JP2005281101A - Glass substrate for display device - Google Patents

Glass substrate for display device Download PDF

Info

Publication number
JP2005281101A
JP2005281101A JP2004100647A JP2004100647A JP2005281101A JP 2005281101 A JP2005281101 A JP 2005281101A JP 2004100647 A JP2004100647 A JP 2004100647A JP 2004100647 A JP2004100647 A JP 2004100647A JP 2005281101 A JP2005281101 A JP 2005281101A
Authority
JP
Japan
Prior art keywords
glass
young
modulus
strain point
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004100647A
Other languages
Japanese (ja)
Inventor
Tatsuya Tsuzuki
都築  達也
Hiroshi Machishita
汎史 町下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004100647A priority Critical patent/JP2005281101A/en
Publication of JP2005281101A publication Critical patent/JP2005281101A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desired glass substrate for a flat panel display, which has a high strain point, high heat resistance, high toughness, and a low density. <P>SOLUTION: The glass substrate for the flat panel display device substantially comprises, by weight, 63-69% SiO<SB>2</SB>, 2-6% Al<SB>2</SB>O<SB>3</SB>, 66-72% of SiO<SB>2</SB>+Al<SB>2</SB>O<SB>3</SB>, 2-5% Na<SB>2</SB>O, 9-12% K<SB>2</SB>O, 12-17% of Na<SB>2</SB>O+K<SB>2</SB>O, 2-10 MgO, 5-10% CaO, 0-3% SrO, 0-2% BaO, 10-15% of MgO+CaO, 0-3% of SrO+BaO, 10-15% RO (wherein, R is Mg, Ca, Sr or Ba), and 0.8-4% Zr0<SB>2</SB>, and is characterized in that the strain point is ≥570°C. Further, the glass substrate is characterized in that the average coefficient of thermal expansion within a range of 30-300°C is (75-85)×10<SP>-7</SP>/°C, the Young's modulus E is 71-76 GPa, and the density is <2.6 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマディスプレイ装置用基板ガラス、特にプラズマディスプレイパネル(PDP)用基板ガラスとして好適なディスプレイ装置用基板ガラスに関する。   The present invention relates to a substrate glass for a plasma display device, and more particularly to a substrate glass for a display device suitable as a substrate glass for a plasma display panel (PDP).

従来、PDP製造分野においては、基板ガラスとして常温〜300℃の熱膨張係数が80〜90×10−7/℃程度、歪点が 510〜520℃程度のソーダライムシリカガラスを使用してきた。ソーダライムシリカガラスは多方面に利用され、低価格で容易に調達できる点で有利とされている。しかし歪点が低いため、ガラス基板上に電極線パターンを配し、更に低融点ガラスによる絶縁被覆を形成する等、パネル製作上各種熱処理を施す際に、基板ガラスの反りや収縮などの変形を生じ易いという不具合が生じる。 Conventionally, in the PDP manufacturing field, soda lime silica glass having a thermal expansion coefficient of about 80 to 90 × 10 −7 / ° C. and a strain point of about 510 to 520 ° C. has been used as a substrate glass. Soda lime silica glass is used in many fields and is advantageous in that it can be easily procured at a low price. However, since the strain point is low, the electrode glass pattern is arranged on the glass substrate, and the insulation coating with low melting point glass is formed. The problem that it is easy to occur arises.

上記不具合を解消するために、近年においてはソーダライムシリカガラスと同様なアルカリ・アルカリ土類・シリカ系ガラスで、熱膨張係数がソーダライムシリカガラスと近似し、歪点が550℃を越え、あるいは600℃を超えるような高歪点ガラスが提案されている。これらはガラスの成分を調製することにより求める物性を得ようとするものであり、ソーダライムガラスと比較して、SiOを少なくし、アルカリ土類酸化物(MgO、CaO、SrO、BaO)成分やZrO成分を多くすることで、高歪点にするものである。(例えば特許文献1〜3)。これらのガラスを用いた基板は、ディスプレイパネルの製造工程において、熱変形が少なく、またパネルを構成する他の部材との熱膨張の整合性も良い。
特開平8−290939号公報 特開平10−152339号公報 特許第2738036号公報
In order to eliminate the above problems, in recent years, alkali-alkaline earth-silica glass similar to soda lime silica glass has a thermal expansion coefficient close to that of soda lime silica glass, and a strain point exceeds 550 ° C., or High strain point glass exceeding 600 ° C. has been proposed. These are intended to obtain the required physical properties by preparing glass components, and in comparison with soda lime glass, there are fewer SiO 2 and alkaline earth oxide (MgO, CaO, SrO, BaO) components. And increasing the ZrO 2 component increases the strain point. (For example, Patent Documents 1 to 3). These substrates using glass are less susceptible to thermal deformation in the manufacturing process of the display panel, and also have good thermal expansion consistency with other members constituting the panel.
JP-A-8-290939 JP 10-152339 A Japanese Patent No. 2738036

しかし、上記のようなSiOが少なく、アルカリ土類酸化物(MgO、CaO、SrO、BaO)成分やZrO成分が多い高歪点ガラスは、ヤング率が高く76GPaを超えるものが多い。また、密度が高く2.6を超えるものが多い。 However, high strain point glasses with a small amount of SiO 2 and a large amount of alkaline earth oxides (MgO, CaO, SrO, BaO) and ZrO 2 have a high Young's modulus and exceed 76 GPa. In addition, the density is often higher than 2.6.

ディスプレイ装置の製造工程中では、前述のように各種熱処理を施すため、過熱や冷却の工程でガラス基板に熱衝撃が加わり、温度勾配が生じてガラス基板に熱応力が発生する。この熱応力σは一般に式(1)のような式で表される。   During the manufacturing process of the display device, since various heat treatments are performed as described above, a thermal shock is applied to the glass substrate in the process of overheating and cooling, a temperature gradient is generated, and a thermal stress is generated in the glass substrate. This thermal stress σ is generally expressed by an equation such as equation (1).

熱応力σ=0.31{Eα/(1−ν)}・ΔT(γm・h/k) (1)
ここでEはヤング率、αは熱膨張係数、νはポアソン比、ΔTは温度変化、γmは材料形状による因子、hは表面の熱伝達係数、kは材料の熱伝導率である。脆性破壊を示すガラスはこのような熱応力で比較的容易に破壊するため、熱応力の発生を極力小さくする必要がある。そのためには、上述の式(1)において、E、α、ΔT、γm、hおよびνを小さくし、kを大きくしなければならないが、αはディスプレイ装置を構成する他材料との整合性の面から適切な範囲を変えることが出来ず、また、この系のガラスにおいてはh、kおよびνはほぼ一定である。その上、ΔTやγmはディスプレイパネルの熱処理工程の条件やガラス基板の形状で決まる因子であるためそれを限定することは困難である。従って、ガラス基板に発生する熱応力の大きさは、ガラスのヤング率Eに依存するところが大きく、ヤング率が大きいガラスでは熱処理工程で発生する熱応力が大きくなって、ガラス基板が破壊する確率が高くなるという問題がある。
Thermal stress σ = 0.31 {Eα / (1-ν)} · ΔT (γm · h / k) (1)
Here, E is the Young's modulus, α is the thermal expansion coefficient, ν is the Poisson's ratio, ΔT is the temperature change, γm is a factor depending on the material shape, h is the heat transfer coefficient of the surface, and k is the thermal conductivity of the material. Since glass that exhibits brittle fracture breaks relatively easily with such thermal stress, it is necessary to minimize the generation of thermal stress. For that purpose, in the above formula (1), E, α, ΔT, γm, h, and ν must be reduced and k must be increased, but α is inconsistent with other materials constituting the display device. The appropriate range cannot be changed from the surface, and h, k and ν are almost constant in the glass of this system. In addition, since ΔT and γm are factors determined by the conditions of the heat treatment process of the display panel and the shape of the glass substrate, it is difficult to limit them. Therefore, the magnitude of the thermal stress generated in the glass substrate largely depends on the Young's modulus E of the glass, and in a glass having a large Young's modulus, the thermal stress generated in the heat treatment process increases, and the probability that the glass substrate breaks. There is a problem of becoming higher.

さらに、ヤング率はガラスの自重によるたわみ量にも関係する。即ち、ガラス基板の自重によるたわみ量(W)は、式(2)で表されるように、ヤング率が小さくなると増大する。   Furthermore, the Young's modulus is related to the amount of deflection due to the weight of the glass. That is, the amount of deflection (W) due to the weight of the glass substrate increases as the Young's modulus decreases, as represented by Equation (2).

W=k(ρ/E)(L4/t2) (2)
ここで、Wは最大たわみ量、Lは二辺支持間の距離、tは板厚、ρはガラスの密度、Eはガラスのヤング率、kは定数である。そのため、ガラス基板が大型化するとたわみ量がより大きくなって、基板の搬送や移動の工程で破損などの不具合が起こる問題がある。
W = k (ρ / E) (L 4 / t 2 ) (2)
Here, W is the maximum amount of deflection, L is the distance between the two side supports, t is the plate thickness, ρ is the density of the glass, E is the Young's modulus of the glass, and k is a constant. For this reason, when the glass substrate is increased in size, the amount of deflection becomes larger, and there is a problem that problems such as breakage occur in the process of transporting and moving the substrate.

従って、ヤング率が大きいと前述の通り熱応力によるガラス基板の破壊の問題があり、ヤング率が小さいとガラス基板のたわみによる破損などの問題があるため、ガラスのヤング率の値には適切な範囲が存在する。   Therefore, if the Young's modulus is large, there is a problem of destruction of the glass substrate due to thermal stress as described above, and if the Young's modulus is small, there is a problem such as breakage due to the deflection of the glass substrate. A range exists.

一方、ガラス基板の密度が高いとディスプレイ装置の軽量化が困難になるという問題がある上に、上記のガラス基板の自重によるたわみの問題も発生する。即ち、ガラス基板の自重によるたわみ量(W)は式(2)で表されるように、ガラスの密度(ρ)に比例して増大する。そのためガラス基板が大型化するとたわみ量がより大きくなって、基板の搬送や移動の工程で破損などの不具合が起こる問題がある。
本発明の目的は、上記の問題を解決するため、線熱膨張係数がソーダライムシリカガラスと同様であり、フラットパネルディスプレイ装置、特にプラズマディスプレイパネル(PDP)の基板ガラスに適する高歪点を有し、さらに適切なヤング率と低密度であるために熱応力やたわみによるガラスの破損が少ないガラスの組成を提供することにある。
On the other hand, when the density of the glass substrate is high, there is a problem that it is difficult to reduce the weight of the display device, and the problem of deflection due to the weight of the glass substrate also occurs. That is, the amount of deflection (W) due to the weight of the glass substrate increases in proportion to the density (ρ) of the glass as represented by the equation (2). Therefore, when the glass substrate is enlarged, the amount of deflection becomes larger, and there is a problem in that problems such as breakage occur in the process of transporting and moving the substrate.
An object of the present invention is to solve the above-mentioned problems, and has a linear thermal expansion coefficient similar to that of soda lime silica glass, and has a high strain point suitable for a substrate glass of a flat panel display device, particularly a plasma display panel (PDP). Furthermore, it is an object of the present invention to provide a glass composition that is less susceptible to glass breakage due to thermal stress and deflection due to an appropriate Young's modulus and low density.

本発明は、実質的に重量%表示で、SiOが63〜69、Alが2〜6、SiO+Alが66〜72、NaOが2〜5、KOが9〜12、NaO+KOが12〜17、MgOが2〜10、CaOが5〜10、SrOが0〜3、BaOが0〜2、MgO+CaOが10〜15、SrO+BaOが0〜3、RO(ただしRはMg,Ca,Sr,Ba)が10〜15、ZrOが0.8〜4からなり、かつ歪点が570℃以上であることを特徴とするフラットパネルディスプレイ装置用基板ガラスである。 The present invention is substantially expressed in wt%, with SiO 2 63-69, Al 2 O 3 2-6, SiO 2 + Al 2 O 3 66-72, Na 2 O 2-5, K 2 O. There 9~12, Na 2 O + K 2 O is 12 to 17, MgO is 2 to 10, CaO is 5 to 10, SrO 0 to 3, BaO is 0 to 2, MgO + CaO is 10 to 15, SrO + BaO is 0 to 3 , RO (where R is Mg, Ca, Sr, Ba) is 10-15, ZrO 2 is 0.8-4, and the strain point is 570 ° C. or higher, characterized in that it is a substrate for a flat panel display device It is glass.

また、30℃〜300℃における平均線熱膨張係数が(75〜85)×10−7/℃であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。 Further, the substrate glass for a flat panel display device described above, wherein an average linear thermal expansion coefficient at 30 ° C. to 300 ° C. is (75 to 85) × 10 −7 / ° C.

さらに、ヤング率Eが71〜76GPaであることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。   Furthermore, the substrate glass for a flat panel display device described above, wherein Young's modulus E is 71 to 76 GPa.

さらにまた、密度が2.6g/cm未満であることを特徴とする上記のフラットパネルディスプレイ装置用基板ガラスである。 Furthermore, the substrate glass for a flat panel display device described above, wherein the density is less than 2.6 g / cm 3 .

本発明によれば、上述のように線熱膨張係数がソーダライムシリカガラスと同様であり、フラットパネルディスプレイ装置、特にプラズマディスプレイパネル(PDP)の基板ガラスに適する高歪点を有し、さらに適切なヤング率と低密度であるために熱応力やたわみによるガラスの破損が少ないガラスが得られる。このガラスをフラットパネルディスプレイ用のガラス基板に用いることにより、ディスプレイパネル製造工程におけるガラス基板の、熱および自重による変形や割れが減少し、ディスプレイ装置の製造効率が向上する。   According to the present invention, as described above, the linear thermal expansion coefficient is the same as that of soda lime silica glass, and it has a high strain point suitable for flat panel display devices, particularly plasma display panel (PDP) substrate glasses, and more appropriately. Because of its low Young's modulus and low density, it is possible to obtain a glass that is less damaged by thermal stress and deflection. By using this glass for a glass substrate for a flat panel display, deformation and cracking due to heat and dead weight of the glass substrate in the display panel manufacturing process are reduced, and the manufacturing efficiency of the display device is improved.

本発明は、実質的に重量%表示で、SiOが63〜69、Alが2〜6、SiO+Alが66〜72、NaOが2〜5、KOが9〜12、NaO+KOが12〜17、MgOが2〜10、CaOが5〜10、SrOが0〜3、BaOが0〜2、MgO+CaOが10〜15、SrO+BaOが0〜3、RO(ただしRはMg,Ca,Sr,Ba)が10〜15、ZrOが0.8〜4からなり、かつ歪点が570℃以上であることを特徴とするフラットパネルディスプレイ装置用基板ガラスである。 The present invention is substantially expressed in wt%, with SiO 2 63-69, Al 2 O 3 2-6, SiO 2 + Al 2 O 3 66-72, Na 2 O 2-5, K 2 O. There 9~12, Na 2 O + K 2 O is 12 to 17, MgO is 2 to 10, CaO is 5 to 10, SrO 0 to 3, BaO is 0 to 2, MgO + CaO is 10 to 15, SrO + BaO is 0 to 3 , RO (where R is Mg, Ca, Sr, Ba) is 10-15, ZrO 2 is 0.8-4, and the strain point is 570 ° C. or higher, characterized in that it is a substrate for a flat panel display device It is glass.

SiOはガラスの主成分であり、重量%において63%未満ではガラスの耐熱性または化学耐久性を悪化させる。他方、69%を超えるとガラス融液の高温粘度が高くなり、ガラス成形が困難となる。また、ガラスの線熱膨張係数が小さくなり過ぎて、ディスプレイパネルを構成する他の部材との整合性が悪くなる。従って63〜69%、好ましくは64〜68%の範囲とする。 SiO 2 is a main component of glass, and if it is less than 63% by weight, the heat resistance or chemical durability of the glass is deteriorated. On the other hand, if it exceeds 69%, the high-temperature viscosity of the glass melt increases, and glass molding becomes difficult. Moreover, the linear thermal expansion coefficient of glass becomes too small, and compatibility with other members constituting the display panel is deteriorated. Therefore, the range is 63 to 69%, preferably 64 to 68%.

Alは、歪点を高くする成分であり、必須成分である。重量%において2%未満ではガラスの歪点が低下し、他方6%を超えるとガラス融液の高温粘度が高くなる上に、ヤング率が上昇し、所望のヤング率が得られなくなる。従って2〜6%、好適には3〜5%の範囲がよい。 Al 2 O 3 is a component that increases the strain point and is an essential component. If the percentage by weight is less than 2%, the strain point of the glass is lowered. On the other hand, if it exceeds 6%, the high-temperature viscosity of the glass melt increases, and the Young's modulus increases, making it impossible to obtain the desired Young's modulus. Therefore, the range of 2 to 6%, preferably 3 to 5% is preferable.

SiO+Alの合量を66〜72%にすることにより、ガラスの耐熱性や化学的耐久性を適切な範囲に維持することが出来る。その合量が66%未満だとガラスの耐熱性や化学的耐久性が低下しすぎる。また、密度が上昇し所望の密度が維持できなくなる。72%を超えるとガラスの線熱膨張係数が低くなりすぎ、またガラス融液の高温粘度が高くなるためガラスの成形が困難となる。 By setting the total amount of SiO 2 + Al 2 O 3 to 66 to 72%, the heat resistance and chemical durability of the glass can be maintained in an appropriate range. If the total amount is less than 66%, the heat resistance and chemical durability of the glass are too low. Further, the density increases and the desired density cannot be maintained. If it exceeds 72%, the linear thermal expansion coefficient of the glass becomes too low, and the high temperature viscosity of the glass melt becomes high, so that it becomes difficult to form the glass.

NaOは、KOとともにガラス溶解時の融剤として作用し、またガラスの線膨張係数を適度な大きさに維持する上で不可欠である。2%未満であると融剤としての効果が不十分であり、また線膨張係数が低くなりすぎる。5%を超えると、歪点が低下しすぎる。従って2〜5%、好ましくは3〜4%の範囲とする。 Na 2 O acts together with K 2 O as a flux at the time of melting the glass, and is indispensable for maintaining the linear expansion coefficient of the glass at an appropriate size. If it is less than 2%, the effect as a flux is insufficient, and the linear expansion coefficient is too low. If it exceeds 5%, the strain point is too low. Therefore, the range is 2 to 5%, preferably 3 to 4%.

Oは、NaOと同様の作用効果を示すと共に、NaOとの混合アルカリ効果によりアルカリイオンの移動を抑制し、ガラスの体積抵抗率を高める必須成分である。9%未満であるとそれらの作用が不十分であり、12%を超えると線膨張係数が過大となり、また歪点も低下し過ぎるため、9〜12%、好適には10〜11%の範囲とする。 K 2 O is, with shows the same effect as Na 2 O, and suppress the movement of the alkali ions by mixed alkali effect with Na 2 O, it is an essential component to improve the volume resistivity of the glass. If it is less than 9%, the action thereof is insufficient, and if it exceeds 12%, the linear expansion coefficient is excessive and the strain point is too low. Therefore, the range is 9 to 12%, preferably 10 to 11%. And

前記アルカリ成分(NaO、KO)の量に関してその合量を12〜17%にすることにより、歪点、線熱膨張係数、高温粘度および失透温度を適切な範囲に維持することが出来る。アルカリ成分の合量が12%未満では線熱膨張係数が低下しすぎる上に、ヤング率が上昇し所望のヤング率が維持できなくなる。また、ガラスの失透傾向が増大する。17%を超えると歪点が低下しすぎる上に、ヤング率および体積抵抗率が低下する。従ってこの範囲を12〜17%とする。 Maintaining the strain point, linear thermal expansion coefficient, high temperature viscosity, and devitrification temperature in appropriate ranges by adjusting the total amount of the alkali components (Na 2 O, K 2 O) to 12 to 17%. I can do it. If the total amount of the alkali components is less than 12%, the coefficient of linear thermal expansion is excessively lowered, and the Young's modulus increases and the desired Young's modulus cannot be maintained. Moreover, the tendency of devitrification of the glass increases. If it exceeds 17%, the strain point will be too low, and the Young's modulus and volume resistivity will be reduced. Therefore, this range is made 12 to 17%.

MgOは、ガラス溶解時の溶融ガラスの粘度を下げる作用を有すると共に、歪点も上昇させる作用を有する。2%未満ではそれらの作用が不十分である。他方10%を超えるとヤング率が上昇し所望のヤング率が得られなくなる。また、ガラスの失透傾向が増大し、ガラスの成形が困難になる。従って2〜10%、好ましくは4〜8%の範囲とする。   MgO has the effect of lowering the viscosity of the molten glass when the glass is melted, and also has the effect of increasing the strain point. If it is less than 2%, their action is insufficient. On the other hand, if it exceeds 10%, the Young's modulus increases and the desired Young's modulus cannot be obtained. In addition, the tendency to devitrify the glass increases, making it difficult to form the glass. Therefore, the range is 2 to 10%, preferably 4 to 8%.

CaOは、ガラス溶解時の溶融ガラスの粘度を下げる作用を有すると共に、ガラスの歪点を上昇させる作用を有するが、5%未満ではその作用が不十分であり、他方10%を越えると失透傾向が大きくなり、また密度が上昇し所望の密度が得られなくなる。従って、10〜15%の範囲、好ましくは11〜14%とする。   CaO has the effect of lowering the viscosity of the molten glass at the time of melting the glass and has the effect of raising the strain point of the glass, but the effect is insufficient if it is less than 5%, and devitrification if it exceeds 10%. The tendency increases and the density increases and the desired density cannot be obtained. Therefore, the range is 10 to 15%, preferably 11 to 14%.

SrOは、必須成分ではないが、CaOとの共存下でガラス融液の高温粘度を下げて失透の発生を抑制する作用を有する。3%を超えると密度が高すぎるので、3%以下の範囲が望ましい。   SrO is not an essential component, but has the effect of suppressing the occurrence of devitrification by lowering the high-temperature viscosity of the glass melt in the presence of CaO. If it exceeds 3%, the density is too high, so a range of 3% or less is desirable.

BaOは、必須成分ではないが、ガラス融液の失透傾向を抑制する作用を有すると共にヤング率を下げる効果があるが、2%を超えると密度が上昇するので、2%以下の範囲が望ましい。   BaO is not an essential component, but has an effect of suppressing the devitrification tendency of the glass melt and has an effect of lowering the Young's modulus. However, since the density increases when it exceeds 2%, the range of 2% or less is desirable. .

さらに、上記組成範囲内において、二価の金属酸化物RO(Rは、Mg、Ca、Sr、Ba)の合計量を10〜15%の範囲とすることによって、ガラスの溶融性を良好な範囲に維持しつつ、粘度−温度勾配を適度としてガラスの成形性を良好とし、耐熱性、化学的耐久性に優れ、適切な範囲の線膨張係数を有するガラスを得ることが出来る。ROの合量が10%未満では、高温粘度が上昇してガラスの溶融と成形が困難となる。また、歪点が下がりすぎる上に、線熱膨張係数が低下する。一方15%を超えると、特に密度が上昇するとともに失透傾向が増大し、化学的耐久性が低下する。より好ましい範囲は11〜14%である。   Further, within the above composition range, the total amount of the divalent metal oxide RO (R is Mg, Ca, Sr, Ba) is in the range of 10 to 15%, so that the melting property of the glass is in a favorable range. While maintaining the above, it is possible to obtain a glass having an appropriate viscosity-temperature gradient, good glass moldability, excellent heat resistance and chemical durability, and having an appropriate range of linear expansion coefficient. If the total amount of RO is less than 10%, the high-temperature viscosity increases and it becomes difficult to melt and mold the glass. In addition, the strain point is excessively lowered and the linear thermal expansion coefficient is lowered. On the other hand, if it exceeds 15%, the density increases, the tendency to devitrification increases, and the chemical durability decreases. A more preferable range is 11 to 14%.

ZrOは、ガラスの歪点を上昇させ、またガラスの化学的耐久性を向上させる効果を有するので、0.8%以上含有させることが好ましい。4%を超えると、ヤング率および密度が上昇し、いずれも所望の値が維持できなくなる。従って0.8〜4%、好ましくは1〜3%の範囲とする。 ZrO 2 has an effect of raising the strain point of the glass and improving the chemical durability of the glass, so it is preferable to contain 0.8% or more. If it exceeds 4%, the Young's modulus and density increase, and both cannot maintain desired values. Therefore, it is 0.8 to 4%, preferably 1 to 3%.

本発明の好ましい態様のガラスは実質的に上記成分からなるが、本発明の目的を損なわない範囲で他の成分を合量で3%まで含有してもよい。たとえば、ガラスの溶解、清澄、成形性の改善のためにSO、Cl、F、As等を合量で1%まで含有してもよい。また、ガラスを着色するためにFe、CoO、NiO等を合量で1%まで含有してもよい。さらに、PDPにおける電子線ブラウニング防止等のためにTiOおよびCeOをそれぞれ1%まで、合量で1%まで含有してもよい。 Although the glass of the preferable aspect of this invention consists of said component substantially, in the range which does not impair the objective of this invention, you may contain other components to 3% in total amount. For example, a total amount of SO 3 , Cl, F, As 2 O 3 and the like may be contained up to 1% in order to improve melting, fining, and moldability of glass. Further, Fe 2 O 3 to color the glass, CoO, may contain NiO, etc. up to 1% in total. Further, in order to prevent electron beam browning in the PDP, TiO 2 and CeO 2 may each be contained up to 1%, and the total amount may be contained up to 1%.

本発明の上記組成によれば、歪点が570℃以上のフラットパネルディスプレイ装置用基板ガラスを得ることが出来る。歪点が570℃未満では、ガラス基板上に電極線パターンを配し、更に低融点ガラスによる絶縁被覆を形成する等、パネル製作上各種熱処理を施す際に、基板ガラスの反りや収縮などの変形を生じ易いという不具合が生じる。   According to the composition of the present invention, a substrate glass for a flat panel display device having a strain point of 570 ° C. or higher can be obtained. When the strain point is less than 570 ° C., deformation of the substrate glass, such as warping and shrinkage, is performed when various heat treatments are performed on the panel production, such as arranging an electrode line pattern on the glass substrate and further forming an insulating coating with low-melting glass. The problem that it is easy to produce occurs.

また、上記組成によれば、30℃〜300℃における平均線熱膨張係数が(75〜85)×10−7/℃であるようなフラットパネルディスプレイ装置用基板ガラスを得ることが出来る。平均線熱膨張係数が(75〜85)×10−7/℃を外れるとディスプレイパネルを構成する他の部材との整合性が悪くなる。 Moreover, according to the said composition, the substrate glass for flat panel display apparatuses whose average linear thermal expansion coefficient in 30 degreeC-300 degreeC is (75-85) x10 < -7 > / degreeC can be obtained. When the average linear thermal expansion coefficient is outside (75 to 85) × 10 −7 / ° C., the compatibility with other members constituting the display panel is deteriorated.

さらに、上記組成によれば、ヤング率Eが71〜76GPaであるフラットパネルディスプレイ装置用基板ガラスを得ることが出来る。ヤング率が71GPa未満では、ガラス基板のたわみ量が大きくなり、基板の搬送や移動の工程で破損などの不具合が起こりやすくなる。一方、76GPaを超えると、熱応力により破損しやすくなる。   Furthermore, according to the said composition, the substrate glass for flat panel display apparatuses whose Young's modulus E is 71-76 GPa can be obtained. When the Young's modulus is less than 71 GPa, the amount of deflection of the glass substrate increases, and problems such as breakage are likely to occur in the substrate transport and movement processes. On the other hand, when it exceeds 76 GPa, it becomes easy to break due to thermal stress.

さらにまた、上記組成によれば、密度が2.6g/cm未満であるようなフラットパネルディスプレイ装置用基板ガラスを得ることが出来る。密度が2.6g/cm以上では、一般的なソーダライムシリカガラスよりも大きな値となり、ディスプレイ装置が大型化した場合にガラス基板の自重による変形や割れなどの不具合を生じる恐れがある。 Furthermore, according to the above composition, a substrate glass for a flat panel display device having a density of less than 2.6 g / cm 3 can be obtained. When the density is 2.6 g / cm 3 or more, the value becomes larger than that of general soda lime silica glass, and when the display device is increased in size, there is a possibility of causing problems such as deformation and cracking due to the weight of the glass substrate.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(ガラスの作成)
SiO源として珪砂を、Al源として酸化アルミニウムを、NaO源として炭酸ナトリウムおよび硫酸ナトリウムを、KO源として炭酸カリウムを、MgO源として酸化マグネシウムを、CaO減として炭酸カルシウムを、SrO源として炭酸ストロンチウムを、BaO源として炭酸バリウムを、ZrO源として珪酸ジルコニウムを使用した。これらを表1及び表2の高歪点ガラス組成となるように調合したうえで白金ルツボに充填し、電気炉内で1550℃、約6時間加熱溶融した。加熱溶融の途中で白金棒によりガラス融液を攪拌してガラスを均質化させた。次に、溶融ガラスを鋳型に流し込み、ガラスブロックとし、650℃に保持した電気炉に移入して該炉内で徐冷し、表1の実施例1〜6、表2の比較例1〜4に示す組成のガラスを得た。得られたガラス試料は泡や脈理の無い均質なものであった。
(Creation of glass)
Silica sand as SiO 2 source, aluminum oxide as Al 2 O 3 source, sodium carbonate and sodium sulfate as Na 2 O source, potassium carbonate as K 2 O source, magnesium oxide as MgO source, calcium carbonate as reduced CaO , Strontium carbonate as the SrO source, barium carbonate as the BaO source, and zirconium silicate as the ZrO 2 source. These were prepared so as to have the high strain point glass compositions shown in Table 1 and Table 2, filled in a platinum crucible, and heated and melted in an electric furnace at 1550 ° C. for about 6 hours. During the heating and melting, the glass melt was stirred with a platinum rod to homogenize the glass. Next, the molten glass is poured into a mold to form a glass block, which is transferred to an electric furnace maintained at 650 ° C. and gradually cooled in the furnace. Examples 1 to 6 in Table 1 and Comparative Examples 1 to 4 in Table 2 A glass having the composition shown in FIG. The obtained glass sample was homogeneous without bubbles or striae.

これらのガラスについて、歪点(℃)、30〜300℃の平均線熱膨張係数(10−7/℃)、ヤング率(GPa)、および密度(g/cm)を以下の方法により測定した。 For these glasses, the strain point (° C.), the average linear thermal expansion coefficient (10 −7 / ° C.) of 30 to 300 ° C., Young's modulus (GPa), and density (g / cm 3 ) were measured by the following methods. .

歪点は、JIS R3103−2の規定に基づくビーム曲げ法により測定した。線熱膨張係数は、熱機械分析装置TMA8310(理学電機(株)製)を用いて室温〜300℃における平均線熱膨張係数を測定した。ヤング率は、シンクアラウンド式音波測定装置UVM−2(超音波工業(株)製)を用いて測定した。密度は、泡のないガラス(約50g)についてアルキメデス法により測定した。   The strain point was measured by a beam bending method based on JIS R3103-2. For the linear thermal expansion coefficient, an average linear thermal expansion coefficient at room temperature to 300 ° C. was measured using a thermomechanical analyzer TMA8310 (manufactured by Rigaku Corporation). The Young's modulus was measured using a sink-around type acoustic wave measuring device UVM-2 (manufactured by Ultrasonic Industry Co., Ltd.). The density was measured by Archimedes method on glass without bubbles (about 50 g).

(結果)
各種試験結果を表に示す。なお、表2中の比較例1は一般的なソーダライムシリカガラスである。
(result)
Various test results are shown in the table. In addition, the comparative example 1 in Table 2 is a general soda-lime silica glass.

表1における実施例1〜6に示すように、本発明の組成範囲内においては、歪点が570℃以上と十分高い上に、ヤング率Eが75GPa程度であり、平均線熱膨張係数も、(76〜82)×10−7/℃と、ディスプレイ装置用基板ガラスに好適な結果となった。また、密度も、2.52〜2.56g/cm)となり、2.6未満のものが得られた。これは比較例1のソーダライムシリカガラスの密度の値に近いものである。 As shown in Examples 1 to 6 in Table 1, within the composition range of the present invention, the strain point is sufficiently high as 570 ° C. or higher, the Young's modulus E is about 75 GPa, and the average linear thermal expansion coefficient is also (76 to 82) × 10 −7 / ° C., which is a favorable result for the substrate glass for a display device. Further, the density was 2.52 to 2.56 g / cm 3 ), and a density of less than 2.6 was obtained. This is close to the density value of the soda lime silica glass of Comparative Example 1.

他方、本発明の組成範囲を外れる表2における比較例1〜4は、比較例1のソーダライムシリカガラスにおいては、ヤング率Eが72GPaで、密度は2.6g/cm未満であるものの、歪点が他のガラスに比べて著しく低いことを表している。また、比較例2〜4のガラスは、歪点は570℃以上と高いものの、ヤング率Eが76GPaを超えていること、さらに密度が2.6を超えていることを表している。 On the other hand, Comparative Examples 1 to 4 in Table 2 outside the composition range of the present invention have a Young's modulus E of 72 GPa and a density of less than 2.6 g / cm 3 in the soda-lime silica glass of Comparative Example 1. It shows that the strain point is significantly lower than other glasses. Moreover, although the glass of Comparative Examples 2-4 has a high strain point of 570 degreeC or more, it represents that the Young's modulus E exceeds 76 GPa and the density exceeds 2.6.

Claims (4)

実質的に重量%表示で、SiOが63〜69、Alが2〜6、SiO+Alが66〜72、NaOが2〜5、KOが9〜12、NaO+KOが12〜17、MgOが2〜10、CaOが5〜10、SrOが0〜3、BaOが0〜2、MgO+CaOが10〜15、SrO+BaOが0〜3、RO(ただしRはMg,Ca,Sr,Ba)が10〜15、ZrOが0.8〜4からなり、かつ歪点が570℃以上であることを特徴とするフラットパネルディスプレイ装置用基板ガラス。 Substantially expressed by weight%, SiO 2 is 63 to 69, Al 2 O 3 is 2 to 6, SiO 2 + Al 2 O 3 is 66 to 72, Na 2 O is 2 to 5, K 2 O is 9 to 12 Na 2 O + K 2 O is 12-17, MgO is 2-10, CaO is 5-10, SrO is 0-3, BaO is 0-2, MgO + CaO is 10-15, SrO + BaO is 0-3, RO (however, R is Mg, Ca, Sr, Ba) of 10 to 15, ZrO 2 of 0.8 to 4, and a strain point of 570 ° C. or higher, and a substrate glass for flat panel display devices. 30℃〜300℃における平均線熱膨張係数が(75〜85)×10−7/℃であることを特徴とする請求項1に記載のフラットパネルディスプレイ装置用基板ガラス。 2. The substrate glass for a flat panel display device according to claim 1, wherein an average linear thermal expansion coefficient at 30 ° C. to 300 ° C. is (75 to 85) × 10 −7 / ° C. 3. ヤング率Eが71〜76GPaであることを特徴とする請求項1または2に記載のフラットパネルディスプレイ装置用基板ガラス。 The substrate glass for flat panel display devices according to claim 1, wherein Young's modulus E is 71 to 76 GPa. 密度が2.6g/cm未満であることを特徴とする請求項1乃至3のいずれかに記載のフラットパネルディスプレイ装置用基板ガラス。
The substrate glass for a flat panel display device according to any one of claims 1 to 3, wherein the density is less than 2.6 g / cm 3 .
JP2004100647A 2004-03-30 2004-03-30 Glass substrate for display device Pending JP2005281101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100647A JP2005281101A (en) 2004-03-30 2004-03-30 Glass substrate for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100647A JP2005281101A (en) 2004-03-30 2004-03-30 Glass substrate for display device

Publications (1)

Publication Number Publication Date
JP2005281101A true JP2005281101A (en) 2005-10-13

Family

ID=35179885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100647A Pending JP2005281101A (en) 2004-03-30 2004-03-30 Glass substrate for display device

Country Status (1)

Country Link
JP (1) JP2005281101A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080292A1 (en) * 2005-01-25 2006-08-03 Central Glass Company, Limited Substrate glass for display
JP2008214166A (en) * 2007-03-07 2008-09-18 Central Glass Co Ltd Substrate glass for display device
JP2008308394A (en) * 2007-03-07 2008-12-25 Central Glass Co Ltd Substrate glass for display device
JP2011251854A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate
CN102718404A (en) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
JP2015096465A (en) * 2014-12-17 2015-05-21 Hoya株式会社 Glass substrate
WO2017073370A1 (en) * 2015-10-26 2017-05-04 大日本印刷株式会社 Film mold and imprinting method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080292A1 (en) * 2005-01-25 2006-08-03 Central Glass Company, Limited Substrate glass for display
JP2008214166A (en) * 2007-03-07 2008-09-18 Central Glass Co Ltd Substrate glass for display device
JP2008308394A (en) * 2007-03-07 2008-12-25 Central Glass Co Ltd Substrate glass for display device
JP2011251854A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate
CN102718404A (en) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
CN102718404B (en) * 2012-02-24 2014-12-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
JP2015096465A (en) * 2014-12-17 2015-05-21 Hoya株式会社 Glass substrate
WO2017073370A1 (en) * 2015-10-26 2017-05-04 大日本印刷株式会社 Film mold and imprinting method
JP2017084900A (en) * 2015-10-26 2017-05-18 大日本印刷株式会社 Film mold and imprint method
CN108352301A (en) * 2015-10-26 2018-07-31 大日本印刷株式会社 Film die and method for stamping
US11123960B2 (en) 2015-10-26 2021-09-21 Dai Nippon Printing Co., Ltd. Film mold and imprinting method
CN108352301B (en) * 2015-10-26 2023-03-24 大日本印刷株式会社 Thin film mold and imprinting method

Similar Documents

Publication Publication Date Title
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
JP2003146692A (en) Glass composition for display panel
JPWO2008117758A1 (en) Substrate glass and glass substrate for data storage media
KR101212910B1 (en) glass composition
JPH11310433A (en) Substrate glass for display device
WO2015111524A1 (en) Glass composition for tempering, tempered glass article and method for producing same
JP4962898B2 (en) Glass substrate for flat panel display
JP2017178711A (en) Glass substrate for magnetic recording medium and manufacturing method therefor
JP2006206336A (en) Substrate glass for display device
JP2007284307A (en) Substrate glass for display device
JP4391321B2 (en) Substrate glass for display devices
JP2005281101A (en) Glass substrate for display device
JP2000351649A (en) Glass for substrate and glass substrate
JP2006131482A (en) Glass substrate for display device
JP2008308376A (en) Substrate glass for display device
JP2005324992A (en) Glass substrate for display device
JP5092564B2 (en) Substrate glass for display devices
JP2018203571A (en) Glass
WO2005118499A1 (en) Substrate glass for display device
JP4807024B2 (en) Substrate glass for display devices
JP5018141B2 (en) Substrate glass for display devices
JP4972946B2 (en) Substrate glass for display devices
JP2006143523A (en) Glass substrate for display device
JP2012106897A (en) Glass composition for chemical strengthening
JP2006096594A (en) Substrate glass for display device