JP2023510785A - 斜面顕微鏡および斜面顕微鏡における収差を補正する方法 - Google Patents

斜面顕微鏡および斜面顕微鏡における収差を補正する方法 Download PDF

Info

Publication number
JP2023510785A
JP2023510785A JP2022542181A JP2022542181A JP2023510785A JP 2023510785 A JP2023510785 A JP 2023510785A JP 2022542181 A JP2022542181 A JP 2022542181A JP 2022542181 A JP2022542181 A JP 2022542181A JP 2023510785 A JP2023510785 A JP 2023510785A
Authority
JP
Japan
Prior art keywords
image
area
optical
oblique
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022542181A
Other languages
English (en)
Inventor
シューマン クリスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Publication of JP2023510785A publication Critical patent/JP2023510785A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

Figure 2023510785000001
斜面顕微鏡(100,500,600)は、物体(104)の像(300)を形成するように構成された光学結像系(102)を有する。この光学結像系(102)は、光学ズーム系(130)を備えた望遠鏡系(112)を有し、光学ズーム系(130)は、望遠鏡系(112)の物体側に関連付けられる1つの屈折率と、望遠鏡系(112)の像側に関連付けられる別の1つの屈折率と、の2つの屈折率間の比に、望遠鏡系(112)の倍率を適合させるように調整可能である。斜面顕微鏡(100,500,600)はさらに、制御ユニット(106,608)を有する。制御ユニット(106,608)は、光学結像系(102)によって形成される像(300)の像質を評価しかつこの評価に基づいて光学ズーム系(130)を調整するように構成されている。

Description

本発明は、斜面顕微鏡に関する。本発明はさらに、斜面顕微鏡における収差を補正する方法に関する。
例えば、文献米国特許第8582203号明細書に記載されている斜面顕微鏡法は、光シートを用いて、試料のボリューメトリックイメージングを行う技術である。光シートは、対物レンズによって試料内に向けられ、この対物レンズの焦平面に対して傾けられた平面を照明する。したがって、被照明面の大部分は、対物レンズの焦平面の外部にあり、ゆえにデフォーカス収差の影響を受けてしまいやすい。
被照明面の高速かつ収差のない撮像を実現するために、E. J. Botcherby等による"An optical techniques for remote focusing in microscopy"、Opt. Com. 281、第880-887ページ、(2008)に記載された、リモートフォーカシングと称される方法が使用される。この方法では、望遠鏡系が利用される。上述のデフォーカス収差を補正するために、望遠鏡系の倍率は、望遠鏡系の物体側に関連付けられる1つの屈折率と、望遠鏡系の像側に関連付けられる別の1つの屈折率と、の2つの屈折率の比に設定される。この条件が満たされると、被照明面の像にはデフォーカス収差が生じない。
斜面顕微鏡によって形成される像質の1つの影響する別の要因は、結像される物体おける不均一性または屈折率のミスマッチの結果として生じる複数の球面収差である。これらの球面収差は、調整可能な光学補正手段、例えば、補正レンズによって補正可能である。しかしながら、これら2つの要因は互いに無関係ではない。光学補正手段を調整することにより、例えば、光学結像系の焦平面が移動されることがある。試料内への結像深度および試料の屈折率が既知である場合には、光学補正手段の適切な調整を行うことができる。付加的には、光学ズーム系の倍率の調整には、物体側および像側それぞれの2つの屈折率が既知でなければならない。
本発明の課題は、球面収差およびデフォーカス収差の高速かつ容易な補正を可能にする方法および斜面顕微鏡を提供することである。
上述した課題は、独立請求項に記載の記載事項によって達成される。有利な実施形態は、従属請求項および以下の説明によって定められる。
斜面顕微鏡は、物体の像を形成するように構成された光学結像系を有する。光学結像系は、光学ズーム系を備えた望遠鏡系を有し、この光学ズーム系は、望遠鏡系の物体側に関連付けられる1つの屈折率と、望遠鏡系の像側に関連付けられる別の1つの屈折率と、の2つの屈折率間の比に、望遠鏡系の倍率を適合させるように調整可能である。斜面顕微鏡はさらに、光学結像系によって形成される像の像質を評価しかつこの評価に基づいて光学ズーム系を調整するように構成された制御ユニットを有する。
従来の球面収差条件と、リモートフォーカシング条件が満たされないことによる球面収差(以降、デフォーカス収差と称するが、リモートフォーカシングのない集中型光学系におけるデフォーカス収差と混同してはならない)と、の両方は、光学結像系によって形成される像質に特徴的な影響を及ぼす。デフォーカス収差は、光学結像系によって形成される像において、位置に依存するコマ収差として顕在化する。コマ収差は、物体の区域に対応する、より焦点外れが大きい像領域においてより顕著となり、すなわち、より多くのリモートフォーカシングが必要になり得る。したがって、デフォーカス収差は、像において、光学結像系の焦平面に対応する像領域からより離れた像領域における像質により大きな影響を及ぼす。他方では、例えば、屈折率のミスマッチに起因する球面収差は、試料内への結像深度が、視野の結像に必要なリモートフォーカシングの量と比較して大きいと仮定する場合、概して位置に依存しない。ゆえに、球面収差は、像質に比較的均一な影響を有する。したがって、像質を評価することにより、像に存在する収差のタイプを識別して特定することが可能である。
斜面顕微鏡の制御ユニットは、像質を評価しかつこの評価に基づいて光学ズーム系を調整するように構成される。中でも注目すべきであるのは、2つの屈折率間の比に望遠鏡系の倍率を適合させるために、2つの屈折率を測定する必要がないことである。このような測定は、あらかじめ行われる必要があり、これには時間がかかりかつ信頼性が低い。なぜならば、その場の条件、すなわち物体が位置する顕微鏡サンプル空間内の条件は、その場以外の条件、すなわち顕微鏡外の条件とは異なるからである。これに対し、その場での両方の屈折率の測定には、付加的な顕微鏡コンポーネントが必要である。したがって、本明細書で説明する斜面顕微鏡は、球面収差およびデフォーカス収差を高速かつ容易に補正することができる。
好ましい実施形態では、望遠鏡系は、光学結像系の球面収差を補正するために調整可能な光学補正手段を有する。制御ユニットは、像の像質の評価に基づいて、光学補正手段を調整するように構成されている。これにより、例えば、屈折率のミスマッチに起因する従来の球面収差を補正することが可能となる。その結果、光学系によって形成される像の全体的な品質がさらに向上する。
別の好ましい実施形態では、望遠鏡系は、望遠鏡系の物体側に配置された対物レンズを有する。制御ユニットは、斜面顕微鏡によって形成される像を2つ以上の領域に分割するように構成されている。第1の領域は、第1の区域の像を有し、第2の領域は、第2の区域の像を有する。物体の第1の区域と第2の区域とは、対物レンズから、その光軸に沿って異なる距離に位置決めされている。
好ましくは、制御ユニットは、斜面顕微鏡によって形成される像を3つ以上の領域に分割するように構成されている。第1の領域は、物体の第1の区域の像を有し、この第1の区域は、対物レンズから遠い方の、対物レンズの焦平面の面に配置されている。第2の領域は、物体の第2の区域の像を有し、この第2の区域は、対物レンズを向いた、焦平面の面に配置されている。第3の領域は、物体の第3の区域の像を有し、この第3の区域は、焦平面と交わっている。
デフォーカス収差は、物体の第1の区域および第2の区域に対応する、像の異なる部分に異なる影響を及ぼす。なぜなら、これらの物体区域は、物体内の異なる深さに、すなわち対物レンズの焦平面から異なる距離に配置されているからである。この事実は、像を2つ以上の領域に分割することによって利用される。例えば、光学ズーム系の倍率は、対物レンズの焦平面からより遠い区域に対応する領域のうちの1つに基づいて調整されてよい。補正手段は他方で、焦平面により近く、ゆえに妨害的なデフォーカス収差の影響をほとんど受けないかまたはまったく受けない領域の像質の評価に基づいて調整されてよい。したがって、像を2つ以上の領域に分割し、少なくとも1つの領域の像質を評価することにより、上記の評価に基づく光学補正手段および光学ズーム系の調整が可能になる。つまり、球面収差およびデフォーカス収差のより良好な補正が可能となり、このより良好な補正により、この好ましい実施形態による斜面顕微鏡によって作成される像の全体的な品質が向上する。
別の好ましい実施形態では、制御ユニットは、像の第3の領域の像質を評価して、この評価に基づいて光学補正手段を調整するように構成されている。第3の領域は、焦平面と交わっている。したがって、第3の領域は、デフォーカス収差の影響をほとんど受けないかまたはまったく受けない。つまり、第3の領域の像の像質に影響を及ぼすほぼ全ての収差は、球面収差によって引き起こされる。例えば、第3の領域の像質が最大になるように光学補正手段を調整することにより、光学結像系によって形成される像に存在する球面収差の高速な補正が実現される。
別の好ましい実施形態では、制御ユニットは、第1の領域および/または第2の領域の像質を評価しかつこの評価に基づいて光学ズーム系手段を調整するように構成されている。第1の領域および第2の領域はそれぞれ、焦点位置と交わらない、物体の区域にそれぞれ対応する。したがって、第1の領域および第2の領域は、デフォーカス収差の影響を受ける。例えば、第1の領域および/または第2の領域の像質が最大になるように、光学ズーム系の倍率を調整することにより、光学結像系によって形成される像に存在するデフォーカス収差が、結果的に高速に補正される。
別の好ましい実施形態では、制御ユニットは、ストレール比(像強度)、コントラスト値、像鮮明度尺度、および/または像の自己相関関数の幅を特定することにより、像質を評価するように構成されている。
有利であるのは、第1の領域および/または第2の領域の像質に依存する方向が特定されるように制御ユニットを構成することである。第1の領域および第2の領域にはそれぞれ、焦点位置の異なる側における物体の領域に対応する、像の部分が含まれる。デフォーカス収差によって引き起こされるコマ収差は、第1の領域において、第2の領域におけるコマ収差とは異なる仕方で配向される。コマ収差は方向に依存するため、制御ユニットは、方向に依存する像質の評価に基づき、コマ収差を確実に識別することができる。
別の好ましい実施形態では、光学ズーム系は、物体側および像側の両方に対し、全倍率範囲にわたって、望遠鏡系がテレセントリックになるように構成されている。つまり、光学ズーム系の倍率が調整される場合であっても、光学ズーム系の瞳の位置は、固定である。したがって、光学結像系の焦平面はつねに、同一の像平面に結像される。これにより、さまざまな像平面を検出するため、または上記の瞳面の位置を補正するために、付加的なコンポーネントを必要とすることなく、ボリューメトリックイメージングが可能となる。
別の好ましい実施形態では、望遠鏡系の倍率範囲は、2つの屈折率の比が、1.0~1.6である範囲に対応する。これにより、好ましい実施形態による斜面顕微鏡との組み合わせにおいて、対物レンズ、カバースリップおよびサンプルの多種多様な組み合わせを使用することが可能になり、また倍率の許容範囲において顕在化する、望遠鏡系の光学コンポーネントの製造公差を補償することもできる。
別の好ましい実施形態では、望遠鏡系は、光学ズーム系を有するケプラー望遠鏡によって形成される。
別の好ましい実施形態では、制御ユニットは、光学結像系によって形成される像の像質を評価しかつ反復プロセスにおける上記の評価に基づき、光学補正手段および光学ズーム系を調整するように構成されている。光学補正手段および光学ズーム系の調整は、最適化問題である。補正手段の設定に対し、また光学ズーム系の倍率に対し、1つまたは複数のパラメータが、最大化(または最小化)される。パラメータは、光学結像系によって形成される像の像質および/または上記の像の1つまたは複数の領域の像質に対応する。補正手段の設定は、例えば、光学結像系の光軸に沿った補正レンズの位置であってよい。
この最適化問題は、従来技術から公知の反復方法によって高速に解くことができる。
補正手段は、補正手段の調整が、光学結像系の焦平面の位置に影響を与えないように構成されてよい。このような補正手段は、例えば、文献独国特許発明第102019102330号明細書から公知である。この有利な実施形態では、補正手段の調整が、付加的な(従来の)デフォーカス収差を引き起こすことはない。すなわち、光軸に沿って対物面をシフトしない。つまり、補正手段の調整の下で、結像される物体の体積は変化せず、これにより、像質の解析は、よりロバストになり、したがって補正手段の、像に基づく調整が容易になる。
別の態様によると、斜面顕微鏡における収差を補正する方法が提供される。この方法は、斜面顕微鏡の光学結像系によって形成される像の像質を評価することと、この評価に基づいて、斜面顕微鏡の光学補正手段および光学ズーム系を調整することと、を有する。
この方法は、斜面顕微鏡と同じ利点を有し、顕微鏡に関連して本明細書に説明した特徴を使用して補足可能である。
以下では、図面を参照して特定の実施形態を説明する。
1つの実施形態による斜面顕微鏡の概略図である。 図1による斜面顕微鏡の光学結像系の物体側の端部の概略図である。 図1による斜面顕微鏡の光学結像系によって形成される像の概略図である。 図1による斜面顕微鏡により、デフォーカス収差および球面収差を補正するプロセスのフローチャートである。 別の実施形態による斜面顕微鏡の概略図である。 さらに別の実施形態による斜面顕微鏡の概略図である。
図1には、1つの実施形態による斜面顕微鏡100の概略図が示されている。斜面顕微鏡100は、物体104の像を形成するように構成された光学結像系102および制御ユニット106を有する。
光学結像系102は、照明系108および望遠鏡系112を有する。照明系108は、中間像空間110において光シートを形成するように構成されている。望遠鏡系112は、物体104内に光シートの像を形成しかつ物体104内の対物面204(図2を参照されたい)の像300(図3を参照されたい)を中間像空間110に形成するように構成されている。斜面顕微鏡100はさらに、望遠鏡系112によって形成される像300を検出するように構成された光学検出系114を有する。択一的な実施形態では、光シートは、望遠鏡系112に配置されるダイクロイックビームスプリッタによって物体104にガイドされてもよい。
照明系108は、光シートを形成するように構成された光シート形成ユニット116を有する。光シート形成ユニット116は、光源、特にレーザ光源と、光シート形成素子、例えばシリンドリカルレンズまたはスキャニング素子と、を有する。照明系108はさらに、光シートを中間像空間110に配向するように構成された照明対物レンズ118を有する。
望遠鏡系112は、中間像空間110から物体104に光シートを転送し、かつ光シートによって照明される対物面204の像300を中間像空間110に生成するように構成されているという意味で、光学転送系を形成する。換言すると、望遠鏡系112は、中間像空間110から物体104に照明光を、また逆に検出光を戻すようにそれぞれ転送する。
この実施形態では、望遠鏡系112は、テレセントリックであり、ケプラー望遠鏡系によって形成される。望遠鏡系112は、中間像空間110から、像側対物レンズ120と、チューブレンズ122と、第1の接眼レンズ124と、スキャニング素子126と、第2の接眼レンズ128と、光学ズーム系130と、物体側対物レンズ132と、をこの順序で有する。
スキャニング素子126は、対物レンズ132の光軸Oに対して垂直な方向に沿って、物体104を通る光シートを移動させるように構成されている。光学ズーム系130は、望遠鏡系112の倍率を2つの屈折率間の比に適合させるように調整可能に構成されている。一方の屈折率は、望遠鏡系112の物体側に関連付けられており、他方の屈折率は、望遠鏡系112の像側に関連付けられている。より具体的には、望遠鏡系112の物体側に関連付けられる屈折率は、物体104の屈折率であり、望遠鏡系112の像側に関連付けられる屈折率は、中間像空間110内に存在する光媒体、例えば空気の屈折率である。この実施形態では、光学ズーム系130の倍率範囲は、屈折率の比が1.0~1.6である範囲に対応する。対物レンズ132は、補正手段134、例えば可動の補正レンズを有し、これは、光学結像系102の球面収差を補正するように構成されている。別の実施形態では、この代わりに像側対物レンズ120に補正手段134を配置することができる。
光学検出系114は、検出対物レンズ136と、チューブレンズ138と、検出素子140と、を有する。検出対物レンズ136およびチューブレンズ138は、検出素子140に中間像空間110を結像するように構成されている。つまり、望遠鏡系112によって形成される、中間像空間110内の対物面204の像300は、検出素子140への物体である。したがって、像300は、検出素子140によって検出される。択一的な実施形態では、検出対物レンズ136は、有限共役長を有する対物レンズとして構成可能である。この択一的な実施形態では、光学検出系114は、チューブレンズ138を有しない。別の実施形態では、検出対物レンズ136は、球面収差を補正するように構成された共軸前部レンズを有していてよい。別の実施形態では、検出対物レンズ136の役割は、従来技術から公知のように、像側対物レンズ120と、ミラーおよびビームスプリット装置と、によって実現可能である。
制御ユニット106は、補正手段134と、光学ズーム系130と、スキャニング素子126と、検出素子140と、光シート形成ユニット116と、に接続されている。制御ユニット106は、斜面顕微鏡100の上述の素子を制御するように構成されている。さらに、制御ユニット106は、光学結像系102によって形成される対物面204の像300を3つの領域302,304,306(図3を参照されたい)に分割するように構成されており、これらの領域302,304,306のそれぞれは、物体104の異なる区域206,208,210(図2を参照されたい)に対応する。以下では図2および図3を参照し、物体104のこれらの3つの領域302,304,306および3つの区域206,208,210をより詳細に説明する。制御ユニット106はさらに、像300の像質および/または3つの領域302,304,306の像質を評価しかつこの評価に基づいて、光学補正手段134および光学ズーム系130を調整するように構成されている。像質の評価に基づく調整については、図4を参照して以下でより詳細に説明する。
図2には、図1による斜面顕微鏡100の光学結像系102の物体側の端部200の概略図が示されている。望遠鏡系112の対物レンズ132の光軸Oは、図2では一点鎖線で示されている。対物レンズ132の焦平面202は、図2では破線で示されている。対物面204の位置は、図2では実線で示されている。
上述の3つの区域の第1の区域206は、対物レンズ132から遠い方の、焦平面202の面に配置されている。第2の区域208は、対物レンズ132を向いた、焦平面202の面に配置されている。第3の区域210は、対物レンズ132の焦平面202と交わっている。したがって、3つの区域206,208,210は、対物レンズ132から、その光軸Oに沿って異なる距離に配置されている。換言すると、3つの区域206,208,210は、異なる深さで物体104内に配置されている。
図3には、光学結像系102によって形成される対物面204の像300の概略図が示されている。像300は、3つの領域に分割されている。第1の領域302は、物体104の第1の区域206に対応し、第2の領域304は、第2の区域208に対応し、第3の領域306は、第3の区域210に対応する。図3からわかるように、3つの領域302,304,306は、像300全体をカバーしていない。この実施形態では、3つの領域302,304,306は、矩形である。しかしながら、3つの領域は、任意の別の適切な形状を有していてよい。
物体104の第1の区域206および第2の区域208は、対物レンズ132の焦平面202と交わっていない。したがって、第1の区域206および第2の区域208に対応する、像300の領域302、304は、デフォーカス収差の影響を受ける。デフォーカス収差は、像300においてコマ収差として顕在化する。コマ収差の量は、対物レンズ132の焦平面202に対応する、像300における線308に対する位置に依存する。コマ収差の量はさらに、望遠鏡系112の倍率と、2つの屈折率の間の比と、の間のミスマッチに依存する。したがって、第1の区域206および第2の区域208が、対物レンズ132の焦平面202から遠く離れて位置しているほど、第1の領域302および第2の領域304におけるコマ収差は強くなる。デフォーカス収差に起因するコマ収差によって、第1の区域206および第2の区域208内の像質が低下する。
対照的に、第3の区域210は、焦平面202と交わっており、したがって大部分が合焦している。その結果、第3の区域210に関連付けられる像の第3の領域306は、デフォーカス収差の影響を受けない。しかしながら、第3の区域210は、例えば、屈折率のミスマッチに起因して球面収差の影響を受け、これにより、像300の全ての領域において像質に等しく影響が及ぼされる。
デフォーカス収差および球面収差の両方を補正するために、制御ユニット106は、像質の評価に基づいて、光学補正手段134および光学ズーム系130を調整するように構成されている。以下では、図4を参照してこのプロセスを説明する。
図4は、図1による斜面顕微鏡100を使用して、デフォーカス収差および球面収差を補正するプロセスのフローチャートである。
ステップS10でこのプロセスをスタートさせる。ステップS12では、望遠鏡系112によって中間像空間に形成される、対物面204の像300を光学検出系114によって検出する。次いで、ステップS14では、制御ユニット106により、検出された像300を、図3に示した3つの領域302,304,306に分割する。
ステップS16では、制御ユニット106により、像300および/または3つの領域302,304,306のストレール比、コントラスト値、像鮮明度尺度および/または自己相関関数の幅、または従来技術から公知の任意の別の適切な像質メトリックを評価することにより、像300および3つの領域302,304,306の像質を評価する。特に、制御ユニット106により、第1の領域302および第2の領域304の、方向に依存する像質を評価する。
ステップS18では、制御ユニット106により、ステップS16での像質の評価に基づいて、光学補正手段134および光学ズーム系130を調整する。これらの調整は、同時に実行されてもよいし、順次に実行されてもよい。光学ズーム系130の倍率が、対物側および像側に関連付けられる2つの屈折率の比にそれぞれ適合するように光学ズーム系130を調整する。この調整を実行するのは、デフォーカス収差を補正するためである。この実施形態では、制御ユニット106により、第1の領域302および第2の領域304の像質を最大化することによって、光学ズーム系130を調整する。なぜなら、像質は主に、デフォーカス収差に起因するコマ収差の量に依存するからである。これは、単一のステップで、または光学ズーム系130が完全に適合化されてしまうまで、ステップS16およびステップS18が繰り返される反復プロセスで行われてよい。この実施形態では、制御ユニット106により、第3の領域306の像質を最大化することによって光学補正手段134を調整する。第3の領域306は、デフォーカス収差に起因してコマ収差による影響を受けることが一層少ないため、像質は、主に球面収差に依存する。これは、単一のステップで、または光学補正手段134が完全に適合化されてしまうまで、ステップS16およびステップS18が繰り返される反復プロセスで行われてよい。次いでステップS20でこのプロセスを停止する。
図5には、別の実施形態による斜面顕微鏡500の概略図が示されている。図5による斜面顕微鏡500は、光シートがどのように望遠鏡系502に結合されるかという点で、図1による斜面顕微鏡100から区別される。図1および図5において、同一または同等の素子は、同じ参照符号によって示されている。
この実施形態による斜面顕微鏡100の望遠鏡系502は、スキャニング素子126と第1の接眼レンズ124との間に配置されるダイクロイックビームスプリッタ504を有する。ダイクロイックビームスプリッタ504は、照明系108によって形成される光シートをスキャニング素子126に反射するように構成されている。さらに、ダイクロイックビームスプリッタ504は、物体104において発生した検出光を光学検出系114に向けて送るように構成されている。
図6には、さらに別の実施形態による斜面顕微鏡600の概略図が示されている。図6による斜面顕微鏡600は、望遠鏡系604の像側対物レンズ602が、調整可能な集束手段606を有するという点で、図1による斜面顕微鏡100から区別される。図1および図6において、同一または同等の素子は、同じ参照符号によって示されている。
調整可能な集束手段606は、制御ユニット608によって制御され、対物レンズ132の光軸Oに沿って焦平面202の位置を調整するために、調整可能に構成されている。焦平面202は、調整可能な集束手段606により、物体104中を移動可能であるため、図6による望遠鏡系604は、スキャニング素子を有しない。
本明細書で使用されるように、用語「および/または(かつ/または)」は、関連する記載項目のうちの1つまたは複数の項目のあらゆる全ての組み合わせを含んでおり、「/」として略記されることがある。
いくつかの態様を装置の文脈において説明してきたが、これらの態様が、対応する方法の説明も表していることが明らかであり、ここではブロックまたは装置がステップまたはステップの特徴に対応している。同様に、ステップの文脈において説明された態様は、対応する装置の対応するブロックまたは項目または特徴の説明も表している。
100 斜面顕微鏡
102 光学結像系
104 物体
106 制御ユニット
108 照明系
110 中間像空間
112 望遠鏡系
114 光学検出系
116 光シート形成ユニット
118,120 対物レンズ
122 チューブレンズ
124 接眼レンズ
126 スキャニング素子
128 接眼レンズ
130 光学ズーム系
132 対物レンズ
134 補正手段
200 物体側の端部
202 焦平面
204 対物面
206,208,210 区域
300 像
302,304,306 領域
308 線
500 斜面顕微鏡
502 望遠鏡系
504 ダイクロイックビームスプリッタ
600 斜面顕微鏡
602 対物レンズ
604 望遠鏡系
606 集束手段
608 制御ユニット

Claims (12)

  1. 斜面顕微鏡(100,500,600)であって、前記斜面顕微鏡(100,500,600)は、
    物体(104)の像(300)を形成するように構成された光学結像系(102)と、
    制御ユニット(106,608)と、
    を有し、
    前記光学結像系(102)は、光学ズーム系(130)を備えた望遠鏡系(112)を有し、前記光学ズーム系(130)は、前記望遠鏡系(112)の物体側に関連付けられる1つの屈折率と、前記望遠鏡系(112)の像側に関連付けられる別の1つの屈折率と、の2つの屈折率間の比に、前記望遠鏡系(112)の倍率を適合させるように調整可能であり、
    前記制御ユニット(106,608)は、前記光学結像系(102)によって形成される前記像(300)の像質を評価しかつ前記評価に基づいて前記光学ズーム系(130)を調整するように構成されている、
    斜面顕微鏡(100,500,600)。
  2. 前記望遠鏡系(112)は、前記光学結像系(102)の球面収差を補正するために調整可能な光学補正手段(134)を有し、前記制御ユニット(106,608)は、前記像(300)の前記像質の前記評価に基づいて、前記光学補正手段(134)を調整するように構成されている、
    請求項1記載の斜面顕微鏡(100,500,600)。
  3. 前記望遠鏡系(112)は、前記望遠鏡系(112)の物体側に配置された対物レンズ(132)を有し、前記制御ユニット(106)は、前記斜面顕微鏡(100,500,600)によって形成される前記像(300)を2つ以上の領域(302,304)に分割するように構成されており、第1の領域(302)は、第1の区域(206)の像を有し、第2の領域(304)は、第2の区域(208)の像を有し、前記物体(104)の前記第1の区域(206)および前記第2の区域(208)は、前記対物レンズから、前記対物レンズの光軸(O)に沿って異なる距離に位置決めされている、
    請求項1または2記載の斜面顕微鏡(100,500,600)。
  4. 前記制御ユニット(106,608)は、前記斜面顕微鏡(100,500,600)によって形成される前記像(300)を3つ以上の領域(302,304,306)に分割するように構成されており、前記第1の領域(302)は、前記物体(104)の前記第1の区域(206)の像を有し、前記第1の区域(206)は、前記対物レンズ(132)から遠い方の、前記対物レンズの焦平面(202)の面に配置されており、前記第2の領域(304)は、前記物体(104)の前記第2の区域(208)の像を有し、前記第2の区域(208)は、前記対物レンズ(132)を向いた、前記焦平面(202)の面に配置されており、第3の領域(306)は、前記物体(104)の第3の区域(210)の像を有し、前記第3の区域(210)は、前記焦平面(202)と交わっている、
    請求項3記載の斜面顕微鏡(100,500,600)。
  5. 前記望遠鏡系(112)は、前記光学結像系(102)の球面収差を補正するために調整可能な光学補正手段(134)を有し、前記制御ユニット(106,608)は、前記像(300)の前記第3の領域(306)の像質を評価して、前記評価に基づいて前記光学補正手段(134)を調整するように構成されている、
    請求項4記載の斜面顕微鏡(100,500,600)。
  6. 前記制御ユニット(106,608)は、前記第1の領域(302)および/または前記第2の領域(304)の像質を評価しかつ前記評価に基づいて前記光学ズーム系(130)手段を調整するように構成されている、
    請求項3から5までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  7. 前記制御ユニット(106,608)は、ストレール比、コントラスト値、像鮮明度尺度および/または前記像(300)の自己相関関数の幅を特定することにより、前記像質を評価するように構成されている、
    請求項1から6までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  8. 前記光学ズーム系(130)は、前記物体側および前記像側の両方に対し、全倍率範囲にわたって、前記望遠鏡系(112)がテレセントリックになるように構成されている、
    請求項1から7までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  9. 前記望遠鏡系(112)の倍率範囲は、2つの前記屈折率の前記比が、1.0~1.6である範囲に対応する、
    請求項1から8までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  10. 前記望遠鏡系(112)は、前記光学ズーム系(130)を有するケプラー望遠鏡によって形成される、
    請求項1から9までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  11. 前記制御ユニット(106,608)は、前記光学結像系(102)によって形成される前記像(300)の像質を評価しかつ前記評価に基づき、反復プロセスにおいて、前記光学補正手段(134)および前記光学ズーム系(130)を調整するように構成されている、
    請求項1から10までのいずれか1項記載の斜面顕微鏡(100,500,600)。
  12. 斜面顕微鏡(100,500,600)における収差を補正する方法であって、前記方法は、
    前記斜面顕微鏡(100,500,600)の光学結像系(102)によって形成される像(300)の像質を評価するステップと、
    前記評価に基づいて、前記斜面顕微鏡(100,500,600)の光学ズーム系(130)を調整するステップと、
    を有する方法。
JP2022542181A 2020-01-09 2020-01-09 斜面顕微鏡および斜面顕微鏡における収差を補正する方法 Pending JP2023510785A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/050425 WO2021139889A1 (en) 2020-01-09 2020-01-09 Oblique plane microscope and method for correcting an aberration in an oblique plane microscope

Publications (1)

Publication Number Publication Date
JP2023510785A true JP2023510785A (ja) 2023-03-15

Family

ID=69374265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022542181A Pending JP2023510785A (ja) 2020-01-09 2020-01-09 斜面顕微鏡および斜面顕微鏡における収差を補正する方法

Country Status (4)

Country Link
US (1) US20230035107A1 (ja)
EP (1) EP4088153A1 (ja)
JP (1) JP2023510785A (ja)
WO (1) WO2021139889A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019102330C5 (de) * 2019-01-30 2023-02-23 Leica Microsystems Cms Gmbh Optisches System für ein Mikroskop, Mikroskop mit einem optischen System und Verfahren zur Abbildung eines Objekts unter Verwendung eines Mikroskops
WO2024086322A1 (en) * 2022-10-21 2024-04-25 Calico Life Sciences Llc Dynamic remote refocus microscope

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895570A4 (en) * 2005-05-24 2011-03-09 Nikon Corp EXPOSURE METHOD AND APPARATUS, AND DEVICE MANUFACTURING METHOD
US7450243B2 (en) * 2006-07-10 2008-11-11 The Board Of Trustees Of The University Of Illinois Volumetric endoscopic coherence microscopy using a coherent fiber bundle
JP7180964B2 (ja) * 2014-01-17 2022-11-30 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク 三次元イメージング装置および方法
US10061111B2 (en) * 2014-01-17 2018-08-28 The Trustees Of Columbia University In The City Of New York Systems and methods for three dimensional imaging
WO2018089865A1 (en) * 2016-11-12 2018-05-17 The Trustees Of Columbia University In The City Of New York Microscopy devices, methods and systems
EP3441812B1 (en) * 2017-08-11 2020-07-01 Tecan Trading Ag Pattern based autofocus method for a microscopy
US10852518B1 (en) * 2019-03-14 2020-12-01 Ultima Genomics, Inc. Methods, devices, and systems for analyte detection and analysis

Also Published As

Publication number Publication date
WO2021139889A1 (en) 2021-07-15
US20230035107A1 (en) 2023-02-02
EP4088153A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US20230113528A1 (en) Systems, devices and methods for automatic microscope focus
JP6097516B2 (ja) 顕微鏡撮像光線路の球面収差を識別し補正する方法及び装置
CN106461925B (zh) 用于具有自适应光学系统的拉曼散射光学显微镜的系统和方法
KR102458592B1 (ko) 자동 현미경 초점을 위한 시스템, 장치 및 방법
EP2093597B1 (en) Telecentric lens system and vision measuring instrument
US20060291039A1 (en) Laser condensing optical system
EP2585869A1 (en) Autofocus based on differential measurements
US8634131B2 (en) Spherical aberration correction for non-descanned applications
US8553324B2 (en) Microscope having internal focusing
JP2023510785A (ja) 斜面顕微鏡および斜面顕微鏡における収差を補正する方法
KR20060086938A (ko) 포커싱 시스템 및 방법
JP7428719B2 (ja) 顕微鏡用の光学システム
JP5084183B2 (ja) 顕微鏡用落射照明光学系
US10459209B2 (en) Method and microscope for examining a sample
JP7227604B2 (ja) 三次元形状測定方法および三次元形状測定装置
CN112748562B (zh) 显微镜和用于确定显微镜中的像差的方法
JPH063599A (ja) 顕微鏡の開口絞り径設定装置
CN114556182A (zh) 用于在荧光显微技术中像差校正的方法和装置
JP4723842B2 (ja) 走査型光学顕微鏡
JPH075397A (ja) シュリーレン顕微鏡装置
JP5641278B2 (ja) 検査装置
KR102668960B1 (ko) 자동 현미경 초점을 위한 시스템, 장치 및 방법
JP4639808B2 (ja) 測定装置及びその調整方法
JP2006243273A (ja) 自動焦点顕微鏡
Singh et al. EVALUATION OF AN OBJECTIVE OF A PASSIVE NIGHT SIGHT Poster BY MEASURING MTF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417