mutant strains mu-1 and mu-2 had a lower degree of disease onset on the leaves (Figure 2) and a significantly smaller area of lesions on the leaves (Figure 3) than the control variety. It was done.

上記のことにより、Solyc05g004600遺伝子がノックアウトされたトマト植物mu-1、mu-2は、葉の灰色かび病菌に対する抵抗性が効果的に向上したことが証明された。 As a result of the above, it was proved that the tomato plants mu-1 and mu-2 in which the Solyc05g004600 gene was knocked out had effectively improved leaf resistance against gray mold fungus.

なお、上記で挙げたものは、本発明のいくつかの具体的な実施例にすぎない。本発明が上記の実施例に限定されず、多くの変形が可能であることは明らかである。当業者が本発明の開示内容に基づいて直接に導き出す、または想到する変形は、いずれも本発明の保護範囲に属する。 It should be noted that what has been listed above are just some specific embodiments of the present invention. It is clear that the invention is not limited to the embodiments described above, but that many variations are possible. Any modification that a person skilled in the art directly derives or comes up with based on the disclosure of the present invention falls within the protection scope of the present invention.

Claims (4)

トマトにおいてヌクレオチド配列が配列番号1で示される遺伝子Solyc05g004600をノックアウトすることにより、トマトの葉の灰色かび病菌に対する抵抗性を向上させる方法 A method for improving the resistance of tomato leaves against botrytis fungus by knocking out the gene Solyc05g004600 whose nucleotide sequence is shown by SEQ ID NO: 1 in tomato. 前記ノックアウトした後のSolyc05g004600遺伝子のヌクレオチド配列が配列番号2で示されることを特徴とする、請求項1に記載の方法 The method according to claim 1, wherein the nucleotide sequence of the Solyc05g004600 gene after the knockout is shown by SEQ ID NO: 2. トマトにおいてヌクレオチド配列が配列番号1で示される遺伝子Solyc05g004600を改変し、前記改変後のSolyc05g004600遺伝子のヌクレオチド配列が配列番号3で示されることを特徴とする、トマトの葉の灰色かび病菌に対する抵抗性を向上させる方法。Resistance to gray mold fungus on tomato leaves is obtained by modifying the gene Solyc05g004600 whose nucleotide sequence is shown in SEQ ID NO: 1 in tomato, and the nucleotide sequence of the modified Solyc05g004600 gene is shown as SEQ ID NO: 3. How to improve. 以下のステップを含むことを特徴とする、請求項1~3のいずれか一項に記載の方法。
1)CRISPR/Cas9編集におけるsgRNA:5’-GTTGTTCAACATGAGCAGAG-3’を設計するステップ、
2)ステップ1)で得られたsgRNA配列を用いてプライマーを合成し、合成されたプライマーを用いてCRISPR/Cas9ベクターを構築するステップ、
3)ステップ2)で得られたベクターでトマトを形質転換して、Solyc05g004600遺伝子がノックアウト又は改変されたトマト変異体を得るステップ。
Method according to any one of claims 1 to 3 , characterized in that it comprises the following steps.
1) Step of designing sgRNA:5'-GTTGTTCAACATGAGCAGAG-3' in CRISPR/Cas9 editing,
2) Synthesizing primers using the sgRNA sequence obtained in step 1) and constructing a CRISPR/Cas9 vector using the synthesized primers,
3) Transforming tomatoes with the vector obtained in step 2) to obtain a tomato mutant in which the Solyc05g004600 gene is knocked out or modified .
JP2022520494A 2021-01-17 2021-04-19 Use of genes to improve tomato Botrytis blight resistance Active JP7383136B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110058943.X 2021-01-17
CN202110058943.XA CN112646819B (en) 2021-01-17 2021-01-17 Use of gene to enhance resistance to tomato gray mold
PCT/CN2021/087986 WO2022151607A1 (en) 2021-01-17 2021-04-19 Use of gene enhancement for tomato gray mold resistance

Publications (2)

Publication Number Publication Date
JP2023513862A JP2023513862A (en) 2023-04-04
JP7383136B2 true JP7383136B2 (en) 2023-11-17

Family

ID=75368393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520494A Active JP7383136B2 (en) 2021-01-17 2021-04-19 Use of genes to improve tomato Botrytis blight resistance

Country Status (3)

Country Link
JP (1) JP7383136B2 (en)
CN (1) CN112646819B (en)
WO (1) WO2022151607A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646819B (en) * 2021-01-17 2023-04-18 浙江师范大学 Use of gene to enhance resistance to tomato gray mold
CN116286942A (en) * 2022-07-15 2023-06-23 浙江师范大学 Gene use for promoting lycopene biosynthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212315A1 (en) 2016-06-08 2017-12-14 Lotan Agrosciences Llc Rnai for control of fungi by cytb gene inhibition
WO2019041034A1 (en) 2017-08-30 2019-03-07 The Governing Council Of The University Of Toronto Methods of increasing disease resistance in a plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667265B (en) * 2012-09-06 2015-10-28 中国科学院遗传与发育生物学研究所 The application of tomato LoxD gene in regulating plant resistance
CN107164403A (en) * 2017-06-16 2017-09-15 浙江理工大学 Applications of the miR319 in botrytis resistant plant is cultivated
CN107699579B (en) * 2017-11-03 2020-12-15 南京农业大学 Gene for improving disease resistance of plants and application thereof
CN110734481B (en) * 2019-11-12 2021-02-19 中国农业大学 Application of tomato SlMIP protein and coding gene thereof in regulation and control of plant gray mold resistance
CN111118039B (en) * 2020-02-07 2021-07-06 浙江大学 Pathogenicity-related botrytis cinerea genes Bcmet3 and Bcmet16 and application
CN111635908B (en) * 2020-05-11 2021-03-23 青岛农业大学 A kind ofKDA2Application of gene in improving plant resistance to botrytis cinerea infection
CN112048510B (en) * 2020-09-11 2022-12-20 浙江师范大学 Application of one gene in enlarging tomato fruit
CN112195186B (en) * 2020-10-06 2022-05-27 华中农业大学 Application of SlBBX20 gene in regulation and control of tomato gray mold resistance
CN112646819B (en) * 2021-01-17 2023-04-18 浙江师范大学 Use of gene to enhance resistance to tomato gray mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212315A1 (en) 2016-06-08 2017-12-14 Lotan Agrosciences Llc Rnai for control of fungi by cytb gene inhibition
WO2019041034A1 (en) 2017-08-30 2019-03-07 The Governing Council Of The University Of Toronto Methods of increasing disease resistance in a plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Database GenBank [online], Accession No.XM_004249477 08-AUG-2018, [検索日 2023.4.11]

Also Published As

Publication number Publication date
WO2022151607A1 (en) 2022-07-21
CN112646819B (en) 2023-04-18
JP2023513862A (en) 2023-04-04
CN112646819A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
EP2934097B1 (en) Potatoes with reduced cold-induced sweetening
JP7383136B2 (en) Use of genes to improve tomato Botrytis blight resistance
JP6899779B2 (en) Wheat male sterile gene WMS and its anther-specific expression promoters and their use
CN111566121A (en) Gene for determining number of spikelets per ear QTL on wheat 7a chromosome
WO2020170251A1 (en) Powdery mildew resistant cannabis plants
CN109988231A (en) Paddy gene OsGRF4 is improving the application in plant cold tolerance
Sarkar et al. Grass Pea: remodeling an ancient insurance crop for climate resilience
Cui et al. Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis
CN111909936A (en) Application of GT1 gene in regulation and control of maize male inflorescence sex determination and/or multi-spike development
Zhong et al. Analysis of gene expression in Kalanchoe daigremontiana leaves during plantlet formation under drought stress
WO2022110864A1 (en) Chemical mutagenesis method for increasing mutation range of dwarf bananas by means of induction
CN116479038B (en) Method for obtaining non-transgenic quinoa with increased fragrance
US20130180001A1 (en) Plants that reproduce via unreduced gametes
CN111593064B (en) Method for improving salt tolerance of rice by inhibiting OsSDM gene expression
US20200299706A1 (en) Mutations in mads-box genes and uses thereof
CN109868282B (en) Pathogenicity-related botrytis cinerea gene BcEXO70 and application
CN109879945B (en) Function and application of brassica napus pod dehiscence resistance gene BnIND
WO2024037338A1 (en) Plant grain size regulation gene and use thereof
CN114317597B (en) Application of gene OsBEAR1 in cultivation of early-flowering and early-maturing crop variety
CN114478732B (en) Application of rice MST6 gene and homologous gene MST3 thereof in regulation and control of plant branching or tillering
Cui et al. Dissecting the subtropical adaptation traits and cuticle synthesis pathways via the genome of the subtropical blueberry Vaccinium darrowii
Lee CRISPR: A Technical Breakthrough for Tomato Research: HS1314, 2/2018
CN116042638A (en) Novel glufosinate-ammonium-resistant herbicide genetic locus for rice and application thereof
Gimenez Regulation of (1, 3; 1, 4)-β-glucan Synthesis in Barley (Hordeum Vulgare L.).
KR20210059397A (en) Bunch type mutant tomato plants

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7383136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150