JP4807024B2 - Substrate glass for display devices - Google Patents

Substrate glass for display devices Download PDF

Info

Publication number
JP4807024B2
JP4807024B2 JP2005282514A JP2005282514A JP4807024B2 JP 4807024 B2 JP4807024 B2 JP 4807024B2 JP 2005282514 A JP2005282514 A JP 2005282514A JP 2005282514 A JP2005282514 A JP 2005282514A JP 4807024 B2 JP4807024 B2 JP 4807024B2
Authority
JP
Japan
Prior art keywords
glass
strain point
substrate glass
expansion coefficient
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005282514A
Other languages
Japanese (ja)
Other versions
JP2007091522A (en
Inventor
篤史 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005282514A priority Critical patent/JP4807024B2/en
Publication of JP2007091522A publication Critical patent/JP2007091522A/en
Application granted granted Critical
Publication of JP4807024B2 publication Critical patent/JP4807024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Description

本発明は、直接通電溶融を含めた溶融、フロート法成形に適しているため生産性が高く、かつ耐熱性に優れ、軽量で高強度のガラス組成物に関する。特に通常のソーダライムシリカガラスと同程度の熱膨張係数と高い耐熱性が要求されるガラス基板、例えばPDP(プラズマディスプレイパネル)やEL(エレクトロルミネセンス)、FED(フィールドエミッションディスプレイ)等の電子ディスプレイ用基板に好適なガラス組成物に関する。   The present invention relates to a glass composition having high productivity, excellent heat resistance, light weight and high strength because it is suitable for melting including direct electric melting and float molding. In particular, glass substrates that require the same thermal expansion coefficient and high heat resistance as ordinary soda lime silica glass, such as electronic displays such as PDP (plasma display panel), EL (electroluminescence), and FED (field emission display). The present invention relates to a glass composition suitable for an industrial substrate.

現在、PDP製造分野においては高歪点ガラス、LCD製造分野においては無アルカリガラスが使用されている。   Currently, high strain point glass is used in the PDP manufacturing field, and alkali-free glass is used in the LCD manufacturing field.

従来、PDP製造分野においては、基板ガラスとして常温〜300℃の熱膨張係数が80〜90×10ー7/℃程度、歪点が 510〜 520℃程度のソーダライムシリカガラスを使用してきた。ソーダライムシリカガラスは多方面に利用され、低価格で容易に調達できる点で有利とされている。しかし歪点が低いため、ガラス基板上に電極線パターンを配し、更に低融点ガラスによる絶縁被覆を形成する等、パネル製作上各種熱処理を施す際に、基板ガラスの反りや収縮などの変形を生じ易いという不具合が生じる。 Conventionally, in a PDP manufacturing field, the thermal expansion coefficient of the normal temperature to 300 ° C. as the substrate glass is 80-90 × 10 over 7 / ° C. approximately, strain point have used soda lime silica glass of about 510 to 520 ° C.. Soda lime silica glass is used in many fields and is advantageous in that it can be easily procured at a low price. However, since the strain point is low, the electrode glass pattern is arranged on the glass substrate, and the insulation coating with low melting point glass is formed. The problem that it is easy to occur arises.

上記不具合を解消するために、現在、ソーダライムシリカガラスと同様なアルカリ・アルカリ土類・シリカ系ガラスで、熱膨張係数がソーダライムシリカガラスと近似し、歪点が550℃を越え、あるいは600℃を超えるような高歪点ガラスが使用されている(特許文献1〜3参照)。これらのガラスを用いた基板は、ディスプレイパネルの製造工程において、熱変形が少なく、またパネルを構成する他の部材との熱膨張の整合性も良い。   In order to eliminate the above problems, currently, alkali, alkaline earth, and silica glass similar to soda lime silica glass has a thermal expansion coefficient close to that of soda lime silica glass, and the strain point exceeds 550 ° C. or 600 A high strain point glass exceeding ℃ is used (see Patent Documents 1 to 3). These substrates using glass are less susceptible to thermal deformation in the manufacturing process of the display panel, and have good thermal expansion consistency with other members constituting the panel.

一方、LCD製造分野においては、アルカリ金属酸化物を含まない無アルカリガラスが使用されている。これらのガラスを用いた基板は、ディスプレイパネルの製造工程において、30〜300℃における平均線膨張係数が40×10−7/℃以下と小さく、歪点も640℃以上と高いため、熱収縮が小さいという利点がある(特許文献4,5参照)。
特開平10−45423号公報 特開平11−240735号公報 特開2000−103638号公報 特開2002−29776号公報 特開2002−308643号公報
On the other hand, in the LCD manufacturing field, alkali-free glass containing no alkali metal oxide is used. Since these substrates using glass have a small average linear expansion coefficient at 30 to 300 ° C. of 40 × 10 −7 / ° C. or less and a high strain point of 640 ° C. or more in the manufacturing process of the display panel, the thermal shrinkage is low. There is an advantage that it is small (see Patent Documents 4 and 5).
Japanese Patent Laid-Open No. 10-45423 Japanese Patent Application Laid-Open No. 11-240735 JP 2000-103638 A JP 2002-29776 A JP 2002-308643 A

しかし、上記従来の高歪点ガラスは、ディスプレイパネルの製造工程において、熱膨張係数がソーダライムシリカガラスに近いため、熱収縮が大きく、パネル製造工程において熱変形が多いという問題点がある。     However, since the conventional high strain point glass has a thermal expansion coefficient close to that of soda lime silica glass in the manufacturing process of the display panel, there is a problem that the thermal shrinkage is large and the thermal deformation is large in the panel manufacturing process.

これに対して上記の無アルカリガラスは、熱膨張係数が小さく熱変形を抑えられるものの、アルカリ酸化物やアルカリ土類酸化物がないことから、溶融・成形温度の上昇等が起こる。また、ガラスの高温粘度が高くなるため、ガラスの溶融温度や成形温度を高くしなければならず、溶融や成形が困難となる。特に、フロート法による成形ではガラスの高温粘度が高いと、窯やフロートバスの錫等に悪影響を及ぼす。そのため主にフュージョン法で生産せざるを得ず、生産性が悪いという問題点がある。   On the other hand, the alkali-free glass has a small thermal expansion coefficient and can suppress thermal deformation. However, since there is no alkali oxide or alkaline earth oxide, the melting / molding temperature is increased. Moreover, since the high temperature viscosity of glass becomes high, the melting temperature and molding temperature of glass must be increased, and melting and molding become difficult. In particular, in the molding by the float process, if the high-temperature viscosity of the glass is high, it adversely affects the kiln and the tin of the float bath. For this reason, there is a problem that the production is inevitably caused by the fusion method and the productivity is poor.

本発明のガラスは上記不具合を解消するために、熱膨張係数が高歪点ガラスよりも低く、無アルカリガラスよりも高いガラスである。PDP製造工程においてこのガラスを用いた基板は、熱膨張係数が低いために熱変形が少なく、またパネルを構成する他の部材との熱膨張の整合性も低い分には大きな問題とはならない。さらに、歪点が580℃を超える高歪点ガラスであるため、ディスプレイパネル製造工程において各種熱処理を行う際、基板の反りや収縮が起こりにくい。   In order to eliminate the above problems, the glass of the present invention is a glass having a thermal expansion coefficient lower than that of the high strain point glass and higher than that of the alkali-free glass. The substrate using this glass in the PDP manufacturing process has a low thermal expansion coefficient, so that there is little thermal deformation, and the thermal expansion consistency with other members constituting the panel is not a big problem. Furthermore, since it is a high strain point glass having a strain point exceeding 580 ° C., the substrate is unlikely to warp or shrink during various heat treatments in the display panel manufacturing process.

一方、LCD製造工程においてこのガラスを用いた場合も、歪点が580℃を超える高歪点ガラスであるため、ディスプレイパネル製造工程において各種熱処理を行う際、基板の反りや収縮が起こりにくい上、このガラスはFL法で製造できるため、生産性が高く、大面積化も容易である。   On the other hand, even when this glass is used in the LCD manufacturing process, since it is a high strain point glass having a strain point exceeding 580 ° C., when performing various heat treatments in the display panel manufacturing process, the substrate is less likely to warp or shrink. Since this glass can be manufactured by the FL method, the productivity is high and the area can be easily increased.

以上のことから、本発明のガラスはPDPとLCD用ガラス基板の問題点をそれぞれ改善でき、かつ中間的な特性を持つため、両方に使用することが出来るものである。   From the above, the glass of the present invention can improve the problems of the glass substrate for PDP and LCD, respectively, and has intermediate characteristics, so it can be used for both.

実質的に重量%表示で、SiOが59〜69、Alが0.5〜3、NaOが2〜4、KOが1.5〜3.5、RO(ただし、RはNa、K)が3.5〜7.5、NaO/ROが0.3〜1、MgOが3〜5.5、CaOが5〜8、SrOが6〜7.5、BaOが4〜14、R’O(ただし、R’はMg、Ca、Sr、Ba)が20〜29、ZrOが1〜4.5であるディスプレイ装置用基板ガラスである。 Substantially in terms of% by weight, SiO 2 is 59 to 69, Al 2 O 3 is 0.5 to 3, Na 2 O is 2 to 4, K 2 O is 1.5 to 3.5, R 2 O ( However, R is Na, K) is 3.5 to 7.5, Na 2 O / R 2 O is 0.3 to 1, MgO is 3 to 5.5, CaO is 5 to 8, SrO is 6 to 7 0.5, BaO is 4 to 14, R′O (where R ′ is Mg, Ca, Sr, Ba) is 20 to 29, and ZrO 2 is 1 to 4.5.

また、30〜300℃における平均線膨張係数が(55〜70)×10−7/℃であることを特徴とする上記のディスプレイ装置用基板ガラスである。 Moreover, it is said substrate glass for display apparatuses characterized by the average linear expansion coefficient in 30-300 degreeC being (55-70) * 10 < -7 > / degreeC.

また、歪点が580℃以上であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。   Further, the substrate glass for a flat panel display device described above, which has a strain point of 580 ° C. or higher.

また、ヤング率が75〜85GPaであることを特徴とする上記のディスプレイ装置用基板ガラス。   The substrate glass for a display device described above, wherein Young's modulus is 75 to 85 GPa.

また、破壊靭性KICが0.6MPa・m1/2以上であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。 Moreover, it is said substrate glass for flat panel display apparatuses characterized by fracture toughness K IC being 0.6 MPa · m 1/2 or more.

さらに、密度が2.9g/cm未満であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。 Furthermore, the substrate glass for a flat panel display device described above, wherein the density is less than 2.9 g / cm 3 .

本発明によれば、PDPとLCD用ガラス基板の問題点をそれぞれ改善でき、かつ中間的な特性を持つため、両方に使用することが出来るうえに、フロート法のような大量生産にも適した、ディスプレイ用ガラス基板として極めて好適なものを得ることができる。   According to the present invention, the problems of the PDP and the glass substrate for LCD can be improved and have intermediate characteristics, so that they can be used for both, and also suitable for mass production such as the float process. A very suitable glass substrate for display can be obtained.

実質的に重量%表示で、SiOが59〜69、Alが0.5〜3、NaOが2〜4、KOが1.5〜3.5、RO(ただし、RはNa、K)が3.5〜7.5、NaO/ROが0.370.72、MgOが3〜5.5、CaOが5〜8、SrOが6〜7.5、BaOが4〜14、R’O(ただし、R’はMg、Ca、Sr、Ba)が20〜29、ZrOが1〜4.5であるディスプレイ装置用基板ガラスである。 Substantially in terms of% by weight, SiO 2 is 59 to 69, Al 2 O 3 is 0.5 to 3, Na 2 O is 2 to 4, K 2 O is 1.5 to 3.5, R 2 O ( However, R is Na, K) is 3.5 to 7.5, Na 2 O / R 2 O is 0.37 to 0.72 , MgO is 3 to 5.5, CaO is 5 to 8, SrO is 6 ~ 7.5, BaO is 4 to 14, R'O (where R 'is Mg, Ca, Sr, Ba) is 20 to 29, and ZrO2 is 1 to 4.5. .

SiOはガラスの主成分であり、重量%において59%未満ではガラスの耐熱性または化学的耐久性を悪化させる。他方、69%を超えるとガラス融液の高温粘度が高くなり、ガラス成形が困難となる。また、ガラスの線膨張係数が小さくなり過ぎて、ディスプレイパネルを構成する他の部材との整合性が悪くなる。従って59〜69%、好ましくは59〜63%の範囲とする。 SiO 2 is a main component of glass, and if it is less than 59% by weight, the heat resistance or chemical durability of the glass is deteriorated. On the other hand, if it exceeds 69%, the high-temperature viscosity of the glass melt increases, and glass molding becomes difficult. Moreover, the linear expansion coefficient of glass becomes too small, and the compatibility with other members constituting the display panel is deteriorated. Therefore, the range is 59 to 69%, preferably 59 to 63%.

Alは、歪点を高くし、密度を低くする成分である。重量%において0.5%未満ではガラスの耐熱性または化学的耐久性を悪化させる。他方、3%を超えるとガラスの失透傾向が大きくなり、溶融ガラスの成形が困難になる。従って0.5〜3%の範囲である。 Al 2 O 3 is a component that increases the strain point and decreases the density. If the weight percentage is less than 0.5%, the heat resistance or chemical durability of the glass is deteriorated. On the other hand, if it exceeds 3%, the tendency to devitrify the glass becomes large, and it becomes difficult to mold the molten glass. Therefore, it is 0.5 to 3% of range.

NaOは、KOとともにガラス溶解時の融剤として作用する。2%未満ではガラス融液の高温粘度が高くなり、ガラス成形が困難となる。他方、4%を超えると熱膨張係数が大きくなる。従って2〜4%の範囲とする。 Na 2 O acts as a flux at the time of glass melting together with K 2 O. If it is less than 2%, the high-temperature viscosity of the glass melt becomes high and glass molding becomes difficult. On the other hand, if it exceeds 4%, the thermal expansion coefficient becomes large. Therefore, the range is 2 to 4%.

Oは、NaOと同様の作用効果を示す。1.5%未満ではガラス融液の高温粘度が高くなり、ガラス成形が困難となる。他方、3.5%を超えると熱膨張係数が増加する。従って、1.5〜3.5%の範囲とする。 K 2 O exhibits the same effect as Na 2 O. If it is less than 1.5%, the high-temperature viscosity of the glass melt becomes high and glass molding becomes difficult. On the other hand, if it exceeds 3.5%, the thermal expansion coefficient increases. Therefore, the range is 1.5 to 3.5%.

前記アルカリ成分(NaO、KO)の量に関して、その合量を3.5〜7.5%にすることにより、線熱膨張係数、高温粘度および失透温度を適切な範囲に維持することができる。アルカリ成分の合量が3.5%未満ではガラス融液の高温粘度が高くなり、ガラス成形が困難となる。またガラスの失透傾向が増大する。7.5%を超えると熱膨張係数が増加し過ぎる。従って、3.5〜7.5%の範囲とするものである。 With respect to the amount of the alkali component (Na 2 O, K 2 O), the linear thermal expansion coefficient, the high temperature viscosity and the devitrification temperature are maintained in appropriate ranges by setting the total amount to 3.5 to 7.5%. can do. If the total amount of the alkali components is less than 3.5%, the high-temperature viscosity of the glass melt becomes high and glass molding becomes difficult. Further, the tendency of glass to devitrify increases. If it exceeds 7.5%, the thermal expansion coefficient increases excessively. Therefore, it is set to 3.5 to 7.5% of range.

MgOは、ガラス溶解時の溶融ガラスの粘度を下げる作用を有する。3%未満ではガラス融液の高温粘度が高くなり、ガラス成形が困難となる。他方、5.5%を超えるとガラスの失透傾向が増大し溶融ガラスの成形が困難になる。従って3〜5.5%、の範囲とする。   MgO has the effect | action which lowers | hangs the viscosity of the molten glass at the time of glass melting. If it is less than 3%, the high-temperature viscosity of the glass melt becomes high, and glass molding becomes difficult. On the other hand, if it exceeds 5.5%, the tendency of devitrification of the glass increases and it becomes difficult to mold the molten glass. Therefore, the range is 3 to 5.5%.

CaOは、ガラス溶解時の溶融ガラスの粘度を下げる作用を有すると共に、ガラスの熱膨張係数を上昇させる作用を有する。5%未満ではガラスの熱膨張係数が低くなりすぎる。他方、8%を超えると失透傾向が大きくなり、溶融ガラスの成形が困難になる。従って5〜8%の範囲とする。   CaO has the effect of lowering the viscosity of the molten glass at the time of melting the glass and the effect of increasing the thermal expansion coefficient of the glass. If it is less than 5%, the thermal expansion coefficient of the glass becomes too low. On the other hand, if it exceeds 8%, the tendency of devitrification increases, and it becomes difficult to mold molten glass. Therefore, the range is 5 to 8%.

SrOは、必須成分ではないが、CaOとの共存下でガラス融液の高温粘度を下げて失透の発生を抑制する作用を有する。6%未満ではガラス融液の高温粘度が高くなり、ガラス成形が困難となる。他方、7.5%を超えると密度が高くなり過ぎるので、6〜7.5%以下の範囲が望ましい。   SrO is not an essential component, but has the effect of suppressing the occurrence of devitrification by lowering the high-temperature viscosity of the glass melt in the presence of CaO. If it is less than 6%, the high-temperature viscosity of the glass melt becomes high and glass molding becomes difficult. On the other hand, if it exceeds 7.5%, the density becomes too high, so a range of 6 to 7.5% or less is desirable.

BaOは、必須成分ではないが、ガラス融液の失透傾向を抑制する作用を有すると共にヤング率を下げる効果がある。4%未満ではガラスの失透傾向が大きくなり、溶融ガラスの成形が困難になる。14%を超えると密度が上昇するので、4〜14%以下の範囲が望ましい。   BaO is not an essential component, but has an effect of suppressing the devitrification tendency of the glass melt and an effect of lowering the Young's modulus. If it is less than 4%, the tendency of devitrification of the glass increases, and it becomes difficult to mold molten glass. Since density will rise when it exceeds 14%, the range of 4-14% or less is desirable.

さらに、上記組成範囲内において、二価の金属酸化物R’O(R’は、Mg、Ca、Sr、Ba)の合計量を20〜29%の範囲とすることによって、ガラスの溶融性を良好な範囲に維持しつつ、粘度―温度勾配を適度としてガラスの成形性を良好とし、耐熱性、化学的耐久性等に優れ、適切な範囲の熱膨張係数を有するガラスを得ることができる。   Further, within the above composition range, the total amount of the divalent metal oxide R′O (R ′ is Mg, Ca, Sr, Ba) is set to a range of 20 to 29%, thereby improving the meltability of the glass. While maintaining in a good range, a glass having a suitable viscosity-temperature gradient and good glass moldability, excellent heat resistance, chemical durability and the like, and having an appropriate range of thermal expansion coefficient can be obtained.

R’Oの合計が20%未満では、高温粘度が上昇してガラスの溶融と成形が困難となる。また、歪点が下がり過ぎる上に、熱膨張係数が低下する。一方、29%を超えると、特に密度が上昇するとともに失透傾向が増大し、化学的耐久性が低下する。より好ましい範囲は、25〜29%である。   When the total amount of R′O is less than 20%, the high-temperature viscosity increases, making it difficult to melt and mold the glass. In addition, the strain point is lowered too much and the thermal expansion coefficient is lowered. On the other hand, if it exceeds 29%, the density particularly increases, the tendency to devitrification increases, and the chemical durability decreases. A more preferable range is 25 to 29%.

ZrOは、ガラスの歪点を上昇させ、またガラスの化学的耐久性を向上させる効果を有する。1%未満ではガラスの歪点が所望の範囲を維持できなくなる。4.5%を超えると密度が上昇し、いずれも所望の値が維持できなくなる。従って1〜4.5%、好ましくは1〜4.5%の範囲とする。 ZrO 2 has the effect of increasing the strain point of the glass and improving the chemical durability of the glass. If it is less than 1%, the desired strain range of the glass cannot be maintained. If it exceeds 4.5%, the density increases, and any desired value cannot be maintained. Therefore, it is 1 to 4.5%, preferably 1 to 4.5%.

本発明の好ましい態様のガラスは実質的に上記成分からなるが、本発明の目的を損なわない範囲で他の成分を合量で1%まで含有してもよい。たとえば、ガラスの溶解、清澄、成形性の改善のためにSO、Cl、F、As等を合量で1%まで含有してもよい。また、ガラスを着色するためにFe、CoO、NiO等を合量で1%まで含有してもよい。さらに、PDPにおける電子線ブラウニング防止等のためにTiOおよびCeOをそれぞれ1%まで、合量で1%まで含有してもよい。 Although the glass of the preferable aspect of this invention consists of said component substantially, in the range which does not impair the objective of this invention, you may contain other components to 1% in total amount. For example, a total amount of SO 3 , Cl, F, As 2 O 3 and the like may be contained up to 1% in order to improve melting, fining, and moldability of glass. Further, Fe 2 O 3 to color the glass, CoO, may contain NiO, etc. up to 1% in total. Further, in order to prevent electron beam browning in the PDP, TiO 2 and CeO 2 may each be contained up to 1%, and the total amount may be contained up to 1%.

熱膨張係数および歪点はガラスの耐熱性を示す特性であり、熱膨張係数は70×10−7/℃以上ではディスプレイパネルの製造工程において熱変形が大きくなりすぎるため不適である。また、歪点も580℃以下ではディスプレイパネル製造工程において熱変形が大きくなりすぎるため不適である。 The thermal expansion coefficient and strain point are characteristics indicating the heat resistance of glass, and if the thermal expansion coefficient is 70 × 10 −7 / ° C. or higher, thermal deformation becomes excessive in the display panel manufacturing process, which is not suitable. Also, if the strain point is 580 ° C. or lower, thermal deformation becomes excessive in the display panel manufacturing process, which is not suitable.

また、本発明は密度が2.9g/cm未満であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。密度が2.9g・cm以上ではディスプレイ装置の軽量化ができなくなる。 The present invention also provides the above substrate glass for a flat panel display device, wherein the density is less than 2.9 g / cm 3 . If the density is 2.9 g · cm 3 or more, the display device cannot be reduced in weight.

また、破壊靭性KICが0.6MPa・m1/2以上であることおよび、ヤング率が75〜85GPaであることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。これらの特性はガラスの割れやすさに関係し、これらの範囲外では、ディスプレイ装置の製造工程中で割れやすい問題が出てくる。 Further, the substrate glass for a flat panel display device described above, wherein the fracture toughness K IC is 0.6 MPa · m 1/2 or more and the Young's modulus is 75 to 85 GPa. These characteristics are related to the fragility of the glass. Outside these ranges, there is a problem that the glass is easily broken during the manufacturing process of the display device.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(ガラスの作成)
珪砂、酸化アルミニウム、炭酸ナトリウム、硫酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムおよび珪酸ジルコニウムよりなる調合原料を白金ルツボに充填し、電気炉内で1450〜1600℃、約6時間加熱溶融した。加熱溶融の途中で白金棒によりガラス融液を攪拌してガラスを均質化させた。次に、溶融ガラスを鋳型に流し込み、ガラスブロックとし、600〜700℃に保持した電気炉に移入して該炉内で徐冷した。得られたガラス試料は泡や脈理の無い均質なものであった。
(Creation of glass)
A prepared raw material consisting of silica sand, aluminum oxide, sodium carbonate, sodium sulfate, potassium carbonate, magnesium oxide, calcium carbonate, strontium carbonate, barium carbonate and zirconium silicate is charged into a platinum crucible, and 1450 to 1600 ° C., about 6 in an electric furnace. It was melted by heating for hours. During the heating and melting, the glass melt was stirred with a platinum rod to homogenize the glass. Next, the molten glass was poured into a mold to form a glass block, which was transferred to an electric furnace maintained at 600 to 700 ° C. and gradually cooled in the furnace. The obtained glass sample was homogeneous without bubbles or striae.

原料調合に基づくガラスの組成(酸化物換算)を表1に示す。これらのガラスについて、歪点(℃)、密度(g/cm)、30〜300℃の平均線膨張係数(10−7/℃)、ヤング率(GPa)、および破壊靱性KIC(MPa・m1/2)を以下の方法により測定した。 Table 1 shows the glass composition (as oxide) based on the raw material formulation. For these glasses, strain point (° C.), density (g / cm 3 ), average linear expansion coefficient (10 −7 / ° C.) of 30 to 300 ° C., Young's modulus (GPa), and fracture toughness K IC (MPa · m 1/2 ) was measured by the following method.

歪点は、JIS R3103−2の規定に基づくビーム曲げ法により測定した。密度は、泡の無いガラス(約50g)を用いてアルキメデス法により測定した。膨張係数は、熱機械分析装置TMA8310(理学電機(株)製)を用いて30〜300℃における平均線膨張係数を測定した。ヤング率は、シングアラウンド式音波測定装置UVM―2(超音波工業(株)製)を用いて測定した。破壊靱性は、微小硬度計DMH−2(松沢精機(株)製)を用いて、JIS R 1607に記載のファインセラミックスの破壊靱性試験方法(圧子圧入法)により算出した。   The strain point was measured by a beam bending method based on JIS R3103-2. The density was measured by the Archimedes method using glass without bubbles (about 50 g). The expansion coefficient measured the average linear expansion coefficient in 30-300 degreeC using the thermomechanical analyzer TMA8310 (Rigaku Denki Co., Ltd. product). The Young's modulus was measured using a single-around type acoustic wave measuring device UVM-2 (manufactured by Ultrasonic Industry Co., Ltd.). Fracture toughness was calculated by a fine ceramic fracture toughness test method (indentation press-in method) described in JIS R 1607 using a microhardness meter DMH-2 (manufactured by Matsuzawa Seiki Co., Ltd.).

Figure 0004807024
Figure 0004807024

Figure 0004807024
Figure 0004807024

Figure 0004807024
Figure 0004807024

(結果)
表1中の実施例1〜7は本発明におけるガラスであり、比較例1はソーダライムシリカガラスである。比較例2〜4は従来の高歪点ガラスであり、比較例5〜7は従来の無アルカリガラスである。比較例1のソーダライムシリカガラスおよび比較例2〜4の高歪点ガラスにおいては、密度、ヤング率および破壊靭性が適切の値であるものの、熱膨張係数がいずれも70×10−7/℃以上である。また、比較例5〜7の無アルカリガラスにおいては、密度、歪点が適切の値であるものの、熱膨張係数がいずれも55×10−7/℃以下であり、ヤング率がいずれも75GPa以下である。
(result)
Examples 1 to 7 in Table 1 are glasses in the present invention, and Comparative Example 1 is soda lime silica glass. Comparative Examples 2 to 4 are conventional high strain point glasses, and Comparative Examples 5 to 7 are conventional alkali-free glasses. In the soda lime silica glass of Comparative Example 1 and the high strain point glasses of Comparative Examples 2 to 4, although the density, Young's modulus, and fracture toughness are appropriate values, the thermal expansion coefficients are all 70 × 10 −7 / ° C. That's it. Further, in the alkali-free glasses of Comparative Examples 5 to 7, although the density and strain point are appropriate values, the thermal expansion coefficients are all 55 × 10 −7 / ° C. or less, and the Young's modulus is 75 GPa or less. It is.

これらに対して実施例1〜7のガラスは、熱膨張係数が55〜70×10−7/℃の範囲内である上に、密度、歪点、破壊靭性値とヤング率が所望の値である。従って、本願発明のガラスは、従来の高歪点ガラスと同等の密度、歪点、破壊靭性値およびヤング率を有する上に、熱膨張係数が高歪点ガラスよりも低いことから、従来の高歪点ガラスに較べて、ディスプレイパネル製造工程における熱処理工程でのガラス基板の熱変形が少なく、また熱応力の発生が小さいことは明白である。 On the other hand, the glass of Examples 1 to 7 has a thermal expansion coefficient in the range of 55 to 70 × 10 −7 / ° C., and has a desired density, strain point, fracture toughness value, and Young's modulus. is there. Accordingly, the glass of the present invention has the same density, strain point, fracture toughness value and Young's modulus as the conventional high strain point glass, and has a lower thermal expansion coefficient than the high strain point glass. As compared with the strain point glass, it is obvious that the thermal deformation of the glass substrate in the heat treatment process in the display panel manufacturing process is small and the generation of thermal stress is small.

また、従来の無アルカリガラスに比べて、ディスプレイパネル製造工程における熱処理工程でのガラス基板の熱変形は同等程度である上、FL法で製造できるため、生産性が向上し、かつ大面積化が容易であることは明白である。
Compared to conventional alkali-free glass, the thermal deformation of the glass substrate in the heat treatment process in the display panel manufacturing process is comparable, and since it can be manufactured by the FL method, the productivity is improved and the area is increased. It is obvious that it is easy.

Claims (6)

実質的に重量%表示で、SiOが59〜69、Alが0.5〜3、NaOが2〜4、KOが1.5〜3.5、RO(ただし、RはNa、K)が3.5〜7.5、NaO/ROが0.370.72、MgOが3〜5.5、CaOが5〜8、SrOが6〜7.5、BaOが4〜14、R’O(ただし、R’はMg、Ca、Sr、Ba)が20〜29、ZrOが1〜4.5であるディスプレイ装置用基板ガラス。 Substantially in terms of% by weight, SiO 2 is 59 to 69, Al 2 O 3 is 0.5 to 3, Na 2 O is 2 to 4, K 2 O is 1.5 to 3.5, R 2 O ( However, R is Na, K) is 3.5 to 7.5, Na 2 O / R 2 O is 0.37 to 0.72 , MgO is 3 to 5.5, CaO is 5 to 8, SrO is 6 A substrate glass for a display device in which ~ 7.5, BaO is 4 to 14, R'O (where R 'is Mg, Ca, Sr, Ba) is 20 to 29, and ZrO2 is 1 to 4.5. 30〜300℃における平均線膨張係数が(55〜70)×10−/℃であることを特徴とする請求項1に記載のディスプレイ装置用基板ガラス。 The average coefficient of linear expansion (55~70) × 10- 7 / ℃ a display device substrate glass according to claim 1, characterized in that at 30 to 300 ° C.. 歪点が580℃以上であることを特徴とする請求項1または2のいずれかに記載のフラットパネルディスプレイ装置用基板ガラス。 3. The substrate glass for a flat panel display device according to claim 1, wherein the strain point is 580 ° C. or higher. ヤング率が75〜85GPaであることを特徴とする請求項1乃至3のいずれかに記載のディスプレイ装置用基板ガラス。 The substrate glass for a display device according to any one of claims 1 to 3, wherein Young's modulus is 75 to 85 GPa. 破壊靭性KICが0.6MPa・m1/2以上であることを特徴とする請求項1乃至4のいずれかに記載のフラットパネルディスプレイ装置用基板ガラス。 The substrate glass for flat panel display devices according to any one of claims 1 to 4, wherein the fracture toughness K IC is 0.6 MPa · m 1/2 or more. 密度が2.9g/cm未満であることを特徴とする請求項1乃至5のいずれかに記載のフラットパネルディスプレイ装置用基板ガラス。 The substrate glass for a flat panel display device according to any one of claims 1 to 5, wherein the density is less than 2.9 g / cm 3 .
JP2005282514A 2005-09-28 2005-09-28 Substrate glass for display devices Expired - Fee Related JP4807024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282514A JP4807024B2 (en) 2005-09-28 2005-09-28 Substrate glass for display devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282514A JP4807024B2 (en) 2005-09-28 2005-09-28 Substrate glass for display devices

Publications (2)

Publication Number Publication Date
JP2007091522A JP2007091522A (en) 2007-04-12
JP4807024B2 true JP4807024B2 (en) 2011-11-02

Family

ID=37977653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282514A Expired - Fee Related JP4807024B2 (en) 2005-09-28 2005-09-28 Substrate glass for display devices

Country Status (1)

Country Link
JP (1) JP4807024B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038559A1 (en) 2012-09-04 2016-08-12 三菱化学株式会社 Organic electroluminescent device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151153B2 (en) * 1998-04-28 2008-09-17 旭硝子株式会社 Flat glass and substrate glass for electronics
JP4686858B2 (en) * 2000-12-26 2011-05-25 日本電気硝子株式会社 Glass substrate for flat panel display
JP2003335547A (en) * 2002-05-20 2003-11-25 Nippon Electric Glass Co Ltd Glass substrate for flat panel display equipment
JP4692915B2 (en) * 2002-05-29 2011-06-01 日本電気硝子株式会社 Front glass substrate for plasma display devices.
JP4288657B2 (en) * 2003-03-17 2009-07-01 日本電気硝子株式会社 Glass substrate for flat panel display

Also Published As

Publication number Publication date
JP2007091522A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
TW416936B (en) Silica-soda-lime glass compositions and their applications
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
JP2012041217A (en) Alkali-free glass
KR101212910B1 (en) glass composition
CN1964926A (en) Substrate glass for display unit
JP2006206336A (en) Substrate glass for display device
JP2007284307A (en) Substrate glass for display device
JP2017178711A (en) Glass substrate for magnetic recording medium and manufacturing method therefor
JP2008308376A (en) Substrate glass for display device
JP2006131482A (en) Glass substrate for display device
JP2005324992A (en) Glass substrate for display device
JP5092564B2 (en) Substrate glass for display devices
JP4807024B2 (en) Substrate glass for display devices
JP2005281101A (en) Glass substrate for display device
TWI279396B (en) Substrate glass for display device
JP4972946B2 (en) Substrate glass for display devices
JP5382609B2 (en) Glass substrate
JP5018141B2 (en) Substrate glass for display devices
JP2006143523A (en) Glass substrate for display device
JP2018203571A (en) Glass
JP2012106897A (en) Glass composition for chemical strengthening
JP5018279B2 (en) Substrate glass for display devices
JP4946310B2 (en) Substrate glass for display devices
JP2006096594A (en) Substrate glass for display device
KR20130127957A (en) Alkali glass and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees