JP2023178209A - Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method - Google Patents

Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method Download PDF

Info

Publication number
JP2023178209A
JP2023178209A JP2023062124A JP2023062124A JP2023178209A JP 2023178209 A JP2023178209 A JP 2023178209A JP 2023062124 A JP2023062124 A JP 2023062124A JP 2023062124 A JP2023062124 A JP 2023062124A JP 2023178209 A JP2023178209 A JP 2023178209A
Authority
JP
Japan
Prior art keywords
heating
glass cloth
quartz glass
dew point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023062124A
Other languages
Japanese (ja)
Inventor
肇 糸川
Hajime Itokawa
雄亮 田口
Yusuke Taguchi
龍之介 野村
Ryunosuke Nomura
宗聖 浦中
Munekiyo Uranaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=86281589&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2023178209(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2023062124A priority Critical patent/JP2023178209A/en
Publication of JP2023178209A publication Critical patent/JP2023178209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

To provide a quartz glass cloth heating method capable of suppressing dielectric loss tangent at a low level and a manufacturing method capable of manufacturing a low dielectric quartz glass cloth without special post processing after heat treatment.SOLUTION: In the quartz glass cloth heating method, a quartz glass cloth containing SiO2 of 95 mass% or more is put in a heating furnace and the quartz glass cloth is heated under conditions where maximum heating temperature is 100 to 600°C and heating amount expressed by heating temperature (°C) of 100°C or more×heating time (h) is 450 (°C h) in vacuum or gas having dew point of 15°C or less.SELECTED DRAWING: Figure 1

Description

本発明は、誘電正接を低くすることができる石英ガラスクロスの加熱方法、及び低誘電化石英ガラスクロスの製造方法に関するものである。 The present invention relates to a method of heating a quartz glass cloth that can lower the dielectric loss tangent, and a method of manufacturing a low dielectric quartz glass cloth.

現在、スマートフォン等の情報端末の高性能化、高速通信化に伴い、使用されるプリント配線板において、高密度化、極薄化とともに、低誘電化、低誘電正接化が著しく進行している。このプリント配線板の絶縁材料としては、ガラスクロスをエポキシ樹脂等の熱硬化性樹脂(以下、「マトリックス樹脂」という。)に含浸させて得られるプリプレグを積層して加熱加圧硬化させた積層板が広く使用されている。基板における信号の伝送ロスは、Ed wardA.Wolff式:伝送損失∝√ε×tanδ、が示すように、誘電率(ε)及び誘電正接(tanδ)が小さい材料ほど改善されることが知られており、特に上記の式より、伝送損失に対しては誘電正接の寄与が大きいことが知られている。そのため、ガラスクロスにおいては低い誘電正接が求められ、Dガラス、NEガラス、Lガラス、Qガラス等の誘電特性が向上されたガラスクロスが提案されている(特許文献1~4)。しかしながら、今後の5G通信用用途等において十分な伝送速度性能を達成する観点から、これら低誘電率・低誘電正接に優れる低誘電特性ガラスクロスでもなお改善の必要性がある。 BACKGROUND ART Currently, as information terminals such as smartphones become more sophisticated and communicate at higher speeds, the printed wiring boards used are becoming denser, thinner, and have lower dielectric and dielectric loss tangents. The insulating material for this printed wiring board is a laminate made by laminating prepreg obtained by impregnating glass cloth with thermosetting resin such as epoxy resin (hereinafter referred to as "matrix resin") and curing it under heat and pressure. is widely used. Signal transmission loss in the board is described by Edward A. Wolff formula: Transmission loss ∝√ε×tanδ It is known that materials with smaller dielectric constant (ε) and dielectric loss tangent (tanδ) are improved as shown by It is known that the contribution of the dielectric loss tangent is large. Therefore, glass cloth is required to have a low dielectric loss tangent, and glass cloths with improved dielectric properties such as D glass, NE glass, L glass, and Q glass have been proposed (Patent Documents 1 to 4). However, from the viewpoint of achieving sufficient transmission speed performance in future 5G communication applications, etc., there is still a need for improvement in these low dielectric property glass cloths that are excellent in low dielectric constant and low dielectric loss tangent.

特開平5-170483号公報Japanese Patent Application Publication No. 5-170483 特開2009-263569号公報Japanese Patent Application Publication No. 2009-263569 特開2009-19150号公報Japanese Patent Application Publication No. 2009-19150 特開2006-282401号公報Japanese Patent Application Publication No. 2006-282401 特開2021-195689号公報Japanese Patent Application Publication No. 2021-195689

石英ガラスはSiO2が95質量%以上のガラスであり、非常に優れた電気特性を持っている。しかしながら、石英ガラスはその高い純度によりSiOH基が生じやすく、全く同じ組成の石英ガラスであっても、石英ガラス中に含まれるSiOH基の量によって誘電正接が大きく変動する。特許文献5では石英ガラスを高温で処理している。しかしながら高温加熱によるガラス表面への歪が発生し、強度が低下し、歪除去目的に、加熱後24時間以上のエッチング処理を行う必要があるという問題があった。 Silica glass is a glass containing 95% by mass or more of SiO 2 and has very excellent electrical properties. However, due to its high purity, silica glass tends to produce SiOH groups, and even if the quartz glass has exactly the same composition, the dielectric loss tangent varies greatly depending on the amount of SiOH groups contained in the quartz glass. In Patent Document 5, quartz glass is treated at high temperature. However, there was a problem in that the glass surface was distorted by high-temperature heating, the strength was lowered, and etching treatment had to be performed for 24 hours or more after heating to remove the distortion.

本発明は上記事情に鑑みなされたもので、誘電正接を低くすることができる石英ガラスクロスの加熱方法、加熱処理後に特別な後処理をすることなく、低誘電化石英ガラスクロスを製造できる、製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a heating method for quartz glass cloth that can lower the dielectric loss tangent, a method for manufacturing quartz glass cloth that can produce a low dielectric quartz glass cloth without special post-treatment after heat treatment, and a method for manufacturing quartz glass cloth. The purpose is to provide a method.

石英ガラスは95質量%以上がSiO2であり、表面のSi-OH基は活性が強く、特に高温雰囲気では水分を水素結合で取り込み、Si-O-Si結合を開裂させることでさらにSi-OH基が生じると考えられる(SiO2+H2O⇔Si-OH)。ここで生じるSi-OH基がガラスクロスの誘電正接を悪化させる。ガラスクロスの量産においてガラスクロスを加熱する加熱炉はガス炉が一般的に用いられており、都市ガス等の燃焼を熱源としていることから、生成物として大量の二酸化炭素と水が生じる。結果として加熱機構に水分を発生させる加熱炉を用いることで上記反応をSi-OH基が生成する方向に平衡が傾くことを見出した。本発明者らは、石英ガラスクロスを加熱炉に入れ、炉内を真空又は露点15℃以下の気体中で、100~600℃、かつ100~600℃の温度温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱することで、加熱炉内の水分量をさらに低下させ、さらに平衡反応を左へ傾けることができ、加熱のみで誘電正接を低下させることができ、この加熱工程を含むことで、40GHzにおける誘電正接が0.0015以下である低誘電化石英ガラスクロスが得られることを知見し、本発明をなすに至ったものである。 Silica glass contains more than 95% by mass of SiO 2 , and the Si-OH groups on its surface are highly active. Especially in high-temperature atmospheres, it absorbs moisture through hydrogen bonds and cleaves the Si-O-Si bonds, further forming Si-OH groups. It is thought that a group is generated (SiO 2 +H 2 O⇔Si-OH). The Si--OH groups generated here deteriorate the dielectric loss tangent of the glass cloth. In the mass production of glass cloth, a gas furnace is generally used to heat the glass cloth, and since the heat source is combustion of city gas, etc., a large amount of carbon dioxide and water are produced as products. As a result, it was found that by using a heating furnace that generates moisture as a heating mechanism, the equilibrium of the above reaction can be tilted in the direction in which Si--OH groups are produced. The present inventors placed a quartz glass cloth in a heating furnace, and heated the furnace inside a vacuum or in a gas with a dew point of 15°C or less at a temperature of 100 to 600°C, and a temperature of 100 to 600°C (°C) x heating time (h). ) By heating under conditions such that the heating amount expressed by It was discovered that by including this heating step, a low dielectric quartz glass cloth with a dielectric loss tangent of 0.0015 or less at 40 GHz could be obtained, which led to the creation of the present invention. be.

従って、本発明は下記、石英ガラスクロスの加熱方法及び低誘電化石英ガラスクロスの製造方法を提供する。
1.SiO2を95質量%以上含む石英ガラスクロスを加熱炉に入れ、真空又は露点15℃以下の気体中で、最高加熱温度が100~600℃、かつ100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する、上記石英ガラスクロスの加熱方法。
2.気体が、空気及び不活性ガスから選択される露点15℃以下の気体である1又は2記載の石英ガラスクロスの加熱方法。
3.露点が0℃以下の乾燥気体を、炉内に導入する1~3のいずれかに記載の石英ガラスクロスの加熱方法。
4.加熱前、昇温中、温度保持中及び降温中のいずれか1つ以上に、露点が0℃以下の乾燥気体を、炉内に導入する3記載の石英ガラスクロスの加熱方法。
5.降温中に、露点が0℃以下の乾燥気体を、炉内に導入する4記載の石英ガラスクロスの加熱方法。
6.1~5のいずれかに記載の加熱方法を工程として含む、40GHzにおける誘電正接が0.0015以下である低誘電化石英ガラスクロスの製造方法
Therefore, the present invention provides a method for heating a quartz glass cloth and a method for manufacturing a low dielectric quartz glass cloth as described below.
1. A quartz glass cloth containing 95% by mass or more of SiO 2 is placed in a heating furnace, and the maximum heating temperature is 100 to 600°C, and the heating temperature (°C) x heating time is 100°C or higher, in vacuum or in a gas with a dew point of 15°C or lower. The method for heating the quartz glass cloth described above, wherein heating is performed under conditions such that the amount of heating expressed by (h) is 450 (° C./h) or more.
2. 3. The method for heating a quartz glass cloth according to 1 or 2, wherein the gas is selected from air and an inert gas and has a dew point of 15° C. or lower.
3. 4. The method for heating a quartz glass cloth according to any one of 1 to 3, wherein dry gas having a dew point of 0° C. or lower is introduced into the furnace.
4. 4. The method for heating a quartz glass cloth according to 3, wherein dry gas having a dew point of 0° C. or lower is introduced into the furnace at least one of the following steps: before heating, during temperature increase, during temperature maintenance, and during temperature decrease.
5. 4. The method for heating a quartz glass cloth according to 4, wherein dry gas having a dew point of 0° C. or lower is introduced into the furnace during cooling.
6. A method for producing a low dielectric quartz glass cloth having a dielectric loss tangent of 0.0015 or less at 40 GHz, which includes the heating method according to any one of 1 to 5 as a step.

誘電正接を低くすることができる石英ガラスクロスの加熱方法、加熱処理後に特別な後処理をすることなく、低誘電化石英ガラスクロスを製造できる、製造方法を提供することができる。 It is possible to provide a heating method for quartz glass cloth that can lower the dielectric loss tangent, and a manufacturing method that can manufacture a low dielectric quartz glass cloth without special post-treatment after heat treatment.

本発明の加熱量の計算方法を示す図である。It is a figure showing the calculation method of the amount of heating of the present invention.

以下、本発明について詳細に説明する。
[石英ガラスクロス]
本発明の石英ガラスクロスはSiO2組成量が95質量%以上であり、誘電正接等の電気特性や熱膨張等の物理特性の点から、で99.9質量%以上が好ましい。石英ガラスクロスの製造方法としては、例えば、下記の方法が挙げられる。
The present invention will be explained in detail below.
[Quartz glass cloth]
The quartz glass cloth of the present invention has a SiO 2 composition of 95% by mass or more, and preferably 99.9% by mass or more from the viewpoint of electrical properties such as dielectric loss tangent and physical properties such as thermal expansion. Examples of methods for manufacturing quartz glass cloth include the following methods.

直径50~500mmの石英ガラスを1,700~2,300℃にて溶融させ、糸状になったものを巻き取ることで、直径200±100μmの石英糸を得ることができる。溶融温度がこの範囲であれば安定的延伸化可能である。 A quartz thread with a diameter of 200±100 μm can be obtained by melting quartz glass with a diameter of 50 to 500 mm at 1,700 to 2,300° C. and winding the thread-like product. If the melting temperature is within this range, stable stretching is possible.

石英糸は強度が非常に弱いため、巻き取るためにコーティング剤のコーティングを行うことが好ましい。コーティング剤としては、UV硬化可能な硬化性に優れたアクリレート系樹脂が好ましい。コーティング膜厚みとしては、十分な補強効果が得られることから5μm以上が好ましい。石英フィラメントは前記石英糸を酸素と水素の混合火炎にて1700~2,300℃で直径2~15μmへ再延伸することで得ることができる。 Since quartz thread has very low strength, it is preferable to coat it with a coating agent before winding it up. The coating agent is preferably an acrylate resin that is UV curable and has excellent curability. The thickness of the coating film is preferably 5 μm or more since a sufficient reinforcing effect can be obtained. The quartz filament can be obtained by redrawing the quartz thread to a diameter of 2 to 15 μm at 1700 to 2,300° C. in a mixed flame of oxygen and hydrogen.

石英ストランドは石英フィラメントを20~400本集束して製造でき、ストランドを集束させるために、集束剤を用いる。集束剤は澱粉を主原料とし、機能性付与のため、柔軟剤や潤滑剤を配合することができ、集束剤組成物は一般にサイズ剤と呼称される。石英ヤーンは上記で作成したストランドに撚りをかけることで得られる。撚りの頻度としては、25mmあたり0.1~5.0回が好ましい。 A quartz strand can be manufactured by bundling 20 to 400 quartz filaments, and a sizing agent is used to bundle the strands. The sizing agent has starch as its main raw material, and may contain a softener or a lubricant to provide functionality, and the sizing agent composition is generally called a sizing agent. The quartz yarn is obtained by twisting the strands prepared above. The frequency of twisting is preferably 0.1 to 5.0 twists per 25 mm.

石英ガラスクロスは石英ヤーンを製織することで得られる。本発明の石英ガラスクロスとしては特に限定されないが、目付量が10~100g/m2のものが好適に用いられる。製織方法は、特に限定はされないが、例えば、エアージェット織機、ウォータージェット織機、レピア織機、シャトル織機等による製織方法が挙げられる。エアージェット織機などで製織を行う場合は、更なる潤滑性を得るためにPVAや澱粉を二次サイズ剤として付着させることができる。 Quartz glass cloth is obtained by weaving quartz yarn. The quartz glass cloth of the present invention is not particularly limited, but one having a basis weight of 10 to 100 g/m 2 is preferably used. The weaving method is not particularly limited, but examples include weaving methods using an air jet loom, water jet loom, rapier loom, shuttle loom, and the like. When weaving is carried out using an air jet loom or the like, PVA or starch can be attached as a secondary sizing agent in order to obtain further lubricity.

製織された後の石英ガラスクロスの表面には、上記のサイズ剤が表面に付着したままであり、残存したサイズ剤によって誘電特性が悪化する。また、石英ガラスクロスへのシランカップリング剤処理が不十分になり、樹脂との接着不良が発生する。そこで、付着したサイズ剤を除去するために製織後、脱油工程を用いてもよい。脱油工程は水や有機溶剤による洗浄の方法や有機物を燃焼させて除去する処理と呼ばれる方法があり、より確実に脱油を行える点で加熱処理が一般的である。この処理はフロー式やバッチ式の加熱炉を用いて行う方法が挙げられるが、フロー式は高温で一気にサイズ剤を焼き飛ばすため、ガラスクロスの強度低下やサイズ剤の焼け残りの問題があり、300~400℃で有機物をゆっくり燃焼させて除去するバッチ式が一般的である The above-mentioned sizing agent remains attached to the surface of the quartz glass cloth after weaving, and the remaining sizing agent deteriorates the dielectric properties. Furthermore, the silane coupling agent treatment on the quartz glass cloth becomes insufficient, resulting in poor adhesion with the resin. Therefore, a deoiling step may be used after weaving to remove the attached sizing agent. The deoiling process includes a method of washing with water or an organic solvent, and a method called a process of burning and removing organic substances, and heat treatment is generally used because it can more reliably remove oil. This process can be carried out using a flow type or batch type heating furnace, but since the flow type burns off the sizing agent at once at high temperatures, there are problems such as a decrease in the strength of the glass cloth and unburned sizing agent. A batch method is common, in which organic matter is slowly burned and removed at 300-400°C.

本発明で使用する石英ガラスクロスとしては、サイジング剤の付着したものでも、あらかじめ水洗処理やヒートクリーニング処理によってサイズ剤を予め除去したものでもよい。また、本発明で使用する石英ガラスクロスは開繊処理した石英ガラスクロスであっても未開繊の石英ガラスクロスであってもよい。本発明の加熱方法を、ヒートクリーニング方法(サイズ剤除去)とする場合、使用する乾燥気体としては乾燥空気が望ましい。サイズ剤の成分によっては高温で一度に燃焼させると着色のしやすいものもあるため、常に一定の温度ではなく、予備焼成した後に、本発明の加熱方法を、ヒートクリーニング方法としてもよい。その場合、予備焼成に関しては特に限定されるものではなく、温度等は特に限定されず、100℃以下でもよい。また、本発明の前にサイジング剤を除去した石英ガラスクロスを用いる場合は、真空乾燥炉、電気炉等、不活性ガス等も使用可能である。 The quartz glass cloth used in the present invention may have a sizing agent attached thereto, or may have the sizing agent removed in advance by washing with water or heat cleaning. Further, the quartz glass cloth used in the present invention may be a quartz glass cloth that has been opened or an unopened quartz glass cloth. When the heating method of the present invention is a heat cleaning method (sizing agent removal), dry air is preferably used as the dry gas. Depending on the components of the sizing agent, some may easily become colored if burned all at once at a high temperature, so the heating method of the present invention may be used as a heat cleaning method after pre-baking instead of at a constant temperature. In that case, there are no particular limitations on the preliminary firing, and the temperature and the like are not particularly limited, and may be 100° C. or lower. Further, when using a quartz glass cloth from which the sizing agent has been removed before the present invention, a vacuum drying oven, an electric oven, etc., an inert gas, etc. can also be used.

脱油後のガラスクロスはそのまま使用することもできるが、シラン処理をしたシラン処理石英ガラスクロスとすることもできる。シラン処理については後述する。 The glass cloth after oil removal can be used as it is, but it can also be made into a silane-treated quartz glass cloth that has been treated with silane. The silane treatment will be described later.

[石英ガラスクロスの加熱方法]
本発明の加熱方法は、最高加熱温度が100~600℃、かつ100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱するものです。
(加熱炉)
加熱に用いる加熱炉は、100~600℃に加熱することができ、炉内を真空又は露点15℃以下の乾燥気体雰囲気下にすることができるものを用いることができ、このような加熱炉であれば特に限定されず、加熱炉としては、ガス炉、電気炉、マッフル炉、レーザー加熱等が挙げられる。
[How to heat quartz glass cloth]
The heating method of the present invention is performed under the conditions that the maximum heating temperature is 100 to 600°C and the amount of heating expressed as heating temperature (°C) of 100°C or more x heating time (h) is 450 (°C/h) or more. It's something to heat.
(heating furnace)
The heating furnace used for heating can be one that can heat to 100 to 600°C and can create a vacuum or a dry gas atmosphere with a dew point of 15°C or less in the furnace. There are no particular limitations, and examples of heating furnaces include gas furnaces, electric furnaces, muffle furnaces, laser heating, and the like.

中でも、単位発熱量(1,000kcal)当たりに生じる水の量が0.12L以下となるような発熱機構を有する加熱炉を用いることが好ましい。このような発熱機構を有していれば、特に限定されず、電気炉、マッフル炉、レーザー加熱等で、上記が可能な発熱機構を有する加熱炉を含む装置が挙げられる。特に、電気炉は燃焼を伴わないため、気体中の水の量を0.12L以下、0.10L未満とすることができる。 Among these, it is preferable to use a heating furnace having a heat generating mechanism such that the amount of water generated per unit calorific value (1,000 kcal) is 0.12 L or less. As long as it has such a heat generating mechanism, it is not particularly limited, and examples thereof include an electric furnace, a muffle furnace, a laser heating, and the like, which include a heating furnace having a heat generating mechanism capable of the above. In particular, since electric furnaces do not involve combustion, the amount of water in the gas can be 0.12 L or less, less than 0.10 L.

加熱炉には、乾燥気体を炉内に送り込む装置を有することが好ましい。この装置としては、コンプレッサー又はエアドライヤー等の乾燥気体を生成する機構、乾燥気体を充填又は導入する、乾燥気体を生成する機構と炉内を結合する配管、炉内から排気を行う排出機構を有しているものが挙げられる。 It is preferable that the heating furnace has a device for feeding dry gas into the furnace. This equipment includes a mechanism that generates dry gas such as a compressor or air dryer, piping that connects the inside of the furnace to the mechanism that generates dry gas that fills or introduces dry gas, and an exhaust mechanism that exhausts air from inside the furnace. Examples include things that are done.

(加熱雰囲気)
本発明においては、真空又は露点15℃以下の気体中で、石英ガラスクロスを加熱する。気体としては、空気、窒素及びアルゴン等の不活性ガスが好ましい。炉内を真空にする場合は、島津製作所製 真空加熱焼成炉VASTA等の、真空加熱焼成炉を用いる。
(Heating atmosphere)
In the present invention, the quartz glass cloth is heated in vacuum or in a gas having a dew point of 15° C. or lower. As the gas, inert gases such as air, nitrogen, and argon are preferred. If the inside of the furnace is to be evacuated, a vacuum heating and firing furnace such as the vacuum heating and firing furnace VASTA manufactured by Shimadzu Corporation is used.

炉内を露点15℃以下の気体中にする方法としては、炉内が露点15℃以下の気体中であれば特に限定されないが、加熱前に、露点15℃以下の乾燥気体で炉内を充填、又は露点15℃以下の乾燥気体を、炉内に導入する方法が挙げられる。導入は、加熱前、昇温中、温度保持中及び降温中のいずれでもよく、この中から複数を選んで導入してもよい。中でも、露点15℃以下、好ましくは0℃以下の乾燥気体を、炉内に導入することが好ましく、降温中に、炉内に導入することが好ましい。乾燥気体としては、空気、窒素及びアルゴン等の不活性ガスから選択される露点15℃以下の乾燥気体が挙げられる。中でも、生産効率の面で乾燥空気が好ましい。上記の乾燥空気を生成する装置としてはコンプレッサーやエアドライヤー等が挙げられる。なお、本発明における露点とは大気圧露点を指す。充填又は導入する乾燥気体の露点は、15℃以下(水分含有量;12.8g/m3)が好ましく、0℃(水分含有量;4.85g/m3)以下がより好ましく、-20℃以下(水分含有量;1.07g/m3)がさらに好ましく、-60℃(水分含有量;0.0193g/m3)以下が特に好ましい。気体中での加熱工程では、SiO2+H2O⇔Si-OHの反応は、露点が低ければ低いほど平衡が左に傾き、石英ガラスクロスの誘電正接を低下させる。 The method of filling the inside of the furnace with a gas with a dew point of 15°C or less is not particularly limited as long as the inside of the furnace is in a gas with a dew point of 15°C or less, but it is possible to fill the inside of the furnace with dry gas with a dew point of 15°C or less before heating. Alternatively, a method of introducing dry gas having a dew point of 15° C. or lower into the furnace may be mentioned. The introduction may be performed before heating, during temperature rise, during temperature maintenance, or during temperature fall, and a plurality of these may be selected and introduced. Among these, it is preferable to introduce a dry gas having a dew point of 15° C. or lower, preferably 0° C. or lower, into the furnace, and it is preferable to introduce the dry gas into the furnace during cooling. Examples of the drying gas include drying gases having a dew point of 15° C. or lower and selected from air, nitrogen, and inert gases such as argon. Among these, dry air is preferred in terms of production efficiency. Examples of devices that generate the dry air include a compressor, an air dryer, and the like. Note that the dew point in the present invention refers to the atmospheric pressure dew point. The dew point of the dry gas to be filled or introduced is preferably 15°C or lower (moisture content; 12.8 g/m 3 ), more preferably 0°C (water content: 4.85 g/m 3 ) or lower, and -20°C. The temperature is more preferably below (moisture content; 1.07 g/m 3 ), particularly preferably below -60°C (moisture content: 0.0193 g/m 3 ). In the heating step in gas, the lower the dew point, the more the equilibrium of the SiO 2 +H 2 O⇔Si-OH reaction tilts to the left, lowering the dielectric loss tangent of the quartz glass cloth.

加熱前に、炉内に予め充填・導入する乾燥気体は露点15℃以下であり、0℃以下が好ましく、生産効率、経済性の点から、-20℃以下の乾燥空気がより好ましい。
加熱炉に導入する乾燥気体の露点は15℃以下であり、さらに石英ガラスクロスを低誘電正接化させるために、昇温から降温に至る加熱工程における乾燥気体の露点は0℃以下が好ましく、-20℃がより好ましく、-60℃以下がさらに好ましい。
The drying gas that is previously filled and introduced into the furnace before heating has a dew point of 15° C. or lower, preferably 0° C. or lower, and more preferably -20° C. or lower from the viewpoint of production efficiency and economic efficiency.
The dew point of the drying gas introduced into the heating furnace is preferably 15°C or less, and in order to further reduce the dielectric loss tangent of the quartz glass cloth, the dewpoint of the drying gas in the heating process from temperature rise to temperature drop is preferably 0°C or less, - The temperature is more preferably 20°C, and even more preferably -60°C or lower.

乾燥気体の導入量については特には限定されないが、炉内の露点を十分に低下させ、かつ炉内の温度を一定に保てる範囲として一時間当たり乾燥炉の体積に対して0.5~20倍が好ましい。 The amount of drying gas to be introduced is not particularly limited, but it should be 0.5 to 20 times the volume of the drying oven per hour, as long as the dew point inside the oven can be sufficiently lowered and the temperature inside the oven can be kept constant. is preferred.

(加熱温度)
SiO2+H2O⇔Si-OHの反応は100℃以上で活性化し、温度が高くなればなるほど平衡が左に傾いてSi-OH基は再度結合してSi-O-Si結合を形成する。すなわち露点が低く、加熱温度が高いほどSi-OH基は減少し、石英ガラスクロスの誘電正接が低下する。そのため、本発明における石英ガラスクロスの最高加熱温度は100~600℃であり、300~550℃が好ましく、350~450℃がより好ましい。100℃未満では上述のようにSi-OH基同士の反応における活性化エネルギーが足りないためにSi-OH基の量が低下せず誘電正接も低下しない。また、サイズ剤が付着したままの石英ガラスクロスであれば、サイズ剤が燃焼するためのエネルギーが不足するため加熱時間を長くしてもサイズ剤が残存してしまい、残存サイズ剤による誘電正接の悪化や後工程のシランカップリング処理で不良が起こってしまう。
(Heating temperature)
The reaction of SiO 2 +H 2 O⇔Si-OH is activated at temperatures above 100°C, and as the temperature rises, the equilibrium shifts to the left and the Si-OH groups combine again to form a Si-O-Si bond. That is, the lower the dew point and the higher the heating temperature, the fewer Si--OH groups and the lower the dielectric loss tangent of the quartz glass cloth. Therefore, the maximum heating temperature of the quartz glass cloth in the present invention is 100 to 600°C, preferably 300 to 550°C, and more preferably 350 to 450°C. If the temperature is below 100° C., the activation energy for the reaction between Si—OH groups is insufficient as described above, so the amount of Si—OH groups does not decrease and the dielectric loss tangent does not decrease. Additionally, if the sizing agent is still attached to the quartz glass cloth, there is insufficient energy to burn the sizing agent, so the sizing agent will remain even if the heating time is extended, and the dielectric loss tangent due to the residual sizing agent will decrease. Deterioration or defects may occur during the silane coupling treatment in the post-process.

一方、最高加熱温度が600℃を超えて加熱を行うと石英ガラスクロスのフィラメント同士が一部固着して柔軟性がなくなる。また、熱膨張による伸縮が大きくなりガラスクロス中のフィラメント同士が擦れてマイクロクラックとなり強度が著しく低下したり柔軟性が低下する等の欠陥が発生する。このため、シラン処理工程や樹脂を塗工してプリプレグを作製する際に、ガラスクロスの折れや柔軟性不足でガラスクロスが破れたりシワになる。 On the other hand, if heating is performed at a maximum heating temperature of over 600° C., some of the filaments of the quartz glass cloth will stick to each other and lose flexibility. In addition, expansion and contraction due to thermal expansion becomes large, and the filaments in the glass cloth rub against each other, resulting in microcracks, which cause defects such as a significant decrease in strength and flexibility. For this reason, during the silane treatment process or when resin is applied to produce prepreg, the glass cloth may break or wrinkle due to bending or lack of flexibility.

(加熱量)
乾燥気体中での100~600℃の温度温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上である。図1にこの加熱量の算出法を示す。塗りつぶし部分が加熱量であり、昇温中、温度保持中及び降温中には影響されない。熱量が450(℃・h)以下だとSiO2+H2O⇔Si-OHの平衡反応を十分に左に傾ける時間が足りなく、石英ガラスクロスの誘電正接が低下しきらないために不適である。加熱量が450(℃・h)以上であれば特には限定されないが、生産効率の点で450~50,000(℃・h)が好ましく、3,000~50,000(℃・h)がより好ましい。
(Amount of heating)
The amount of heating expressed as temperature (°C) x heating time (h) of 100 to 600°C in dry gas is 450 (°C·h) or more. FIG. 1 shows a method for calculating this amount of heating. The shaded area is the amount of heating, which is not affected by heating, holding, and cooling. If the amount of heat is less than 450 (℃・h), there is not enough time to tilt the equilibrium reaction of SiO 2 + H 2 O ⇔ Si-OH to the left, and the dielectric loss tangent of the quartz glass cloth does not decrease completely, making it unsuitable. . There is no particular limitation as long as the heating amount is 450 (℃・h) or more, but from the point of view of production efficiency, 450 to 50,000 (℃・h) is preferable, and 3,000 to 50,000 (℃・h) is preferable. More preferred.

加熱は、昇温中、温度保持中及び降温中に関しては数ステップに分けてもよく、温度保持も複数の温度で保持してもよい。また上記の加熱量が満たせれば保持時間がなくてもよい。昇温及び降温レートに関しては特に限定されないが、生産性の点から、10℃/h以上が好ましく、サイズ剤の黒変防止、石英ガラスクロスの強度の点から、200℃/h未満が好ましい。 Heating may be divided into several steps during temperature increase, temperature maintenance, and temperature reduction, and temperature may be maintained at a plurality of temperatures. Further, as long as the above heating amount can be satisfied, there is no need for holding time. There are no particular limitations on the temperature increase and temperature decrease rates, but from the viewpoint of productivity, it is preferably 10° C./h or more, and from the viewpoint of preventing blackening of the sizing agent and the strength of the quartz glass cloth, it is preferably less than 200° C./h.

特に、100~300℃の雰囲気は、活性化エネルギーは超えるものの低温領域のためSiO2+H2O⇔Si-OHの平衡が右に傾きやすく、最もSi-O-Si結合が開裂しやすいため、特に露点を低く保つ必要がある。乾燥気体の導入タイミングについては昇温中、降温中、温度保持中のいずれのタイミングでもよい。炉内の露点を低く保ち続ける点から、昇温中、温度保持中、降温中の100~600℃の全加熱中で、乾燥気体を炉内に導入し続けることが好ましい。特に、加熱最高温度から100℃まで降温中に、乾燥気体を炉内に導入することが、誘電正接の改善に有効である。 In particular, in an atmosphere of 100 to 300°C, although the activation energy is exceeded, the equilibrium of SiO 2 + H 2 O ⇔ Si-OH tends to tilt to the right because it is a low temperature region, and the Si-O-Si bond is most likely to be cleaved. In particular, it is necessary to keep the dew point low. The drying gas may be introduced at any timing during temperature rise, temperature fall, or temperature maintenance. In order to keep the dew point in the furnace low, it is preferable to continue introducing dry gas into the furnace during the entire heating at 100 to 600° C. during heating, holding, and cooling. In particular, introducing dry gas into the furnace while the temperature is decreasing from the maximum heating temperature to 100° C. is effective in improving the dielectric loss tangent.

本発明の加熱方法によれば、SiO2を95質量%以上含む石英ガラスクロス誘電正接を低くすることができる。加熱工程後の石英ガラスクロスの誘電正接としては、40GHzにおける誘電正接は、0.0015以下が好ましく、0.0012以下がより好ましい。また、10GHzにおける誘電正接は、0.0010以下が好ましく、0.0008以下がより好ましい。誘電正接の測定方法は共振法に基づくものであり、具体的には、後述する実施例の記載に基づくものである。また、加熱工程前後において、10GHz及び40GHzでの誘電正接の変化比は、0.1~0.9が好ましく、0.1~0.7がより好ましい。なお、10GHz及び40GHzでの誘電正接の変化比は後述する実施例の記載に基づくものである。 According to the heating method of the present invention, the dielectric loss tangent of the silica glass cloth containing 95% by mass or more of SiO 2 can be lowered. The dielectric loss tangent of the quartz glass cloth after the heating step is preferably 0.0015 or less, more preferably 0.0012 or less at 40 GHz. Further, the dielectric loss tangent at 10 GHz is preferably 0.0010 or less, more preferably 0.0008 or less. The method for measuring the dielectric loss tangent is based on the resonance method, and specifically, it is based on the description of the examples described later. Further, the change ratio of the dielectric loss tangent at 10 GHz and 40 GHz before and after the heating step is preferably 0.1 to 0.9, more preferably 0.1 to 0.7. Note that the change ratio of the dielectric loss tangent at 10 GHz and 40 GHz is based on the description of Examples described later.

[低誘電化石英ガラスクロスの製造方法]
本発明の低誘電化石英ガラスクロスの製造方法は、上記加熱工程を含むものであり、好適な成分、範囲等も同じである。本発明の加熱工程を含むことで、加熱処理後に特別な後処理をすることなく、低誘電化石英ガラスクロスを製造することが可能である。
[Production method of low dielectric quartz glass cloth]
The method for producing a low dielectric quartz glass cloth of the present invention includes the heating step described above, and the preferred components, ranges, etc. are also the same. By including the heating step of the present invention, it is possible to manufacture a low dielectric quartz glass cloth without any special post-treatment after the heat treatment.

[低誘電化石英ガラスクロス]
本発明の加熱工程を有する製造方法で得られた石英ガラスクロスの誘電正接は、40GHzにおける誘電正接は、0.0015以下が好ましく、0.0012以下がより好ましい。また、10GHzにおける誘電正接は、0.0010以下が好ましく、0.0008以下がより好ましい。
[Low dielectric quartz glass cloth]
The dielectric loss tangent of the quartz glass cloth obtained by the manufacturing method including the heating step of the present invention is preferably 0.0015 or less, more preferably 0.0012 or less at 40 GHz. Further, the dielectric loss tangent at 10 GHz is preferably 0.0010 or less, more preferably 0.0008 or less.

低誘電化石英ガラスクロスの製造方法においては、本発明の加熱工程を、サイズ剤を除去するヒートクリーニング工程としても、ヒートクリーニング工程とは別の工程としてもよい。さらに、上記シラン処理を有してもよい。シラン処理工程をさらに有する場合、シラン処理工程の効果をより発揮する点からは、加熱工程後にシラン処理工程を有することが好ましい。 In the method for manufacturing a low dielectric quartz glass cloth, the heating step of the present invention may be a heat cleaning step for removing the sizing agent, or may be a separate step from the heat cleaning step. Furthermore, the above-mentioned silane treatment may be performed. When the silane treatment step is further included, it is preferable to include the silane treatment step after the heating step in order to more effectively exhibit the effects of the silane treatment step.

[シラン処理工程]
ガラスクロスを処理するシラン処理液に関しては特に限定はされないが、生産性や環境負荷の観点からシランカップリング剤を0.05~1質量%に分散させた水溶液が好適である。シランカップリング剤にpH調整剤を添加して水溶液とすることができる。pH調整剤としては特に限定されないが使用するシランカップリング剤に合わせて酢酸やアンモニアによる調整が好ましい。シラン処理としては特に限定されず、シラン処理するガラスクロスを上記水溶液に浸漬すればよい。温度や時間は、50~200℃で、30秒~1時間等から適宜選定される。
[Silan treatment process]
The silane treatment liquid used to treat glass cloth is not particularly limited, but from the viewpoint of productivity and environmental impact, an aqueous solution in which a silane coupling agent is dispersed in an amount of 0.05 to 1% by mass is suitable. A pH adjuster can be added to the silane coupling agent to form an aqueous solution. The pH adjuster is not particularly limited, but adjustment using acetic acid or ammonia is preferred depending on the silane coupling agent used. The silane treatment is not particularly limited, and the glass cloth to be silane treated may be immersed in the above aqueous solution. The temperature and time are appropriately selected from 50 to 200°C and 30 seconds to 1 hour.

シランカップリング剤としては、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルメチルビニルエトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、1,4-ビス(メトキシジメチルシリル)ベンゼン、テトラメトキシシラン、テトラエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン及びその塩酸塩、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシシラン及びその塩酸塩、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリスエトキシシリルプロピル)テトラスルフィド等のアルコキシシラン化合物が挙げられ、1種あるいは2種以上混合して使用してもよい。その中でも、3-アミノプロピルトリメトキシシラン、N-(2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が好ましい。シランカップリング剤はこれらに限定されるものではなく、1種単独で又は2種以上組み合わせて用いることができる。 Silane coupling agents include trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, trimethoxysilane, and triethoxysilane. Silane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenylmethylvinylethoxysilane, naphthyltrimethoxysilane, naphthyltriethoxysilane, 1,4-bis(methoxydimethylsilyl)benzene, Tetramethoxysilane, tetraethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilyl)hexane, vinyltrimethoxysilane, vinyltriethoxy Silane, p-styryltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, Sidoxypropylmethyldiethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxysilane Roxypropyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyldiethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3 -Aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane and its hydrochloride, N-(vinylbenzyl)-2-aminoethyl-3-aminopropylmethyldimethoxysilane and its hydrochloric acid salt, 3-isocyanatepropyltriethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples include alkoxysilane compounds such as dimethoxysilane and bis(trisethoxysilylpropyl)tetrasulfide, which may be used alone or in combination of two or more. Among these, 3-aminopropyltrimethoxysilane, N-(2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc.) are preferable. It is not limited to these, and one type can be used alone or two or more types can be used in combination.

本発明においては、上記加熱工程を含むことで、シランカップリング処理しても、同様に低誘電化石英ガラスクロスを得ることができる。つまり、本発明の加熱工程後に、シランカップリング処理された石英ガラスクロスの誘電正接は、40GHzにおける誘電正接は、0.0015以下が好ましく、0.0012以下がより好ましい。また、10GHzにおける誘電正接は、0.0010以下が好ましく、0.0008以下がより好ましい。 In the present invention, by including the above-mentioned heating step, a low dielectric quartz glass cloth can be obtained in the same manner even after the silane coupling treatment. That is, the dielectric loss tangent of the silane coupling-treated silica glass cloth after the heating step of the present invention is preferably 0.0015 or less, more preferably 0.0012 or less at 40 GHz. Further, the dielectric loss tangent at 10 GHz is preferably 0.0010 or less, more preferably 0.0008 or less.

また、ガラスクロスは一般的に後工程での樹脂の含侵性を上げるために、例えば、脱サイズ処理前、又はシラン処理時に開繊処理が施される。開繊処理の方法としては特には限定されないが、超音波を利用する開繊処理方法、高圧柱状水位流による方法、気水体積比を調整した気液混合ミストを利用する方法が挙げられ、ガラスクロスの種類によって適宜使い分けられる。開繊の有無にかかわらず、本発明の加熱方法による低誘電正接化の効果を得ることができる。 Further, glass cloth is generally subjected to fiber opening treatment, for example, before desizing treatment or during silane treatment, in order to increase resin impregnation in a subsequent process. The opening treatment method is not particularly limited, but examples include opening treatment methods using ultrasonic waves, methods using high-pressure columnar water level flow, and methods using a gas-liquid mixed mist with an adjusted air-water volume ratio. It can be used appropriately depending on the type of cross. Regardless of whether the fibers are opened or not, the effect of lowering the dielectric loss tangent by the heating method of the present invention can be obtained.

[プリプレグ]
本発明の製造方法で得られた低誘電化石英ガラスクロスは、樹脂、フィラー等を用いて、プリプレグとすることができる。本発明の低誘電化石英ガラスクロスを用いることで、プリプレグ化も問題なく行うことができる。
[Prepreg]
The low dielectric quartz glass cloth obtained by the manufacturing method of the present invention can be made into a prepreg by using resin, filler, etc. By using the low dielectric quartz glass cloth of the present invention, it can be made into prepreg without any problem.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[石英ガラスクロスの調製例(SQ1~SQ3)]
SiO2が99.9%質量%以上の石英ガラスインゴットを加熱延伸して、直径5.3μmの石英ガラスフィラメントからなる石英ガラス繊維を作製した。この石英ガラス繊維に、上記の石英ガラス繊維集束剤(澱粉3.0質量%、牛脂0.5質量%、乳化剤0.1質量%、残部水)を、アプリケーターにて塗布した後に集束機により集束し、巻き取って石英ガラスフィラメント本数200本の石英ガラスストランドを作製した。巻き取った石英ガラスストランドに24T/mの撚りを掛け、石英ガラスヤーンを作製した。
得られた石英ガラスヤーンに二次集束剤としてポリビニルアルコール(PVA)1.5質量%、澱粉1.5質量%からなる水溶液を塗布した後に、エアージェット織機を用いて、IPC規格1078石英ガラスクロスを製造し、気水混合ミストによって開繊処理を行った(SQ1)。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.
[Preparation example of quartz glass cloth (SQ1 to SQ3)]
A quartz glass ingot containing 99.9% by mass or more of SiO 2 was heated and stretched to produce a quartz glass fiber consisting of a silica glass filament with a diameter of 5.3 μm. The above-mentioned quartz glass fiber sizing agent (3.0% by mass of starch, 0.5% by mass of beef tallow, 0.1% by mass of emulsifier, balance water) is applied to the quartz glass fibers using an applicator, and then the quartz glass fibers are bundled by a concentrator. Then, it was wound up to produce a quartz glass strand having 200 quartz glass filaments. The wound quartz glass strand was twisted at 24 T/m to produce a quartz glass yarn.
After applying an aqueous solution consisting of 1.5% by mass of polyvinyl alcohol (PVA) and 1.5% by mass of starch as a secondary sizing agent to the obtained quartz glass yarn, an IPC standard 1078 quartz glass cloth was applied using an air jet loom. was manufactured and subjected to fiber opening treatment using an air/water mixed mist (SQ1).

同様にして、直径4.0μmのフィラメントを100本束ねて製織を行い、IPC規格1027石英ガラスクロス(SQ2)を製造した。直径7.3μmのフィラメントを200本束ねて製織を行い、IPC規格2116石英ガラスクロス(SQ3)を製造した。
なお、上記で得られた石英ガラスクロスSQ1~SQ3には約2質量%のサイズ剤が付着している。
In the same manner, 100 filaments each having a diameter of 4.0 μm were bundled and woven to produce IPC standard 1027 quartz glass cloth (SQ2). 200 filaments with a diameter of 7.3 μm were bundled and woven to produce IPC standard 2116 quartz glass cloth (SQ3).
Note that approximately 2% by mass of sizing agent is attached to the silica glass cloths SQ1 to SQ3 obtained above.

[サイズ剤が付着した石英ガラスを加熱処理する場合]
[実施例1]
1078石英ガラスクロス(SQ1)を、ネムス社製電気炉B80×85×200-3Z12-10を用い、100℃/hで400℃まで昇温し24時間保持後、30℃/hで降温した。その際、昇温から降温時までHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり、電気炉の体積の5倍量送り込んで加熱処理を行った。
[When heat treating quartz glass with sizing agent attached]
[Example 1]
A 1078 quartz glass cloth (SQ1) was heated to 400°C at a rate of 100°C/h using an electric furnace B80 x 85 x 200-3Z12-10 manufactured by Nems, held for 24 hours, and then cooled at a rate of 30°C/h. During the heat treatment, dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP is pumped into the electric furnace in an amount 5 times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall. I did it.

[実施例2]
昇温から降温時までCKD株式会社製 スーパーヒートレスドライヤー SHD3025で作製した露点-70℃の乾燥空気を、1時間当たり、電気炉の体積の5倍量送り込んで加熱処理を行う以外は、実施例1と同様にSQ1を加熱処理した。
[Example 2]
Examples except that heat treatment is carried out by feeding dry air with a dew point of -70°C made with Super Heatless Dryer SHD3025 manufactured by CKD Co., Ltd. from temperature rise to temperature fall in an amount of 5 times the volume of the electric furnace per hour. SQ1 was heat-treated in the same manner as in Example 1.

[実施例3]
降温時にのみHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり電気炉の体積の5倍量送り込んで加熱処理を行う以外は、実施例1と同様にSQ1を加熱処理した。
外気の露点は20℃であったため、露点15℃以下の加熱量は降温時のみの以下のようになる。
((400-100)×(400-100)/30)÷2=1,500℃・h
[Example 3]
Examples except that heat treatment is performed by feeding dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP in an amount of 5 times the volume of the electric furnace per hour only when the temperature drops. SQ1 was heat-treated in the same manner as in Example 1.
Since the dew point of the outside air was 20°C, the amount of heating when the dew point was 15°C or lower was as follows only when the temperature dropped.
((400-100)×(400-100)/30)÷2=1,500℃・h

[実施例4]
温度保持時にのみHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり電気炉の体積の5倍量送り込んで加熱処理を行う以外は、実施例1と同様にSQ1を加熱処理した。外気の露点は20℃であったため、露点15℃以下の加熱量は保持時のみの以下のようになる。
400×24=9,600℃・h
[Example 4]
Only when the temperature was maintained, heat treatment was performed by feeding dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP in an amount of 5 times the volume of the electric furnace per hour. SQ1 was heat treated in the same manner as in Example 1. Since the dew point of the outside air was 20°C, the amount of heating when the dew point was 15°C or lower was as follows only during holding.
400×24=9,600℃・h

[実施例5]
昇温時にのみHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり電気炉の体積の5倍量送り込んで加熱処理を行う以外は、実施例1と同様にSQ1を加熱処理した。
外気の露点は20℃であったため、露点15℃以下の加熱量は昇温時のみの以下のようになる。
((400-100)×(400-100)/100)÷2=450℃・hとなる。
[Example 5]
The heat treatment was carried out only when the temperature was raised by sending dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP in an amount of 5 times the volume of the electric furnace per hour. SQ1 was heat treated in the same manner as in Example 1.
Since the dew point of the outside air was 20°C, the amount of heating when the dew point was 15°C or lower was as follows only when the temperature was raised.
((400-100)×(400-100)/100)÷2=450℃・h.

[実施例6]
SQ1をネムス社製電気炉B80×85×200-3Z12-10を用い、100℃/hで600℃まで昇温し10時間保持後、30℃/hで降温した。その際、昇温から降温時までHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり、電気炉の体積の5倍量送り込んで加熱処理を行った。
[Example 6]
SQ1 was heated to 600° C. at 100° C./h using an electric furnace B80×85×200-3Z12-10 manufactured by Nems, held for 10 hours, and then cooled at 30° C./h. During the heat treatment, dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP is pumped into the electric furnace in an amount 5 times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall. I did it.

[実施例7]
1078石英ガラスクロス(SQ1)を、1027石英ガラスクロス(SQ2)に変更した以外は、実施例1と同様の方法で、加熱処理を行った。
[Example 7]
Heat treatment was performed in the same manner as in Example 1, except that 1078 quartz glass cloth (SQ1) was replaced with 1027 quartz glass cloth (SQ2).

[実施例8]
1078石英ガラスクロス(SQ1)を、2116石英ガラスクロス(SQ3)に変更した以外は、実施例1と同様の方法で、加熱処理を行った。
[Example 8]
Heat treatment was performed in the same manner as in Example 1, except that 1078 quartz glass cloth (SQ1) was changed to 2116 quartz glass cloth (SQ3).

[サイズ剤除去後の石英ガラスを加熱処理する場合]
SQ1のガラスクロスを美濃窯業株式会社製ガス炉 7m3ファイバースーペリオキルンで400℃・72時間でヒートクリーニング処理し、サイズ剤を除去しヒートクリーニング処理ガラス繊維SQ1’を得た。SQ1’の10GHzの誘電正接は0.0017、40GHzの誘電正接は0.0023であった。
[When heat-treating quartz glass after removing sizing agent]
The SQ1 glass cloth was heat-cleaned at 400° C. for 72 hours in a gas furnace 7 m 3 fiber superior kiln manufactured by Mino Ceramics Co., Ltd., and the sizing agent was removed to obtain a heat-cleaned glass fiber SQ1'. The dielectric loss tangent of SQ1' at 10 GHz was 0.0017, and the dielectric loss tangent at 40 GHz was 0.0023.

[実施例9]
SQ1’を実施例1と同様に加熱処理した。
[Example 9]
SQ1' was heat treated in the same manner as in Example 1.

[実施例10]
SQ1’をネムス社製電気炉B80×85×200-3Z12-10を用い、100℃/hで150℃まで昇温し24時間保持後、30℃/hで降温した。その際、昇温から降温時までHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、1時間当たり、電気炉の体積の5倍量送り込んで加熱処理を行った。
[Example 10]
SQ1' was heated to 150° C. at 100° C./h using an electric furnace B80×85×200-3Z12-10 manufactured by Nems, held for 24 hours, and then cooled at 30° C./h. During the heat treatment, dry air with a dew point of -20°C made using HITATHI's inverter package oil-free Bebicon POD-15VNP is pumped into the electric furnace in an amount 5 times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall. I did it.

[実施例11]
SQ1’を実施例1の電気炉の代わりに島津製作所製 真空加熱焼成炉VASTAを用いて昇温から降温まで真空状態で100℃/hで400℃まで昇温し、12時間保持後、30℃/hで降温した。
[Example 11]
SQ1' was heated to 400°C at a rate of 100°C/h in a vacuum from temperature rise to temperature drop using a vacuum heating and firing furnace VASTA manufactured by Shimadzu Corporation instead of the electric furnace of Example 1, and after being held for 12 hours, it was heated to 30°C. The temperature decreased at /h.

[実施例12]
実施例11で炉内を真空の代わりに、昇温から降温まで巴商会社製 窒素ガス(露点-70℃)で置換して加熱処理を行った。
[Example 12]
In Example 11, heat treatment was carried out by replacing the inside of the furnace with nitrogen gas (dew point -70°C) manufactured by Tomoe Co., Ltd. from temperature rise to temperature fall instead of vacuum.

[比較例1]
実施例8と同様に、SQ1をネムス社製電気炉B80×85×200-3Z12-10を用いて加熱処理を行った。その際、外気の露点は露点20℃であったため、炉内の露点は昇温から降温時まで20℃であった。
[Comparative example 1]
As in Example 8, SQ1 was heat-treated using an electric furnace B80×85×200-3Z12-10 manufactured by Nems. At that time, since the dew point of the outside air was 20°C, the dew point inside the furnace was 20°C from the time of temperature rise to the time of temperature fall.

[比較例2]
SQ1をネムス社製電気炉B80×85×200-3Z12-10を用いて100℃/hで700℃まで昇温し、24時間保持後、30℃/hで降温した。その際、昇温から降温時まで露点-20℃の乾燥空気を1時間当たり電気炉の体積の5倍量送り込んで加熱処理を行った。
[Comparative example 2]
SQ1 was heated to 700°C at a rate of 100°C/h using an electric furnace B80x85x200-3Z12-10 manufactured by Nems, and after being held for 24 hours, the temperature was lowered at a rate of 30°C/h. At that time, heat treatment was carried out by feeding dry air with a dew point of -20°C in an amount of five times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall.

[比較例3]
SQ1’をネムス社製電気炉B80×85×200-3Z12-10を用いて100℃/hで80℃まで昇温し、24時間保持後、30℃/hで降温した。その際、昇温から降温時まで露点-20℃の乾燥空気を1時間当たり電気炉の体積の5倍量送り込んで加熱処理を行った。
[Comparative example 3]
SQ1' was heated to 80° C. at a rate of 100° C./h using an electric furnace B80×85×200-3Z12-10 manufactured by Nems, and after being held for 24 hours, the temperature was lowered at a rate of 30° C./h. At that time, heat treatment was carried out by feeding dry air with a dew point of -20°C in an amount of five times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall.

[比較例4]
ネムス社製電気炉B80×85×200-3Z12-10を400℃まで昇温し、400℃の状態で炉内にSQ1’を入れて1時間保持後、降温を待たずに取り出した。その際、昇温から降温時まで露点-20℃の乾燥空気を1時間当たり電気炉の体積の5倍量送り込んだ。
[Comparative example 4]
An electric furnace B80 x 85 x 200-3Z12-10 manufactured by Nems was heated to 400°C, and SQ1' was placed in the furnace at 400°C and held for 1 hour, then taken out without waiting for the temperature to fall. At that time, dry air with a dew point of -20°C was fed in at an amount five times the volume of the electric furnace per hour from the time of temperature rise to the time of temperature fall.

1.露点の測定
露点はオリオン社製露点モニタ-MG-40を用いて測定した。
1. Measurement of Dew Point The dew point was measured using a dew point monitor MG-40 manufactured by Orion.

上記で得られた加熱工程後のガラスクロスについて、下記方法で評価を行った。結果を表中に記載する。
2.誘電正接の測定
ガラスクロスの10GHz及び40GHzの誘電正接はエーイーティー社製空洞共振器(TE011モード)を用いて測定した。なおガラスクロスの厚みは理論膜厚を用いて測定しており、ガラスクロスの理論膜厚は
理論膜厚t(μm)=目付量(g/m2)/比重(g/cm3
から算出した。
The glass cloth obtained above after the heating process was evaluated by the following method. The results are listed in the table.
2. Measurement of dielectric loss tangent The dielectric loss tangent of the glass cloth at 10 GHz and 40 GHz was measured using a cavity resonator manufactured by ET (TE011 mode). The thickness of the glass cloth is measured using the theoretical film thickness, and the theoretical film thickness of the glass cloth is: Theoretical film thickness t (μm) = Area weight (g/m 2 )/Specific gravity (g/cm 3 )
Calculated from.

3.誘電正接低下度
加熱処理前後の誘電正接の倍率を求めた
〈サイズ剤が付着したガラスクロスを加熱処理に使用した場合〉
SQ1~SQ3を鈴木油脂工業社製 アルカリ電解水 S-2665で60℃・2時間洗浄し、付着したサイズ剤を除去した後にガラスクロスを100℃・30分乾燥させてサイズ剤洗浄ガラスクロスSQ”~SQ3”の誘電正接を加熱処理前の誘電正接とした
SQ1”の10GHzの誘電正接は0.0008、40GHzの誘電正接は0.0012
SQ2”の10GHzの誘電正接は0.0009、40GHzの誘電正接は0.0013
SQ3”の10GHzの誘電正接は0.0007、40GHzの誘電正接は0.0010
であった。
誘電正接比=加熱処理後のSQ1~3/SQ1”~SQ3”
〈サイズ剤除去後のSQ1’~SQ3’が加熱処理前に当たる場合〉
誘電正接比=加熱処理後のSQ1’~3’/SQ1’~SQ3’
3. Degree of reduction in dielectric loss tangent Calculated magnification of dielectric loss tangent before and after heat treatment (when glass cloth with sizing agent attached is used for heat treatment)
Wash SQ1 to SQ3 with alkaline electrolyzed water S-2665 manufactured by Suzuki Yushi Kogyo Co., Ltd. at 60°C for 2 hours, remove the adhering sizing agent, and then dry the glass cloth at 100°C for 30 minutes to obtain sizing agent-washed glass cloth SQ. ~The dielectric loss tangent of SQ3'' is the dielectric loss tangent before heat treatment, and the dielectric loss tangent of SQ1'' at 10 GHz is 0.0008, and the dielectric loss tangent at 40 GHz is 0.0012.
The dielectric loss tangent of SQ2” at 10GHz is 0.0009, and the dielectric loss tangent at 40GHz is 0.0013.
The dielectric loss tangent of SQ3” at 10GHz is 0.0007, and the dielectric loss tangent at 40GHz is 0.0010.
Met.
Dielectric loss tangent ratio = SQ1~3/SQ1”~SQ3” after heat treatment
<When SQ1' to SQ3' after sizing agent removal corresponds to before heat treatment>
Dielectric loss tangent ratio = SQ1'~3'/SQ1'~SQ3' after heat treatment

4.シランカップリング処理性及びプリプレグ化
加熱工程後のガラスクロスに対して、KBM-503(3-メタクリロキシプロピルトリメトキシシラン、信越化学株式会社製 商品名)を0.2質量%分散した水溶液に浸漬し、110℃、10分乾燥させてシラン処理をおこなった。得られたシラン処理済みクロスをSLK-3000(信越化学株式会社製 商品名)55質量%トルエン溶液に浸漬し110℃、10分乾燥させてプリプレグ化した。問題なくシラン処理及びプリプレグ化できたものを「〇」、ガラスクロスの折れや柔軟性不足でガラスクロスが破れたりシワになったものは「×」とした。
4. Silane coupling processability and prepreg formation After the heating process, the glass cloth is immersed in an aqueous solution in which 0.2% by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, trade name manufactured by Shin-Etsu Chemical Co., Ltd.) is dispersed. Then, silane treatment was performed by drying at 110°C for 10 minutes. The obtained silane-treated cloth was immersed in a 55% by mass toluene solution of SLK-3000 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and dried at 110° C. for 10 minutes to form a prepreg. Those that were able to be silane-treated and made into prepreg without any problems were rated as "○", and those that were broken or wrinkled due to bending or lack of flexibility of the glass cloth were rated as "x".

5.シランカップリング処理後の10GHz及び40GHzの誘電正接を上記と同様の方法で測定した。 5. The dielectric loss tangent at 10 GHz and 40 GHz after the silane coupling treatment was measured in the same manner as above.

Figure 2023178209000002
Figure 2023178209000002

Figure 2023178209000003
Figure 2023178209000003

Figure 2023178209000004
Figure 2023178209000004

Claims (6)

SiO2を95質量%以上含む石英ガラスクロスを加熱炉に入れ、真空又は露点15℃以下の気体中で、最高加熱温度が100~600℃、かつ100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する、上記石英ガラスクロスの加熱方法。 A quartz glass cloth containing 95% by mass or more of SiO 2 is placed in a heating furnace, and the maximum heating temperature is 100 to 600°C, and the heating temperature (°C) x heating time is 100°C or higher, in vacuum or in a gas with a dew point of 15°C or lower. The method for heating the quartz glass cloth described above, wherein heating is performed under conditions such that the amount of heating expressed by (h) is 450 (° C./h) or more. 気体が、空気及び不活性ガスから選ばれ、露点15℃以下の気体である請求項1記載の石英ガラスクロスの加熱方法。 2. The method for heating a quartz glass cloth according to claim 1, wherein the gas is selected from air and an inert gas and has a dew point of 15° C. or less. 露点が0℃以下の乾燥気体を、炉内に導入する請求項1記載の石英ガラスクロスの加熱方法。 2. The method for heating quartz glass cloth according to claim 1, wherein dry gas having a dew point of 0° C. or lower is introduced into the furnace. 加熱前、昇温中、温度保持中及び降温中のいずれか1つ以上に、露点が0℃以下の乾燥気体を、炉内に導入する請求項3記載の石英ガラスクロスの加熱方法。 4. The method for heating quartz glass cloth according to claim 3, wherein dry gas having a dew point of 0° C. or less is introduced into the furnace at least one of the following steps: before heating, during temperature increase, during temperature maintenance, and during temperature decrease. 降温中に、露点が0℃以下の乾燥気体を、炉内に導入する請求項4記載の石英ガラスクロスの加熱方法。 5. The method for heating quartz glass cloth according to claim 4, wherein dry gas having a dew point of 0° C. or lower is introduced into the furnace during cooling. 請求項1~5のいずれか1項記載の加熱方法を工程として含む、40GHzにおける誘電正接が0.0015以下である低誘電化石英ガラスクロスの製造方法。 A method for producing a low dielectric quartz glass cloth having a dielectric loss tangent of 0.0015 or less at 40 GHz, which comprises the heating method according to any one of claims 1 to 5 as a step.
JP2023062124A 2022-06-02 2023-04-06 Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method Pending JP2023178209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023062124A JP2023178209A (en) 2022-06-02 2023-04-06 Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022090028A JP7269416B1 (en) 2022-06-02 2022-06-02 Method for manufacturing quartz glass cloth
JP2023062124A JP2023178209A (en) 2022-06-02 2023-04-06 Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022090028A Division JP7269416B1 (en) 2022-06-02 2022-06-02 Method for manufacturing quartz glass cloth

Publications (1)

Publication Number Publication Date
JP2023178209A true JP2023178209A (en) 2023-12-14

Family

ID=86281589

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022090028A Active JP7269416B1 (en) 2022-06-02 2022-06-02 Method for manufacturing quartz glass cloth
JP2023062124A Pending JP2023178209A (en) 2022-06-02 2023-04-06 Quartz glass cloth heating method and low dielectric quartz glass cloth manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022090028A Active JP7269416B1 (en) 2022-06-02 2022-06-02 Method for manufacturing quartz glass cloth

Country Status (2)

Country Link
JP (2) JP7269416B1 (en)
CN (1) CN117166182A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137590A (en) * 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd Low dielectric constant low dielectric dissipation factor glass, and glass fiber and glass fiber fabric using the glass
JP2007262632A (en) * 2006-03-29 2007-10-11 Nitto Boseki Co Ltd Method for heat cleaning glass fiber woven fabric
JP6450578B2 (en) * 2014-12-15 2019-01-09 信越石英株式会社 Manufacturing method of quartz glass cloth
JP7321879B2 (en) * 2019-10-16 2023-08-07 信越化学工業株式会社 Prepregs and printed wiring boards
JP7332540B2 (en) * 2020-06-17 2023-08-23 信越化学工業株式会社 Annealed quartz glass cloth and its manufacturing method
JP7478044B2 (en) * 2020-06-30 2024-05-02 信越化学工業株式会社 Low dielectric resin substrate
JP7015973B1 (en) * 2021-04-09 2022-02-03 旭化成株式会社 Glass cloth, prepreg, and printed wiring board

Also Published As

Publication number Publication date
CN117166182A (en) 2023-12-05
JP2023177400A (en) 2023-12-14
JP7269416B1 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
CN103146346B (en) Non-asbestos static sealing materials and preparation method thereof
JP7321879B2 (en) Prepregs and printed wiring boards
RU2004123456A (en) HIGH TEMPERATURE RESISTANT GLASSY INORGANIC FIBER
JP7478044B2 (en) Low dielectric resin substrate
JP2010535145A (en) Heat resistant glass fiber
JP2021195689A (en) Annealed quartz glass cloth and manufacturing method thereof
JP2006096658A (en) Method for reinforcing flat sheet glass for display
JPH0761852B2 (en) Method for producing non-sintered cristobalitized silica
WO2024041439A1 (en) Continuous sio2 aerogel composite fiber, and preparation method therefor and use thereof
JP7269416B1 (en) Method for manufacturing quartz glass cloth
CN107354808A (en) Aramid fiber/polyimide fiber composite-insulating paper of excellent performance and preparation method thereof is worn in a kind of resistance
CN114539786A (en) Preparation method of heat-resistant enhanced self-repairing polyborosiloxane composite material
JP2006350025A (en) Ultra-low refractive index film and method for fabricating the same
JP2007262632A (en) Method for heat cleaning glass fiber woven fabric
JP7480802B2 (en) Glass fiber and its manufacturing method, as well as glass cloth, prepreg for circuit boards, and printed wiring board
JP2015155196A (en) Surface treatment glass fiber film
JP7480832B1 (en) How to store quartz glass fiber
JP2024066462A (en) Glass cloth and its manufacturing method
JPH0648325B2 (en) Optical fiber and manufacturing method thereof
JP2022151758A (en) Glass composition with low thermal expansion coefficient and glass fiber
WO2024135242A1 (en) Method for packaging silica glass cloth
TWI732389B (en) A method to optimize atomic layer deposition
JPH093218A (en) Production of composite material
JP7322266B2 (en) Silica glass cloth for prepreg
JP2023184068A (en) Method for producing low-dielectric-tangent silica powder