TW201012771A - Glass fiber composition and printed circuit board made from the glass fiber composition - Google Patents

Glass fiber composition and printed circuit board made from the glass fiber composition Download PDF

Info

Publication number
TW201012771A
TW201012771A TW98125110A TW98125110A TW201012771A TW 201012771 A TW201012771 A TW 201012771A TW 98125110 A TW98125110 A TW 98125110A TW 98125110 A TW98125110 A TW 98125110A TW 201012771 A TW201012771 A TW 201012771A
Authority
TW
Taiwan
Prior art keywords
equal
less
glass
glass fiber
printed circuit
Prior art date
Application number
TW98125110A
Other languages
Chinese (zh)
Inventor
John J Kuhn
Kenneth D Beer
Original Assignee
Dielectric Solutions Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dielectric Solutions Llc filed Critical Dielectric Solutions Llc
Publication of TW201012771A publication Critical patent/TW201012771A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed are glass fibers having a dielectric constant less than or equal to 6 and glass viscosity of 1000 poise at a temperature no greater than 2250 DEG F (1232.2 DEG C ). The glass fibers include between 45 Wt% and 65 Wt% of SiO2; between 15 Wt% and 25 Wt% of B2O3; between 8 Wt% and 16 Wt% of Al2O3; less than or equal to 10 Wt% of CaO; less than or equal to 10 Wt% of MgO; less than or equal to 3 Wt% of Na2O; less than or equal to 2 Wt% of K2O; less than or equal to 2 Wt% of Li2O; less than or equal to 5 Wt% of TiO2; less than or equal to 2 Wt% of F2; and less than or equal to 1 Wt% of Fe2O3. The glass fibers can have less than or equal to five hollow glass fibers per cubic centimeter of glass and are intended for use in a printed circuit board.

Description

201012771 六、發明說明: 【相關案件之參照】 本申請案要求來自2008年7月25日提出申請之發明 名稱為「玻璃纖維合成物(Gla_ss Fiber Composition)」之 美國暫時專利申請案第61/083,706號的優先權,該申請 案特併入於此以供參照。 【發明所屬之技術領域】 本發明是關於具有低介電常數的玻璃纖維,尤其是關 於用在補強印刷電路板之具有低介電常數的玻璃纖維。 【先前技術】 目前,所謂的「E玻璃」是廣泛地以玻璃纖維的形式 使用,以補強印刷電路板。E玻璃在規格ASTM-D578 「Standard Specification for Glass Fiber Strands」和 IPC-4412A「Specification for Finished Fabric Woven from ‘E’ Glass for Printed Boards」中定義,其包含介於 5Wt% 和10 Wt%之間的氧化硼(B2〇3);介於16 Wt%和25 Wt% 之間的氧化鈣(CaO);介於12 Wt%和16 Wt%之間的氧化 鋁(A1203);介於52 Wt%和 56 Wt%之間的二氧化矽 (Si02);介於0 Wt%和5 Wt%之間的氧化鎂(MgO);介於 0 Wt%和2 Wt%之間的氧化鈉(Na20);介於0 Wt%和2 Wt%之間的氧化鉀(K20);介於0 Wt%和0.8 Wt%之間的 二氧化鈦(Ti02);介於0.05 Wt%和0.4 Wt%之間的三氧 化二鐵(Fe203);及介於0 Wt%和1 Wt%之間的氟(F2)。 201012771 此處’所有用來形成玻璃的成分百分比是以重量百分比 (亦即,wt。/。)表示。 隨著電子電路系統預期以增加的時脈速度操作,印刷 電路板已成為設備設計中的限制因素。訊號傳播速度由 電路尺寸和層板介電常數(Dk)的組合來決定。層板Dk 是由用來形成層板之材料(包含樹脂和玻璃補強)的個別 Dk決定。一般而言,玻璃纖維為層板Dk的主要貢獻者。 魯 需要具有減少Dk的玻璃纖維來滿足對高速計算設備的 需求。 用在印刷電路板(PCB)補強之玻璃製程的總結由 Eng(2001 年 9 月刊載於 The Board Authority 之 D. Eng - 的「Glass Fiber Glass Reinforcements Within Circuit201012771 VI. INSTRUCTIONS: [Reference to related cases] This application claims the US Provisional Patent Application No. 61/083,706, entitled "Gla_ss Fiber Composition", filed on July 25, 2008. The priority of this application is hereby incorporated by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to glass fibers having a low dielectric constant, and more particularly to glass fibers having a low dielectric constant for use in reinforcing printed circuit boards. [Prior Art] At present, the so-called "E glass" is widely used in the form of glass fiber to reinforce a printed circuit board. E-glass is defined in the specification ASTM-D578 "Standard Specification for Glass Fiber Strands" and IPC-4412A "Specification for Finished Fabric Woven from 'E' Glass for Printed Boards", which includes between 5 Wt% and 10 Wt%. Boron oxide (B2〇3); calcium oxide (CaO) between 16 Wt% and 25 Wt%; alumina between 12 Wt% and 16 Wt% (A1203); between 52 Wt% and Cerium oxide (Si02) between 56 Wt%; magnesium oxide (MgO) between 0 Wt% and 5 Wt%; sodium oxide (Na20) between 0 Wt% and 2 Wt%; Potassium oxide (K20) between 0 Wt% and 2 Wt%; titanium dioxide (Ti02) between 0 Wt% and 0.8 Wt%; ferric oxide between 0.05 Wt% and 0.4 Wt% (Fe203); and fluorine (F2) between 0 Wt% and 1 Wt%. 201012771 Here, the percentage of all ingredients used to form the glass is expressed in weight percent (i.e., wt%). As electronic circuitry is expected to operate at increased clock speeds, printed circuit boards have become a limiting factor in device design. The signal propagation speed is determined by the combination of circuit size and laminate dielectric constant (Dk). The laminate Dk is determined by the individual Dk of the material used to form the laminate, including resin and glass reinforcement. In general, glass fibers are a major contributor to laminate Dk. Lu needs fiberglass with reduced Dk to meet the demand for high-speed computing equipment. A summary of the glass process used in printed circuit board (PCB) reinforcement by Eng (Dlass Fiber Glass Reinforcements Within Circuit, D. Eng -, September, 2001, The Board Authority)

Board Composites」)給定。作者敘述包含製造玻璃球或 玻璃屑之預處理步驟的玻璃熔融、玻璃纖維的成形、加 撚、整經、漿紗、織造、燒潔和處理製程。作者亦認同 需要具有低Dk的玻璃與當前商業提供的限制,其包含較 高的玻璃熔融溫度、較高的能量成本與較短之玻璃熔融 以及玻璃纖維成形設備的壽命。 1993 年由...Elsevier Publishing 出版之 Lowenstein K. L. 所著之「The Manufacturing'Technology of Continuos Glass Fibres」一書的第三修訂版(此後稱為「Lowenstein」) 詳細敘述玻璃紗的製造,包含熔融、玻璃纖維成形和加 撚’並將之視為此產業中的標準工作。Lowenstein包含 設備設計和操作的關鍵細節、玻璃纖維的標準以及低介 201012771 電常數玻璃合成物與性質的範例。 可利用包含「D」與「S」之替代的玻璃纖維合成物, Eng和I^owenstein提及其同樣具有低D卜這些玻璃具有 非常咼的熔融溫度和高黏度,使其如Y〇k〇i等人之美國 專利第4,824,806號中所提到般難以消除玻璃熔融中的 氣泡。同樣地,由於處理困難,以這些玻璃合成物製造 的玻璃纖維無法獲得小於9微米的玻璃纖維直徑,此限 制其在高密度印刷電路板中的使用。Board Composites") given. The authors describe glass melting, glass fiber forming, twisting, warping, sizing, weaving, burning, and processing processes that involve the pretreatment steps of making glass spheres or glass shavings. The authors also agree that there is a need for glass with low Dk and current commercial offerings that include higher glass melting temperatures, higher energy costs and shorter glass melting and fiberglass forming equipment life. The third revision of the book "The Manufacturing' Technology of Continuos Glass Fibres" by Lowenstein KL, published by Elsevier Publishing in 1993 (hereafter referred to as "Lowenstein") details the manufacture of glass yarns, including melting, Glass fiber forming and twisting is considered a standard work in this industry. Lowenstein contains key details of equipment design and operation, standards for fiberglass, and examples of low-temperature 201012771 electrical constant glass composites and properties. An alternative glass fiber composite containing "D" and "S" can be utilized, and Eng and I^owenstein mention that they also have a low D. These glasses have very high melting temperatures and high viscosities, such as Y〇k〇. It is difficult to eliminate air bubbles in the melting of the glass as mentioned in U.S. Patent No. 4,824,806. Similarly, glass fibers made from these glass composites are unable to achieve a glass fiber diameter of less than 9 microns due to handling difficulties, which limits their use in high density printed circuit boards.

Imai之美國專利第4,762,809號敘述與D玻璃相比之 改善的抗水性和耐熱性’同時驗證低Dk。Imai的專利揭 示類似D玻璃的玻璃合成物,但其包含重量上達215% 的 B2〇3 和上達 5%的鹼金屬(R2〇 = Na20 + K20 + Li2〇)。 大於70%的高矽石含量導致大於2800°F的高熔融溫度。 - 同樣地,高矽石含量使得以此玻璃補強的印刷電路板基 板難以鑽孔。 瘳 與D玻璃相比,Yokoi等人的專科藉由增加鹼土金屬 (CaO + MgO)和氧化鋁水平,有時則引入Ζη〇同時減少 鹼金屬層級,來驗證低Dk與良好的抗水性。與d玻璃 相比此玻璃顯不改善的生產率,但.具有比.E:玻璃高的 熔融溫度。U.S. Patent No. 4,762,809 to Imai describes improved water resistance and heat resistance as compared to D glass while verifying low Dk. The Imai patent discloses a glass composition similar to D glass, but which contains 215% by weight of B2〇3 and up to 5% of alkali metal (R2〇 = Na20 + K20 + Li2〇). A high vermiculite content of greater than 70% results in a high melting temperature of greater than 2800 °F. - Similarly, high vermiculite content makes it difficult to drill a printed circuit board substrate reinforced with this glass. Y Compared with D glass, Yokoi et al.'s specialists verify low Dk and good water resistance by increasing the alkaline earth metal (CaO + MgO) and alumina levels, sometimes introducing Ζη〇 while reducing the alkali metal level. This glass showed no improvement in productivity compared to d glass, but had a higher melting temperature than .E: glass.

Yokoi等人的專利認為高黏度和高熔融溫度的結果是 難以獲得不具氣泡的均質玻璃。破璃纖維成形期間在玻 璃熔融中的氣泡先前在E玻璃中已觀察到,且是Spr〇ull 之美國專利第4,542,106號的發明者在發展以較高溫度 201012771 熔融之無硼和氟之E玻璃變異中所關心的事。 如果這些是小氣泡,其會通過玻璃纖維成形製程並導 致中空的玻璃纖維。如果是大氣泡,則會導致製程中斷。 在任一情況下,氣泡和得到的中空玻璃纖維在玻璃纖維 生產、來自這些玻璃纖維的布織和包含這些玻璃纖維之 用於印刷電路板或電絕緣的層板或複合材料中都是必須 避免的。 中空玻璃纖維在印刷電路板層板中的缺點已在許多行 醫 業雜誌和專業刊物中獲得證明,諸如:(1)K. R0gers、C. Hillman 和 M. Pecht 的「Hollow Fibers Can Accelerate Conductive Filament Formation」,ASM International ^ 作故障分析(Practical Failure Analysis),第 1 卷,第 4 期’頁 57-60,2001 年 8 月;(2)K. Rogers、P. Driessche、 C. Hillman 和 M. Pecht 的「Do Ϋοιι Know That Your Laminates May Contain Hollow Fibers」,印刷電路製造 ❿ (Printed Circuit Fabrication)’ 第 22 卷,第 4 期,頁 34_38, 1999 年 4 月,及(3)A. Shukla、T. Dishongh.、M. Pecht 和 D· Jennings 的「Hollow Fibers in Woven Laminates」’ 印刷電路製造,第20卷’第i期,頁3〇_32 ’ 1997年l 月。1化中空玻璃纖維的方.法在Sproull的專.利中.终 定’並建立可接受的上限為每立方公分的玻璃中有$個 中空玻璃纖維。此位於由不同印刷電路板材料製造商所 建立之中空玻璃纖維限值的範圍内。The Yokoi et al. patent states that the result of high viscosity and high melting temperature is that it is difficult to obtain a homogeneous glass without bubbles. The bubble in the glass melt during the formation of the glass fiber was previously observed in the E glass, and the inventors of U.S. Patent No. 4,542,106 to Spr. U.S. The concern of E glass variability. If these are small bubbles, they pass through the glass fiber forming process and result in hollow glass fibers. If it is a large bubble, it will cause the process to be interrupted. In either case, the bubbles and the resulting hollow glass fibers must be avoided in the production of glass fibers, the weaving from these glass fibers, and the laminates or composites used for printed circuit boards or electrical insulation containing these glass fibers. . The shortcomings of insulating glass fibers in printed circuit board laminates have been demonstrated in many medical journals and professional publications such as: (1) K. R0gers, C. Hillman and M. Pecht, "Hollow Fibers Can Accelerate Conductive Filament Formation" , ASM International ^ Failure Failure Analysis, Volume 1, Issue 4 'Page 57-60, August 2001; (2) K. Rogers, P. Driessche, C. Hillman, and M. Pecht "Do Ϋοιι Know That Your Laminates May Contain Hollow Fibers", Printed Circuit Fabrication, Vol. 22, No. 4, pp. 34_38, April 1999, and (3) A. Shukla, T. Dishongh., M. Pecht, and D. Jennings, "Hollow Fibers in Woven Laminates" Printed Circuit Manufacturing, Vol. 20, pp. i, p. 3〇_32 'January 1997. The method of hollow glass fiber is determined in Sproull's specialization, and the acceptable upper limit is $10,000 per cubic centimeter of glass. This is within the limits of the insulating glass fiber limits established by manufacturers of different printed circuit board materials.

Mori等人之美國專利第5,958 8〇8號揭示具有低介電 201012771 常數的玻璃,其包含介於〇 wt%和〇 5 wt%之間的鹼金 屬含量、介於20Wt%和30wt%之間的B2〇3含量以及介 於0.5 Wt%和5 Wt%之間的Ti〇2含量。Tamura等人之美 國專利第6’309,990號揭示將鹼金屬含量增加至介於〇 Wt/ο和1.0 Wt%之間,且將I。3的量減少至介於15 Wt% 和30 Wt/〇之間’同時仍包含介於〇.5 ^%和5 Wt%之間 的 Ti02。 ❹A glass having a low dielectric 201012771 constant comprising an alkali metal content between 〇wt% and 〇5 wt%, between 20 wt% and 30 wt%, is disclosed in U.S. Patent No. 5,958,8, the entire disclosure of which is incorporated herein by reference. The B2〇3 content and the Ti〇2 content between 0.5 Wt% and 5 Wt%. U.S. Patent No. 6,309,990 to Tamura et al. discloses an increase in alkali metal content between 〇 Wt/ο and 1.0 Wt%, and I. The amount of 3 is reduced to between 15 Wt% and 30 Wt/〇 while still containing Ti02 between 〇.5^% and 5 Wt%. ❹

Mori等人的專利敘述ία的下限為2〇 wt%,以避免 尚介電正切;CaO和Mg〇的上限分別為5胃。和4 Wt/o以避免咼介電常數與高介電正切;以及R2〇的上 限為0.5㈣,以避免高介電正切與不良抗水性。Ta_a 等人的專利敘述B2〇3的下限為15 Wt%,以避免高介電 常數與高介電正切;Mg〇的上限為5 Wt%,以避免高介 電常數、高介電正切與減低的抗水性;Ca〇的上限為.Η Wt% ’以避免高介電常數與高介電正切;及心〇的上限 為1.0 Wt%,否則Dk將太高且抗水性不良。 預期鹼土金屬(Ca0與Mg〇)和鹼金屬(Na2〇、κ山^ LkO)之增加的限值將降低熔融溫度、減少中空玻璃纖為 的發生率和改善可加工性。根據M〇d等人之專利矛The Mori et al. patent states that the lower limit of ία is 2〇 wt% to avoid dielectric ditangential; the upper limits of CaO and Mg〇 are 5 stomachs, respectively. And 4 Wt/o to avoid 咼 dielectric constant and high dielectric tangent; and R2 〇 upper limit of 0.5 (four) to avoid high dielectric tangent and poor water resistance. The Ta_a et al. patent states that the lower limit of B2〇3 is 15 Wt% to avoid high dielectric constant and high dielectric tangent; the upper limit of Mg〇 is 5 Wt% to avoid high dielectric constant, high dielectric tangent and reduction The water resistance; the upper limit of Ca 为 is Η Wt% 'to avoid high dielectric constant and high dielectric tangent; and the upper limit of palpitations is 1.0 Wt%, otherwise Dk will be too high and poor water resistance. It is expected that the increase in the limits of alkaline earth metals (Ca0 and Mg〇) and alkali metals (Na2〇, κ山^LkO) will lower the melting temperature, reduce the incidence of hollow glass fibers, and improve workability. Patent spear according to M〇d et al.

Tamura等人之專利的教義所製成的玻璃纖維玻璃是由 Nmo Boseki所製造,並以NE玻璃的商標名販售。 玻璃呈現低Dk ’其不像D玻璃那麼低,但低於s破螭。 根據Mon等人之專利和Tamura等人之專利的教義所製 成的玻璃纖維玻璃仍難以熔融,其需要高溫並在玻填中 201012771 留下氣泡。在電子產業中,已知NE玻璃呈現中空玻璃 纖維,本發明者已觀察到其遠超出由Spr〇ull之專利所建 立的限值。在Tamura等人的專利中已承認這是「s〇me slight difficulty in worability and productivity j 〇 【發明内容】 揭示一玻璃纖維’其依照所需由下列構成:介於45 Wt%和65 Wt%之間的Si02 ;介於15 Wt%和25 Wt%之間 φ 的B2〇3 ;介於8 Wt。/。和16 Wt%之間的Al2〇3 ;小於或等 於10 Wt°/〇的CaO ;小於或等於10 Wt%的MgO ;小於或 等於3 Wt%的Na20 ;小於或等於2 Wt%的K20 ;小於或 等於2 Wt%的LhO ;小於或等於5 Wt%的Ti02 ;小於或 等於2 Wt%的F2 ;及小於或等於1 Wt%的Fe203,其中 該玻璃纖維在不大於2250°F(1232.2°C )的溫度下具有小 於或等於6的介電常數和1000泊的玻璃黏度。 亦揭示一玻璃纖維,其更加依照所需由下列構成:介 Φ 於 48 Wt°/〇和 62 Wt%之間的 Si02;介於 17 Wt%和 23 Wt% 之間的B2〇3 ;介於9 Wt%和15 Wt%之間的Al2〇3 ;介於 2 Wt%和 10 Wt%的 CaO ;介於 2 Wt%和 8 Wt%的 MgO ; 小於或等於2 Wt%的Na20 ;小於或等於l Wt%的K20 ; 小於或等於1 Wt%的Li20 ;小於或等於2 Wt%的Ti02 ; 小於或等於1.5 Wt%的F2;及小於或等於0.8 Wt%的 Fe2〇3,其中該玻璃纖維在不大於225〇。17(1232.2°(:)的溫 度下具有小於或等於6的介電常數和1000泊的玻璃黏 201012771 度。 亦揭示一玻璃纖維,其最依照所需由下列構成:介於 52 Wt%和 56 Wt%之問的 Si02 ;介於 18 Wt%和 22 Wt% 之間的B2〇3 ;介於10 Wt%和14 Wt°/〇之間的ai2o3 ;介 於 4 Wt%和 8 Wt%的 CaO;介於 2 Wt%和 6 Wt%的 MgO; 小於或等於2 Wt%的Na20 ;小於或等於1 Wt°/〇的K20 ; 小於或等於1 Wt°/〇的Li20;小於或等於0.5 Wt%的Ti02; 小於或等於 1 Wt%的F2 ;及小於或等於0.4 Wt%的 — Fe203 ’其中該玻璃纖維在不大於2250°F(2°C )的溫度下 具有小於或等於6的介電常數(Dk)和1〇〇〇泊的玻璃黏 度。 前述的玻璃纖維各自依照所需在每立方公分的玻璃纖 維中包含不超過5個的中空玻璃纖維。 前述玻璃纖維各自可進一步包含一或多個下列成分, 其量總計達 5 Wt% : BaO ; BeO ; CaF2 ; CdO ; Μη203 ; ❹ P2〇5 ; PbO ; S03 ; Sb203 ; SrO ; ZnO ;及 Zr02。 亦揭示一印刷電路板,其包含一或多個層板,其中每 一層板包含由樹脂支撐的玻璃纖維,該玻璃纖維在不大 於22507(1232.2°C)的溫度下具有小於或等於6的介電 常數(Dk)和1〇〇〇泊的玻璃黏度。 構成該印刷電路板之該玻璃纖維依照所需由下列構 成:介於45 Wt%和65 Wt%之間的Si02 ;介於15 Wt°/〇和 25 Wt%之間的b2〇3 ;介於8 Wt%和16 Wt%之間的 Al2〇3 ;小於或等於1〇 Wt〇/〇的Ca〇 ;小於或等於wt% 201012771 的MgO ;小於或等於3 wt%的Na20 ;小於或等於2 Wt% 的K20 ;小於或等於2 wt%的Li20 ;小於或等於5 Wt% 的Ti02 ;小於或等於2 wt%的;及小於或等於1 wt% 的 Fe203。 構成該印刷電路板之該玻璃纖維更加依照所需由下列 構成:介於48 Wt%和62 Wt%之間的Si02 ;介於17 Wt% 和23 Wt%之間的b2〇3 ;介於9 Wt%和15 Wt%之間的 _ A12〇3;介於 2 Wt%和 1〇 wt%的 CaO;介於 2 Wt〇/〇和 8 Wt0/〇 的MgO ;小於或等於2 wt%的Na20 ;小於或等於1 wt% 的K20 ;小於或等於i wt%的Li20 ;小於或等於2 Wt% 的Ti02 ;小於或等於15 wt%的F2 ;及小於或等於〇.8 Wt%的 Fe2〇3 0 構成該印刷電路板之該玻璃纖維最依照所需由下列構 成:介於52 Wt%和56 Wt%之間的Si02 ;介於18 Wt%和 22 Wt%之間的B2〇3 ;介於1〇 Wt%和14 wt%之間的 ❹ Al2〇3;介於 4 Wt%和 8 Wt%的 CaO;介於 2 Wt%和 6 Wt% 的MgO ;小於或等於2 Wt%的Na20 ;小於或等於1 Wt% 的K20;小於或等於1 Wt°/。的Li20;小於或等於0.5 Wt% 的Ti〇2;小於或等於1 Wt%的F2;及小於或等於0.4 Wt% 的 Fe2〇3 ° 構成該印刷電路板之該玻璃纖維可包含一或多個下列 成分,其量總計達 5 Wt%: BaO; Be〇; CaF2; CdO; Mn2〇3 ; P2〇5 ; PbO ; S〇3 ; Sb203 ; SrO ; ZnO ;及 Zr02。 該印刷電路板可進一步在每立方公分的玻璃纖維中包 11 201012771 含不超過5個的中空玻璃纖維β 【實施方式】 树明ϋ璃纖維合錢,其可用於補㈣刷電路 板。該玻璃纖維具有低介電常數、低介電正切和低玻璃 纖維成形溫度。本發明者已觀察到該玻㈣維呈現低炫 融溫度、低黏度、和㈣中減少的氣泡連同相應之中空 玻璃纖維的減少與優越的生產率。 • 本發明者已觀察到不同玻璃成分的量必須謹慎選擇, 以獲得所需之電、化學、機械與熱性質的平衡。迄今為 止,關於玻璃纖維之可接受性質的限制,以及不同玻璃 成分對這些性質的貢獻尚未妥善建立。 Α處’已選擇四種性質作為由示於下列表ι之玻璃成 分所形成之根據本發明之玻璃纖維合成物的性能度量。 •這些度量包含:介電常數(Dk);耗散因素或介電正切 (DfK高溫黏度(HTV)或黏度等於1〇〇〇泊之溫度(〇F/〇c); 攀及液相服度(F/0C)。液相溫度為熱力平衡下晶體與溶融 共存的最大溫度。 鑒於前述性能度量,估定玻璃成分對四種性質之貢獻 @可接受層級。為此目的,考慮示於表j之兩種商業E 玻璃、NE玻璃和實驗玻璃之範例的成分,並針對表^的 每一種玻璃決定示於表π之Dk、Df、高溫黏度(Ητν)和 液相溫度的相應估計值。 與公佈的資料相比,表[之每一種玻璃的饥和^估 12 201012771 S十值疋合理的。同樣地,實際的玻璃纖維成形溫度大於 HTV,其幫助生產直徑5微米的玻璃纖維。在比較HTV 和液相溫度時,此亦相當顯而易見,因為玻璃纖維無法 在低於液相溫度的情況下商業成形1Glass fiberglass made from the teachings of the Tamura et al. patent is manufactured by Nmo Boseki and sold under the trade name NE Glass. The glass exhibits a low Dk' which is not as low as D glass but lower than s. Glass fiberglass made according to the teachings of Mon et al. and the teachings of Tamura et al. is still difficult to melt, requiring high temperatures and leaving bubbles in the glass fill 201012771. In the electronics industry, NE glass is known to exhibit hollow glass fibers, and the inventors have observed that it is far beyond the limits established by the Spr〇ull patent. It is recognized in the Tamura et al. patent that "s〇me slight difficulty in worability and productivity j 〇 [Summary] discloses a glass fiber which is composed of the following as required: between 45 Wt% and 65 Wt% SiO2; B2〇3 between φ 15 Wt% and 25 Wt%; Al2〇3 between 8 Wt·· and 16 Wt%; CaO less than or equal to 10 Wt°/〇; MgO less than or equal to 10 Wt%; Na20 less than or equal to 3 Wt%; K20 less than or equal to 2 Wt%; LhO less than or equal to 2 Wt%; Ti02 less than or equal to 5 Wt%; less than or equal to 2 Wt % F2; and less than or equal to 1 Wt% of Fe203, wherein the glass fiber has a dielectric constant of less than or equal to 6 and a glass viscosity of 1000 poise at a temperature of not more than 2250 °F (1232.2 °C). a glass fiber, which is more suitably formed as follows: SiO 2 between 48 Wt ° / 〇 and 62 Wt %; B 2 〇 3 between 17 Wt% and 23 Wt%; between 9 Wt Al2〇3 between % and 15 Wt%; CaO between 2 Wt% and 10 Wt%; MgO between 2 Wt% and 8 Wt%; Na20 less than or equal to 2 Wt%; less than or equal to l Wt % K20 ; less than or Li20 equal to 1 Wt%; Ti02 less than or equal to 2 Wt%; F2 less than or equal to 1.5 Wt%; and Fe2〇3 less than or equal to 0.8 Wt%, wherein the glass fiber is not more than 225 〇.17 (1232.2 The temperature at °(:) has a dielectric constant of less than or equal to 6 and a glass adhesion of 100012771 degrees. Also, a glass fiber is disclosed which is most preferably composed of the following: between 52 Wt% and 56 Wt%. Q02; B2〇3 between 18 Wt% and 22 Wt%; ai2o3 between 10 Wt% and 14 Wt°/〇; CaO between 4 Wt% and 8 Wt%; 2 Wt% and 6 Wt% of MgO; less than or equal to 2 Wt% of Na20; less than or equal to 1 Wt°/〇 of K20; less than or equal to 1 Wt°/〇 of Li20; less than or equal to 0.5 Wt% of Ti02; F2 less than or equal to 1 Wt%; and less than or equal to 0.4 Wt% - Fe203 ' wherein the glass fiber has a dielectric constant (Dk) of less than or equal to 6 at a temperature not greater than 2250 °F (2 °C) And 1 berth of glass viscosity. The aforementioned glass fibers each contain not more than 5 hollow glass fibers per cubic centimeter of glass fibers as required. Each of the foregoing glass fibers may further comprise one or more of the following components in an amount of up to 5 Wt%: BaO; BeO; CaF2; CdO; Μη203; ❹P2〇5; PbO; S03; Sb203; SrO; ZnO; and Zr02. Also disclosed is a printed circuit board comprising one or more plies, wherein each ply comprises glass fibers supported by a resin having a dielectric of less than or equal to 6 at a temperature of no greater than 22507 (1232.2 ° C) Electrical constant (Dk) and glass viscosity of 1 Torr. The glass fibers constituting the printed circuit board are constructed as follows: SiO 2 between 45 Wt% and 65 Wt%; b2 〇 3 between 15 Wt ° / 〇 and 25 Wt %; Al2〇3 between 8 Wt% and 16 Wt%; Ca〇 less than or equal to 1〇Wt〇/〇; MgO less than or equal to wt% 201012771; Na20 less than or equal to 3 wt%; less than or equal to 2 Wt % of K20; less than or equal to 2 wt% of Li20; less than or equal to 5 Wt% of TiO 2 ; less than or equal to 2 wt%; and less than or equal to 1 wt% of Fe 203. The glass fibers constituting the printed circuit board are further composed of: SiO 2 between 48 Wt% and 62 Wt%; b2 〇 3 between 17 Wt% and 23 Wt%; _ A12〇3 between Wt% and 15 Wt%; CaO between 2 Wt% and 1〇wt%; MgO between 2 Wt〇/〇 and 8 Wt0/〇; Na20 less than or equal to 2 wt% ; less than or equal to 1 wt% of K20; less than or equal to i wt% of Li20; less than or equal to 2 Wt% of Ti02; less than or equal to 15 wt% of F2; and less than or equal to 〇.8 Wt% of Fe2〇3 0 The glass fiber constituting the printed circuit board is most preferably composed of: SiO 2 between 52 Wt% and 56 Wt%; B2 〇 3 between 18 Wt% and 22 Wt%; 〇Al2〇3 between 1〇Wt% and 14wt%; CaO between 4 Wt% and 8 Wt%; MgO between 2 Wt% and 6 Wt%; Na20 less than or equal to 2 Wt%; less than Or equal to 1 Wt% of K20; less than or equal to 1 Wt°/. Li20; less than or equal to 0.5 Wt% of Ti〇2; less than or equal to 1 Wt% of F2; and less than or equal to 0.4 Wt% of Fe2〇3°. The glass fiber constituting the printed circuit board may include one or more The following ingredients amounted to 5 Wt%: BaO; Be〇; CaF2; CdO; Mn2〇3; P2〇5; PbO; S〇3; Sb203; SrO; ZnO; and Zr02. The printed circuit board can further be wrapped in glass fibers per cubic centimeter. 11 201012771 contains no more than 5 hollow glass fibers β. [Embodiment] Shuming glazed fiber is used for supplementing (four) brushed circuit boards. The glass fibers have a low dielectric constant, a low dielectric tangent, and a low glass fiber forming temperature. The inventors have observed that the glass (four) dimension exhibits a low haze temperature, a low viscosity, and a reduced bubble in (iv) together with a corresponding reduction in hollow glass fibers and superior productivity. • The inventors have observed that the amount of different glass components must be carefully selected to achieve the desired balance of electrical, chemical, mechanical and thermal properties. To date, restrictions on the acceptability of glass fibers and the contribution of different glass components to these properties have not been properly established. The four properties have been selected as a measure of the performance of the glass fiber composition according to the present invention formed from the glass component shown in the following Table ι. • These metrics include: dielectric constant (Dk); dissipative factor or dielectric tangent (DfK high temperature viscosity (HTV) or viscosity equal to 1 Torr (〇F/〇c); (F/0C). The liquidus temperature is the maximum temperature at which the crystal and the melt coexist under thermal equilibrium. In view of the aforementioned performance metrics, the contribution of the glass composition to the four properties is evaluated @ acceptable level. For this purpose, consider the table j The composition of the two commercial E glass, NE glass and experimental glass examples, and for each of the glass of the table, is determined by the corresponding estimates of Dk, Df, high temperature viscosity (Ητν) and liquidus temperature in Table π. Compared with the published data, the table [the hunger and the evaluation of each glass is reasonable. Similarly, the actual glass fiber forming temperature is greater than HTV, which helps to produce glass fibers with a diameter of 5 microns. This is also quite obvious when HTV and liquidus temperatures are used because glass fibers cannot be formed commercially below liquidus temperature.

以Dk和0£在10 GHz下量測不同的兩次所製備的E 玻璃和實驗玻璃的樣本現將參照下列的表ItI並繼續參 照表I和II敎述。 範例 在玻璃纖維範例#1中,矽石(si〇2)、硼(Β2〇3)和鈦(Ti〇2) 之相對高的重量百分比(Wt%)是經選擇以結合相對低 Wt%的氧化鋁來降低Dk〇玻璃纖維範例#1具有如表η 所示之優越的估計電性質,以及如表ΙΠ所示之優越的量 測電性質。須了解對列於兩個表中的每一種玻璃纖維而 言,在表II和m中之Df值的強度差等級是歸因於用來 量測Dk的頻率,即表„的ιΜΗζ和表⑴的i〇ghz。 歷史上,1 MHz是用作決定玻璃纖維之Dk值的頻率。不 過,現今的印刷電路板(PCB)漸增地為操作在GHz頻率 下的部件所用。因此,為了決定取之示範操作值的 的,表III之Dk和Df的量測是在1〇(}112下進行。 咸認為針對範例#1之破璃纖維計算而得的htv相, 高,且玻璃纖維在製備時會結晶。在下文所述之接續《 範例中,矽石(Si〇2)的Wt%是選擇為更接近在表[之 ^#1 ^#2 t Si〇2 ^ 每—範例之玻璃纖維製成的PCB時遭遇困難。 13 201012771 在玻璃纖維範例#2和#3中,在用來生產範例#1之玻 璃纖維之NazO、LisO和F2之Wt%的基礎上減少氧化納 (NaA)、氧化鋰(LisO)和氟(F2)的Wt%會相對範例#丨之玻 璃纖維的HTV降低範例#2和#3之玻璃纖維的HTV。此 外’在用來生產表I和II之NE玻璃之Na20和F2之wt% 的基礎上增加氧化鈉(NazO)和氟(F2)的Wt%會相對NE玻 璃的HTV降低範例#2和#3之玻璃纖維的HTV。如表π 和III所示,範例#2和#3的玻璃纖維具有優越的估計電 ® 性質和優越的量測電性質。不過,範例#2和#3之玻璃纖 維的液相溫度高於範例#1之玻璃纖維的液相溫度。 如玻璃纖維範例#4所示’在玻璃纖維範例#丨、#2和#3 之CaO、MgO和Ti02之Wt%的基礎上增加氧化另(ca〇) 和氧化鎂(MgO)的Wt%同時減少二氧化鈦(Ti〇2)的wt% 生產出範例#4的玻璃纖維,其具有比範例·#1、#2和#3 之玻璃纖維更低的液相溫度。 φ 在每一個玻璃纖維的範例中,每一成分的Wt%皆經過 謹慎選擇,以維持電性質(Dk和Df)、HTV以及液相溫度 的最佳平衡。在玻璃纖維範例# 5中’相對用於形成範例 #4之玻璃纖維之成分的Wt%來調整不同成分的Wt%,尤 其是CaO和MgO的Wt%,以進一步改善Dk、HTV和液 相溫度。最後,在玻璃纖維範例#6中,相對這些相同成 分在範例#5之玻璃纖維中的Wt%,CaO、MgO、Na20、 K20、Li20和F2之Wt。/。的變動導致示於表π和III之Dk、 Df、HTV和液相溫度的改變。在範例#ι至#5中,玻璃 14 201012771 樣本的電性質經過量測並在表Πι 性。 報0兩次,以估定重複 明者估植f和表111的量測性質為基礎,本發 月者驚奇地學習到玻璃合成物(例如,在不受限制的情況 下’範例#1至#6的玻璃合成物)可能呈現料類似£玻 璃的熔融和破璃纖維成形性質,同時驗證優越的電性 質本發明者相信’迄今為止,這類玻璃纖維成形性質 和電性質的結合在此技術中尚未為人所知曉。 鲁 15 201012771Samples of the two prepared E glasses and experimental glasses prepared at Dk and 0 at 10 GHz will now be referred to Table III below and continue to be referred to Tables I and II. Example In Glass Fiber Example #1, the relatively high weight percentage (Wt%) of vermiculite (si〇2), boron (Β2〇3), and titanium (Ti〇2) is selected to combine relatively low Wt%. Alumina to reduce Dk(R) glass fiber Example #1 has superior electrical properties as shown in Table η, as well as superior electrical properties as shown in Table 。. It should be understood that for each of the glass fibers listed in the two tables, the intensity difference level of the Df values in Tables II and m is due to the frequency used to measure Dk, ie the table and table (1) I〇ghz. Historically, 1 MHz was used to determine the frequency of the Dk value of fiberglass. However, today's printed circuit boards (PCBs) are increasingly used for components operating at GHz frequencies. For the exemplary operational values, the measurements of Dk and Df in Table III are performed at 1〇(}112. Salt is considered to be the htv phase calculated for the glass fiber of Example #1, high, and the glass fiber is prepared. It will crystallize. In the continuation of the example described below, the Wt% of vermiculite (Si〇2) is chosen to be closer to the glass fiber in the table [^^1^#2 t Si〇2 ^ per-example Difficulties encountered in making PCBs. 13 201012771 In glass fiber examples #2 and #3, sodium oxide (NaA) was reduced based on the Wt% of NazO, LisO and F2 used to produce the glass fibers of Example #1. The Wt% of lithium oxide (LisO) and fluorine (F2) will be compared to the HTV of the glass fiber of the example #2 and #3 of the glass fiber HTV of the example. Increasing the Wt% of sodium oxide (NazO) and fluorine (F2) based on the wt% of Na20 and F2 used to produce the NE glass of Tables I and II will reduce the glass of Examples #2 and #3 with respect to the HTV of NE glass. Fiber HTV. As shown in Tables π and III, the glass fibers of Examples #2 and #3 have superior electrical properties and superior electrical properties. However, the glass fibers of Examples #2 and #3 are liquid. The temperature is higher than the liquidus temperature of the glass fiber of Example #1. As shown in the glass fiber example #4, the oxidation of the glass fiber examples #丨, #2, and #3, based on the Wt% of CaO, MgO, and TiO2, is added. (ca〇) and Wt% of magnesium oxide (MgO) simultaneously reduce the wt% of titanium dioxide (Ti〇2). The glass fiber of example #4 is produced, which has more glass fibers than the examples #1, #2, and #3. Low liquidus temperature. φ In each glass fiber example, the Wt% of each component is carefully selected to maintain an optimal balance of electrical properties (Dk and Df), HTV, and liquidus temperature. In Example #5, 'Wt% of the composition of the glass fiber used to form Example #4 is adjusted to adjust the Wt% of the different components, especially the Wt% of CaO and MgO, Further improvements in Dk, HTV and liquidus temperatures. Finally, in Glass Fiber Example #6, Wt% of these same components in the glass fibers of Example #5, Wt of CaO, MgO, Na20, K20, Li20 and F2. The change in / is caused by changes in Dk, Df, HTV, and liquidus temperatures shown in Tables π and III. In Examples #ι至#5, the electrical properties of the glass 14 201012771 sample were measured and expressed in the table. Reported 0 times, based on the assessment of the nature of the repeated estimates and the measured properties of the table 111, the present month surprised to learn the glass composition (for example, in the case of unrestricted 'example #1 to The glass composition of #6 may exhibit a melting and glass fiber forming property similar to that of glass, while verifying superior electrical properties. The inventors believe that 'so far, the combination of such glass fiber forming properties and electrical properties is in this technology. It is not yet known. Lu 15 201012771

表i 玻璃合成物(wt%) E玻 E玻 NE 範 範 範 範 範 範 成分 璃 璃 玻 例 例 例 例 例 例 #1 #2 璃 #1 #2 #3 #4 #5 #6 二氧化 55.07 53.20 55.2 60. 52.8 52.8 52.6 54.9 55.5 矽 7 00 0 5 9 9 8 18.4 20. 18.8 18.9 20.4 19.9 19.6 氧化硼 5.53 8.38 5 00 0 7 9 3 9 15.0 5.0 15.9 15.8 12.1 11.8 11.8 氧化鋁 13.74 14.58 9 0 0 7 3 0 5 氧化鈣 5.0 20.99 16.76 4.20 0 4.50 3.99 7.15 5.92 6.04 氧化鎂 4.0 2.47 4.84 4.38 0 4.00 3.96 5.09 4.20 4.06 氧化鈉 1.38 .33 .05 .75 .45 0.68 .60 1.60 1.80 氧化鉀 .09 .23 .00 .00 •00 .61 .84 .16 .22 氧化鋰 •00 •00 .14 .75 .45 .10 .12 .19 .25 二氧化 .50 .28 1.99 4.0 2.80 2.69 .37 .40 .41 鈦 0 氟 .02 .62 •02 .50 .30 .29 •53 .79 • 18 三氧化 .234 .335 .092 .01 .015 .017 •017 .017 .054 一 Mb 一鐵 5 16 201012771Table i Glass composition (wt%) E glass E glass NE Fan Fan Fan Fan Fan component glass glass example Example #1 #璃#1 #2 #3 #4 #5 #6 二氧化55.07 53.20 55.2 60. 52.8 52.8 52.6 54.9 55.5 矽7 00 0 5 9 9 8 18.4 20. 18.8 18.9 20.4 19.9 19.6 Boron oxide 5.53 8.38 5 00 0 7 9 3 9 15.0 5.0 15.9 15.8 12.1 11.8 11.8 Alumina 13.74 14.58 9 0 0 7 3 0 5 Calcium oxide 5.0 20.99 16.76 4.20 0 4.50 3.99 7.15 5.92 6.04 Magnesium oxide 4.0 2.47 4.84 4.38 0 4.00 3.96 5.09 4.20 4.06 Sodium oxide 1.38 .33 .05 .75 .45 0.68 .60 1.60 1.80 Potassium oxide .09 .23 .00 .00 •00 .61 .84 .16 .22 Lithium oxide •00 •00 .14 .75 .45 .10 .12 .19 .25 Dioxide .50 .28 1.99 4.0 2.80 2.69 .37 .40 .41 Titanium 0 Fluorine .02 .62 •02 .50 .30 .29 •53 .79 • 18 Trioxide .234 .335 .092 .01 .015 .017 •017 .017 .054 One Mb One Iron 5 16 201012771

表II 1 MHz 下的估計性質 E玻 E玻 NE 範 範 範 範 範 範 性質 璃 璃 玻 例 例 例 例 例 例 #1 #2 璃 #1 #2 #3 #4 #5 #6 Dk 6.85 6.39 5.02 4.42 5.09 5.16 5.33 4.68 5.03 Df x 8.35 12.12 10.57 14.69 6.17 5.74 7.29 5.10 4,65 104 2395 2172 2088 2034 1966 1951 HTV 1945/ 2122/ 2449/ / / / / / / (°F/° 1062. 1161. 1342. 1312. 1188 1142 1112 1074 1066 C) 8 1 8 8 .9 .2 .2 .4 .1 液相 2074/ 2131/ 2251/ 2114/ 2248 2238 2110 2095 2090 溫度 1134. 1166. 1232. 1156. / / / / / (°F/° 1231 1225 1154 1146 1143 4 1 8 7 C) .1 .6 .4 .1 .3 表III 10 GHz下的量測性質(量測#1) E玻 E玻 範例 範例 範例 範例 範例 範例 性質 璃#1 璃#2 #1 #2 #3 #4 #5 #6 Dk 6.85 6.29 5.07 5.04 5.08 5.12 5.08 5.17 Df .0094 .0059 .0047 .0052 .0053 .0053 .0074 .0064 17 201012771 10 GHz下的量測性質(量測#2) E玻 E玻 性質 璃#1 璃#2 範例範例 #1 #2 範例 m 範例 #4 範例 #5 範例 #6 Dk 6.82 6.28 5.07 5.09 5.08 5.12 5.08 Df .0079 .0051 .0044 .0045 .0056 •0055 .0075 在表I、II和III中 ,「Ex :」 =範例 為了決定類似 E 玻璃的玻 璃熔 融條 件, 考慮Table II Estimated Properties at 1 MHz E-glass E-glass NE Fan Fan Fan Fan Fan Fan Properties Glass Glass Example Example #1 #2 璃#1 #2 #3 #4 #5 #6 Dk 6.85 6.39 5.02 4.42 5.09 5.16 5.33 4.68 5.03 Df x 8.35 12.12 10.57 14.69 6.17 5.74 7.29 5.10 4,65 104 2395 2172 2088 2034 1966 1951 HTV 1945/ 2122/ 2449/ / / / / / / (°F/° 1062. 1161. 1342. 1312. 1188 1142 1112 1074 1066 C) 8 1 8 8 .9 .2 .2 .4 .1 Liquid phase 2074/ 2131 / 2251 / 2114 / 2248 2238 2110 2095 2090 Temperature 1134. 1166. 1232. 1156. / / / / / (°F/° 1231 1225 1154 1146 1143 4 1 8 7 C) .1 .6 .4 .1 .3 Table III Measurement properties at 10 GHz (measurement #1) Sample examples of E-glass E-glass examples Example Example Example Nature Glass #1 璃#2 #1 #2 #3 #4 #5 #6 Dk 6.85 6.29 5.07 5.04 5.08 5.12 5.08 5.17 Df .0094 .0059 .0047 .0052 .0053 .0053 .0074 .0064 17 201012771 Measurement properties at 10 GHz (measurement #2) E-glass E-glass properties #1 璃#2 Sample example #1 #2 Example m Example #4 Example #5 Example #6 Dk 6.82 6.28 5.07 5.09 5.08 5.12 5.0 8 Df .0079 .0051 .0044 .0045 .0056 •0055 .0075 In Tables I, II, and III, “Ex :” = Example To determine the glass melting condition similar to E glass, consider

Schoenlaub之美國專利第2,334,961號所揭示的熔融溫 度2588oF(1420oC),以及von Wranau等人之美國專利第 3,095,3 11 號所揭示之介於 2350°F 和 2450。1?(1288。(:和 1343°C)之間的熔融溫度。對以坩鍋熔融整批硼矽酸玻璃 而言’ 一般作法是以兩個進料熔融,接著將得到的熔融 保持在2470°F(1354°C)達14小時。在上文之範例#1至#6 的實驗室熔融之後,接著製備總計超過6000磅之五批不 同的範例#5玻璃。在每一實例中,批料在黏土坩鍋中以 2500°F(1371°C)熔融,接著保持在 2500°F(1371°C)達 16 小時。接著從坩鍋g取熔融的玻璃並在水中淬火。迅速 冷卻導致玻璃裂開成玻璃屑片,其可在標準玻璃球熔融 轴套中再熔融。 玻璃屑片隨後在如Lowenstein之頁115-121所述之類 似於用來熔融以及形成E玻璃纖雒的製程條件下於標準 玻璃球熔融軸套中再熔融並形成玻璃纖維。由於形成玻 201012771 璃纖維的製程在此技術中已為人所熟知,為了簡化之 故,這類製程將不在此處敘述。 雖然與E玻璃的生產相比,在範例#5之麵纖維的生 產中注意到小量減少的玻璃流量和生產效率仍驗證了 制標準玻璃纖維成形製程形成範例#5之麵纖維的商 業可行性。在生產範例#5之玻璃織維 璃樣本,讓本發明者感到驚奇的是,任何樣 罄 到氣泡和中空的玻璃纖維。 織品隨後由這些玻璃纖維編織而成,注入商業上可購 、鬲陡靶樹脂,以及將其按壓至用來製造pcB之類型 的層板中。層板是以按重量計算為68%之樹脂含量的相 同樹、: t ,連同由E玻璃、NE玻璃和範例#5給定的玻璃 . :織而成的織品,共同製成。在1〇GH.z下所量測的電性 質示於下列hV。 19 201012771 表IV 層板之電性質 在10 GHz和 68%的樹脂含量下量測 E玻璃 NE玻璃 範例#5 Dk 3.30 3.00 2.97 Df 0.0090 0.0080 0.0079 如表IV所示,經驗證發現,利用範例#5之玻璃纖維 所製造之PCB層板的電性質等效於利用現存的高性能玻 璃纖維與樹脂所製造的層板。在此同時,經驗證發現, 上文範例#5之玻璃纖維的溶融和玻璃纖維成形溫度可與 E玻璃媲美,其在生產率上具有相應的改善,並完全消 除氣泡和中空的玻璃纖維。 示於表I之每一範例玻璃合成物之每一成分的範圍不 應理解為對本發明之限制《更確切地,咸信包含根據本 發明之玻璃合成物之表I之每一成分的所需範圍可包 含:介於45 Wt%和65 Wt%之間的Si〇2 ;介於15臂⑼和 Μ Wt%之間的Be3;介於8貨⑼和16 wt%之間的 ai2〇3 ;介於 〇 wt〇/。和 ίο Wt%之間的 Ca〇 ;介於 〇 wt% 和1〇 Wt%之間的Mg0;介於〇屬和3 之間的The melting temperature of 2,588 °F (1420 °C) as disclosed in U.S. Patent No. 2,334,961 to Schoenlaub, and 2,350 °F and 2450.1 (1288. Melting temperature between 1343 ° C. For the melting of a batch of borosilicate glass in a crucible, the general practice is to melt the two feeds and then maintain the resulting melt at 2470 ° F (1354 ° C). 14 hours. After the laboratory melting of Examples #1 to #6 above, five batches of different Example #5 glasses totaling more than 6000 pounds were prepared. In each example, the batch was 2500 in a clay crucible. Melt at °F (1371 ° C), then at 2500 ° F (1371 ° C) for 16 hours. Then take the molten glass from the crucible g and quench it in water. Rapid cooling causes the glass to crack into glass chips, It can be remelted in a standard glass ball melt bushing. The glass flakes are then placed in a standard glass ball melt bushing under process conditions similar to those used for melting and forming E glass fiber as described in Lowenstein, pages 115-121. Remelting and forming glass fibers. Due to the formation of glass 201012771 glass fiber The process is well known in the art, and for the sake of simplicity, such processes will not be described here. Although a small reduction is noted in the production of the fiber of Example #5 compared to the production of E glass. The glass flow rate and production efficiency still verify the commercial viability of the standard glass fiber forming process to form the surface fiber of Example #5. In the production of the glass woven glass sample of Example #5, the inventor was surprised that any sample The bubbles and hollow glass fibers are picked up. The fabric is then woven from these glass fibers, injected into a commercially available, steep target resin, and pressed into a laminate of the type used to make pcB. The same tree with a resin content of 68% by weight, t, together with a glass made of E glass, NE glass and sample #5: woven fabric, made together under 1 〇 GH.z The measured electrical properties are shown in the following hV. 19 201012771 Table IV Electrical Properties of the Laminates E Glass NE Glass Samples at 10 GHz and 68% Resin Content #5 Dk 3.30 3.00 2.97 Df 0.0090 0.0080 0.0079 Shown, experience It was found that the electrical properties of the PCB laminates made using the glass fibers of Example #5 are equivalent to the laminates made using existing high performance glass fibers and resins. At the same time, it has been verified that the above example #5 The melting of the glass fibers and the glass fiber forming temperature are comparable to those of the E glass, which has a corresponding improvement in productivity and completely eliminates bubbles and hollow glass fibers. The scope of each component of each of the exemplary glass compositions shown in Table I is not to be construed as limiting the invention. More specifically, it is desirable to include each component of Table I of the glass composition according to the present invention. The range may include: Si〇2 between 45 Wt% and 65 Wt%; Be3 between 15 arms (9) and ΜWt%; ai2〇3 between 8 goods (9) and 16 wt%; Between 〇wt〇/. Ca〇 between and ίο Wt%; Mg0 between 〇 wt% and 1〇 Wt%; between 〇 and 3

Na2〇 \介於〇 Wt%* 2 wt%之間的K2〇 ;介於〇和 20 201012771 2 Wt%之間的Li20 ;介於〇 Wt%和5 Wt%之間的Ti〇2 ; .於〇 Wt/i和2 Wt%之間的F2.;及介於0 Wt%和1 之間的Fe2〇3 〇 咸信包含根據本發明之玻璃合成物之表Ϊ之每一成分 之更需要的範圍可包含:介於48 wt%和62 Wt%之間的 Si〇2 ;介於I? wt%和23 Wt%之間的b2〇3 ;介於9 wt% 和15 wm之間的ai2o3 ;介於2 Wt%和10 Wt%之間的 φ Ca0,介於2 Wt%和8 Wt%之間的MgO ;介於〇 Wt。/。和2Na2〇\K2〇 between tWt%* 2 wt%; Li20 between 〇 and 20 201012771 2 Wt%; Ti〇2 between 〇Wt% and 5 Wt%; F2. between Wt/i and 2 Wt%; and Fe2〇3 between 0 Wt% and 1 contains more of each component of the surface composition of the glass composition according to the present invention. The range may include: Si〇2 between 48 wt% and 62 Wt%; b2〇3 between I? wt% and 23 Wt%; ai2o3 between 9 wt% and 15 wm; φ Ca0 between 2 Wt% and 10 Wt%, MgO between 2 Wt% and 8 Wt%; between 〇Wt. /. And 2

Wt%之間的Na20 ;介於〇 wt%和1 Wt%之間的κ20 ;介 於0 Wt%和1 wt%之間的Li20 ;介於0 Wt%和2 Wt%之 間的Ti02 ;介於〇 wt%和1.5 Wt%之間的F2 ;及介於〇 Wt%和 0.8 Wt%之間的 Fe2〇3。 最後’咸信包含根據本發明之玻璃合成物之表I之每 一成分之最需要的範圍可包含:介於52 Wt%和56 Wt% 之間的Si02 ;介於18 Wt%和22 Wt%之間的B2〇3 ;介於 # 10 wt%和 14 wt%之間的 Al2〇3 ;介於 4 Wt%# 8 Wt%之 間的CaO;介於2 Wt%和6 Wt%之間的MgO;介於0 Wt〇/〇 和2 Wt%之間的Na2〇;介於〇 wt%和1 Wt%之間的K20; 介於0 Wt%和1 Wt%之間的Li20;介於0 Wt%和0.5 Wt0/〇 之間的Ti〇2 ;介於〇 wt%和1 Wt%之間的F2 ;及介於0 Wt%和 0.4 Wt%之間的 Fe2〇3。 雖然在玻璃纖維生產技術中已知根據元素之氧化物列 出成分’成分可以數種不同形式添加至玻璃批料中。舉 例來說,在沒有限制的情況下,鋰可以碳酸鹽 添加,鎮 21 201012771 亦 〇 在玻璃纖維生產技術中亦已知可添加一或多個其他化 合物’以改善玻璃性質。舉例來說,在沒有限制的情況 下’ steinbock之美國專利第2,33 5,463號揭示添加Ba〇、Na20 between Wt%; κ20 between 〇wt% and 1 Wt%; Li20 between 0 Wt% and 1 wt%; Ti02 between 0 Wt% and 2 Wt%; F2 between wt% and 1.5 Wt%; and Fe2〇3 between 〇Wt% and 0.8 Wt%. Finally, the most desirable range of each component of Table I comprising the glass composition according to the present invention may comprise: between 12 Wt% and 56 Wt% of SiO 2 ; between 18 Wt% and 22 Wt% Between B2〇3; Al2〇3 between #10 wt% and 14 wt%; CaO between 4 Wt%# 8 Wt%; between 2 Wt% and 6 Wt% MgO; Na2〇 between 0 Wt〇/〇 and 2 Wt%; K20 between 〇wt% and 1 Wt%; Li20 between 0 Wt% and 1 Wt%; between 0 Ti〇2 between Wt% and 0.5 Wt0/〇; F2 between 〇wt% and 1 Wt%; and Fe2〇3 between 0 Wt% and 0.4 Wt%. Although it is known in the art of glass fiber production to list the constituents based on the oxides of the elements, the ingredients can be added to the glass batch in several different forms. For example, lithium may be added without limitation, and it is also known in the art of glass fiber production that one or more other compounds may be added to improve the properties of the glass. For example, U.S. Patent No. 2,33, 463, to steinbock, discloses the addition of Ba,

Sr〇、Mn2〇3、Zn〇及/或Cd〇至表工所示之類型的玻璃 合成物會改善耐熱性、抗潮性和抗化學腐蝕性。此外, 亦觀察到添加Ba〇或SrO會減低表I所示之類型之玻璃 合成物的去玻傾向。Labino之美國專利第2 685,527號 揭示添加ZnO至表I所示之類型的玻璃合成物會改善玻 璃纖維的強度。von Wranau等人的專利(上文所討論者) 揭示表I所示之類型的玻璃合成物,包含添加Ba〇、 CaFz、PbO、ZnO及/或ZrCh,呈現低熔融和纖維成形溫 度、耐蝕性、化學耐久性、電絕緣性質和抗去玻性qh〇mas 之美國專利第3,183,1〇4和3,189,4*71號揭示添加Be〇至 表Ϊ所示之類型的玻璃合成物會改善抗拉強度和模數。 EaStes等人之美國專利第4,582,748號揭示添加Zn〇會 減少表I所示之類型之玻璃合成物的熱膨脹和介電常 數。Yokoi等人的專利(上文所討論者)揭示添加Zn〇亦減 少表ϊ所示之類型之玻璃合成物的介電常數。We卜 Jr.之美國專利第4,628,〇38號揭示在表ϊ所示之類型之玻 璃合成物中使用痕量S〇3會改善抗水性和抗去玻性。預 想前述化合物之一或其組合可按重量添加達5%的量,以 改善玻璃性質。 最後’ Lecomte等人之國際申請發表編號第 22 201012771 WO/2002/094728號揭示在表I所示之類型之玻璃合成物 中以P2〇5替代Ti02會減少玻璃的介電常數。 本發明已參照較佳實施例敘述。一旦閱讀並了解前文 的詳細敘述,那些在此技術中具有普通技能者將發想出 顯而易見的修改與變化。舉例來說,所有介於兩個Wt% 之間的Wt%包含該兩個Wt%,例如,介於17 Wt%和23 Wt%之間包含17 Wt%和23 Wt%。只要這類修改與變化 出現在附加專利申請項或其等效物的範圍内,則預期將 本發明理解為包含所有這類修改與變化。 【圖式簡單說明】 無 【主要元件符號說明】 無 23Sr〇, Mn2〇3, Zn〇 and/or Cd〇 to glass compositions of the type shown by the watchmakers improve heat resistance, moisture resistance and chemical resistance. In addition, it has also been observed that the addition of Ba or SrO reduces the tendency of devitrification of the glass composition of the type shown in Table I. U.S. Patent No. 2,685,527 to U. The von Wranau et al. patent (discussed above) discloses glass compositions of the type shown in Table I, including the addition of Ba, CaFz, PbO, ZnO and/or ZrCh, exhibiting low melting and fiber forming temperatures, corrosion resistance , U.S. Patent Nos. 3,183,1,4, and 3,189,4*71, which are incorporated by reference to the disclosure of the disclosure. The material will improve the tensile strength and modulus. U.S. Patent No. 4,582,748 to the disclosure of U.S. Pat. The Yokoi et al. patent (discussed above) discloses that the addition of Zn 〇 also reduces the dielectric constant of the glass composition of the type shown in Table 。. The use of trace amounts of S〇3 in glass compositions of the type shown in Table 会 improves the water resistance and devitrification resistance of U.S. Patent No. 4,628, filed on Jan. It is expected that one of the foregoing compounds or a combination thereof may be added in an amount of up to 5% by weight to improve the properties of the glass. Finally, the International Patent Application Publication No. 22 201012771 WO/2002/094728 discloses that replacing P02 with P2〇5 in the glass composition of the type shown in Table I reduces the dielectric constant of the glass. The invention has been described with reference to the preferred embodiments. Once you have read and understood the detailed description above, those with ordinary skills in this technology will come up with obvious modifications and changes. For example, all Wt% between two Wt% contains the two Wt%, for example, between 17 Wt% and 23 Wt%, including 17 Wt% and 23 Wt%. It is intended that the present invention be construed as covering all such modifications and changes, [Simple description of the diagram] None [Key component symbol description] None 23

Claims (1)

201012771 七、申請專利範圍: u 一種破璃纖維’其由下列組成: 介於45 Wt%和65 Wt%之間的si02 ; 介於15 Wt%和25 Wt%之間的b2〇3 ; 介於8 Wt%和16 Wt%之間的Al2〇3 ; 小於或等於10 Wt%的CaO ; 小於或等於1〇 Wt%的MgO ; φ 小於或等於3 Wt%的Na20 ; 小於或等於2 Wt%的K20 ; 小於或等於2 Wt%的Li20 ; 小於或等於5 Wt°/〇的Ti02 ; 小於或等於2 Wt%的F2 ;及 小於或等於1 Wt%的Fe2〇1,其中該玻璃纖維在不 大於225 0°?(1232.2。<:)的溫度下具有小於或等於6的 介電常數和1〇〇〇泊的玻璃黏度。 2. 如申請專利範圍第1項所述之玻璃纖維,其進_ 步在每立方公分的玻璃纖雉中包含不超過五個中空破璃 纖維。 24 1 如申請專利範圍第1項所述之玻璃纖維’其進一 步包含下列的至少一者,其量達5 Wt% : BaO ; BeO ; 201012771 CaF2 ; CdO ; Mn2〇3 ; P2O5 ; Pb〇 ; s〇3 ; Sb2〇3 ; SrO ; ZnO ;及 Zr〇2 〇 4. 一種玻璃纖維,其由下列組成: 介於48 Wt%和62 Wt%之間的si〇2 ; 介於17 Wt%和23 Wt%之間的b2〇3 ; 介於9 Wt%和15 Wt%之間的ai2〇3 ; 介於2 Wt%和1〇 wt%之間的Ca〇 . 介於2 Wt%和8 Wt%之間的Mg〇 ; 小於或等於2 Wt%的Na2〇 ; 小於或等於1 Wt°/。的κ2ο ; 小於或等於1 Wt°/。的Li2〇 ; — 小於或等於2 Wt%的Ti02 ; * 小於或等於1.5 Wt°/。的F2 ;及 小於或等於0.8 Wt0/〇的Fe2〇3,其中該玻璃纖雄在 Φ 不大於2250°F(1232.2°C)的溫度下具有小於或等於6 的介電常數和1000泊的波璃黏度。 5 · 如申研專利範圍第4項所述之玻璃纖維,其進一 步在每立方公分的玻璃纖維中包含不超過五個中空玻璃 纖維。 6· 如申請專利範圍第4項所述之玻璃纖維,其進一 步包含下列的至少一者,其量達5 wt%: Baa; Be〇; 25 201012771 CaF2 ; CdO ; Mn2〇3 ; P205 ; Pb〇 ; s〇3 . sb2〇3 ; Sr〇 . ZnO ;及 Zr〇2 〇 7. 一種玻璃纖維,其由下列組成: 介於52 Wt%和56 Wt%之間的si〇2 ; 介於1 8 Wt%和22 Wt%之間的b2〇3 ; 介於10 Wt%和14 Wt%之間的a12〇3 ; 介於4 Wt%和8 Wt%之間的Ca〇 ; 參 介於2 Wt%和6 Wt%之間的Mg〇 ; 小於或等於2 Wt%的Na2〇 ; 小於或等於1 Wt%的K2〇 ; 小於或等於i Wt%的Li2〇 ; ^ 小於或等於0.5 Wt°/。的Ti〇2 ; • 小於或等於1 Wi°/〇的F2 ;及 小於或等於0.4 wt%的Fe2〇3,其中該玻璃纖維在 • 不大於225〇$(1232.2。(:)的溫度下具有小於或等於6 的介電常數(Dk)和1 〇〇〇泊的玻璃黏度。 8. 如申請專利範圍第7項所述之玻璃纖維,其進一 步在每立方公分的玻璃纖維中包含不超過五個中空玻璃 纖維。 如申請專利範圍第7項所述之玻璃纖雒,其進一 步包含下列的至少一者,其量總計達5 Wt% : BaO ; BeO ; 26 201012771 Sr〇 ; CaF2 ; CdO ; Mn203 ; P205 ; PbO ; S03 ; Sb2〇3 ; ZnO ;及 ZrO, 〇 10. 一種印刷電路板,其包含一或多個層板,其中每 一層板包含由一樹脂支撐的玻璃纖維,該破璃纖維在 的介 大於2250。?(1232.2。〇的溫度下具有小於或等於6 電常數(Dk)和1〇〇〇泊的玻璃黏度。 ❹ ❹ 11. 如申請專利範圍第10項所述之印刷電路板,其中 該玻璃纖維是由下列組成: 介於45 Wt%和65 Wt%之間的Si02 ; 介於15 Wt%和25 Wt%之間的B203 ; 介於8 Wt%和16 Wt%之間的Al2〇3 ; 小於或等於1〇 Wt%的CaO ; - 小於或等於1 〇 Wt%的MgO ; 小於或等於3 Wt%的Na2〇 ; 小於或等於2 Wt%的K20 ; 小於或等於2 Wt%的Li20 ; 小於或等於5 Wt%的Ti02 ; 小於或等於2 wt%的F2 ;及 小於或等於丨Wt%的Fe203。 12. 如申請專利範圍第10項所述之印刷電路板 鑛維县 Λ "ΤΓ 7:,! Ze J»、. 該玻璃纖維是由下列組成: 27 201012771 介於48 Wt%和62 Wt%之間的Si02 ; 介於17 Wt%和23 Wt%之間的B203 ; 介於9 Wt°/〇和15 Wt%之間的A1203 ; 介於2 Wt°/〇和10 Wt%之間的CaO ; 介於2 Wt%和8 Wt%之間的MgO ; 小於或等於2 Wt%的Na20 ; 小於或等於1 Wt%的κ2ο ; 小於或等於1 Wt%的Li20 ; 小於或等於2 Wt°/〇的Ti02 ; 小於或等於1.5 Wt%的F2 ;及 小於或等於0.8 Wt%的Fe203。 13. 如申請專利範圍第10項所述之印刷電路板,其中 該玻璃纖維是由下列組成: 介於52 Wt%和56 Wt%之間的Si02 ; 介於18 Wt%和22 Wt%之間的B203 ; 介於10 Wt%和14 Wt%之間的A1203 ; 介於4 Wt%和8 Wt%之間的CaO ; 介於2 Wt%和6 Wt%之間的MgO ; 小於或等於2 Wt%的Na20 ; 小於或等於1 Wt%的κ2ο ; 小於或等於1 Wt°/〇的Li20 ; 小於或等於0.5 Wt%的Ti02 ; 小於或等於1 Wt%的F2 ;及 28 201012771 小於或等於0.4 Wt。/。的Fe203。 14. 如申請專利範圍第10項所述之印刷電路板,其中 該玻璃纖維包含一或多個下列成分,其量總計達5 Wt% : BaO ; BeO ; CaF2 ; CdO ; Mn203 ; P205 ; PbO ; S03 ; Sb203 ; SrO ; ZnO ;及 Zr02。 15. 如申請專利範圍第10項所述之印刷電路板,其進 在每立方公分的玻璃纖維中包含不超過5個中空玻 璃纖維。 201012771 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 參 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201012771 VII. Patent application scope: u A broken glass fiber' consists of: si02 between 45 Wt% and 65 Wt%; b2〇3 between 15 Wt% and 25 Wt%; Al2〇3 between 8 Wt% and 16 Wt%; CaO less than or equal to 10 Wt%; MgO less than or equal to 1〇Wt%; φ less than or equal to 3 Wt% of Na20; less than or equal to 2 Wt% K20 ; Li20 less than or equal to 2 Wt%; Ti02 less than or equal to 5 Wt°/〇; F2 less than or equal to 2 Wt%; and Fe2〇1 less than or equal to 1 Wt%, wherein the glass fiber is not greater than 225 0°? (1232.2. <:) has a dielectric constant of less than or equal to 6 and a glass viscosity of 1 Torr. 2. The glass fiber of claim 1 wherein the glass fiber comprises no more than five hollow glass fibers per cubic centimeter of glass fiber. 24 1 The glass fiber according to claim 1 which further comprises at least one of the following, in an amount of 5 Wt%: BaO; BeO; 201012771 CaF2; CdO; Mn2〇3; P2O5; Pb〇; 〇3; Sb2〇3; SrO; ZnO; and Zr〇2 〇4. A glass fiber consisting of: si〇2 between 48 Wt% and 62 Wt%; between 17 Wt% and 23 B2〇3 between Wt%; ai2〇3 between 9 Wt% and 15 Wt%; Ca〇 between 2 Wt% and 1〇wt%. Between 2 Wt% and 8 Wt% Between the Mg〇; less than or equal to 2 Wt% of Na2〇; less than or equal to 1 Wt°/. Κ2ο ; less than or equal to 1 Wt°/. Li2〇; — Ti02 less than or equal to 2 Wt%; * Less than or equal to 1.5 Wt°/. F2; and Fe2〇3 less than or equal to 0.8 Wt0/〇, wherein the glass fiber has a dielectric constant of less than or equal to 6 and a wave of 1000 poise at a temperature of Φ not more than 2250 °F (1232.2 °C) Glass viscosity. 5 · The glass fiber according to item 4 of the research patent scope further contains not more than five hollow glass fibers per cubic centimeter of glass fiber. 6. The glass fiber of claim 4, further comprising at least one of the following: an amount of 5 wt%: Baa; Be〇; 25 201012771 CaF2; CdO; Mn2〇3; P205; Pb〇 ;s〇3.sb2〇3; Sr〇. ZnO; and Zr〇2 〇7. A glass fiber consisting of: si〇2 between 52 Wt% and 56 Wt%; between 1 8 B2〇3 between Wt% and 22 Wt%; a12〇3 between 10 Wt% and 14 Wt%; Ca〇 between 4 Wt% and 8 Wt%; reference between 2 Wt% Mg〇 between 6 Wt%; Na2〇 less than or equal to 2 Wt%; K2〇 less than or equal to 1 Wt%; Li2〇 less than or equal to i Wt%; ^ Less than or equal to 0.5 Wt°/. Ti〇2; • F2 less than or equal to 1 Wi°/〇; and Fe2〇3 less than or equal to 0.4 wt%, wherein the glass fiber has a temperature of not more than 225〇$(1232.2.(:) a dielectric constant (Dk) of less than or equal to 6 and a glass viscosity of 1 berth. 8. The glass fiber of claim 7 further comprising no more than five per cubic centimeter of glass fiber. The glass fiber bundle according to claim 7, which further comprises at least one of the following, in an amount of up to 5 Wt%: BaO; BeO; 26 201012771 Sr〇; CaF2; CdO; Mn203 P205; PbO; S03; Sb2〇3; ZnO; and ZrO, 〇10. A printed circuit board comprising one or more laminates, wherein each of the laminates comprises glass fibers supported by a resin, the glass fibers The dielectric viscosity is greater than 2250. (1232.2. The temperature at 〇 has a glass constant of less than or equal to 6 electrical constants (Dk) and 1 Torr. ❹ ❹ 11. The printed circuit according to claim 10 a board in which the glass fiber is composed of the following: SiO 2 between 45 Wt% and 65 Wt%; B203 between 15 Wt% and 25 Wt%; Al2〇3 between 8 Wt% and 16 Wt%; less than or equal to 1〇Wt % CaO ; - less than or equal to 1 〇 Wt% of MgO; less than or equal to 3 Wt% of Na2 〇; less than or equal to 2 Wt% of K20; less than or equal to 2 Wt% of Li20; less than or equal to 5 Wt% Ti02; F2 less than or equal to 2 wt%; and Fe203 less than or equal to 丨Wt%. 12. Printed circuit board mine as described in claim 10, 维 Λ quot "ΤΓ 7:,! Ze J» The glass fiber is composed of the following: 27 201012771 SiO 2 between 48 Wt% and 62 Wt%; B203 between 17 Wt% and 23 Wt%; between 9 Wt°/〇 and 15 Wt A1203 between %; CaO between 2 Wt°/〇 and 10 Wt%; MgO between 2 Wt% and 8 Wt%; Na20 less than or equal to 2 Wt%; less than or equal to 1 Wt % κ2ο ; Li20 less than or equal to 1 Wt%; Ti02 less than or equal to 2 Wt°/〇; F2 less than or equal to 1.5 Wt%; and Fe203 less than or equal to 0.8 Wt%. 13. The printed circuit board of claim 10, wherein the glass fiber is comprised of: SiO 2 between 52 Wt% and 56 Wt%; between 18 Wt% and 22 Wt% B203; A1203 between 10 Wt% and 14 Wt%; CaO between 4 Wt% and 8 Wt%; MgO between 2 Wt% and 6 Wt%; less than or equal to 2 Wt % Na20; κ2ο less than or equal to 1 Wt%; Li20 less than or equal to 1 Wt°/〇; Ti02 less than or equal to 0.5 Wt%; F2 less than or equal to 1 Wt%; and 28 201012771 less than or equal to 0.4 Wt . /. Fe203. 14. The printed circuit board of claim 10, wherein the glass fiber comprises one or more of the following components in an amount of up to 5 Wt%: BaO; BeO; CaF2; CdO; Mn203; P205; PbO; S03; Sb203; SrO; ZnO; and Zr02. 15. The printed circuit board of claim 10, which comprises no more than 5 hollow glass fibers per cubic centimeter of glass fibers. 201012771 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: Reference 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW98125110A 2008-07-25 2009-07-24 Glass fiber composition and printed circuit board made from the glass fiber composition TW201012771A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8370608P 2008-07-25 2008-07-25

Publications (1)

Publication Number Publication Date
TW201012771A true TW201012771A (en) 2010-04-01

Family

ID=41570840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125110A TW201012771A (en) 2008-07-25 2009-07-24 Glass fiber composition and printed circuit board made from the glass fiber composition

Country Status (2)

Country Link
TW (1) TW201012771A (en)
WO (1) WO2010011701A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761735B (en) * 2018-12-14 2022-04-21 日商日本電氣硝子股份有限公司 Glass fiber and method of making the same
TWI784286B (en) * 2019-08-08 2022-11-21 日商日本電氣硝子股份有限公司 Glass powder, dielectric material, sintered body, and high-frequency circuit components

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US9115017B2 (en) 2013-01-29 2015-08-25 Johns Manville Methods and systems for monitoring glass and/or foam density as a function of vertical position within a vessel
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
EP2903941A4 (en) 2012-10-03 2016-06-08 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
CN102863152B (en) * 2012-10-12 2014-09-17 重庆国际复合材料有限公司 Glass fiber for printed circuit board
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
WO2014189502A1 (en) 2013-05-22 2014-11-27 Johns Manville Improved burner for submerged combustion melting
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
CN103755989B (en) 2014-01-14 2017-01-11 广东生益科技股份有限公司 Circuit substrate and preparation method thereof
CN103992039B (en) * 2014-05-30 2015-07-15 重庆国际复合材料有限公司 Glass fiber with low dielectric constant
CN104761149B (en) * 2015-03-18 2017-06-06 重庆理工大学 The glass fibre of low wire-drawing temperature low-k
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10329186B2 (en) 2015-12-21 2019-06-25 Corning Incorporated Borosilicate glasses with low alkali content
CN105439453B (en) * 2015-12-31 2018-09-28 泰山玻璃纤维有限公司 A kind of resistant to corrosion dielectric glass fibre composition and preparation method thereof
CN105800944B (en) * 2016-04-21 2018-02-23 邵帅 A kind of novel glass fiber
EP3464449B1 (en) 2016-05-26 2019-08-21 SABIC Global Technologies B.V. Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
JP6790812B2 (en) * 2016-12-26 2020-11-25 日東紡績株式会社 Glass fiber reinforced resin molded product
US11339083B2 (en) 2016-12-28 2022-05-24 Agy Holding Corporation Low dielectric glass composition, fibers, and article
US11739023B2 (en) 2016-12-28 2023-08-29 Agy Holding Corporation Low dielectric glass composition, fibers, and article
CN110139841A (en) * 2016-12-28 2019-08-16 Agy控股公司 Low dielectric glass composition, fiber and product
TWI694976B (en) * 2019-12-31 2020-06-01 富喬工業股份有限公司 Low dielectric constant glass composition with low bubble number and glass fiber
CN114901609A (en) * 2020-01-02 2022-08-12 Agy控股公司 Low dielectric glass composition, fiber and article
CN111646693B (en) * 2020-06-17 2022-07-08 深圳南玻科技有限公司 Low-dielectric-constant and low-loss lithium-aluminum silicate glass, and preparation method and application thereof
CN111960666A (en) * 2020-07-23 2020-11-20 北方夜视技术股份有限公司 Lobster eye optical device leather glass and preparation method thereof
CN112250311B (en) * 2020-10-26 2023-03-24 辽宁新洪源环保材料有限公司 Low-dielectric glass fiber composition, low-dielectric glass fiber and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447576A1 (en) * 1994-05-28 1996-05-09 Gruenzweig & Hartmann Alkali and boron oxide-rich glass fibre compsn.
US6962886B2 (en) * 1999-05-28 2005-11-08 Ppg Industries Ohio, Inc. Glass Fiber forming compositions
US7449419B2 (en) * 2003-09-09 2008-11-11 Ppg Industries Ohio, Inc. Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
US7678721B2 (en) * 2006-10-26 2010-03-16 Agy Holding Corp. Low dielectric glass fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761735B (en) * 2018-12-14 2022-04-21 日商日本電氣硝子股份有限公司 Glass fiber and method of making the same
TWI784286B (en) * 2019-08-08 2022-11-21 日商日本電氣硝子股份有限公司 Glass powder, dielectric material, sintered body, and high-frequency circuit components

Also Published As

Publication number Publication date
WO2010011701A2 (en) 2010-01-28
WO2010011701A3 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
TW201012771A (en) Glass fiber composition and printed circuit board made from the glass fiber composition
TWI408118B (en) Low dielectric glass and fiber glass for electronic applications
KR102321888B1 (en) Low dielectric glass compositions, fibers and articles
TWI662002B (en) Low dielectric glass and fiber glass
TWI565675B (en) Glass composition with low coefficient of thermal expansion, and glass fiber produced from same
JP2022186762A (en) USE OF MgO, ZnO, AND RARE EARTH OXIDES FOR MAKING IMPROVED LOW DIELECTRIC FIBERS WITH IMPROVED LOW THERMAL EXPANSION COEFFICIENT FOR HIGH BORON ALUMINOSILICATE COMPOSITIONS
JP7466729B2 (en) Electronic grade glass fiber composition, glass fiber and electronic grade glass fiber fabric
CA2769401C (en) Improved modulus, lithium free glass
US11479498B2 (en) Glass composition and glass fiber having the same
CN101300199A (en) Composition for high performance glass, high performance glass fibers and articles therefrom
CN102718406B (en) The glass fiber with low dielectric constant that a kind of wire-drawing temperature is low
JP2022522986A (en) Low dielectric loss glass for electronic devices
CN103482876A (en) Fiberglass used for printed circuit board and preparation method of fiberglass
JP2022503330A (en) Electronic grade fiberglass composition, its fiberglass and electronic grade fiberglass cloth
JP2019521068A (en) High heat resistant glass fiber and method for producing the same
TW200536801A (en) Low-dielectric-constant fiberglass
TWI330622B (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
Thomason et al. Properties of glass fibers for polypropylene reinforcement