JP2023506394A - 荷電粒子検査システムのビーム電流調整 - Google Patents

荷電粒子検査システムのビーム電流調整 Download PDF

Info

Publication number
JP2023506394A
JP2023506394A JP2022532052A JP2022532052A JP2023506394A JP 2023506394 A JP2023506394 A JP 2023506394A JP 2022532052 A JP2022532052 A JP 2022532052A JP 2022532052 A JP2022532052 A JP 2022532052A JP 2023506394 A JP2023506394 A JP 2023506394A
Authority
JP
Japan
Prior art keywords
charged particle
line
scan
cycle
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022532052A
Other languages
English (en)
Other versions
JP7488898B2 (ja
Inventor
ファン,ウェイ
チェン,ゾン-ウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2023506394A publication Critical patent/JP2023506394A/ja
Application granted granted Critical
Publication of JP7488898B2 publication Critical patent/JP7488898B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/075Electron guns using thermionic emission from cathodes heated by particle bombardment or by irradiation, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

荷電粒子検査システムの超高速ビーム電流調整のための装置、方法及びシステムは、サンプルを走査するために荷電粒子を放出するように構成された荷電粒子源と、荷電粒子検査システムの走査動作の第1のサイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射するように及び走査動作の第2のサイクルにおいて電磁放射線の投射を停止するように構成されたエミッションブースタとを含む。【選択図】 図5

Description

関連出願の相互参照
[0001] この出願は、2019年12月20日に出願された米国特許出願第62/951950号の優先権を主張し、同特許は、その全体が参照により本明細書に組み込まれる。
[0002] 本開示は、概して、荷電粒子検査システムの分野に関し、具体的には、荷電粒子検査システムのビーム電流調整に関する。
[0003] 集積回路(IC)の製造プロセスでは、未完成又は完成回路コンポーネントは、それらが設計に従って製造され、欠陥がないことを保証するために検査が行われる。光学顕微鏡を利用する検査システムは、典型的には、数百ナノメートルの分解能しか有さず、分解能は、光の波長によって制限される。ICコンポーネントの物理的サイズは100ナノメートル未満又は10ナノメートル未満まで低減し続けているため、光学顕微鏡を利用するものより高い分解能が可能な検査システムが必要である。
[0004] 走査電子顕微鏡(SEM)又は透過電子顕微鏡(TEM)など、1ナノメートル未満の分解能が可能な荷電粒子(例えば、電子)ビーム顕微鏡は、100ナノメートル未満の特徴サイズを有するICコンポーネントを検査するための実用的なツールとしての機能を果たす。SEMを用いると、単一の一次荷電粒子ビームの電子又は多数の一次荷電粒子ビームの電子は、検査中のウェーハの対象の場所で集束させることができる。一次電子は、ウェーハと相互作用して、後方散乱することも、ウェーハから二次電子を放出させることもある。後方散乱電子及び二次電子を含む電子ビームの強度は、ウェーハの内部及び外部の構造の特性に基づいて変化し得、それにより、ウェーハに欠陥があるかどうかを示すことができる。
[0005] 本開示と一致する実施形態は、超高速ビーム電流調整など、荷電粒子検査システムのビーム電流調整のための装置、システム及び方法を含む。いくつかの実施形態では、荷電粒子検査システムは、サンプルを走査するために荷電粒子を放出するように構成された荷電粒子源を含み得る。また、装置は、荷電粒子検査システムの走査動作の第1のサイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射するように及び走査動作の第2のサイクルにおいて電磁放射線の投射を停止するように構成されたエミッションブースタも含み得る。
[0006] いくつかの実施形態では、荷電粒子検査システムは、荷電粒子を放出するように構成された荷電粒子源を含み得る。また、装置は、荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射するように構成されたエミッションブースタも含み得る。装置は、荷電粒子を使用して荷電粒子ビームを形成するように構成されたビーム形成ユニットをさらに含み得る。装置は、サンプルをラインごとに走査するように荷電粒子ビームを誘導するように構成された走査ユニットをさらに含み得る。装置は、荷電粒子ビームの第1の走査サイクルにおいて電磁放射線を投射するように及び荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止するようにエミッションブースタを制御するように構成された回路を含むコントローラをさらに含み得る。
[0007] いくつかの実施形態では、方法は、荷電粒子検査システムの荷電粒子源を使用して荷電粒子ビームを形成するために荷電粒子を放出することを含み得る。また、方法は、荷電粒子検査システムの走査ユニットを使用して、サンプルをラインごとに走査するように荷電粒子ビームを誘導することも含み得る。方法は、荷電粒子検査システムのエミッションブースタを使用して、荷電粒子ビームの第1の走査サイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射し、荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止することをさらに含み得る。
[0008] いくつかの実施形態では、非一時的なコンピュータ可読媒体は、荷電粒子検査システムに方法を実行させるためにシステムの少なくとも1つのプロセッサによって実行可能な命令セットを格納することができる。方法は、荷電粒子検査システムの荷電粒子源を使用して荷電粒子ビームを形成するために荷電粒子を放出することを含み得る。また、方法は、荷電粒子検査システムの走査ユニットを使用して、サンプルをラインごとに走査するように荷電粒子ビームを誘導することも含み得る。方法は、荷電粒子検査システムのエミッションブースタを使用して、荷電粒子ビームの第1の走査サイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射し、荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止することをさらに含み得る。
[0009]本開示の実施形態と一致する、例示的な荷電粒子ビーム検査(EBI)システムを示す概略図である。 [0010]本開示の実施形態と一致する、図1の例示的なEBIシステムの一部であり得る例示的なマルチビームビームツールを示す概略図である。 [0011]本開示の実施形態と一致する、一次電子の着地エネルギーに対する二次電子の収率を示す例示的なグラフである。 [0012]本開示の実施形態と一致する、ウェーハの電圧コントラスト応答を示す概略図である。 [0013]本開示の実施形態と一致する、時系列にわたる例示的な電圧コントラスト画像の説明図である。 [0014]本開示の実施形態と一致する、超高速ビーム電流調整能力を有する例示的なビームツールを示す概略図である。 [0015]本開示の実施形態と一致する、走査ラインを示す例示的な走査フレームの説明図である。 [0016]本開示の実施形態と一致する、ビームツールの例示的な走査周波数の説明図である。 [0017]本開示の実施形態と一致する、図7Aのビームツールのエミッションブースタの例示的な投射周波数の説明図である。 [0018]本開示の実施形態と一致する、荷電粒子検査システムに対する欠陥検査の例示的な方法のフローチャートである。 [0019]本開示の実施形態と一致する、荷電粒子検査システムに対する欠陥検査の別の例示的な方法のフローチャートである。
[0020] ここでは、例示的な実施形態を詳細に参照し、その例は、添付の図面に示されている。以下の説明は、添付の図面を参照し、別段の表現がない限り、異なる図面における同じ番号は、同じ又は同様の要素を表す。例示的な実施形態の以下の説明において記載される実装形態は、本開示と一致するすべての実装形態を表すわけではない。代わりに、それらの実装形態は、添付の請求項において記述される対象物に関連する態様と一致する装置及び方法の単なる例である。例えば、いくつかの実施形態は、荷電粒子ビーム(例えば、電子ビーム)の利用に関する文脈において説明されているが、本開示は、そのように限定されない。他のタイプの荷電粒子ビームも同様に適用することができる。その上、光学撮像、写真検出、X線検出又は同様のものなど、他の撮像システムを使用することができる。
[0021] 電子デバイスは、基板と呼ばれるシリコン片上に形成された回路で構築される。多くの回路は、同じシリコン片上にまとめて形成することができ、集積回路又はICと呼ばれる。これらの回路のサイズは劇的に減少しており、それにより、さらに多くの回路を基板に適合させることができる。例えば、スマートフォンのICチップは、親指の爪ほどの大きさしかないが、それにもかかわらず、20億を超えるトランジスタを含むことができ、各トランジスタのサイズは、人間の毛髪のサイズの1/1000未満である。
[0022] これらの極めて小さなICの作成は、多大な時間を要する複雑且つ高価なプロセスであり、数百もの個々のステップを伴う場合が多い。1つのステップにおける誤差でさえ、完成ICに欠陥をもたらす可能性があり、完成ICは、無用なものとなる。従って、製造プロセスの目標の1つは、プロセスで作成される機能可能なICの数を最大化するため、すなわち、プロセスの総歩留まりを向上させるために、そのような欠陥を回避することである。
[0023] 歩留まりを向上させる要素の1つは、十分な数の機能可能な集積回路を生産することを保証するために、チップ作成プロセスをモニタすることである。プロセスをモニタする方法の1つは、それらの形成の様々な段階でチップ回路構造を検査することである。検査は、走査電子顕微鏡(SEM)を使用して行うことができる。SEMは、これらの極めて小さな構造を撮像するために使用することができ、実際には、ウェーハの構造の「ピクチャ」を撮影する。画像は、構造が正しい場所に正しく形成されたかどうかを判断するために使用することができる。構造に欠陥がある場合は、欠陥が再発しにくくなるようにプロセスを調整することができる。
[0024] SEMの動作原理は、カメラと同様である。カメラは、人又は物体から反射又は放出された光の明度及び色を受信して記録することによってピクチャを撮影する。SEMは、構造から反射又は放出された電子のエネルギー又は量を受信して記録することによって「ピクチャ」を撮影する。そのような「ピクチャ」を撮影する前には、電子ビームが構造に提供され、電子が構造から反射又は放出される(「出射する」)と、SEMの検出器は、それらの電子のエネルギー又は量を受信して記録し、画像を生成することができる。そのような「ピクチャ」を撮影するため、一部のSEMは、単一電子ビーム(「シングルビームSEM」と呼ばれる)を使用し、一部のSEMは、複数電子ビーム(「マルチビームSEM」と呼ばれる)を使用して、ウェーハの複数の「ピクチャ」を撮影する。複数電子ビームを使用することにより、SEMは、これらの複数の「ピクチャ」を得るためにより多くの電子ビームを構造に提供することができ、その結果、構造から出射する電子の数が増える。それに従って、検出器は、より多くの出射電子を同時に受信し、より高い効率で且つより高速にウェーハの構造の画像を生成することができる。
[0025] 3D NANDフラッシュメモリデバイスなどの垂直高密度構造における埋没欠陥を検出することは、非常に難易度の高いものであり得る。そのようなデバイスにおける埋没欠陥又は表面上の電気的欠陥を検出するためのいくつかの方法のうちの1つは、SEMにおいて電圧コントラスト法を使用することによるものである。この方法では、サンプルの材料、構造又は領域の導電率差により、そのSEM画像におけるコントラスト差が生じる。欠陥検出の文脈では、サンプル表面下の電気的欠陥は、サンプル表面上における帯電変動を生み出し、従って、サンプル表面のSEM画像におけるコントラストによって電気的欠陥を検出することができる。電圧コントラストを強調させるため、事前帯電又はフラッディングと呼ばれるプロセスを採用することができ、このプロセスでは、サンプルの対象の領域を、小さなビーム電流ではあるが高い撮像分解能を使用する検査前に、大きなビーム電流にさらすことができる。検査に対し、フラッディングのいくつかの利点は、数ある中でも特に、帯電に起因する画像の歪みを最小限に抑えるためのウェーハの帯電の低減を含み得、いくつかの事例では、画像における欠陥がある特徴及び周囲の欠陥のない特徴の違いを強調するためのウェーハの帯電の増加を含み得る。
[0026] 電圧コントラスト欠陥を識別する方法の1つは、電子ビームによってウェーハを複数回走査するために、異なるビーム電流間で素早く切り替えることである。複数の電圧コントラスト画像を生成して比較し、電圧コントラスト欠陥を識別することができる。
[0027] 既存のSEM設計における課題は、検査プロセスの間にビーム電流を超高速時間で調整することができず、ビーム電流調整が完了する前に、欠陥がある領域の電圧コントラスト応答が弱まることである。例えば、インターコネクタが標準未満のものとして製造され、電子ビームが低ビーム電流を有する場合は、外部の電子は排出され得る。排出がビーム電流調整よりも速い場合は、電圧コントラスト画像における異常な電圧コントラスト応答は示されない。別の例では、絶縁体が標準未満のものとして製造され、電子ビームが高ビーム電流を有する場合は、外部の電子は、急速に蓄積して電気絶縁破壊が起こり、排出され得る。排出がビーム電流調整よりも速い場合は、電圧コントラスト画像における異常な電圧コントラスト応答は示されない。検査プロセスの間にビーム電流を超高速時間で調整することはできないため、電圧コントラスト欠陥を識別することは難しい。
[0028] 開示される実施形態は、検査プロセスの間の超高速ビーム電流調整を可能にする装置、システム及び方法を提供する。荷電粒子検査システム(例えば、SEM)には、荷電粒子源に光を投射するように構成されたエミッションブースタを装備することができる。光電子又は光子放出効果により、光のエネルギーは、荷電粒子源の材料の原子の電子に伝達することができ、それらの電子が原子から離脱する上で役立つ。そのような伝達は、超高速時間で起こり得る。従って、エネルギーの伝達により、電子放出を超高速時間で増大することができる。電子放出が増大される場合は、電子ビームは、高電流を有し得る。電子放出が増大されない場合は、電子ビームは、低電流を有し得る。エミッションブースタの電子放出は、荷電粒子検査システムの走査動作と同期させることができ、それにより、荷電粒子検査システムは、走査のための電子ビームの高電流と低電流とを素早く切り替えることができる。それに対応して、走査から、電圧コントラスト画像の2つの「バージョン」を生成することができ、一方のバージョンは、高電流の下で生成され、他方のバージョンは、低ビーム電流の下で生成される。異なるビーム電流の下で生成された電圧コントラスト画像の特性(例えば、明度)を比較することにより、異なるビーム電流の下での電圧コントラスト応答(例えば、出射電子の変化率)を識別することができる。電圧コントラスト応答が異常を示す場合は、潜在的な電圧コントラスト欠陥を短時間で難なく識別することができる。
[0029] 図面では、コンポーネントの相対寸法は、明確にするために拡大され得る。以下の図面の説明内では、同じ又は同様の参照番号は、同じ又は同様のコンポーネント又はエンティティを指し、個々の実施形態に対する違いのみを説明する。
[0030] 本明細書で使用される場合、別段の具体的な記述がない限り、「又は」という用語は、実行不可能な場合を除いて、考えられるすべての組合せを包含する。例えば、コンポーネントがA又はBを含み得るということが記述されている場合は、別段の具体的な記述がない限り又は実行不可能でない限り、コンポーネントは、A又はB、或いはA及びBを含み得る。第2の例として、コンポーネントがA、B又はCを含み得るということが記述されている場合は、別段の具体的な記述がない限り又は実行不可能でない限り、コンポーネントは、A、又はB、又はC、又はA及びB、又はA及びC、又はB及びC、又はA、B及びCを含み得る。
[0031] 図1は、本開示の実施形態と一致する、例示的な電子ビーム検査(EBI)システム100を示す。EBIシステム100は、撮像のために使用することができる。図1に示されるように、EBIシステム100は、メインチャンバ101、装填/ロックチャンバ102、ビームツール104及び機器フロントエンドモジュール(EFEM)106を含む。ビームツール104は、メインチャンバ101内に位置する。EFEM 106は、第1の装填ポート106a及び第2の装填ポート106bを含む。EFEM 106は、追加の装填ポートを含み得る。第1の装填ポート106a及び第2の装填ポート106bは、検査予定のウェーハ(例えば、半導体ウェーハ若しくは他の材料で作られたウェーハ)又はサンプルを含むウェーハ前面開口式一体型ポッド(FOUP)を受け取る(ウェーハとサンプルは交換可能に使用することができる)。「ロット」は、バッチとして処理するために装填することができる多数のウェーハである。
[0032] EFEM 106の1つ又は複数のロボットアーム(図示せず)は、装填/ロックチャンバ102にウェーハを移送することができる。装填/ロックチャンバ102は、装填/ロック真空ポンプシステム(図示せず)に接続され、装填/ロック真空ポンプシステムは、大気圧を下回る第1の圧力に達するように装填/ロックチャンバ102内の気体分子を取り除く。第1の圧力に達した後、1つ又は複数のロボットアーム(図示せず)は、装填/ロックチャンバ102からメインチャンバ101にウェーハを移送することができる。メインチャンバ101は、メインチャンバ真空ポンプシステム(図示せず)に接続され、メインチャンバ真空ポンプシステムは、第1の圧力を下回る第2の圧力に達するようにメインチャンバ101内の気体分子を取り除く。第2の圧力に達した後、ウェーハに対して、ビームツール104による検査が行われる。ビームツール104は、シングルビームシステム又はマルチビームシステムであり得る。
[0033] コントローラ109は、ビームツール104に電子的に接続される。コントローラ109は、EBIシステム100の様々な制御を実行するように構成されたコンピュータであり得る。図1では、コントローラ109は、メインチャンバ101、装填/ロックチャンバ102及びEFEM 106を含む構造の外部のものとして示されているが、コントローラ109は、構造の一部でもあり得ることが理解されている。
[0034] いくつかの実施形態では、コントローラ109は、1つ又は複数のプロセッサ(図示せず)を含み得る。プロセッサは、情報の操作又は処理が可能な汎用又は特定の電子デバイスであり得る。例えば、プロセッサは、中央処理装置(又は「CPU」)、グラフィックス処理ユニット(又は「GPU」)、光プロセッサ、プログラマブルロジックコントローラ、マイクロコントローラ、マイクロプロセッサ、デジタル信号プロセッサ、知的財産(IP)コア、プログラマブルロジックアレイ(PLA)、プログラマブルアレイロジック(PAL)、汎用アレイロジック(GAL)、プログラム可能な複合論理デバイス(CPLD)、フィールドプログラマブルゲートアレイ(FPGA)、システムオンチップ(SoC)、特定用途向け集積回路(ASIC)、及びデータ処理が可能な任意のタイプの回路のいかなる数のいかなる組合せも含み得る。また、プロセッサは、ネットワークを介して結合される複数のマシン又はデバイスにわたって分散された1つ又は複数のプロセッサを含む仮想プロセッサでもあり得る。
[0035] いくつかの実施形態では、コントローラ109は、1つ又は複数のメモリ(図示せず)をさらに含み得る。メモリは、プロセッサによるアクセスが可能な(例えば、バスを介して)コード及びデータの格納が可能な汎用又は特定の電子デバイスであり得る。例えば、メモリは、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、光ディスク、磁気ディスク、ハードドライブ、ソリッドステートドライブ、フラッシュドライブ、セキュリティデジタル(SD)カード、メモリスティック、コンパクトフラッシュ(CF)カード又は任意のタイプの記憶装置のいかなる数のいかなる組合せも含み得る。コードは、オペレーティングシステム(OS)や、特定のタスクのための1つ又は複数のアプリケーションプログラム(又は「アプリ」)を含み得る。また、メモリは、ネットワークを介して結合される複数のマシン又はデバイスにわたって分散された1つ又は複数のメモリを含む仮想メモリでもあり得る。
[0036] 図2は、本開示の実施形態と一致する、例示的なマルチビームビームツール104(本明細書では装置104とも呼ばれる)と、EBIシステム100(図1)で使用するように構成することができる画像処理システム290の概略図を示す。
[0037] ビームツール104は、荷電粒子源202、ガンアパーチャ204、集光レンズ206、荷電粒子源202から放出された一次荷電粒子ビーム210、供給源変換ユニット212、一次荷電粒子ビーム210の多数のビームレット214、216、及び218、一次投影光学系220、電動ウェーハステージ280、ウェーハホルダ282、複数の二次荷電粒子ビーム236、238、及び240、二次光学系242及び荷電粒子検出デバイス244を含む。一次投影光学系220は、ビームセパレータ222、偏向走査ユニット226及び対物レンズ228を含み得る。荷電粒子検出デバイス244は、検出サブ領域246、248、及び250を含み得る。
[0038] 荷電粒子源202、ガンアパーチャ204、集光レンズ206、供給源変換ユニット212、ビームセパレータ222、偏向走査ユニット226及び対物レンズ228は、装置104の主光軸260と位置合わせすることができる。二次光学系242及び荷電粒子検出デバイス244は、装置104の副光軸252と位置合わせすることができる。
[0039] 荷電粒子源202は、電子、陽子、イオン、ミューオン又は他の電荷を帯びたあらゆる粒子など、1つ又は複数の荷電粒子を放出することができる。いくつかの実施形態では、荷電粒子源202は、電子源であり得る。例えば、荷電粒子202は、カソード、抽出器又はアノードを含み得、一次電子は、カソードから放出し、次いで、抽出するか又は加速させ、クロスオーバー(虚像又は実像)208を伴う一次荷電粒子ビーム210(この事例では、一次電子ビーム)を形成することができる。曖昧性をもたらすことなく説明を容易にするため、本明細書の説明の一部では、電子が例として使用される。しかし、この開示の実施形態では、電子に限定されず、いかなる荷電粒子も使用できることに留意すべきである。一次荷電粒子ビーム210は、クロスオーバー208から放出されているように視覚化され得る。ガンアパーチャ204は、クーロン効果を低減するために、一次荷電粒子ビーム210の周辺の荷電粒子をブロックすることができる。クーロン効果は、プローブスポットのサイズの増加をもたらし得る。
[0040] 供給源変換ユニット212は、像形成要素アレイ及びビーム制限アパーチャアレイを含み得る。像形成要素アレイは、マイクロ偏向器又はマイクロレンズアレイを含み得る。像形成要素アレイは、一次荷電粒子ビーム210の多数のビームレット214、216、及び218を用いてクロスオーバー208の多数の平行像(虚像又は実像)を形成することができる。ビーム制限アパーチャアレイは、多数のビームレット214、216、及び218を制限することができる。図2には3つのビームレット214、216、及び218が示されているが、本開示の実施形態は、そのように限定されない。例えば、いくつかの実施形態では、装置104は、第1の数のビームレットを生成するように構成することができる。いくつかの実施形態では、第1の数のビームレットは、1~1000の範囲であり得る。いくつかの実施形態では、第1の数のビームレットは、200~500の範囲であり得る。例示的な実施形態では、装置104は、400のビームレットを生成することができる。
[0041] 集光レンズ206は、一次荷電粒子ビーム210を集束させることができる。供給源変換ユニット212の下流のビームレット214、216、及び218の電流は、集光レンズ206の集束力を調整することによって又はビーム制限アパーチャアレイ内の対応するビーム制限アパーチャの半径サイズを変更することによって、変化させることができる。対物レンズ228は、撮像のためにウェーハ230にビームレット214、216、及び218を集束させることができ、ウェーハ230の表面上に多数のプローブスポット270、272、及び274を形成することができる。
[0042] ビームセパレータ222は、静電双極子場及び磁気双極子場を生成するウィーンフィルタタイプのビームセパレータであり得る。いくつかの実施形態では、それらの場が印加された場合、静電双極子場によってビームレット214、216、及び218の荷電粒子(例えば、電子)にかかる力は、磁気双極子場によって荷電粒子にかかる力に対して、大きさは実質的に等しく、方向は反対方向であり得る。従って、ビームレット214、216、及び218は、ビームセパレータ222をゼロ偏向角度で真っすぐに通過することができる。しかし、ビームセパレータ222によって生成されるビームレット214、216、及び218の全分散は、ゼロ以外でもあり得る。ビームセパレータ222は、ビームレット214、216、及び218から二次荷電粒子ビーム236、238、及び240を分離し、二次荷電粒子ビーム236、238、及び240を二次光学系242に向けて誘導することができる。
[0043] 偏向走査ユニット226は、ウェーハ230の表面エリアにわたって走査プローブスポット270、272、及び274を走査するために、ビームレット214、216、及び218を偏向することができる。ビームレット214、216、及び218がプローブスポット270、272、及び274に入射することに応答して、二次荷電粒子ビーム236、238、及び240をウェーハ230から放出することができる。二次荷電粒子ビーム236、238、及び240は、エネルギーが分布した荷電粒子(例えば、電子)を含み得る。例えば、二次荷電粒子ビーム236、238、及び240は、二次電子(エネルギー≦50eV)及び後方散乱電子(50eVとビームレット214、216、及び218の着地エネルギーとの間のエネルギー)を含む二次電子ビームであり得る。二次光学系242は、二次荷電粒子ビーム236、238、及び240を荷電粒子検出デバイス244の検出サブ領域246、248、及び250に集束させることができる。検出サブ領域246、248、及び250は、対応する二次荷電粒子ビーム236、238、及び240を検出し、ウェーハ230の表面エリアの画像を再構築するために使用される対応する信号(例えば、電圧、電流など)を生成するように構成することができる。
[0044] 生成された信号は、二次荷電粒子ビーム236、238、及び240の強度を表し得、荷電粒子検出デバイス244、一次投影光学系220及び電動ウェーハステージ280と連通する画像処理システム290に信号を提供することができる。電動ウェーハステージ280の移動速度は、ウェーハ230上のエリアの連続ビーム走査間の時間間隔を調整するために調整することができる。時間間隔は、異なる抵抗・容量特性を有するウェーハ230上の異なる材料によって撮像タイミングの感度の変化が現れるという理由で調整する必要があり得る。
[0045] 二次荷電粒子ビーム236、238、及び240の強度は、ウェーハ230の外部又は内部の構造に従って変化させることができ、従って、ウェーハ230が欠陥を含むかどうかを示すことができる。その上、上記で論じられるように、異なる強度の二次荷電粒子ビーム236、238、及び240を発生させるため、ビームレット214、216、及び218は、ウェーハ230の上面の異なる場所又はウェーハ230の異なる側の特定の場所に投影することができる。従って、二次荷電粒子ビーム236、238、及び240の強度をウェーハ230のエリアとマッピングすることにより、画像処理システム290は、ウェーハ230の内部又は外部の構造の特性を反映した画像を再構築することができる。
[0046] いくつかの実施形態では、画像処理システム290は、画像取得器292、ストレージ294及びコントローラ296を含み得る。画像取得器292は、1つ又は複数のプロセッサを含み得る。例えば、画像取得器292は、コンピュータ、サーバ、メインフレームホスト、端末、パーソナルコンピュータ、任意の種類のモバイルコンピューティングデバイス及び同様のもの、又は、それらの組合せを含み得る。画像取得器292は、導電体、光ファイバケーブル、ポータブル記憶媒体、IR、Bluetooth、インターネット、ワイヤレスネットワーク、ワイヤレス無線機又はこれらの組合せなどの媒体を通じて、ビームツール104の荷電粒子検出デバイス244に通信可能に結合することができる。いくつかの実施形態では、画像取得器292は、荷電粒子検出デバイス244から信号を受信し、画像を構築することができる。従って、画像取得器292は、ウェーハ230の画像を取得することができる。また、画像取得器292は、輪郭の生成、取得画像へのインジケータの重畳及び同様のものなどの様々な後処理機能を実行することもできる。画像取得器292は、取得画像の明度及びコントラストの調整を実行するように構成することができる。いくつかの実施形態では、ストレージ294は、ハードディスク、フラッシュドライブ、クラウドストレージ、ランダムアクセスメモリ(RAM)、他のタイプのコンピュータ可読メモリ及び同様のものなどの記憶媒体であり得る。ストレージ294は、画像取得器292と結合し、走査された生の画像データをオリジナルの画像として保存したり、後処理された画像を保存したりするために使用することができる。画像取得器292及びストレージ294は、コントローラ296に接続することができる。いくつかの実施形態では、画像取得器292、ストレージ294及びコントローラ296は、1つの制御ユニットとしてまとめて統合することができる。
[0047] いくつかの実施形態では、画像取得器292は、荷電粒子検出デバイス244から受信された撮像信号に基づいてウェーハの1つ又は複数の画像を取得することができる。撮像信号は、荷電粒子撮像を実施するための走査動作に相当し得る。取得画像は、多数の撮像エリアを含む単一の画像であり得る。単一の画像は、ストレージ294に格納することができる。単一の画像は、多数の領域に分割され得るオリジナルの画像であり得る。領域の各々は、ウェーハ230の特徴を含む撮像エリアを1つずつ含み得る。取得画像は、時系列にわたって複数回サンプリングされたウェーハ230の単一の撮像エリアの複数の画像を含み得る。複数の画像は、ストレージ294に格納することができる。いくつかの実施形態では、画像処理システム290は、ウェーハ230の同じ場所の複数の画像を用いて画像処理ステップを実行するように構成することができる。
[0048] いくつかの実施形態では、画像処理システム290は、検出された二次荷電粒子(例えば、二次電子)の分布を得るために、測定回路(例えば、アナログ/デジタル変換器)を含み得る。検出時間窓の間に収集された荷電粒子分布データは、ウェーハ表面に入射したビームレット214、216、及び218の対応する走査経路データと組み合わせて、検査中のウェーハ構造の画像を再構築するために使用することができる。再構築された画像は、ウェーハ230の内部又は外部の構造の様々な特徴を明らかにするために使用することができ、従って、ウェーハに存在し得るいかなる欠陥も明らかにするために使用することができる。
[0049] いくつかの実施形態では、荷電粒子は電子であり得る。一次荷電粒子ビーム210の電子がウェーハ230の表面に投影されると(例えば、プローブスポット270、272、及び274)、一次荷電粒子ビーム210の電子は、ウェーハ230の表面下の一定の深さまで侵入し、ウェーハ230の粒子と相互作用する。一次荷電粒子ビーム210のいくつかの電子は、ウェーハ230の粒子と弾性的に(例えば、弾性散乱又は衝突の形態で)相互作用し、ウェーハ230の表面から反射又は反跳し得る。弾性相互作用は、相互作用の物体(例えば、一次荷電粒子ビーム210の電子及びウェーハ230の粒子)の総運動エネルギーを保存し、相互作用物体の運動エネルギーが他の形態のエネルギー(例えば、熱、電磁エネルギーなど)に変換されることはない。弾性相互作用から発生するそのような反射電子は、後方散乱電子(BSE)と呼ぶことができる。一次荷電粒子ビーム210のいくつかの電子は、ウェーハ230の粒子と非弾性的に(例えば、非弾性散乱又は衝突の形態で)相互作用し得る。非弾性相互作用は、相互作用の物体の総運動エネルギーを保存せず、相互作用物体の運動エネルギーの一部又はすべてが他の形態のエネルギーに変換される。例えば、非弾性相互作用を通じて、一次荷電粒子ビーム210のいくつかの電子の運動エネルギーは、電子励起及び粒子の原子の遷移を引き起こし得る。また、そのような非弾性相互作用により、ウェーハ230の表面から電子が出射し得、それは、二次電子(SE)と呼ぶことができる。BSE及びSEの収率又は放出率は、数ある中でも特に、例えば、検査中の材料や、材料の表面に着地する一次荷電粒子ビーム210の電子の着地エネルギーに依存する。一次荷電粒子ビーム210の電子のエネルギーは、その加速電圧(例えば、図2の荷電粒子源202のアノードとカソードとの間の加速電圧)によって部分的に付与することができる。BSE及びSEの量は、一次荷電粒子ビーム210の注入電子より多くとも少なくとも(又は同じでも)よい。
[0050] SEMによって生成された画像は、欠陥検査のために使用することができる。例えば、ウェーハのテストデバイス領域を捕捉した生成画像は、同じテストデバイス領域を捕捉した参照画像と比較することができる。参照画像は、既定のもの(例えば、シミュレーションによる)であり得、公知の欠陥を含まないものであり得る。生成画像と参照画像との間の差が許容レベルを超える場合は、潜在的な欠陥を識別することができる。別の例として、SEMは、各領域が同じように設計されたテストデバイス領域を含むウェーハの複数の領域を走査し、製造時にそれらのテストデバイス領域を捕捉した複数の画像を生成することができる。複数の画像は、互いに比較することができる。複数の画像間の差が許容レベルを超える場合は、潜在的な欠陥を識別することができる。
[0051] 電圧コントラスト欠陥は、多くの様々なタイプの欠陥のうちの1つである。ウェーハのテストデバイス領域は、異なる層を有するなど、三次元で設計及び製造することができる。異なる層のいくつかのテストデバイス領域は、導電接触(「インターコネクタ」)によって接続されるなど、電気的に相互接続されるように設計することができる。異なる層のいくつかのテストデバイス領域は、その間を非導電性又は絶縁性の材料(「絶縁体」)で埋める(すなわち、その間に設計されたインターコネクタがない)など、電気的に絶縁されるように設計することができる。しかし、製造プロセスの変動により、設計されたインターコネクタは、非導電性又は標準未満の(例えば、導電性であるが抵抗が高い)ものとして製造され得る。同様に、設計された絶縁体は、導電性(例えば、設計されていないインターコネクタを形成する)又は標準未満の(例えば、絶縁性であるが絶縁破壊電圧が低い)ものとして製造され得る。検査中の場合、それらの欠陥は、テストデバイス領域の表面に到達する荷電粒子ビームのエネルギー(「着地エネルギー」)、荷電粒子ビーム中の荷電粒子の量(「ビーム電流」)又は他の検査条件に対する感度が高くなり得る。荷電粒子ビームの異なる着地エネルギー又はビーム電流により、欠陥がある領域は、出射荷電粒子の異なる収率、出射荷電粒子の収率の異なる変化又は同様のものなど、異なる応答(「電圧コントラスト応答」)を有し得る。異なる電圧コントラスト応答は、生成画像における異なるコントラストレベルをもたらし得る。コントラストレベルは、周囲の領域より明るくなる又は暗くなるように欠陥を表示することも、周囲の領域と区別がつかなくなるように欠陥を表示することもできる。従って、この種の欠陥は、「電圧コントラスト欠陥」と呼ばれ、電圧コントラスト応答を示す画像は、「電圧コントラスト画像」と呼ばれる。
[0052] インターコネクタが設計通りに製造され、インターコネクタによって下層に接続された表面に荷電粒子ビームが投影される際、下層は、荷電粒子ビームによってウェーハに持ち込まれた外部の荷電粒子を排出するためのグランド(「十分に接地されたもの」)として機能し得る。しかし、インターコネクタが非導電性又は標準未満のものとして製造されている場合、下層は、十分に接地されていない可能性があり、外部の荷電粒子は、全く排出できないか又は十分に接地されたシナリオほど速く排出できない。同様に、絶縁体が設計通りに製造され、下層に対して絶縁された表面に荷電粒子ビームが投影される際、下層は、十分に絶縁され、外部の荷電粒子は排出されないことになる。しかし、絶縁体が導電性又は標準未満のものとして製造されている場合、下層は、完全に接地されているか又は低い絶縁破壊電圧を有し得、外部の荷電粒子は、即時に排出されるか又は低い絶縁破壊電圧に達した後に排出され得る。正常なインターコネクタ又は絶縁体と比較すると、欠陥があるものは、異常な電圧コントラスト応答をもたらし得、欠陥があるインターコネクタ又は絶縁体の電圧コントラスト画像は、正常なインターコネクタ又は絶縁体のものとは異なり得る(例えば、より明るいか又はより暗い)。
[0053] 図3は、本開示の実施形態と一致する、一次電子ビームレットの着地エネルギーに対する二次電子の収率を示す例示的なグラフを示す。グラフは、一次荷電粒子ビームの多数のビームレット(例えば、図2の一次荷電粒子ビーム210の多数のビームレット214、216、及び218)の着地エネルギーと二次荷電粒子ビーム(例えば、図2の二次荷電粒子ビーム236、238、及び240)の収率との関係を示す。収率は、一次電子の衝撃に応答して発生した二次電子の数を示す。例えば、1.0より高い収率は、ウェーハに着地した一次電子の数よりも多くの二次電子が発生し得ることを示す。同様に、1.0より低い収率は、一次電子の衝撃に応答してより少ない二次電子が発生し得ることを示す。
[0054] 図3のグラフに示されるように、一次電子の着地エネルギーがE1~E2の範囲内にある場合は、ウェーハの表面に着地するよりも多くの電子がウェーハの表面を離れ、それにより、ウェーハの表面には正の電位が生じ得る。いくつかの実施形態では、欠陥検査は、「正モード」と呼ばれる前述の着地エネルギーの範囲で実行することができる。正モードでは、表面を離れる二次電子は、表面の正の電位に引き付けられ得る。表面電位の正の割合が高いほど、検出デバイス(例えば、図2の検出デバイス244)に到達する二次電子が少なくなり得、ビームツール(例えば、図2のマルチビームビームツール104)は、検査面に対して、より暗い画像を生成し得る。
[0055] 着地エネルギーがEより低いか又はEより高い場合は、より少ない電子がウェーハの表面を離れ、それにより、ウェーハの表面には負の電位が生じ得る。いくつかの実施形態では、欠陥検査は、「負モード」と呼ばれるこの着地エネルギーの範囲で実行することができる。負モードでは、表面を離れる二次電子は、表面の負の電位によって跳ね返され得る。表面電位の負の割合が高いほど、検出デバイスに到達する二次電子が多くなり得、ビームツールは、検査面に対して、より明るい画像を生成し得る。
[0056] いくつかの実施形態では、一次荷電粒子ビームの着地エネルギーは、荷電粒子源とウェーハとの間の全バイアス又は電圧によって制御することができる。
[0057] 図4Aは、本開示の実施形態と一致する、ウェーハの電圧コントラスト応答の概略図を示す。いくつかの実施形態では、ビームツール(例えば、図2のマルチビームビームツール104)は、ウェーハ(例えば、図2のウェーハ230)の内部又は外部の構造の欠陥を検出するために使用することができ、この検出は、一次荷電粒子ビームの多数のビームレット(例えば、図2の一次荷電粒子ビーム210の多数のビームレット214、216、及び218)をウェーハに照射し、その照射に対するウェーハの電圧コントラスト応答を測定することによって行うことができる。いくつかの実施形態では、ウェーハは、基板410上に製造されたテストデバイス領域420を含み得る。基板410は、導電性であり、接地することができる。いくつかの実施形態では、構造420は、絶縁材料450によって分離された構造430及び440を含む複数の導電性構造を含み得る。例えば、テストデバイス領域430は、基板410に導電接続することができる。対照的には、テストデバイス領域440は、テストデバイス領域440と基板410との間に絶縁体テストデバイス領域470(例えば、酸化物)が存在するように、絶縁材料450によって基板410から分離されている。
[0058] ビームツールは、一次荷電粒子ビームの多数のビームレット(例えば、図2の一次荷電粒子ビーム210の多数のビームレット214、216、及び218)でテストデバイス領域420の表面を走査することによって、テストデバイス領域420の表面から二次電子(例えば、図2の二次荷電粒子ビーム236、238、及び240)を発生させることができる。上記で説明されるように、一次電子の着地エネルギーがEとEとの間(すなわち、正モード)にある場合は、ウェーハの表面に着地するよりも多くの電子がウェーハの表面を離れ、それにより、ウェーハの表面には正の電位が生じ得る。
[0059] 図4Aに示されるように、ウェーハの表面には正の電位が蓄積し得る。例えば、ビームツールがテストデバイス領域420を走査した後、テストデバイス領域440は基板410から絶縁されていることを理由に、テストデバイス領域440は、より多くの正電荷を保持し、それにより、テストデバイス領域440の表面には正の電位が生じ得る。対照的には、同じ着地エネルギー(すなわち、同じ収率)を有する一次電子をテストデバイス領域430に適用すると、基板410とテストデバイス領域430との間の導電接触を通じて基板410がテストデバイス領域430に電子を供給して正電荷を中和することを理由に、テストデバイス領域430に保持される正電荷が少なくなり得る。
[0060] ビームツール(例えば、図2のマルチビームビームツール104)の画像処理システム(例えば、図2の画像処理システム290)は、テストデバイス領域430及び440にそれぞれ対応する電圧コントラスト画像435及び445などの電圧コントラスト応答を示す画像(「電圧コントラスト画像」)を生成することができる。例えば、基板410へのその導電相互接続により(すなわち、グランドとして)、テストデバイス領域430は、検査の間、正電荷をほとんど保持せず、より多くの二次電子を跳ね返し得る。その結果、電圧コントラスト画像435は、明るい画像になり得る。対照的には、基板410又は他の任意のグランドからのその絶縁により、テストデバイス領域440には正電荷が蓄積し、それにより、検査の間、テストデバイス領域440が跳ね返す二次電子は少なくなり得る。その結果、電圧コントラスト画像445は、暗い画像になり得る。
[0061] いくつかの実施形態では、ビームツールは、ウェーハの表面に電子を供給して電位を蓄積させるために、ウェーハの表面を事前走査することができる。事前走査は、高電流一次荷電粒子ビームを使用することができる。事前走査の後、ビームツールは、低電流一次荷電粒子ビームを使用してウェーハ内の複数のダイの画像を取得することができる。ダイは同一のテストデバイス領域を含み得るため、ダイツーダイ(D2D:die-to-die)検査法と呼ばれる、複数のダイからの電圧コントラスト画像における差を比較することによって、欠陥を検出することができる。例えば、1つの画像の電圧コントラスト応答(例えば、画像明度)が他の画像の電圧コントラスト応答と異なる場合は、異なる電圧コントラスト応答に対応するダイは、潜在的な欠陥を有し得る。
[0062] 事前走査は、検査の間、事前走査の間にウェーハの表面に蓄積した表面電位が保持され、ビームツールの検出閾値を上回った状態で維持されるという仮定の下で、ウェーハに適用することができる。しかし、いくつかの事例では、検査の間、電気絶縁破壊又はトンネリングの影響により、蓄積した表面電位レベルは変化し得、それにより、電圧コントラスト欠陥の検出に失敗することがある。
[0063] 例えば、テストデバイス領域440(例えば、タングステンプラグ)及び基板410(電界効果トランジスタ(FET)のソース又はドレイン領域)は、テストデバイス領域430及び基板410と同様に導電相互接続されるように設計することができる。しかし、製造プロセスの変動(例えば、エッチングプロセスの欠陥)により、テストデバイス領域440は、標準未満のものとして製造される場合があり、その場合、テストデバイス領域440と基板410との間に絶縁体テストデバイス領域470(例えば、酸化物の薄層)が形成され得る。例えば、酸化物層は、10ナノメートルより薄いコバルトシリサイド(例えば、CoSi、CoSi2、Co2Si、Co3Siなど)層であり得る。これは、検出すべき欠陥である。しかし、事前走査の間、薄い絶縁体テストデバイス領域470に高電圧が印加されて電気絶縁破壊が生じ得、その場合、漏れ電流が、薄い絶縁体テストデバイス領域470を流れ(すなわち、基板410内の電子が、標準未満の絶縁体テストデバイス領域470を通じてテストデバイス領域440へと排出され)、テストデバイス領域440が中和され得る。その結果、電圧コントラスト画像445は、想定よりも明るくなり得る。電子排出プロセスが十分な速度である場合は、事前走査後及び撮像プロセス前には、テストデバイス領域440は中和されており、それにより、電圧コントラスト画像445は、電圧コントラスト画像435と区別がつかなくなり得る。電子の高速排出を理由に、ビームツールがビーム電流を速く調整すること(例えば、事前走査から撮像に素早く切り替えること)ができない場合は、欠陥があるテストデバイス領域440は検出されない可能性がある。
[0064] 電圧コントラスト画像445、446、及び447は、ビームツールが超高速ビーム電流調整を提供するシナリオにおける、欠陥があるテストデバイス領域440の異なる電圧コントラスト応答を示す。ビームツールは、テストデバイス領域440を複数回撮像することができる。図4Aに示されるように、テストデバイス領域440は、時間の経過と共に、徐々に中和され、結果として得られる電圧コントラスト画像は、暗いものから明るいものへと徐々に変化し得る。一定の時間が経過すると、電圧コントラスト画像447は、電圧コントラスト画像435と区別がつかなくなり得る。
[0065] そのような電圧コントラスト欠陥の検出における課題は、上記で説明される事前走査及び撮像プロセスにおいて、既存のビームツールがビーム電流を十分な速度で調整できないことである。既存のビームツールでは、ビーム電流は、荷電粒子源(例えば、図2の荷電粒子源202)及びガンアパーチャ(例えば、図2のガンアパーチャ204)によって制御することができる。ビーム電流は、ガンアパーチャのサイズ、荷電粒子源の放出率又はその両方を調整することによって調整することができる。しかし、ガンアパーチャ又は荷電粒子源のそのような調整は非常に遅い可能性がある。その上、そのような調整は、撮像プロセスの間に行うことはできない。超高速ビーム電流調整の提供の失敗により、既存のビームツールは、適時に且つ低コストで前述の電圧コントラスト欠陥を検出する能力の提供に失敗し得る。
[0066] 画像の明暗の外観は、テストデバイス領域の実際の処理又はビームツール設定に応じて変更又は逆転できることが当業者には理解されている。
[0067] 図4Bは、本開示の実施形態と一致する、時系列にわたる例示的な電圧コントラスト画像を示す。図4Bは、事前走査段階452及び検査段階454を含むウェーハ検査における事前走査及び撮像プロセスを示す。事前走査段階452の間、ビームツール(例えば、図2のEBI 104)は、ウェーハの表面エリアに電子を印加して、表面エリア上に電位を蓄積することができる(簡単にするために「帯電」と呼ばれる)。ビームツールは、1つ又は複数の高電流ビームを使用して、表面エリアを帯電させ、その電圧コントラスト応答に基づいて表面エリアの電圧コントラスト画像を構築することができる。検査段階454の間、EBIシステムは、走査のための1つ又は複数の低電流ビームを使用して表面エリアの1つ又は複数の電圧コントラスト画像を構築することができる。走査は、時系列で表面エリアの電圧コントラスト応答を示す一連の電圧コントラスト画像を生成するために複数回繰り返すことができる。EBIシステムは、異なる時間における同じ表面エリアの複数の電圧コントラスト画像を比較することによって、経時的な表面エリア上の電位の変化を検出することができ、それにより、デバイス欠陥の存在を示すことができる。
[0068] いくつかの実施形態では、電圧コントラスト画像は、マルチビームEBIシステムによって構築することができる。例えば、電動ステージは、一次荷電粒子ビーム(例えば、図2の一次荷電粒子ビーム210)の第1のビームレットが時刻Tpre1にウェーハの表面エリアを事前走査できるように、ウェーハを位置決めすることができる。次いで、電動ステージは、一次荷電粒子ビームの第2のビームレットが時刻Tpre2にウェーハの同じ表面エリアを事前走査できるように、ウェーハを位置決めすることができる。第1及び第2のビームレットは、高電流を有し得る。Tpre1及びTpre2では、表面エリアの電位は、第1及び第2のビームレットを使用してそれぞれ構築された電圧コントラスト画像456及び458に示されるように、検出可能な電圧コントラスト応答を有する任意の領域を示すほど十分に高くはない可能性がある。事前走査段階452の終了時には、電動ステージは、一次荷電粒子ビームの第3のビームレット(例えば、これも高電流を有する)が時刻Tpre3に表面エリアを事前走査できるように、ウェーハを位置決めすることができる。電圧コントラスト画像460は、第3のビームレットを使用して構築することができる。電圧コントラスト画像460に示されるように、事前走査段階452の終了時には、暗い電圧コントラスト(DVC)領域460a、460b、及び460cが現れ得る。
[0069] 事前走査段階452の後、一次荷電粒子ビームの第4、第5、第6、第7、第8又はさらなるビームレットは、時刻T1、T2、T3、T4、及びT5にそれぞれ、同じ事前帯電表面エリアを走査することができる。図4Bに示されるように、ビームツールは、第4、第5、第6、第7、及び第8のビームレットをそれぞれ使用して、電圧コントラスト画像462、464、466、468、及び470を構築することができる。例は、8つ以上のビームレットを使用できることを示しているが、8つ未満のビームレットを使用できることが理解されている。例えば、単一のビームレットが表面エリアの複数の画像を撮影できることが理解されている。
[0070] 時刻T1では、電圧コントラスト画像462は、ウェーハの表面エリア上に存在する3つのDVC領域460a、460b、及び460cを示す。DVC領域460a、460b、及び460cは、事前走査された表面エリアのデバイス構造に蓄積した表面電位を表し得る。時刻T2及びT3では、電圧コントラスト画像464及び466は、DVC領域464a、464b、及び464cを示し、これは、蓄積した正電荷がデバイス構造にとどまり、時刻Tpre3及びT1と変わらないままであることを示し得る。
[0071] 時刻T4及びT5では、電圧コントラスト画像468及び470は、DVC領域464a及び464cが依然として存在しているが、DVC領域464bが消失していることを示し、これは、漏れ電流が原因で、DVC領域464bに対応するデバイス構造が蓄積した正電荷を失った可能性があることを示し、それにより、DVC領域464bの表面電位は、検出不可能なレベルまで低下している(例えば、電気絶縁破壊に起因する)。例えば、DVC領域464bに対応するデバイス構造において蓄積した正電荷は、薄いデバイス構造欠陥(例えば、図4Aの絶縁体構造470を参照)を通じる電気絶縁破壊が原因で、中和された可能性がある。
[0072] ビームツールは、一次荷電粒子ビームのビームレットがウェーハの表面エリアをより高い又はより低い頻度で走査できるように、時間間隔(例えば、TとTとの間の時間スパン)を調整することができる。例えば、微妙な電圧コントラスト欠陥からの信号差が得られるように時間間隔を5nsと短くすることができ、それにより、電圧コントラストウェーハ検査の感度を高めることができる。有利には、ビームツールは、ウェーハの同じ表面エリアの電圧コントラスト画像456、458、460、462、464、466、468、470又はさらなる画像を比較して、時系列にわたるDVC領域の変化を検出し、デバイス構造欠陥を識別することができる。
[0073] 図4Bは、ビームツールから得られた3つの事前走査電圧コントラスト画像及び5つの検査電圧コントラスト画像を示しているが、ウェーハにおけるデバイス構造欠陥を検出するためにいかなる数の画像も使用できることが理解されている。その上、図4Bに示される電圧コントラスト画像は暗い電圧コントラストを使用する検出メカニズムを示しているが、ビームツールが負モードで動作する場合には、明るい電圧コントラストを使用できることも理解されている。例えば、いくつかの実施形態では、ウェーハは、ビームツールが正モード(例えば、E1<着地エネルギー<E2)で動作していることが原因で、正の表面電位を有し得る。いくつかの実施形態では、ウェーハは、ビームツールが負モード(例えば、着地エネルギー<E1又は着地エネルギー>E2)で動作していることが原因で、負の電位を有し得る。
[0074] 図4Bに示されるような事前走査及び撮像プロセスにおける課題は、事前走査段階452と検査段階454との間でビーム電流を高電流から低電流に切り替えるのが難しいことである。すなわち、Tpre3とT1との間での電流切り替えに長時間を要する可能性がある。そのような状況では、Tpre3とTとの間では、いくつかの領域(例えば、DVC領域464b)の表面電位は、検出不可能なレベルまで低下し得、従って、検査段階(例えば、検査段階454)の初めから、検出不可能になり得る。
[0075] 図5は、本開示の実施形態と一致する、超高速ビーム電流調整能力を有する例示的なビームツール500を示す概略図である。ビームツール500は、シングルビームツール(例えば、シングルビームSEM)又はマルチビームツール(例えば、図2のビームツール104)であり得る。例えば、ビームツール500は、ビーム形成ユニットを含み得る。ビーム形成ユニットは、単一電子ビームを集束及び形成することも、多数の電子ビーム(又は「ビームレット」)を集束及び形成することもできる。例えば、ビーム形成ユニットは、複数のビームを形成するための供給源変換ユニット212であっても、供給源変換ユニット212を含んでもよい。簡潔な説明のため、図5は、ビームツール500のすべてのコンポーネントを示しているとは限らず、図1及び2と同じ番号を有するコンポーネントは、コントローラ109、荷電粒子源202、ガンアパーチャ204、集光レンズ206、一次荷電粒子ビーム210、偏向走査ユニット226、対物レンズ228及びウェーハ230を含めて、以前に説明されるものと同じ又は同様の機能を有する同じ又は同様のコンポーネントを表す。ビームツール500は、検出システム(例えば、二次光学系242及び検出デバイス244を含む)、撮像処理システム(例えば、画像処理システム290)、一次光学系(例えば、一次投影光学系220)の他のコンポーネント又は同様のものなど、さらなるコンポーネントを含み得ることに留意すべきである。また、ビームツール500は、コンポーネントを異なる順番で配置できることも留意すべきである。例えば、偏向走査ユニット226は、対物レンズ228の上流(図2のように)に位置しても、下流(図5のように)に位置してもよい。この開示は、ビームツール500のコンポーネントの数、タイプ又は配置を制限するものではない。
[0076] ビームツール500は、エミッションブースタ502をさらに含む。コントローラ109は、ビームツール500による超高速ビーム電流調整が可能になるように、エミッションブースタ502及び偏向走査ユニット226を制御することができる。
[0077] 図5では、荷電粒子源202は、電子を放出するように構成することができる。いくつかの実施形態では、荷電粒子源は、熱電子荷電粒子源又は冷陰極電界放出荷電粒子源であり得る。エミッションブースタ502は、電子放出を増大するために、荷電粒子源202に電磁放射線504を投射することができる。電磁放射線504は、例えば、電波(例えば、長波、短波若しくはマイクロ波)、赤外線、可視光線、紫外線、X線、ガンマ線又は同様のものなど、ある波長を有する電磁波であり得る。いくつかの実施形態では、電磁放射線504は、電磁波の1つ又は複数の指向性光線(例えば、可視光ビーム)であり得る。いくつかの実施形態では、電磁放射線504は、レーザであり得る。例えば、荷電粒子源202は、フォトカソードを含み得、フォトカソードは、光電子又は光子放出効果により、電磁放射線504の投射下で、より多くの電子を放出することができる。いくつかの実施形態では、エミッションブースタ502は、レーザ(例えば、Nd:YAGレーザ)を投射するように構成されたレーザジェネレータであり得る。いくつかの実施形態では、レーザは、自由電子レーザ(FEL)であり得る。いくつかの実施形態では、レーザは、パルスレーザであり得る(例えば、フェムト秒レーザなど、各パルスは、100ナノ秒未満の持続時間を有する)。例えば、レーザジェネレータは、フォトカソードによって放出される電子を増加させるために、フォトカソードにレーザを投射するように構成することができる。いくつかの実施形態では、レーザジェネレータがフォトカソードにレーザを投射する際、レーザは、超高速時間(例えば、10、20、40、60ナノ秒又は同様のものなど、100ナノ秒以内)で電子放出を増大させることができる。コントローラ109が、サンプル(例えば、ウェーハ230)を走査するように偏向走査ユニット226を制御している間、コントローラ109は、電磁放射線504を投射するようにエミッションブースタ502を制御することができる。例えば、コントローラ109は、偏向走査ユニット226の走査動作の第1のサイクルにおいて電磁放射線504を投射するように及び走査動作の第2のサイクルにおいて電磁放射線504の投射を停止するようにエミッションブースタ502を制御することができる。走査動作の第1のサイクルは、走査動作の第2のサイクルの前後に起こり得る。
[0078] いくつかの実施形態では、偏向走査ユニット226は、ウェーハ230の領域(例えば、長方形領域)をラインごとに走査することができるフレーム走査を実行するように、一次荷電粒子ビーム210(又は一次荷電粒子ビーム210の多数のビームレット214、216、及び218)を誘導することができる。図6は、本開示の実施形態と一致する、走査ラインを示す例示的なフレーム600の説明図である。フレーム600は、ウェーハ230の表面の領域であり得、ライン602~612を含む複数の走査ラインを含み得る。いくつかの実施形態では、フレーム600は、ラスタ方式で走査することができる。例えば、偏向走査ユニット226は、ライン602に沿って左から右へ走査を開始するように、一次荷電粒子ビーム210を誘導することができる。ライン602の走査を完了した後、偏向走査ユニット226は、左端に戻って、ライン602(例えば、ライン走査を繰り返すため)又はライン604(例えば、新しいライン走査のため)に沿って右への走査の開始に備えるように、一次荷電粒子ビーム210を誘導することができる。いくつかの実施形態では、フレーム600は、「先頭から末尾」方式で走査することができる。例えば、偏向走査ユニット226は、ライン602に沿って左から右へ走査を開始するように、一次荷電粒子ビーム210を誘導することができる。ライン602の走査を完了した後、偏向走査ユニット226は、ライン602(例えば、ライン走査を繰り返すため)又はライン604(例えば、新しいライン走査のため)に沿って右から左へ走査を開始するように、一次荷電粒子ビーム210の誘導に備えることができる。この開示は、走査方式をフレーム走査に限定するものではないことに留意すべきである。
[0079] いくつかの実施形態では、コントローラ109は、第1のサイクル及び第2のサイクルにおいてサンプルの同じライン(例えば、図6のライン602)を走査するようにエミッションブースタ502を制御することができる。すなわち、偏向走査ユニット226は、ライン602を2回走査するように、一次荷電粒子ビーム210を誘導することができ、1回目は、荷電粒子源202の電子放出を増大し、2回目は、電子放出を増大せずに行うことができる。いくつかの実施形態では、コントローラ109は、第1のサイクルにおいてサンプルの第1のラインを走査し、第2のサイクルにおいてサンプルの第2のラインを走査するようにエミッションブースタ502を制御することができる。例えば、第1のライン及び第2のラインは、図6のライン602及び604のそれぞれなど、走査用のフレームの近隣のラインであり得る。すなわち、偏向走査ユニット226は、電子放出の増大のオンとオフを交互に切り替えてフレーム600のラインを走査するように、一次荷電粒子ビーム210を誘導することができる。
[0080] いくつかの実施形態では、第1のサイクルの長さは、第2のサイクルの長さと実質的に均等であり得る。例えば、一次荷電粒子ビーム210の走査周波数は、一定であり得る。図7Aは、本開示の実施形態と一致する、ビームツール500の例示的な走査周波数の説明図である。図7Aでは、横軸は、タイムスタンプt1~t4及びt1’を含むタイムラインを表し、縦軸は、偏向走査ユニット226の偏向電圧を表す。図7Aは、走査方式がラスタ方式である場合の偏向電圧と時間との関係を示す。例えば、t1~t1’では、偏向電圧が増加し、偏向走査ユニット226は、ライン602に沿って左から右へ走査するように、一次荷電粒子ビーム210を誘導することができる。t1’~t2では、偏向電圧が減少し、偏向走査ユニット226は、左端に戻るように、一次荷電粒子ビーム210を誘導することができる。第1のサイクル及び第2のサイクルにおいてサンプルの同じライン(例えば、図6のライン602)を走査するようにエミッションブースタ502を制御するようにコントローラ109が構成されている場合は、t1’~t2の同じ時間の間、偏向走査ユニット226は、左端に戻るように、一次荷電粒子ビーム210を誘導することができる。t2~t3の間は、偏向走査ユニット226は、ライン602に沿って左から右へ走査して左端に戻るように、一次荷電粒子ビーム210を誘導することができる。第1のサイクル(例えば、t1~t2)において第1のライン(例えば、ライン602)を走査し、第2のサイクル(例えば、t2~t3)において第2のライン(例えば、ライン604)を走査するようにエミッションブースタ502を制御するようにコントローラ109が構成されている場合は、t1’~t2の同じ時間の間、電動ウェーハステージ(例えば、電動ウェーハステージ280)は、ライン604の走査に備えるようにウェーハ230を1行移動することができ、偏向走査ユニット226は、左端に戻るように、一次荷電粒子ビーム210を誘導することができる。t2~t3では、偏向走査ユニット226は、ライン604に沿って左から右へ走査して左端に戻るように、一次荷電粒子ビーム210を誘導することができる。上記の説明は左から右への走査を仮定しているが、実際の走査方向は、いかなる方向に沿ってでもよく、説明される例に限定されるものではないことに留意すべきである。
[0081] いくつかの実施形態では、偏向走査ユニット226は、実質的に均等なサイクルでラスタ走査を実行するように、一次荷電粒子ビーム210を誘導することができる。例えば、(t2-t1)、(t3-t2)及び(t4-t3)は、実質的に均等であり得、互いの差は、閾値時間差(例えば、10、20、40、60ナノ秒又は同様のもの)以下であり得る。図7Aでは、第1のライン(例えば、ライン602)を走査するための時間量(例えば、t2-t1)は、第2のライン(例えば、ライン604)を走査するための時間量(例えば、t3-t2)と実質的に均等であり得ることを示すことができる。いくつかの実施形態では、ラスタ走査は、不均等なサイクルで実行することができる。例えば、低電流下で走査される第2のラインよりも速く高電流下で第1のラインを走査することも、低電流下で走査される第2のラインよりも遅く高電流下で第1のラインを走査することもできる。
[0082] 図7Bは、本開示の実施形態と一致する、エミッションブースタ502の例示的な投射周波数の説明図である。図7Aでは、横軸は、タイムスタンプt1~t4を含むタイムラインを表し、縦軸は、エミッションブースタ502(例えば、パルスレーザジェネレータ)の動作電圧を表す。t1~t2では、動作電圧をオンに切り替えることができ、エミッションブースタ502は、荷電粒子源202に電磁放射線504を投射することができる。t2~t3では、動作電圧をオフに切り替えることができ、エミッションブースタ502は、荷電粒子源202への電磁放射線504の投射を停止することができる。エミッションブースタ502が荷電粒子源202に電磁放射線504を投射する際は、一次荷電粒子ビーム210は、光電子又は光子放出効果により、高電流を有し得る。エミッションブースタ502が荷電粒子源202への電磁放射線504の投射を停止する際は、一次荷電粒子ビーム210は、低電流を有し得る。
[0083] いくつかの実施形態では、図7A及び7Bに示されるように、コントローラ109は、エミッションブースタ502の電子放出を偏向走査ユニット226と同期させることができ、それにより、電子ビームが第1のライン(例えば、ライン602)の走査を開始する際(例えば、t1で)には、電子ビームは高電流を有し、電子ビームが第2のライン(例えば、ライン604)の走査を開始する際(例えば、t2で)には、電子ビームは低電流を有する。第1のライン及び第2のラインが実質的に均等なサイクルで走査されるか又は不均等なサイクルで走査されるかにかかわらず、コントローラ109は、電磁放射線504を投射するか又は電磁放射線504の投射を停止するために、エミッションブースタ502の電子放出をそのようなサイクルの開始時刻と同期させることができ、それにより、フレーム600のいかなるラインも、高電流ビーム又は低電流ビームによって全体的に走査することができる。
[0084] いくつかの実施形態では、コントローラ109は、走査動作の第3のサイクルにおいて電磁放射線504の投射を停止するようにエミッションブースタ502を制御することができ、第2のサイクル及び第3のサイクルにおいてサンプルの同じラインを走査するように偏向走査ユニット226を制御することができる。例えば、コントローラ109は、図7A及び7Bに示される及び説明されるように、第1のサイクルt1~t2において高電流でライン602を走査し、第2のサイクルt2~t3において低電流でライン602を再び走査するようにエミッションブースタ502及び偏向走査ユニット226を制御することができる。第3のサイクルt3~t4では、コントローラ109は、低電流でライン602を再び走査するようにエミッションブースタ502及び偏向走査ユニット226を制御することができる(図7A及び7Bには図示せず)。すなわち、コントローラ109は、第3のサイクルt3~t4において電磁放射線504の投射を停止するようにエミッションブースタ502を制御することができる。いくつかの実施形態では、同じラインに対して、高電流での走査に続いて、低電流での多数の走査を行うことができる。低電流での多数の走査からは、図4Bの電圧コントラスト画像462~470など、欠陥検査のための一連の電圧コントラスト画像を生成することができる。
[0085] ビームツール500と関連付けられる検出システム(例えば、二次光学系242及び検出デバイス244を含む)は、サンプル(例えば、ウェーハ230)から出射した電子(例えば、二次電子又は後方散乱電子)を受信することに応答して、信号を生成することができる。信号は、一次荷電粒子ビーム210が高電流を有する場合の第1のタイプの信号と、一次荷電粒子ビーム210が低電流を有する場合の第2のタイプの信号とを含み得る。ビームツール500と関連付けられる撮像処理システム(例えば、画像処理システム290)は、信号に基づいてサンプルのテストデバイス領域(例えば、図4Aのテストデバイス領域430又は440)を示す画像を生成することができる。例えば、画像処理システムは、第1のタイプの信号に基づいて第1の画像(「高電流画像」)を生成し、第2のタイプの信号に基づいて第2の画像(「低電流画像」)を生成することができる。第1及び第2の画像は、電圧コントラスト応答を示す電圧コントラスト画像であり得る。異なるビーム電流により、生成された電圧コントラスト画像における電圧コントラスト応答は異なり得る。生成された電圧コントラスト画像を比較することにより、テストデバイス領域の電圧コントラスト欠陥を難なく識別することができる。
[0086] 例えば、図6に示されるように、コントローラ109は、第1のサイクル(例えば、t1~t2)において第1のライン(例えば、ライン602)を走査し、第2のサイクル(例えば、t2~t3)において第2のライン(例えば、ライン604)を走査するようにエミッションブースタ502を制御するように構成される。ライン602、606、及び610は、高電流ビーム(太線として示される)を使用して走査し、ライン604、608、及び612は、低電流ビーム(細線として示される)を使用して走査することができる。検出システムは、ライン602~612から出射電子(例えば、二次電子又は後方散乱電子)を受信し、ライン602、606、及び610に対応して生成される信号を含む第1のタイプと、ライン604、608、及び612に対応して生成される信号を含む第2のタイプの少なくとも2つのタイプに分類することができる信号を生成することができる。画像処理システムは、第1のタイプの信号を受信して高電流画像を生成すること、及び、第2のタイプの信号を受信して低電流画像を生成することができる。図6では、フレーム600のラインは、高ビーム電流下と低ビーム電流下とで交互に走査されている。これに対応して、生成される高電流及び低電流画像は、インタレース走査画像であり得る。
[0087] 別の例では、コントローラ109は、第1のサイクル(例えば、t1~t2)及び第2のサイクル(例えば、t2~t3)において同じライン(例えば、ライン602)を走査するようにエミッションブースタ502を制御するように構成することができる。各ライン(例えば、フレーム600のライン602~612)は、第1の時間には高電流ビームを使用して及び第2の時間には低電流ビームを使用して走査することができる。検出システムは、各走査から出射電子(例えば、二次電子又は後方散乱電子)を受信し、高電流ビーム走査に対応して生成される信号を含む第1のタイプと、低電流ビーム走査に対応して生成される信号を含む第2のタイプの少なくとも2つのタイプに分類することができる信号を生成することができる。画像処理システムは、第1のタイプの信号を受信して高電流画像を生成すること、及び、第2のタイプの信号を受信して低電流画像を生成することができる。フレーム600の各ラインは、次のラインを走査する前に高ビーム電流及び低ビーム電流下で走査することができる。これに対応して、生成される高電流及び低電流画像は、プログレッシブ走査画像であり得る。この開示は、生成される画像がインタレース走査画像であるか又はプログレッシブ走査画像であるかを限定するものではないことに留意すべきである。
[0088] 光電子又は光子放出効果の超高速応答に起因して、エミッションブースタ502(例えば、レーザジェネレータ)を使用することにより、一次荷電粒子ビーム210のビーム電流を超高速時間(例えば、ナノ秒程度)で調整することができ、既存のビームツールにおけるビーム電流調整に要する時間が大幅に短縮される。或いは、一次荷電粒子ビーム210のビーム電流は、より遅い時間(例えば、マイクロ秒、ミリ秒程度でなど)で調整することができる。エミッションブースタ502を偏向走査ユニット226と同期させることにより、電磁放射線504の投射を偏向走査ユニット226の走査周波数と同期させることができ、その場合、走査フレームの各ラインは、同じ電流(例えば、高電流又は低電流)を有するビームの下で全体的に走査することができる。超高速ビーム電流調整の下でそのような走査方式を用いると、超高速時間で高電流画像及び低電流画像を生成することができ、それにより、電圧コントラスト欠陥検査を大幅に改善することができる。
[0089] いくつかの実施形態では、コントローラ109は、高電流画像と低電流画像を比較することによって電圧コントラスト欠陥を検査することができる。例えば、コントローラ109は、高電流及び低電流画像におけるテストデバイス領域を示す同じ領域のグレースケールレベルの変化に基づいて、テストデバイス領域と関連付けられる電圧コントラスト欠陥が存在するかどうかを判断することができる。変化が既定の閾値を超える場合は、コントローラ109は、図4Aと関連付けて説明される原理に基づいて、テストデバイス領域が潜在的な電圧コントラスト欠陥を含むと決定することができる。
[0090] いくつかの実施形態では、コントローラ109は、D2D検査又はダイツーデータベース(D2DB:die-to-database)検査などの他の欠陥検査のために、高電流及び低電流画像に基づいて、テストデバイス領域を示す融合画像を生成することができる。例えば、コントローラ109は、高電流及び低電流画像を使用して高ダイナミックレンジ(HDR)画像を生成するために露出融合技法を実施することができる。HDR画像は、高電流画像及び低電流画像のダイナミックレンジより高いダイナミックレンジを有し得る。高電流画像又は低電流画像と比較して、HDR画像は、より広い強度詳細範囲及びより低い雑音を有し得、欠陥検査に対するより多くの情報を提供することができる。
[0091] いくつかの実施形態では、エミッションブースタ502は、少なくとも2つの電力レベルの電磁放射線504を提供するように構成することができる。例えば、動作電圧又は電流を設定することにより、エミッションブースタ502(例えば、パルスレーザジェネレータ)は、電磁放射線504に対する第1の電力レベル及び第2の電力レベルを提供することができ、第1の電力レベルは、第2の電力レベルより高い。これに対応して、電磁放射線504の第1の電力レベルの下では、荷電粒子源202は、電磁放射線504の第2の電力レベルの下での事例よりも多くの電子を放出するように増大させることができる。その結果、一次荷電粒子ビーム210は、3つのレベルのビーム電流を有し得、それらはそれぞれ、第1の電力レベルの下でのエミッションブースタ502に相当する第1の高電流と、第2の電力レベルの下でのエミッションブースタ502に相当する第1の高電流より低い第2の高電流と、オフに切り替えられたエミッションブースタ502に相当する低電流とである。より多くのビーム電流レベルを提供することにより、ビームツール500は、電圧コントラスト応答のより多くのバリエーションを示すより多くの画像を提供することができ、従って、電圧コントラスト欠陥検査のためのより多くの情報を提供することができる。この開示は、エミッションブースタ502が提供することができる電力レベルの数を限定するものではないことに留意すべきである。
[0092] 図8及び9は、本開示の実施形態と一致する、荷電粒子検査システムに対する欠陥検査の例示的な方法800及び900のフローチャートである。方法800及び900は、荷電粒子検査システム(例えば、図1のEBIシステム100又は図5のビームツール500)のコントローラによって実行することができる。コントローラは、方法800及び900を実施するようにプログラムされた回路(例えば、メモリ及びプロセッサ)を含み得る。例えば、コントローラは、荷電粒子検査システムと結合された内部のコントローラ又は外部のコントローラ(例えば、図1、2及び図5のコントローラ109)であり得る。方法800及び900は、図3~7Bに示される及び説明される動作及びステップと関係があり得る。
[0093] 図8では、ステップ802において、コントローラ(例えば、図5のコントローラ109)は、電子ビーム(例えば、図5の一次荷電粒子ビーム210)を形成するために電子を放出するように、荷電粒子検査システム(例えば、図5のビームツール500)の荷電粒子源(例えば、図5の荷電粒子源202)を制御することができる。いくつかの実施形態では、荷電粒子源は、熱電子荷電粒子源であり得る。いくつかの実施形態では、荷電粒子源は、冷陰極電界放出荷電粒子源であり得る。いくつかの実施形態では、荷電粒子源は、フォトカソードを含み得る。荷電粒子源は、電子を放出するように構成することができるいかなるコンポーネントでもあり得る。開示される方法は、電子を放出するために荷電粒子源を利用しているが、方法は、より一般的には、荷電粒子を放出するために荷電粒子源を利用できることが理解されている。
[0094] ステップ804では、コントローラは、ラインごとの走査を実行するように電子ビームを誘導するように、荷電粒子検査システムの走査ユニット(例えば、図5の偏向走査ユニット226)を制御することができる。例えば、ラインごとの走査は、サンプル(例えば、図5のウェーハ230)上で実行することができる。
[0095] ステップ806では、コントローラは、電子ビームの第1の走査サイクルにおいて電子放出を増大するために荷電粒子源に電磁放射線(例えば、図5の電磁放射線504)を投射するように及び電子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止するように、荷電粒子検査システムのエミッションブースタ(例えば、図5のエミッションブースタ502)を制御することができる。電子ビームは、エミッションブースタが荷電粒子源に電磁放射線を投射する際には、第1の電流(「高電流」と呼ばれる)を有し得、エミッションブースタが荷電粒子源への電磁放射線の投射を停止する際には、第1の電流よりも低い第2の電流(「低電流」と呼ばれる)を有し得る。いくつかの実施形態では、エミッションブースタは、レーザ(例えば、パルスレーザ)を投射するように構成されたレーザジェネレータであり得る。例えば、コントローラは、フォトカソードによって放出される電子を増加するためにエミッションブースタのフォトカソードにレーザを投射するようにレーザジェネレータを制御することができる。電磁放射線によって誘発される放出増大は、超高速のものであり得る。例えば、レーザジェネレータがフォトカソードにレーザを投射する際、レーザは、70ナノ秒以内で電子放出を増大することができる。
[0096] いくつかの実施形態では、走査ユニットは、第1の走査サイクル及び第2の走査サイクルにおいてサンプルの同じラインを走査するように電子ビームを誘導することができる。いくつかの実施形態では、走査ユニットは、第1の走査サイクルにおいてサンプルの第1のラインを走査し、第2の走査サイクルにおいてサンプルの第2のラインを走査するように電子ビームを誘導することができる。いくつかの実施形態では、第1の走査サイクルの長さは、第2の走査サイクルの長さと実質的に均等であり得る。例えば、図7Aに示されるように、第1のライン(例えば、ライン602)を走査するための時間量は、(t2-t1)であり得、第2のライン(例えば、ライン604)を走査するための時間量は、(t3-t2)であり得、(t2-t1)と(t3-t2)は、実質的に均等であり得、互いの差は、閾値時間差(例えば、10、20、40、60ナノ秒又は同様のもの)以下であり得る。また、図7Bに示されるように、t1~t2では、電子ビームは、第1のラインを走査し、エミッションブースタは、電磁放射線を投射する。t2~t3では、電子ビームは、第2のラインを走査し、エミッションブースタは、電磁放射線の投射を停止する。第1及び第2のラインを走査するための時間量は不均等でもよく、高電流下又は低電流下で走査するラインは異なる走査速度を有し得ることに留意すべきである。
[0097] いくつかの実施形態では、コントローラは、エミッションブースタの電子放出を走査ユニットと同期させることができ、それにより、電子ビームが第1のラインの走査を開始する際には、電子ビームは第1の電流を有し、電子ビームが第2のラインの走査を開始する際には、電子ビームは第2の電流を有する。例えば、図7A及び7Bに示されるように、一次荷電粒子ビーム210は、タイムスタンプt1でライン602の走査を開始する際には高電流を有し、タイムスタンプt2でライン604の走査を開始する際には低電流を有する。
[0098] いくつかの実施形態では、コントローラは、プログレッシブ走査モードでサンプルを走査するように走査ユニットを制御することができ、サンプルの各ラインは、電子ビームが次のラインを走査するように誘導される前に、高電流及び低電流ビームのそれぞれによって2回走査することができる。いくつかの実施形態では、コントローラは、インタレース走査モードでサンプルを走査するように走査ユニットを制御することができ、サンプルの各ラインは、高電流及び低電流ビームによって交互に1回走査することができる。例えば、第1のラインと第2のラインは、走査用のフレーム(例えば、図6のフレーム600)の近隣のライン(例えば、図6のライン602及び604)であり得る。
[0099] 図9は、本開示の実施形態と一致する、荷電粒子検査システムに対する欠陥検査の例示的な方法900のフローチャートである。方法900は、スタンドアロンの方法でも、方法800と関連付けてもよい。例えば、コントローラは、方法800のステップ806を実行した後に方法900を実行することができる。
[00100] ステップ902では、コントローラ(例えば、図5のコントローラ109)は、荷電粒子検出デバイスがサンプル(例えば、図5のウェーハ230)から出射した電子(例えば、二次電子又は後方散乱電子)を受信した際に信号を生成するように、荷電粒子検査システムの荷電粒子検出デバイス(例えば、図2の荷電粒子検出デバイス244)を制御する。いくつかの実施形態では、荷電粒子検出デバイスは、電子ビームが第1の電流(例えば、高電流)を有する際には第1のタイプの信号を生成し、電子ビームが第2の電流(例えば、低電流)を有する際には第2のタイプの信号を生成することができる。例えば、図6に示されるように、一次荷電粒子ビーム210がライン602を高電流で走査する際、荷電粒子検出デバイスは、第1のタイプの信号を生成することができる。一次荷電粒子ビーム210がライン604を低電流で走査する際、荷電粒子検出デバイスは、第2のタイプの信号を生成することができる。
[00101] ステップ904では、コントローラは、信号に基づいてサンプルのテストデバイス領域(例えば、図4Aのテストデバイス領域430又は440)を示す画像を生成するように、荷電粒子検査システムの画像処理システム(例えば、図2の画像処理システム290)を制御することができる。いくつかの実施形態では、画像処理システムは、第1のタイプの信号に基づいて第1の画像(例えば、以前に図5~8で説明した高電流画像)を生成し、第2のタイプの信号に基づいて第2の画像(例えば、以前に図5~8で説明した低電流画像)を生成することができる。例えば、第1の画像は、図6のライン602、606、及び610に対応して検出された信号に基づいて生成することができ、第2の画像は、図6のライン604、608、及び612に対応して又は図6のライン602、606、及び610の第2の走査に対応して検出された信号に基づいて生成することができる。
[00102] いくつかの実施形態では、画像処理システムは、第1の画像及び第2の画像に基づいてテストデバイス領域を示す第3の画像(例えば、以前に図5~8で説明した融合画像)を生成することができる。例えば、第3の画像は、第1の画像のダイナミックレンジ及び第2の画像のダイナミックレンジよりも高いダイナミックレンジを有し得る。
[00103] いくつかの実施形態では、コントローラは、さらに、第1の画像及び第2の画像におけるテストデバイス領域を示す同じ領域のグレースケールレベルの変化に基づいて、テストデバイス領域と関連付けられる電圧コントラスト欠陥が存在するかどうかを判断することができる。変化が既定の閾値を超える場合は、コントローラ109は、図4Aと関連付けて説明される原理に基づいて、テストデバイス領域が潜在的な電圧コントラスト欠陥を含むと決定することができる。
[00104] 実施形態については、以下の条項を使用してさらに説明することができる。
1. サンプルを走査するために荷電粒子を放出するように構成された荷電粒子源と、
荷電粒子検査システムの走査動作の第1のサイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射するように及び走査動作の第2のサイクルにおいて電磁放射線の投射を停止するように構成されたエミッションブースタと
を含む、荷電粒子検査システム。
2. 第1のサイクル及び第2のサイクルにおいてサンプルの同じラインを走査するように構成される、条項1に記載のシステム。
3. 第1のサイクルにおいてサンプルの第1のラインを走査し、第2のサイクルにおいてサンプルの第2のラインを走査するように構成される、条項1に記載のシステム。
4. 第1のライン及び第2のラインが、走査用のフレームの近隣のラインである、条項3に記載のシステム。
5. 第1のサイクルの長さが、第2のサイクルの長さと実質的に均等である、条項1~4の何れか一項に記載のシステム。
6. 荷電粒子検査システムが、サンプルを走査するために荷電粒子ビームを生成するように構成され、荷電粒子ビームが、エミッションブースタが荷電粒子源に電磁放射線を投射する際には第1の電流を有し、エミッションブースタが荷電粒子源への電磁放射線の投射を停止する際には、第1の電流よりも低い第2の電流を有するように構成される、条項1~5の何れか一項に記載のシステム。
7. エミッションブースタの荷電粒子放出が、荷電粒子検査システムの走査動作と同期するように構成され、それにより、荷電粒子ビームが第1のラインの走査を開始する際には、荷電粒子ビームが第1の電流を有し、荷電粒子ビームが第2のラインの走査を開始する際には、荷電粒子ビームが第2の電流を有する、条項6に記載のシステム。
8. 荷電粒子源が、熱電子荷電粒子源又は冷陰極電界放出荷電粒子源である、条項1~7の何れか一項に記載のシステム。
9. 荷電粒子源が、フォトカソードを含む、条項1~8の何れか一項に記載のシステム。
10. エミッションブースタが、レーザを投射するように構成されたレーザジェネレータを含む、条項9に記載のシステム。
11. レーザジェネレータが、フォトカソードによって放出される荷電粒子を増加させるためにフォトカソードにレーザを投射するように構成される、条項10に記載のシステム。
12. レーザジェネレータがフォトカソードにレーザを投射する際、レーザが、70ナノ秒以内で荷電粒子放出を増大させる、条項11に記載のシステム。
13. エミッションブースタが、走査動作の第3のサイクルにおいて電磁放射線の投射を停止するようにさらに構成され、荷電粒子検査システムが、第2のサイクル及び第3のサイクルにおいてサンプルの同じラインを走査するようにさらに構成される、条項1~12の何れか一項に記載のシステム。
14. シングルビーム検査システムである、条項1~13の何れか一項に記載のシステム。
15. マルチビーム検査システムである、条項1~13の何れか一項に記載のシステム。
16. 荷電粒子が電子を含む、条項1~15の何れか一項に記載のシステム。
17. 荷電粒子を放出するように構成された荷電粒子源と、
荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射するように構成されたエミッションブースタと、
荷電粒子を使用して荷電粒子ビームを形成するように構成されたビーム形成ユニットと、
サンプルをラインごとに走査するように荷電粒子ビームを誘導するように構成された走査ユニットと、
荷電粒子ビームの第1の走査サイクルにおいて電磁放射線を投射するように及び荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止するようにエミッションブースタを制御するように構成された回路を含むコントローラと
を含む、荷電粒子検査システム。
18. 荷電粒子ビームが、第1の走査サイクル及び第2の走査サイクルにおいてサンプルの同じラインを走査するように構成される、条項17に記載のシステム。
19. 荷電粒子ビームが、第1の走査サイクルにおいてサンプルの第1のラインを走査し、第2の走査サイクルにおいてサンプルの第2のラインを走査するように構成される、条項17に記載のシステム。
20. 第1のライン及び第2のラインが、走査用のフレームの近隣のラインである、条項19に記載のシステム。
21. 第1の走査サイクルの長さが、第2の走査サイクルの長さと実質的に均等である、条項17~20の何れか一項に記載のシステム。
22. 荷電粒子ビームが、エミッションブースタが荷電粒子源に電磁放射線を投射する際には第1の電流を有し、エミッションブースタが荷電粒子源への電磁放射線の投射を停止する際には、第1の電流よりも低い第2の電流を有するように構成される、条項17~21の何れか一項に記載のシステム。
23. エミッションブースタの荷電粒子放出が、走査ユニットと同期するように構成され、それにより、荷電粒子ビームが第1のラインの走査を開始する際には、荷電粒子ビームが第1の電流を有し、荷電粒子ビームが第2のラインの走査を開始する際には、荷電粒子ビームが第2の電流を有する、条項17~22の何れか一項に記載のシステム。
24. 荷電粒子源が、熱電子荷電粒子源又は冷陰極電界放出荷電粒子源である、条項17~23の何れか一項に記載のシステム。
25. 荷電粒子源が、フォトカソードを含む、条項17~24の何れか一項に記載のシステム。
26. エミッションブースタが、レーザを投射するように構成されたレーザジェネレータを含む、条項25に記載のシステム。
27. レーザジェネレータが、フォトカソードによって放出される荷電粒子を増加させるためにフォトカソードにレーザを投射するように構成される、条項26に記載のシステム。
28. レーザジェネレータがフォトカソードにレーザを投射する際、レーザが、70ナノ秒以内で荷電粒子放出を増大させる、条項27に記載のシステム。
29. サンプルから出射した荷電粒子を受信することに応答して信号を生成するように構成された荷電粒子検出デバイスと、
信号に基づいてサンプルのテストデバイス領域を示す画像を生成するように構成された画像処理システムと
をさらに含む、条項17~28の何れか一項に記載のシステム。
30. 信号が、荷電粒子ビームが第1の電流を有する際には第1のタイプの信号を含み、荷電粒子ビームが第2の電流を有する際には第2のタイプの信号を含む、条項29に記載のシステム。
31. 画像処理システムが、第1のタイプの信号に基づいて第1の画像を生成し、第2のタイプの信号に基づいて第2の画像を生成するようにさらに構成される、条項30に記載のシステム。
32. 画像処理システムが、第1の画像及び第2の画像に基づいてテストデバイス領域を示す第3の画像を生成するようにさらに構成される、条項31に記載のシステム。
33. 第3の画像が、第1の画像のダイナミックレンジ及び第2の画像のダイナミックレンジよりも高いダイナミックレンジを有する、条項32に記載のシステム。
34. コントローラが、
第1の画像及び第2の画像におけるテストデバイス領域を示す同じ領域のグレースケールレベルの変化に基づいて、テストデバイス領域と関連付けられる電圧コントラスト欠陥が存在するかどうかを判断する
ようにさらに構成される、条項31に記載のシステム。
35. ビーム形成ユニットが、荷電粒子を使用して多数の荷電粒子ビームを形成するようにさらに構成される、条項17~34の何れか一項に記載のシステム。
36. ビーム形成ユニットが、多数の荷電粒子ビームを形成するように構成される、条項17~34の何れか一項に記載のシステム。
37. エミッションブースタが、荷電粒子ビームの第3の走査サイクルにおいて電磁放射線の投射を停止するようにさらに構成され、荷電粒子ビームが、第2の走査サイクル及び第3の走査サイクルにおいてサンプルの同じラインを走査するようにさらに構成される、条項17~36の何れか一項に記載のシステム。
38. 荷電粒子が電子を含む、条項17~37の何れか一項に記載のシステム。
39. 荷電粒子検査システムの荷電粒子源を使用して荷電粒子ビームを形成するために荷電粒子を放出することと、
荷電粒子検査システムの走査ユニットを使用して、ラインごとの走査を実行するように荷電粒子ビームを誘導することと、
荷電粒子検査システムのエミッションブースタを使用して、荷電粒子ビームの第1の走査サイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射することと、
荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止することと
を含む、方法。
40. ラインごとの走査を実行するように荷電粒子ビームを誘導することが、
第1の走査サイクル及び第2の走査サイクルにおいてサンプルの同じラインを走査するように荷電粒子ビームを誘導すること
を含む、条項39に記載の方法。
41. ラインごとの走査を実行するように荷電粒子ビームを誘導することが、
第1の走査サイクルにおいてサンプルの第1のラインを走査し、第2の走査サイクルにおいてサンプルの第2のラインを走査するように荷電粒子ビームを誘導すること
を含む、条項39に記載の方法。
42. 第1のライン及び第2のラインが、走査用のフレームの近隣のラインである、条項41に記載の方法。
43. 第1の走査サイクルの長さが、第2の走査サイクルの長さと実質的に均等である、条項39又は40に記載の方法。
44. 荷電粒子ビームが、電磁放射線が荷電粒子源に投射される際には第1の電流を有し、荷電粒子源への電磁放射線の投射が停止される際には、第1の電流よりも低い第2の電流を有するように構成される、条項39~42の何れか一項に記載の方法。
45. エミッションブースタを走査ユニットと同期させることであって、それにより、荷電粒子ビームが第1のラインの走査を開始する際には、荷電粒子ビームが第1の電流を有し、荷電粒子ビームが第2のラインの走査を開始する際には、荷電粒子ビームが第2の電流を有する同期させること
をさらに含む、条項39~44の何れか一項に記載の方法。
46. 荷電粒子源が、熱電子荷電粒子源又は冷陰極電界放出荷電粒子源である、条項39~45の何れか一項に記載の方法。
47. 荷電粒子源が、フォトカソードを含む、条項39~46の何れか一項に記載の方法。
48. エミッションブースタが、レーザを投射するように構成されたレーザジェネレータを含む、条項47に記載の方法。
49. レーザジェネレータを使用して、フォトカソードによって放出される荷電粒子を増加させるためにフォトカソードにレーザを投射すること
をさらに含む、条項48に記載の方法。
50. レーザジェネレータがフォトカソードにレーザを投射する際、レーザが、70ナノ秒以内で荷電粒子放出を増大させる、条項49に記載の方法。
51. 荷電粒子検査システムの荷電粒子検出デバイスを使用して、荷電粒子検出デバイスがサンプルから出射した荷電粒子を受信した際に信号を生成することと、
荷電粒子検査システムの画像処理システムを使用して、信号に基づいてサンプルのテストデバイス領域を示す画像を生成することと
をさらに含む、条項39~50の何れか一項に記載の方法。
52. 信号を生成することが、
荷電粒子ビームが第1の電流を有する際には第1のタイプの信号を生成し、荷電粒子ビームが第2の電流を有する際には第2のタイプの信号を生成すること
を含む、条項51に記載の方法。
53. 画像を生成することが、
第1のタイプの信号に基づいて第1の画像を生成し、第2のタイプの信号に基づいて第2の画像を生成すること
を含む、条項52に記載の方法。
54. 画像を生成することが、
第1の画像及び第2の画像に基づいてテストデバイス領域を示す第3の画像を生成すること
を含む、条項53に記載の方法。
55. 第3の画像が、第1の画像のダイナミックレンジ及び第2の画像のダイナミックレンジよりも高いダイナミックレンジを有する、条項54に記載の方法。
56. 第1の画像及び第2の画像におけるテストデバイス領域を示す同じ領域のグレースケールレベルの変化に基づいて、テストデバイス領域と関連付けられる電圧コントラスト欠陥が存在するかどうかを判断すること
をさらに含む、条項53に記載の方法。
57. 荷電粒子ビームの第3の走査サイクルにおいて電磁放射線の投射を停止すること
をさらに含む、条項39~56の何れか一項に記載の方法。
58. ラインごとの走査を実行するように荷電粒子ビームを誘導することが、
第2のサイクル及び第3のサイクルにおいてサンプルの同じラインを走査するように荷電粒子ビームを誘導すること
を含む、条項55に記載の方法。
59. 荷電粒子検査システムが、シングルビーム検査システムである、条項39~58の何れか一項に記載の方法。
60. 荷電粒子検査システムが、マルチビーム検査システムである、条項39~58の何れか一項に記載の方法。
61. 荷電粒子が電子を含む、条項39~59の何れか一項に記載のシステム。
62. 欠陥検査方法を荷電粒子検査システムに実行させるためにシステムの少なくとも1つのプロセッサによって実行可能な命令セットを格納する非一時的なコンピュータ可読媒体であって、方法が、
荷電粒子検査システムの荷電粒子源を使用して荷電粒子ビームを形成するために荷電粒子を放出することと、
荷電粒子検査システムの走査ユニットを使用して、ラインごとの走査を実行するように荷電粒子ビームを誘導することと、
荷電粒子検査システムのエミッションブースタを使用して、荷電粒子ビームの第1の走査サイクルにおいて荷電粒子放出を増大するために荷電粒子源に電磁放射線を投射すること及び荷電粒子ビームの第2の走査サイクルにおいて電磁放射線の投射を停止することと
を含む、非一時的なコンピュータ可読媒体。
[00105] 本開示の実施形態と一致する、上記の図8及び9の例示的なフローチャートによる欠陥検査のためにコントローラ(例えば、図1及び5のコントローラ109)のプロセッサに対する命令を格納する非一時的なコンピュータ可読媒体を提供することができる。例えば、非一時的なコンピュータ可読媒体に格納された命令は、方法800又は900を部分的に又は全体的に実行するためにコントローラの回路によって実行することができる。非一時的な媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープ又は他の任意の磁気データ記憶媒体、コンパクトディスク読み取り専用メモリ(CD-ROM)、他の任意の光データ記憶媒体、ホールのパターンを有する任意の物理的な媒体、ランダムアクセスメモリ(RAM)、プログラム可能読み取り専用メモリ(PROM)、消去型プログラム可能読み取り専用メモリ(EPROM)、フラッシュEPROM又は他の任意のフラッシュメモリ、不揮発性ランダムアクセスメモリ(NVRAM)、キャッシュ、レジスタ、他の任意のメモリチップ又はカートリッジ、及び、それらのネットワーク接続バージョンを含む。
[00106] 本開示の実施形態は、上記で説明してきた及び添付の図面で示してきた通りの構造に限定されないことや、その範囲から逸脱することなく、様々な修正及び変更を行えることが理解されよう。本開示は、様々な実施形態と関連付けて説明しており、本明細書で開示される発明の仕様及び実践を考慮することから、本発明の他の実施形態が当業者に明らかになるであろう。仕様及び例は単なる例示と見なされ、本発明の真の範囲及び精神は以下の特許請求の範囲によって示されることが意図される。

Claims (15)

  1. サンプルを走査するために荷電粒子を放出するように構成された荷電粒子源と、
    荷電粒子検査システムの走査動作の第1のサイクルにおいて荷電粒子放出を増大するために前記荷電粒子源に電磁放射線を投射するように及び前記走査動作の第2のサイクルにおいて前記電磁放射線の投射を停止するように構成されたエミッションブースタと
    を含む、荷電粒子検査システム。
  2. 前記第1のサイクル及び前記第2のサイクルにおいて前記サンプルの同じラインを走査するように構成される、請求項1に記載のシステム。
  3. 前記第1のサイクルにおいて前記サンプルの第1のラインを走査し、前記第2のサイクルにおいて前記サンプルの第2のラインを走査するように構成される、請求項1に記載のシステム。
  4. 前記第1のライン及び前記第2のラインが、走査用のフレームの近隣のラインである、請求項3に記載のシステム。
  5. 前記第1のサイクルの長さが、前記第2のサイクルの長さと実質的に均等である、請求項1に記載のシステム。
  6. 前記荷電粒子検査システムが、前記サンプルを走査するために荷電粒子ビームを生成するように構成され、前記荷電粒子ビームが、前記エミッションブースタが前記荷電粒子源に前記電磁放射線を投射する際には第1の電流を有し、前記エミッションブースタが前記荷電粒子源への前記電磁放射線の投射を停止する際には、前記第1の電流よりも低い第2の電流を有するように構成される、請求項1に記載のシステム。
  7. 前記エミッションブースタの前記荷電粒子放出が、前記荷電粒子検査システムの走査動作と同期するように構成され、それにより、前記荷電粒子ビームが第1のラインの走査を開始する際には、前記荷電粒子ビームが前記第1の電流を有し、前記荷電粒子ビームが第2のラインの走査を開始する際には、前記荷電粒子ビームが前記第2の電流を有する、請求項6に記載のシステム。
  8. 前記荷電粒子源が、熱電子荷電粒子源又は冷陰極電界放出荷電粒子源である、請求項1に記載のシステム。
  9. 前記荷電粒子源が、フォトカソードを含む、請求項1に記載のシステム。
  10. 前記エミッションブースタが、レーザを投射するように構成されたレーザジェネレータを含む、請求項9に記載のシステム。
  11. 前記レーザジェネレータが、前記フォトカソードによって放出される荷電粒子を増加させるために前記フォトカソードに前記レーザを投射するように構成される、請求項10に記載のシステム。
  12. 前記レーザジェネレータが前記フォトカソードに前記レーザを投射する際、前記レーザが、70ナノ秒以内で荷電粒子放出を増大させる、請求項11に記載のシステム。
  13. 前記エミッションブースタが、前記走査動作の第3のサイクルにおいて前記電磁放射線の投射を停止するようにさらに構成され、前記荷電粒子検査システムが、前記第2のサイクル及び前記第3のサイクルにおいて前記サンプルの同じラインを走査するようにさらに構成される、請求項1に記載のシステム。
  14. シングルビーム検査システムである、請求項1に記載のシステム。
  15. 欠陥検査方法を荷電粒子検査システムに実行させるために前記システムの少なくとも1つのプロセッサによって実行可能な命令セットを格納する非一時的なコンピュータ可読媒体であって、前記方法が、
    前記荷電粒子検査システムの荷電粒子源を使用して荷電粒子ビームを形成するために荷電粒子を放出することと、
    前記荷電粒子検査システムの走査ユニットを使用して、ラインごとの走査を実行するように前記荷電粒子ビームを誘導することと、
    前記荷電粒子検査システムのエミッションブースタを使用して、前記荷電粒子ビームの第1の走査サイクルにおいて荷電粒子放出を増大するために前記荷電粒子源に電磁放射線を投射すること及び前記荷電粒子ビームの第2の走査サイクルにおいて前記電磁放射線の投射を停止することと
    を含む、非一時的なコンピュータ可読媒体。
JP2022532052A 2019-12-20 2020-12-17 荷電粒子検査システムのビーム電流調整 Active JP7488898B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962951950P 2019-12-20 2019-12-20
US62/951,950 2019-12-20
PCT/EP2020/086908 WO2021123080A1 (en) 2019-12-20 2020-12-17 Beam current adjustment for charged-particle inspection system

Publications (2)

Publication Number Publication Date
JP2023506394A true JP2023506394A (ja) 2023-02-16
JP7488898B2 JP7488898B2 (ja) 2024-05-22

Family

ID=74175754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022532052A Active JP7488898B2 (ja) 2019-12-20 2020-12-17 荷電粒子検査システムのビーム電流調整

Country Status (7)

Country Link
US (1) US20230028799A1 (ja)
JP (1) JP7488898B2 (ja)
KR (1) KR20220103168A (ja)
CN (1) CN114902369A (ja)
IL (1) IL293528A (ja)
TW (1) TWI794701B (ja)
WO (1) WO2021123080A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273419A (ja) * 2002-09-26 2004-09-30 Leo Elektronenmikroskopie Gmbh 電子ビーム源、そのようなビーム源を用いた電子光学装置、および電子ビーム源の駆動方法
WO2010082451A1 (ja) * 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP2012028279A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 荷電粒子線装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460831A (en) * 1981-11-30 1984-07-17 Thermo Electron Corporation Laser stimulated high current density photoelectron generator and method of manufacture
US7425703B2 (en) * 2004-02-20 2008-09-16 Ebara Corporation Electron beam apparatus, a device manufacturing method using the same apparatus, a pattern evaluation method, a device manufacturing method using the same method, and a resist pattern or processed wafer evaluation method
EP1735811B1 (en) * 2004-04-02 2015-09-09 California Institute Of Technology Method and system for ultrafast photoelectron microscope
US7326928B2 (en) * 2004-11-29 2008-02-05 National University Of Singapore Electron microscope and a method of imaging objects
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
US7573053B2 (en) * 2006-03-30 2009-08-11 Uchicago Argonne, Llc Polarized pulsed front-end beam source for electron microscope
JP6386679B2 (ja) * 2015-12-03 2018-09-05 松定プレシジョン株式会社 荷電粒子線装置及び走査電子顕微鏡
US10748737B2 (en) * 2017-10-10 2020-08-18 Kla-Tencor Corporation Electron beam generation and measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273419A (ja) * 2002-09-26 2004-09-30 Leo Elektronenmikroskopie Gmbh 電子ビーム源、そのようなビーム源を用いた電子光学装置、および電子ビーム源の駆動方法
WO2010082451A1 (ja) * 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP2012028279A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 荷電粒子線装置

Also Published As

Publication number Publication date
CN114902369A (zh) 2022-08-12
KR20220103168A (ko) 2022-07-21
IL293528A (en) 2022-08-01
US20230028799A1 (en) 2023-01-26
TW202139235A (zh) 2021-10-16
JP7488898B2 (ja) 2024-05-22
TWI794701B (zh) 2023-03-01
WO2021123080A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US6803572B2 (en) Apparatus and methods for secondary electron emission microscope with dual beam
US7829853B2 (en) Sample surface observation method
TWI844779B (zh) 時間相依缺陷檢測設備
TWI759628B (zh) 用於偵測快速充電裝置中時間相依缺陷的設備及方法
US20230335374A1 (en) Systems and methods for pulsed voltage contrast detection and capture of charging dynamics
US7453274B1 (en) Detection of defects using transient contrast
EP1183707B1 (en) Apparatus and methods for secondary electron emission microscopy with dual beam
JP7488898B2 (ja) 荷電粒子検査システムのビーム電流調整
TWI854195B (zh) 用於偵測快速充電裝置中時間相依缺陷的設備及方法
JP4090173B2 (ja) 回路パターン検査装置
JP2005223355A (ja) 回路パターン検査装置
TW202425036A (zh) 偵測器切換矩陣之動態切換
TW202435260A (zh) 帶電粒子多射束系統及相關的非暫時性電腦可讀媒體

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510

R150 Certificate of patent or registration of utility model

Ref document number: 7488898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150