JP2022151758A - Glass composition with low thermal expansion coefficient and glass fiber - Google Patents

Glass composition with low thermal expansion coefficient and glass fiber Download PDF

Info

Publication number
JP2022151758A
JP2022151758A JP2022043898A JP2022043898A JP2022151758A JP 2022151758 A JP2022151758 A JP 2022151758A JP 2022043898 A JP2022043898 A JP 2022043898A JP 2022043898 A JP2022043898 A JP 2022043898A JP 2022151758 A JP2022151758 A JP 2022151758A
Authority
JP
Japan
Prior art keywords
oxide
glass composition
thermal expansion
content
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022043898A
Other languages
Japanese (ja)
Other versions
JP7387790B2 (en
Inventor
政棠 王
Zhengtang Wang
校康 張
Xiaokang Zhang
壁程 陳
Bih-Cherng Chern
致源 張
Chih-Yuan Chang
文合 徐
Wen-Ho Hsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fulltech Fiber Glass Corp
Original Assignee
Fulltech Fiber Glass Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fulltech Fiber Glass Corp filed Critical Fulltech Fiber Glass Corp
Publication of JP2022151758A publication Critical patent/JP2022151758A/en
Application granted granted Critical
Publication of JP7387790B2 publication Critical patent/JP7387790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

To provide a glass composition having a low thermal expansion coefficient and a glass fiber.SOLUTION: There is provided a glass composition having a low thermal expansion coefficient, comprising: silicon oxide of 55 wt% to 63 wt%; aluminum oxide of 15 wt% to 22 wt%; boron oxide of 6 wt% to 13 wt%; magnesium oxide of 5 wt% to 14 wt%; calcium oxide of 0.1 wt% to 4 wt%; zinc oxide of 0 wt% to 8 wt%; and copper oxide of 0.03 wt% to 7 wt% based on a total glass composition weight of 100 wt%. By increasing the content of copper oxide and reducing the content of zinc oxide in the glass composition, the thermal expansion coefficient of the glass fiber which is prepared from the glass composition with the low thermal expansion coefficient can be reduced to 3 ppm/°C or less.SELECTED DRAWING: None

Description

本発明は、ガラス組成物及びガラス繊維に関し、特に、低膨張係数を持つガラス組成物、及びガラス繊維に関するものである。 The present invention relates to glass compositions and glass fibers, and more particularly to glass compositions and glass fibers having a low coefficient of expansion.

ガラス繊維は、優れた電気絶縁性、低消耗性、及び高安定性などの利点を持つので、回路基板、光ファイバー通信、電子製品の外装ケースなどに広く応用されている。例えば、ガラス繊維をプリント基板に適用する場合は、金属箔シート/配線などの電子部品に貼り付けるための絶縁層又は絶縁部に補強材料として添加しており、熱膨張係数の違いによる絶縁層又は絶縁部と金属箔シート/配線との間の剥離の発生を抑制するために、低熱膨張係数(Coefficient of thermal expansion,CTE)を持つガラス繊維の研究開発が進められている。 Glass fiber has advantages such as excellent electrical insulation, low consumption, and high stability, so it is widely used in circuit boards, optical fiber communications, outer casings of electronic products, and the like. For example, when applying glass fiber to a printed circuit board, it is added as a reinforcing material to the insulating layer or insulating part for attaching to electronic parts such as metal foil sheets / wiring, and the insulating layer or insulating part due to the difference in the coefficient of thermal expansion In order to suppress the occurrence of delamination between the insulating portion and the metal foil sheet/wiring, research and development of glass fibers having a low coefficient of thermal expansion (CTE) are underway.

現在市販されている低熱膨張係数のガラス繊維は、熱膨張係数が約3ppm/℃~4ppm/℃の範囲にあるが、ハイテク産業の発展に伴い、配線パターンの設計も日々複雑化しており、製造過程における熱膨張や収縮などによる残留応力が電子部品に影響を与えてしまうため、業界では、より低い熱膨張係数を有するガラス繊維が求められている。 Low thermal expansion coefficient glass fibers currently on the market have a thermal expansion coefficient in the range of about 3 ppm/°C to 4 ppm/°C. The industry is looking for glass fibers with a lower coefficient of thermal expansion, as residual stresses due to thermal expansion and contraction in the process affect electronic components.

台湾特許第TWI565675B号公報Taiwan Patent No. TWI565675B 中国特許第CN103339076A号公報Chinese Patent No. CN103339076A

このように、本発明は、低熱膨張係数を持つガラス組成物を提供することを目的としている。 Thus, an object of the present invention is to provide a glass composition having a low coefficient of thermal expansion.

上記目的を達成するために、本発明は、低熱膨張係数を持つガラス組成物であって、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)及び酸化銅(CuO)を含むことを特徴とする。 In order to achieve the above object, the present invention provides a glass composition having a low coefficient of thermal expansion, comprising silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), oxide It is characterized by containing magnesium (MgO), calcium oxide (CaO), zinc oxide (ZnO) and copper oxide (CuO).

尚、前記ガラス組成物の重量パーセント100wt%に対して、該酸化ケイ素の含有量は55wt%~63wt%の範囲にあり、該酸化アルミニウムの含有量は15wt%~22wt%の範囲にあり、該酸化ホウ素の含有量は6wt%~13wt%の範囲にあり、該酸化マグネシウムの含有量は5wt%~14wt%の範囲にあり、該酸化カルシウムの含有量は0.1wt%~4wt%の範囲にあり、該酸化亜鉛の含有量は0wt%~8wt%の範囲にあり、該酸化銅の含有量は0.03wt%~7wt%の範囲にあることを特徴とする。 The content of the silicon oxide is in the range of 55 wt% to 63 wt%, the content of the aluminum oxide is in the range of 15 wt% to 22 wt%, and the weight percentage of the glass composition is 100 wt%. The content of boron oxide is in the range of 6 wt% to 13 wt%, the content of magnesium oxide is in the range of 5 wt% to 14 wt%, and the content of calcium oxide is in the range of 0.1 wt% to 4 wt%. The zinc oxide content is in the range of 0 wt % to 8 wt %, and the copper oxide content is in the range of 0.03 wt % to 7 wt %.

また、本発明の他の目的は、低熱膨張係数を持つガラス繊維を提供することである。 Another object of the present invention is to provide a glass fiber with a low coefficient of thermal expansion.

上記目的を達成するために、本発明は、前述の低熱膨張係数を持つガラス組成物からなるガラス繊維であって、該ガラス繊維の熱膨張係数が3ppm/℃以下であることを特徴とする。 In order to achieve the above objects, the present invention is characterized by a glass fiber made of the glass composition having a low coefficient of thermal expansion, wherein the coefficient of thermal expansion of the glass fiber is 3 ppm/°C or less.

本発明の異質な効果とは、本発明の低熱膨張係数を持つガラス組成物中の酸化銅の含有量を増加させ、酸化亜鉛の含有量を減少させることにより、当該低熱膨張係数を持つガラス組成物からなるガラス繊維の熱膨張係数を3ppm/℃以下に低減させることにある。 The heterogeneous effect of the present invention is that the content of copper oxide in the glass composition having a low coefficient of thermal expansion of the present invention is increased and the content of zinc oxide is decreased, so that the glass composition having a low coefficient of thermal expansion To reduce the coefficient of thermal expansion of a glass fiber made of a material to 3 ppm/° C. or less.

本発明に係る低熱膨張係数を持つガラス組成物は、低熱膨張係数を持つガラス繊維を製造するために用いられる。概略的に説明すると、当該ガラス繊維は、本発明のガラス組成物を十分に混合した後、高温で溶融、紡糸などの工程を順次行うことにより製造され、熱膨張係数は3ppm/℃以下である。 A glass composition with a low coefficient of thermal expansion according to the present invention is used to produce a glass fiber with a low coefficient of thermal expansion. Briefly, the glass fiber is produced by sufficiently mixing the glass composition of the present invention and then performing processes such as melting and spinning at a high temperature in sequence, and has a coefficient of thermal expansion of 3 ppm/° C. or less. .

本発明のガラス組成物の一つの実施例においては、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化銅(CuO)、及びドーパントを含む。 In one embodiment of the glass composition of the present invention, silicon oxide ( SiO2 ), aluminum oxide ( Al2O3 ) , boron oxide ( B2O3), magnesium oxide (MgO), calcium oxide (CaO). , zinc oxide (ZnO), copper oxide (CuO), and dopants.

具体的に述べると、前記ガラス組成物の重量パーセント100wt%に対して、該酸化ケイ素の含有量は55wt%~63wt%の範囲にあり、該酸化アルミニウムの含有量は15wt%~22wt%の範囲にあり、該酸化ホウ素の含有量は6wt%~13wt%の範囲にあり、該酸化マグネシウムの含有量は5wt%~14wt%の範囲にあり、該酸化カルシウムの含有量は0.1wt%~4wt%の範囲にあり、該酸化亜鉛の含有量は0wt%~8wt%の範囲にあり、該酸化銅の含有量は0.03wt%~7wt%の範囲にあり、該ドーパントの含有量は1.2wt%以下である。 Specifically, the silicon oxide content ranges from 55 wt% to 63 wt% and the aluminum oxide content ranges from 15 wt% to 22 wt%, based on a weight percentage of 100 wt% of the glass composition. , the content of boron oxide is in the range of 6 wt% to 13 wt%, the content of magnesium oxide is in the range of 5 wt% to 14 wt%, and the content of calcium oxide is in the range of 0.1 wt% to 4 wt% %, the zinc oxide content is in the range of 0 wt % to 8 wt %, the copper oxide content is in the range of 0.03 wt % to 7 wt %, and the dopant content is 1.0 wt % to 8 wt %. 2 wt % or less.

本発明のガラス組成物における、酸化ケイ素、酸化アルミニウム及び酸化ホウ素は、前記ガラス繊維を構成する主成分であり、そのうち酸化ケイ素は、網目形成成分(Network former)であることから、その四面体の結晶格子構造[SiO]で連続した網目構造を形成して、本発明のガラス組成物からなるガラス繊維の主要な構造となる。酸化アルミニウムは、本発明のガラス組成物の中間体(intermediate)となるものであり、酸化ケイ素における一部の酸素原子と結合して架橋酸素を形成して、該ガラス組成物の熱安定性及び粘度をさらに高めるために用いられるが、該酸化アルミニウムの含有量が多すぎると、当該ガラス組成物の粘度が高くなり、その後のガラス繊維の製造工程において、大量の加熱エネルギーを供給しなければならず、生産コストの増大を招いてしまう。酸化ホウ素は、四面体の結晶格子構造での酸化ケイ素と結合して、安定した連続構造を形成することができ、また、製造工程においての高温状態下では粘度を下げ、結晶析出を抑える作用があり、一方、製造工程においての低温状態下ではガラス構造の緊密度を向上させ、当該ガラス組成物の熱膨張係数を低下させることができるが、該酸化ホウ素の含有量が多すぎると、製造工程の高温状態で過度の蒸発が起こり、当該ガラス組成物の組成に変動が生じ、該ガラス組成物の電気絶縁性にも影響を及ぼしてしまう。 Silicon oxide, aluminum oxide and boron oxide in the glass composition of the present invention are the main components constituting the glass fiber, and among them, silicon oxide is a network former, so that the tetrahedral The crystal lattice structure [SiO 4 ] forms a continuous network structure and becomes the main structure of the glass fiber made of the glass composition of the present invention. Aluminum oxide serves as an intermediate of the glass composition of the present invention, and bonds with some oxygen atoms in silicon oxide to form bridging oxygen, thereby improving the thermal stability and thermal stability of the glass composition. Although it is used to further increase the viscosity, if the aluminum oxide content is too high, the viscosity of the glass composition will be high, and a large amount of heating energy must be supplied in the subsequent glass fiber manufacturing process. Instead, it leads to an increase in production costs. Boron oxide can combine with silicon oxide in the tetrahedral crystal lattice structure to form a stable continuous structure, and also has the effect of reducing viscosity and suppressing crystal precipitation under high temperature conditions in the manufacturing process. On the other hand, it is possible to improve the tightness of the glass structure and reduce the thermal expansion coefficient of the glass composition under low temperature conditions in the manufacturing process. Excessive vaporization occurs at high temperatures of 100 to 100 psi, causing fluctuations in the composition of the glass composition and also affecting the electrical insulation properties of the glass composition.

本実施例においては、前記ガラス組成物の重量パーセント100wt%に対して、前記酸化ケイ素の含有量は55wt%~63wt%の範囲にあり、前記酸化アルミニウムの含有量は15wt%~22wt%の範囲にあり、前記酸化ホウ素の含有量は6wt%~13wt%の範囲にある。尚、該酸化ホウ素の含有量は、6wt%~11wt%の範囲にあることが好ましく、また、該酸化ケイ素と酸化アルミニウムと酸化ホウ素の含有量の合計は、84wt%~90wt%の範囲にあることが好ましい。 In this example, the content of the silicon oxide is in the range of 55 wt% to 63 wt%, and the content of the aluminum oxide is in the range of 15 wt% to 22 wt%, relative to the weight percentage of 100 wt% of the glass composition. and the boron oxide content is in the range of 6 wt % to 13 wt %. The content of the boron oxide is preferably in the range of 6 wt% to 11 wt%, and the total content of the silicon oxide, aluminum oxide and boron oxide is in the range of 84 wt% to 90 wt%. is preferred.

酸化マグネシウム及び酸化カルシウムは、本発明のガラス組成物の高温時の粘度を適度に減少させることができるので、製造時における当該ガラス組成物の溶融を促進させるが、該酸化カルシウムの含有量が多すぎると、結晶析出現象が増えてしまい、この場合、酸化マグネシウムの添加は当該ガラス組成物の機械的強度を高めるのに役立つが、酸化マグネシウムの含有量が多すぎると、ガラス構造の緊密度が落ち、熱膨張係数の低減に不利となる。 Magnesium oxide and calcium oxide can moderately reduce the viscosity of the glass composition of the present invention at high temperatures, and thus promote the melting of the glass composition during production. If the content is too high, the phenomenon of crystal precipitation increases. In this case, the addition of magnesium oxide helps increase the mechanical strength of the glass composition. This is disadvantageous for reducing the coefficient of thermal expansion.

本実施例においては、前記ガラス組成物の重量パーセント100wt%に対して、前記酸化マグネシウムの含有量は5wt%~14wt%の範囲にあり、前記酸化カルシウムの含有量は0.1wt%~4wt%にある。尚、該酸化マグネシウムの含有量は5wt%~9.5wt%、該酸化カルシウムの含有量は0.1wt%~0.4wt%の範囲にあることが好ましい。 In this example, the content of the magnesium oxide is in the range of 5 wt% to 14 wt%, and the content of the calcium oxide is in the range of 0.1 wt% to 4 wt%, relative to the weight percentage of 100 wt% of the glass composition. It is in. The magnesium oxide content is preferably in the range of 5 wt % to 9.5 wt %, and the calcium oxide content is preferably in the range of 0.1 wt % to 0.4 wt %.

酸化亜鉛及び酸化銅の添加は、本発明に係るガラス繊維の熱膨張係数の低減に役立つものであり、本実施例においては、前記ガラス組成物の重量パーセント100wt%に対して、該酸化亜鉛の含有量は0wt%~8wt%の範囲にあり、該酸化銅の含有量は0.03wt%~7wt%の範囲にある。しかしながら、一般的なガラス組成物には、アルカリ金属塩類(例えば、酸化カリウム、酸化ナトリウムなど)も添加されるが、ガラス組成物がアルカリ金属塩類を含むと、酸化亜鉛の存在により、かえって当該ガラス組成物本来の緻密な構造が緩くなり、膨張係数の低減に不利となる。従って、一部の実施例においては、ガラス組成物がアルカリ金属塩類などの成分を含有する場合、必要に応じて酸化亜鉛を添加しなくてもよい。 The addition of zinc oxide and copper oxide helps reduce the coefficient of thermal expansion of the glass fibers of the present invention, and in this example, the zinc oxide content is The content is in the range of 0 wt % to 8 wt %, and the content of the copper oxide is in the range of 0.03 wt % to 7 wt %. However, alkali metal salts (e.g., potassium oxide, sodium oxide, etc.) are also added to common glass compositions. The original dense structure of the composition becomes loose, which is disadvantageous in reducing the coefficient of expansion. Therefore, in some embodiments, zinc oxide may optionally be omitted when the glass composition contains ingredients such as alkali metal salts.

本発明では、ガラス繊維の熱膨張係数をさらに下げるために酸化銅を添加することにより、当該ガラス繊維の熱膨張係数を低減させると共に、ガラス組成物は製造工程において緻密な構造を形成する傾向があり、酸化亜鉛によるガラス組成物の構造の粗雑化を抑制することができる。しかしながら、酸化銅の含有量が7wt%を超えると、生成されたガラス繊維中の結晶析出現象が増加する傾向にあり、その後の使用に不利となる。 In the present invention, by adding copper oxide to further lower the thermal expansion coefficient of the glass fiber, the thermal expansion coefficient of the glass fiber is reduced, and the glass composition tends to form a dense structure during the manufacturing process. It is possible to suppress coarsening of the structure of the glass composition due to zinc oxide. However, when the content of copper oxide exceeds 7 wt %, the phenomenon of crystal precipitation in the produced glass fibers tends to increase, which is disadvantageous for subsequent use.

一部の実施例においは、前記ガラス組成物の重量パーセント100wt%に対して、添加された酸化銅の含有量は0.5wt%~7wt%の範囲にあるが、これに限定されるものではなく、該酸化銅の含有量が4wt%~7wt%の範囲にあり、該酸化銅と酸化亜鉛の含有量の合計が4.5wt%~7wt%の範囲にあることが好ましい。尚、他の実施例においては、該酸化マグネシウムと酸化亜鉛と酸化銅の含有量の合計が12wt%~15wt%の範囲にあってもよい。 In some embodiments, the content of copper oxide added ranges from 0.5 wt% to 7 wt%, based on a weight percentage of 100 wt% of the glass composition, but is not limited thereto. It is preferable that the content of the copper oxide is in the range of 4 wt % to 7 wt %, and the total content of the copper oxide and zinc oxide is in the range of 4.5 wt % to 7 wt %. In another embodiment, the total content of magnesium oxide, zinc oxide and copper oxide may be in the range of 12 wt % to 15 wt %.

本実施例においては、前記ガラス組成物の重量パーセント100wt%に対して、該ドーパントの含有量が1.2wt%以下であり、該ドーパントは、酸化ナトリウム、酸化カリウム、酸化鉄及び二酸化チタンのうちの少なくとも一種を含有しており、該ドーパントがもたらす利点の一部は、ガラス組成物以外の微量成分に由来する。 In this example, the content of the dopant is 1.2 wt% or less with respect to 100 wt% by weight of the glass composition, and the dopant is selected from among sodium oxide, potassium oxide, iron oxide and titanium dioxide. Some of the benefits provided by the dopant derive from minor components other than the glass composition.

前記酸化ナトリウム、酸化カリウムなどのアルカリ性酸化物は、本発明のガラス組成物の耐酸性を向上させると共に、当該ガラス組成物の融点を下げ、ガラス繊維の製造に役立つが、これらアルカリ性酸化物の含有量が多すぎると、生成されたガラス繊維の化学的安定性が低下すると共に、当該ガラス繊維の電気絶縁性及び機械的強度も低下する。前記酸化鉄は、ガラス組成物の製造における溶融、紡糸などの工程においての安定性を向上させることができるが、酸化鉄の含有量が多すぎると、当該ガラス組成物の製造において温度ムラが発生する。前記二酸化チタンは、ガラス組成物の機械的強度を高めるのに役立つが、含有量が多すぎると、当該ガラス組成物の製造において結晶析出現象を起こしやすい。 Alkaline oxides such as sodium oxide and potassium oxide improve the acid resistance of the glass composition of the present invention, lower the melting point of the glass composition, and are useful for the production of glass fibers. If the amount is too high, the chemical stability of the glass fibers produced will be reduced, as well as the electrical insulation and mechanical strength of the glass fibers. The iron oxide can improve the stability in steps such as melting and spinning in the production of the glass composition, but if the iron oxide content is too high, temperature unevenness occurs in the production of the glass composition. do. The titanium dioxide serves to increase the mechanical strength of the glass composition, but if the content is too high, crystal precipitation is likely to occur during the production of the glass composition.

以下、本発明の各実施形態に係るガラス組成物について、第1~第9実施例を用いて説明する。また、後述する第1~第9実施例及び第1、第2比較例のガラス組成物からなるガラス繊維の熱膨張係数を表1にまとめた。 Hereinafter, glass compositions according to respective embodiments of the present invention will be described using first to ninth examples. Table 1 summarizes the thermal expansion coefficients of the glass fibers made from the glass compositions of first to ninth examples and first and second comparative examples, which will be described later.

<熱膨張係数の測定方法>
本発明の実施例においては、熱膨張係数の測定を熱機械分析装置(日立製作所製)により行い°C、その測定方法では、まず、ガラス組成物を溶融して、板状ガラス(寸法約0.5cm*0.5cm*2cm)を得て、その後、該板状ガラスを10°C/minの温度上昇速度で加熱し、50°C~200°Cの温度範囲で当該板状ガラスの伸び量を測定して、平均熱膨張係数を算出する。
<Method for measuring coefficient of thermal expansion>
In the examples of the present invention, the coefficient of thermal expansion was measured with a thermomechanical analyzer (manufactured by Hitachi, Ltd.) °C. .5 cm * 0.5 cm * 2 cm), then the sheet glass is heated at a temperature increase rate of 10 ° C / min, and the elongation of the sheet glass is measured in the temperature range of 50 ° C to 200 ° C Quantities are measured to calculate the average coefficient of thermal expansion.

<第1実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約19.1wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約4.4wt%の酸化亜鉛と、約0.4wt%の酸化カルシウムと、約9.1wt%の酸化マグネシウムと、約0.1wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<First embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt.% boron oxide, about 4.4 wt.% zinc oxide, about 0.4 wt.% calcium oxide, about 9.1 wt.% magnesium oxide, about 0.1 wt.% copper oxide, about 1.5 wt. 0 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O) , 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% of titanium dioxide (TiO 2 )).

上述した第1実施例のガラス組成物を十分に混合した後、1500℃~1550℃の温度で溶融し、その後、成形、裁断、研磨などの工程を経て、該第1実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第1実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.90ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 After sufficiently mixing the glass composition of the first example described above, it is melted at a temperature of 1500° C. to 1550° C., and then subjected to steps such as molding, cutting, and polishing to obtain the glass composition of the first example. To obtain a sheet glass consisting of Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the first example was measured according to the above-described method for measuring the thermal expansion coefficient, and was 2.90 ppm/°C. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

尚、ガラス組成物に混合、溶融、紡糸などの工程を施すことにより得る、板状ガラスまたはガラス繊維に関する製造条件パラメータ及び具体的な製造工程は、当業者にとって周知技術であり、また、成分によっては、関連する製造条件パラメータが若干異なる場合があるが、これらの製造条件パラメータの調整は、当業者にとって周知の技術であるので、ここでその詳細な説明は省略する。 The manufacturing condition parameters and specific manufacturing processes for sheet glass or glass fiber obtained by subjecting a glass composition to processes such as mixing, melting, and spinning are well known to those skilled in the art, and depending on the components may have slightly different related manufacturing condition parameters, but adjustment of these manufacturing condition parameters is a well-known technique for those skilled in the art, so a detailed description thereof will be omitted here.

<第2実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約56.3wt%の酸化ケイ素と、約19.2wt%の酸化アルミニウムと、約10.0wt%の酸化ホウ素と、約6.5wt%の酸化亜鉛と、約0.2wt%の酸化カルシウムと、約6.2wt%の酸化マグネシウムと、約0.5wt%の酸化銅と、約1.1wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.34wt%の酸化鉄(Fe)及び0.7wt%の二酸化チタン(TiO))とを含有する。
<Second embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the components having the following weight percents are: about 56.3 wt% silicon oxide; 0 wt% boron oxide, about 6.5 wt% zinc oxide, about 0.2 wt% calcium oxide, about 6.2 wt% magnesium oxide, about 0.5 wt% copper oxide, and about 1.5 wt%. 1 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O) , 0.34 wt% iron oxide ( Fe2O3 ) and 0.7 wt% of titanium dioxide (TiO 2 )).

上述した第2実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第2実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第2実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.64ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the second embodiment is obtained by successively subjecting the glass composition of the second embodiment to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the second example was measured according to the above-described method for measuring the thermal expansion coefficient. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第3実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約56.4wt%の酸化ケイ素と、約19.2wt%の酸化アルミニウムと、約11.0wt%の酸化ホウ素と、約6.5wt%の酸化亜鉛と、約0.2wt%の酸化カルシウムと、約5.2wt%の酸化マグネシウムと、約0.5wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Third embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 56.4 wt% silicon oxide; 0 wt% boron oxide, about 6.5 wt% zinc oxide, about 0.2 wt% calcium oxide, about 5.2 wt% magnesium oxide, about 0.5 wt% copper oxide, and about 1.5 wt%. 0 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O) , 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% of titanium dioxide (TiO 2 )).

上述した第3実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第3実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第3実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.70ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the third example is obtained by successively subjecting the glass composition of the third example to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the third example was measured according to the above-described method for measuring the thermal expansion coefficient, and was 2.70 ppm/°C. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第4実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約19.1wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約3.5wt%の酸化亜鉛と、約0.4wt%の酸化カルシウムと、約9.1wt%の酸化マグネシウムと、約1.0wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Fourth embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 3.5 wt% zinc oxide, about 0.4 wt% calcium oxide, about 9.1 wt% magnesium oxide, about 1.0 wt% copper oxide, and about 1.0 wt%. 0 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O) , 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% of titanium dioxide (TiO 2 )).

上述した第4実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第4実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第4実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.82ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the fourth example is obtained by successively subjecting the glass composition of the fourth example to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the fourth example was measured according to the above-described method for measuring the thermal expansion coefficient, and was 2.82 ppm/°C. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第5実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約19.1wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約2.5wt%の酸化亜鉛と、約0.4wt%の酸化カルシウムと、約9.1wt%の酸化マグネシウムと、約2.0wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Fifth embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 2.5 wt% zinc oxide, about 0.4 wt% calcium oxide, about 9.1 wt% magnesium oxide, about 2.0 wt% copper oxide, and about 1.5 wt%. 0 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O) , 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% of titanium dioxide (TiO 2 )).

上述した第5実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第5実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第5実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.80ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the fifth example is obtained by successively subjecting the glass composition of the fifth example to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the fifth example was measured according to the above-described method for measuring the thermal expansion coefficient, and it was 2.80 ppm/°C. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第6実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約19.1wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約0.4wt%の酸化カルシウムと、約9.1wt%の酸化マグネシウムと、約4.5wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Sixth embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 0.4 wt% calcium oxide, about 9.1 wt% magnesium oxide, about 4.5 wt% copper oxide, and about 1.0 wt% of said dopants (0.03 wt% of sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O), 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% titanium dioxide ( TiO2 )) contains.

上述した第6実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第6実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第6実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.65ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the sixth example is obtained by successively subjecting the glass composition of the sixth example to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of Example 6 was measured according to the above-described method for measuring the thermal expansion coefficient. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第7実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約19.2wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約0.3wt%の酸化カルシウムと、約7.1wt%の酸化マグネシウムと、約6.5wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Seventh embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 0.3 wt% calcium oxide, about 7.1 wt% magnesium oxide, about 6.5 wt% copper oxide, and about 1.0 wt% of said dopants (0.03 wt% of sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O), 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% titanium dioxide ( TiO2 )) contains.

上述した第7実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第7実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第7実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.39ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the seventh embodiment is obtained by successively subjecting the glass composition of the seventh embodiment to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of Example 7 was measured according to the above-described method for measuring the thermal expansion coefficient. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第8実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約20.8wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約0.2wt%の酸化カルシウムと、約5.5wt%の酸化マグネシウムと、約6.5wt%の酸化銅と、約1.1wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.34wt%の酸化鉄(Fe)及び0.7wt%の二酸化チタン(TiO))とを含有する。
<Eighth embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 0.2 wt% calcium oxide, about 5.5 wt% magnesium oxide, about 6.5 wt% copper oxide, and about 1.1 wt% of said dopants (0.03 wt% of sodium oxide (Na 2 O), 0.03 wt% potassium oxide (K 2 O), 0.34 wt% iron oxide (Fe 2 O 3 ) and 0.7 wt% titanium dioxide (TiO 2 )). contains.

上述した第8実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第8実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第8実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.18ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the eighth embodiment is obtained by successively subjecting the glass composition of the eighth embodiment to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of Example 8 was measured according to the above-described method for measuring the thermal expansion coefficient, and it was 2.18 ppm/°C. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第9実施例>
本実施例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約59.4wt%の酸化ケイ素と、約18.7wt%の酸化アルミニウムと、約6.5wt%の酸化ホウ素と、約0.3wt%の酸化カルシウムと、約7.1wt%の酸化マグネシウムと、約7.0wt%の酸化銅と、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.03wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.64wt%の二酸化チタン(TiO))とを含有する。
<Ninth embodiment>
In this example, the weight percent of the glass composition is 100 wt%, and the following components by weight: about 59.4 wt% silicon oxide; 5 wt% boron oxide, about 0.3 wt% calcium oxide, about 7.1 wt% magnesium oxide, about 7.0 wt% copper oxide, and about 1.0 wt% of said dopant (0.03 wt% of sodium oxide ( Na2O ), 0.03 wt% potassium oxide (K2O), 0.3 wt% iron oxide ( Fe2O3 ) and 0.64 wt% titanium dioxide ( TiO2 )) contains.

上述した第9実施例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第9実施例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第9実施例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、2.33ppm/℃の熱膨張係数を得て、さらに、その後、混合、溶融、紡糸などの工程を経て、低熱膨張係数を持つガラス繊維を得る。 A sheet glass made of the glass composition of the ninth embodiment is obtained by successively subjecting the glass composition of the ninth embodiment to processes such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the ninth example was measured according to the above-described method for measuring the thermal expansion coefficient. and then through processes such as mixing, melting, spinning, etc., to obtain glass fibers with a low thermal expansion coefficient.

<第1比較例>
本比較例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約60.0wt%の酸化ケイ素と、約20.0wt%の酸化アルミニウムと、約5.0wt%の酸化ホウ素と、約3.0wt%の酸化カルシウムと、約11.0wt%の酸化マグネシウムと、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.02wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.65wt%の二酸化チタン(TiO))とを含有する。
<First Comparative Example>
In this comparative example, the weight percent of the glass composition is 100 wt. 0 wt% boron oxide, about 3.0 wt% calcium oxide, about 11.0 wt% magnesium oxide, about 1.0 wt% of said dopants (0.03 wt% sodium oxide ( Na2O ), 0 .02 wt% potassium oxide (K2O), 0.3 wt% iron oxide ( Fe2O3 ) and 0.65 wt% titanium dioxide ( TiO2 )).

上述した第1比較例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第1比較例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第1比較例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、3.34ppm/℃の熱膨張係数を得た。 A plate glass made of the glass composition of the first comparative example is obtained by successively subjecting the glass composition of the first comparative example to steps such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the first comparative example was measured according to the above-described method for measuring the thermal expansion coefficient. was obtained.

<第2比較例>
本比較例においては、ガラス組成物の重量パーセントを100wt%として、次の重量パーセントを有する成分、つまり、約60.0wt%の酸化ケイ素と、約20.0wt%の酸化アルミニウムと、約10.0wt%の酸化ホウ素と、約6.0wt%の酸化カルシウムと、約3.0wt%の酸化マグネシウムと、約1.0wt%の前記ドーパント(0.03wt%の酸化ナトリウム(NaO)、0.02wt%の酸化カリウム(KO)、0.3wt%の酸化鉄(Fe)及び0.65wt%の二酸化チタン(TiO))とを含有する。
<Second comparative example>
In this comparative example, the weight percent of the glass composition is 100 wt%, and the components having the following weight percents: about 60.0 wt% silicon oxide, about 20.0 wt% aluminum oxide, and about 10.0 wt%. 0 wt% boron oxide, about 6.0 wt% calcium oxide, about 3.0 wt% magnesium oxide, about 1.0 wt% of said dopant (0.03 wt% sodium oxide ( Na2O ), 0 .02 wt% potassium oxide (K2O), 0.3 wt% iron oxide ( Fe2O3 ) and 0.65 wt% titanium dioxide ( TiO2 )).

上述した第2比較例のガラス組成物に順次混合、溶融などの工程を施すことにより、該第2比較例のガラス組成物からなる板状ガラスを得る。次に、当該板状ガラスを標準測定試料とし、前述の熱膨張係数の測定方法に従って、この第2比較例のガラス組成物からなる板状ガラスの熱膨張係数を測定し、3.11ppm/℃の熱膨張係数を得た。 A plate glass made of the glass composition of the second comparative example is obtained by successively subjecting the glass composition of the second comparative example to steps such as mixing and melting. Next, using the sheet glass as a standard measurement sample, the thermal expansion coefficient of the sheet glass made of the glass composition of the second comparative example was measured according to the above-described method for measuring the thermal expansion coefficient, and was 3.11 ppm/°C. was obtained.

Figure 2022151758000001
Figure 2022151758000001

表1からも明らかなように、酸化銅及び酸化亜鉛を添加することにより、本発明の第1~第9実施例のガラス組成物の熱膨張係数は、第1、第2比較例に比べて、3ppm/℃以下に低減することができる。また、ガラス組成物中の酸化銅の含有量が4.5wt%以上であり、且つ、酸化亜鉛を含まない場合(第6~第9実施例)には、当該ガラス繊維の熱膨張係数をさらに2.65ppm/℃以下に低減することができる。さらに、酸化銅の含有量を6.5wt%~7.0wt%(第7~第9実施例)にさらに増加させると、当該ガラス組成物からなる板状ガラスの熱膨張係数が2.4ppm/℃以下に低減される。 As is clear from Table 1, by adding copper oxide and zinc oxide, the thermal expansion coefficients of the glass compositions of the first to ninth examples of the present invention are higher than those of the first and second comparative examples. , can be reduced to 3 ppm/°C or less. Further, when the content of copper oxide in the glass composition is 4.5 wt% or more and zinc oxide is not contained (sixth to ninth examples), the thermal expansion coefficient of the glass fiber is further reduced to It can be reduced to 2.65 ppm/°C or less. Furthermore, when the content of copper oxide was further increased to 6.5 wt% to 7.0 wt% (seventh to ninth examples), the thermal expansion coefficient of the sheet glass made of the glass composition increased to 2.4 ppm/ °C or less.

詳しく説明すると、第1実施例、第4~第6実施例のガラス組成物と比較すると、他の成分の含有量が近い場合、酸化亜鉛の含有量が減少し、酸化銅の含有量が増加することにより、製成されたガラス繊維の熱膨張係数が徐々に低減し、酸化亜鉛の含有量を0wt%に低減し、且つ酸化銅の含有量を4.5wt%(第6実施例)に増加させると、製成されたガラス繊維の熱膨張係数が2.65ppm/℃に低減する。さらに、第6~第9実施例のガラス組成物と比較すると、酸化亜鉛を含まずに、他の成分の含有量がほぼ同じである場合、酸化マグネシウムと酸化カルシウムの含有量を適量に減らして、酸化銅の含有量を7wt%までに増加させることにより、当該ガラス繊維の熱膨張係数を2.4ppm/℃以下(第7~第9実施例)に低減させることができることが分かった。 More specifically, when compared with the glass compositions of Examples 1 and 4 to 6, when the contents of other components are similar, the content of zinc oxide decreases and the content of copper oxide increases. As a result, the thermal expansion coefficient of the produced glass fiber is gradually reduced, the content of zinc oxide is reduced to 0 wt%, and the content of copper oxide is reduced to 4.5 wt% (sixth example). The increase reduces the coefficient of thermal expansion of the glass fibers produced to 2.65 ppm/°C. Furthermore, when compared with the glass compositions of Examples 6 to 9, when zinc oxide is not included and the contents of other components are approximately the same, the contents of magnesium oxide and calcium oxide are appropriately reduced. , it was found that the thermal expansion coefficient of the glass fiber can be reduced to 2.4 ppm/° C. or less (seventh to ninth examples) by increasing the content of copper oxide to 7 wt %.

要約すると、本發明低熱膨張係数を持つガラス組成物は、酸化銅の含有量を増加させ、酸化亜鉛の含有量を減少させ、且つ、酸化マグネシウム及び酸化カルシウムの含有量を適量に減少させることにより、本発明に係るガラス組成物からなるガラス繊維の熱膨張係数を3ppm/℃以下に低減することができることから、本発明に係るガラス繊維を半導体の製造や電子産業に広く適用することが可能となるので、本発明の目的を確実に達成することができる。 In summary, the present glass composition with a low coefficient of thermal expansion can be obtained by increasing the content of copper oxide, decreasing the content of zinc oxide, and appropriately decreasing the content of magnesium oxide and calcium oxide. Since the thermal expansion coefficient of the glass fiber made of the glass composition according to the present invention can be reduced to 3 ppm/°C or less, the glass fiber according to the present invention can be widely applied to semiconductor manufacturing and the electronics industry. Therefore, the object of the present invention can be reliably achieved.

以上の説明は、本発明の好適な実施形態に過ぎず、本発明に対して何ら限定を行うものではない。本発明について、比較的好適な実施形態をもって上記のとおり説明を行ったが、これは本発明を限定するものではなく、すべての当業者が、本発明の技術構想を逸脱しない範囲において、本発明の技術の本質に基づいて上記の実施形態に対して行ういかなる簡単な修正、変更及び修飾も、依然としてすべて本発明の技術構想の範囲に含まれる。
The above description is merely a preferred embodiment of the present invention, and does not limit the present invention in any way. Although the present invention has been described with a relatively preferred embodiment as described above, this is not intended to limit the present invention, and any person skilled in the art can understand the present invention without departing from the technical concept of the present invention. Any simple modifications, changes and modifications made to the above-described embodiments based on the essence of the technology of are all still within the scope of the technical concept of the present invention.

Claims (13)

低熱膨張係数を持つガラス組成物であって、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化銅(CuO)を含み、
該ガラス組成物の重量パーセント100wt%に対して、
該酸化ケイ素の含有量は55wt%~63wt%の範囲にあり、
該酸化アルミニウムの含有量は15wt%~22wt%の範囲にあり、
該酸化ホウ素の含有量は6wt%~13wt%の範囲にあり、
該酸化マグネシウムの含有量は5wt%~14wt%の範囲にあり、
該酸化カルシウムの含有量は0.1wt%~4wt%の範囲にあり、
該酸化銅の含有量は0.03wt%~7wt%の範囲にあることを特徴とする低熱膨張係数を持つガラス組成物。
A glass composition having a low coefficient of thermal expansion comprising silicon oxide ( SiO2 ), aluminum oxide ( Al2O3 ) , boron oxide ( B2O3), magnesium oxide (MgO), calcium oxide (CaO) and oxide containing copper (CuO),
For a weight percentage of 100 wt% of the glass composition,
The content of the silicon oxide is in the range of 55 wt% to 63 wt%,
The content of the aluminum oxide is in the range of 15 wt% to 22 wt%,
The boron oxide content is in the range of 6 wt% to 13 wt%,
The magnesium oxide content is in the range of 5 wt% to 14 wt%,
The content of the calcium oxide is in the range of 0.1 wt% to 4 wt%,
A glass composition having a low coefficient of thermal expansion, wherein the copper oxide content is in the range of 0.03 wt % to 7 wt %.
前記ガラス組成物は、酸化亜鉛(ZnO)をさらに含み、該ガラス組成物の重量パーセント100wt%に対して、該酸化亜鉛の含有量は0wt%を超え8wt%以下の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 The glass composition further includes zinc oxide (ZnO), and the zinc oxide content is in the range of more than 0 wt% and 8 wt% or less with respect to 100 wt% by weight of the glass composition. The glass composition having a low coefficient of thermal expansion according to claim 1. 前記酸化銅と酸化亜鉛の含有量の合計が4.5wt%~7wt%の範囲にあることを特徴とする請求項2に記載の低熱膨張係数を持つガラス組成物。 3. The glass composition with a low thermal expansion coefficient according to claim 2, wherein the total content of said copper oxide and zinc oxide is in the range of 4.5 wt % to 7 wt %. 前記酸化銅の含有量が前記ガラス組成物の重量パーセントの0.5wt%~7wt%の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 A glass composition with a low coefficient of thermal expansion according to claim 1, wherein the content of said copper oxide is in the range of 0.5 wt% to 7 wt% of the weight percent of said glass composition. 前記酸化銅の含有量が前記ガラス組成物の重量パーセントの4wt%~7wt%の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 A glass composition with a low coefficient of thermal expansion according to claim 1, wherein the content of said copper oxide is in the range of 4 wt% to 7 wt% of the weight percent of said glass composition. 前記酸化マグネシウムの含有量が5wt%~9.5wt%範囲にあり、前記酸化カルシウムの含有量が0.1wt%~0.4wt%の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 The low heat of claim 1, wherein the magnesium oxide content is in the range of 5 wt% to 9.5 wt%, and the calcium oxide content is in the range of 0.1 wt% to 0.4 wt%. A glass composition with an expansion coefficient. 前記酸化マグネシウム、酸化亜鉛及び酸化銅の含有量の合計が12wt%~15wt%の範囲にあることを特徴とする請求項2に記載の低熱膨張係数を持つガラス組成物。 3. The glass composition with a low coefficient of thermal expansion according to claim 2, wherein the total content of magnesium oxide, zinc oxide and copper oxide is in the range of 12 wt % to 15 wt %. 前記酸化ケイ素、酸化アルミニウム及び酸化ホウ素の含有量の合計が84wt%~90wt%の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 2. The glass composition with a low coefficient of thermal expansion according to claim 1, wherein the total content of silicon oxide, aluminum oxide and boron oxide is in the range of 84 wt % to 90 wt %. 前記酸化ホウ素の含有量が6wt%~11wt%の範囲にあることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 2. The glass composition with a low thermal expansion coefficient according to claim 1, wherein the content of said boron oxide is in the range of 6 wt % to 11 wt %. 酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化鉄(Fe)及び二酸化チタン(TiO)のうちの少なくとも一種を含有するドーパントをさらに含み、該ドーパントの前記ガラス組成物中の含有量が1.2wt%以下であることを特徴とする請求項1に記載の低熱膨張係数を持つガラス組成物。 further comprising a dopant containing at least one of sodium oxide ( Na2O ), potassium oxide ( K2O ), iron oxide ( Fe2O3 ) and titanium dioxide ( TiO2 ); 2. The glass composition having a low thermal expansion coefficient according to claim 1, wherein the content in the product is 1.2 wt % or less. 請求項1から請求項10に記載の低熱膨張係数を持つガラス組成物からなるガラス繊維であって、該ガラス繊維の熱膨張係数膨張係数が3ppm/℃以下であることを特徴とするガラス繊維。 A glass fiber made of the glass composition having a low coefficient of thermal expansion according to any one of claims 1 to 10, wherein the coefficient of thermal expansion of the glass fiber is 3 ppm/°C or less. 製品であって、請求項11に記載のガラス繊維を含むことを特徴とする製品。 An article of manufacture, characterized in that it comprises the glass fibers of claim 11 . 前記製品は、プリント基板、ICチップ実装基板又はレーダードームであることを特徴とする請求項12に記載の製品。 13. The product of claim 12, wherein the product is a printed circuit board, an IC chip mounting board or a radome.
JP2022043898A 2021-03-25 2022-03-18 Glass compositions with low thermal expansion coefficients and glass fibers Active JP7387790B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110110911 2021-03-25
TW110110911A TWI777470B (en) 2021-03-25 2021-03-25 Glass composition and glass fiber

Publications (2)

Publication Number Publication Date
JP2022151758A true JP2022151758A (en) 2022-10-07
JP7387790B2 JP7387790B2 (en) 2023-11-28

Family

ID=80747497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022043898A Active JP7387790B2 (en) 2021-03-25 2022-03-18 Glass compositions with low thermal expansion coefficients and glass fibers

Country Status (3)

Country Link
JP (1) JP7387790B2 (en)
CN (1) CN114230175B (en)
TW (1) TWI777470B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784902B (en) * 2022-03-31 2022-11-21 富喬工業股份有限公司 Glass fiber cloth, printed circuit boards, integrated circuit substrates and electronic products

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042247A (en) * 1983-08-16 1985-03-06 Asahi Glass Co Ltd Low expansion glass
JPH07172863A (en) * 1993-10-27 1995-07-11 Central Glass Co Ltd Fireproof plate glass
JP2001220173A (en) * 2000-01-12 2001-08-14 Carl Zeiss:Fa Aluminoborosilicate glass containing no alkali metal and its use method
JP2003238196A (en) * 2001-12-04 2003-08-27 Okamoto Glass Co Ltd Heat-resistant glass
JP2007256764A (en) * 2006-03-24 2007-10-04 Okamoto Glass Co Ltd Uv absorbing reflection mirror base plate and reflection mirror using the same
JP2010053013A (en) * 2008-07-31 2010-03-11 Ohara Inc Glass
JP2016030712A (en) * 2014-07-29 2016-03-07 キヤノン株式会社 Glass composition and method for producing the same, and glass member and imaging device
JP2017001950A (en) * 2011-09-09 2017-01-05 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Low dielectric glass and fiber glass
WO2020235284A1 (en) * 2019-05-17 2020-11-26 日本電気硝子株式会社 Glass composition and sealing material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2012366C3 (en) * 1970-03-16 1980-08-21 Owens-Illinois, Inc., Toledo, Ohio (V.St.A.) Glasses of the system SIO2 -Al2 O3 -Cu2 O with low thermal expansion, low density and good thermal shock resistance and their use
FR2082785A5 (en) * 1970-03-26 1971-12-10 Owens Illinois Inc Glass with low thermal expansion
CN102190445A (en) * 2010-03-16 2011-09-21 李胜春 Low-temperature acid-resistant sintered glass powder
TWI565675B (en) * 2011-01-11 2017-01-11 Agy控股公司 Glass composition with low coefficient of thermal expansion, and glass fiber produced from same
JP5316728B2 (en) * 2011-02-01 2013-10-16 日東紡績株式会社 Glass fiber
JP2015006978A (en) * 2013-05-28 2015-01-15 日本電気硝子株式会社 Composite powder, and composite powder paste
JP6315011B2 (en) * 2016-03-15 2018-04-25 旭硝子株式会社 Alkali-free glass substrate and method for producing alkali-free glass substrate
JPWO2017217496A1 (en) * 2016-06-17 2019-04-11 日本板硝子株式会社 Laser processing glass
CN112125529A (en) * 2020-10-06 2020-12-25 青岛蓝创科信新能源科技有限公司 Glass fiber ingredient and glass fiber prepared from same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042247A (en) * 1983-08-16 1985-03-06 Asahi Glass Co Ltd Low expansion glass
JPH07172863A (en) * 1993-10-27 1995-07-11 Central Glass Co Ltd Fireproof plate glass
JP2001220173A (en) * 2000-01-12 2001-08-14 Carl Zeiss:Fa Aluminoborosilicate glass containing no alkali metal and its use method
JP2003238196A (en) * 2001-12-04 2003-08-27 Okamoto Glass Co Ltd Heat-resistant glass
JP2007256764A (en) * 2006-03-24 2007-10-04 Okamoto Glass Co Ltd Uv absorbing reflection mirror base plate and reflection mirror using the same
JP2010053013A (en) * 2008-07-31 2010-03-11 Ohara Inc Glass
JP2017001950A (en) * 2011-09-09 2017-01-05 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Low dielectric glass and fiber glass
JP2016030712A (en) * 2014-07-29 2016-03-07 キヤノン株式会社 Glass composition and method for producing the same, and glass member and imaging device
WO2020235284A1 (en) * 2019-05-17 2020-11-26 日本電気硝子株式会社 Glass composition and sealing material

Also Published As

Publication number Publication date
CN114230175B (en) 2023-09-08
TWI777470B (en) 2022-09-11
TW202237547A (en) 2022-10-01
CN114230175A (en) 2022-03-25
JP7387790B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6983971B2 (en) Glass composition and glass fiber
TWI591039B (en) Ion exchangeable glass with high compressive stress
JP7466729B2 (en) Electronic grade glass fiber composition, glass fiber and electronic grade glass fiber fabric
TW200837034A (en) Low dielectric glass and fiber glass for electronic applications
TW201012771A (en) Glass fiber composition and printed circuit board made from the glass fiber composition
JP7256747B2 (en) glass composition
CN110668702B (en) Electronic-grade glass fiber composition, glass fiber thereof and electronic cloth
CN101033114A (en) Glass with low dielectric constant
JP2022151758A (en) Glass composition with low thermal expansion coefficient and glass fiber
TWI725930B (en) Low-dielectric glass composition, low-dielectric glass and low-dielectric glass fiber
JP7386945B2 (en) Glass compositions, glass fibers and products containing them
JP4391321B2 (en) Substrate glass for display devices
CN113105118A (en) Glass composition with low thermal expansion coefficient and glass fiber made from same
JP2005324992A (en) Glass substrate for display device
TWI827529B (en) Glass compositions, glass fibers and electronic products
US20220169561A1 (en) Glass composition with low thermal expansion coefficient and glass fiber made of the same
JP4807024B2 (en) Substrate glass for display devices
CN115818967A (en) Low-thermal expansion coefficient glass fiber applied to chip package IC carrier plate and preparation method and application thereof
JP4946310B2 (en) Substrate glass for display devices
JP2006096594A (en) Substrate glass for display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150