TWI330622B - Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions - Google Patents

Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions Download PDF

Info

Publication number
TWI330622B
TWI330622B TW93127071A TW93127071A TWI330622B TW I330622 B TWI330622 B TW I330622B TW 93127071 A TW93127071 A TW 93127071A TW 93127071 A TW93127071 A TW 93127071A TW I330622 B TWI330622 B TW I330622B
Authority
TW
Taiwan
Prior art keywords
glass composition
glass
weight percent
composition
rare earth
Prior art date
Application number
TW93127071A
Other languages
Chinese (zh)
Other versions
TW200526536A (en
Inventor
Hong Li
Original Assignee
Ppg Ind Ohio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ppg Ind Ohio Inc filed Critical Ppg Ind Ohio Inc
Publication of TW200526536A publication Critical patent/TW200526536A/en
Application granted granted Critical
Publication of TWI330622B publication Critical patent/TWI330622B/en

Links

Description

1330622 九、發明說明: 【發明所屬之技術領域】 本發明之實施例大體而言係關於玻璃組合物及在溶化及 形成期間抑制硼自其揮發的方法。更具體言之,本發明之 某些實施例係關於包括氧化硼及至少一種稀土氧化物之可 纖維化玻璃組合物。本發明之其它實施例係關於抑制侧自 包括氧化硼的可纖維化玻璃組合物揮發的方法。本發明之 其它實施例係關於包括氧化硼及至少一種稀土氧化物的玻 璃纖維及由此製成的製造物品。 【先前技術】 經常將氧化爛(B2〇3)添加至玻璃組合物以改良該玻璃組 合物之加工特性。舉例而言,可將B2〇3添加至可纖維化玻 璃組合物以改良該玻璃組合物之纖維成形特性。如本文所 用,術語"可纖維化玻璃組合物"意指一種能夠藉由此項技 術中熟知之用於形成基本上連續的玻璃纖維之任何方法而 形成為基本上連續的玻璃纖維之玻璃組合物。更具體言 之,將B2〇3添加至可纖維化玻璃組合物可導致玻璃纖維之 成形溫度降低以及纖維成形窗變得更寬。如本大所用,術 «。成形溫度"意指玻璃組合物具有丨000泊之黏度時的溫度 (或l〇g3溫度")。因此,將B2〇3添加至可纖維化玻璃組合物 可在降低加工成本、同時提高纖維成形過程之堅固性方面 變得有利。 然而,當在高溫下加工包括匕〇3的可纖維化玻璃組合物 寺玻璃、、且σ物中的一部分B2〇3會揮發。B2〇3在加工期間 95764.doc 1330622 自可纖維化玻璃組合物揮發係不良現象,因為其會導致含 硼微粒物質自加工設備發射(在下文中稱為"硼發射”)。因為 希望將來自加工設備的硼發射控制於某些限度或低於某些 限度’有時安裝了昂貴的發射控制系統以用來減少或控制 來自該設備之棚發射。因此,提高了與使用包括b2〇3的玻 璃組合物相關聯的加工成本。 可有效用於製造適用於多種應用(包含電子及結構加固 應用)的玻璃纖維之一商業上重要的含ΙΑ之可纖維化玻 璃組合物的一實例為含B2〇3之E玻璃。含氧化硼之E玻璃組 合物通常含有高達ίο重量百分比("重量%”)之有意的b2〇3 添加物。如本文所用,術語"標準含心〇3之£破璃"或”標準 含B2〇3之E玻璃組合物"意指具有 2至10重量%之B2〇3 ; 16至 25 重量 %iCaO ; 12至16重量❶/。之A1203 ; 52至62重量%之3丨02 ; 〇至5重量%iMgO ; 0至 2 重量 %iNa2C^K20 ; 0至1.5重量%之Ti02 ; 0.05 至 0.8 重量 %iFe2〇3 ;及 0至1重量%之F2 之玻璃組合物。1330622 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION Embodiments of the present invention generally relate to glass compositions and methods for inhibiting the volatilization of boron therefrom during melting and formation. More specifically, certain embodiments of the present invention are directed to a fiberizable glass composition comprising boron oxide and at least one rare earth oxide. Other embodiments of the invention are directed to methods of inhibiting volatilization of a fiberizable glass composition comprising boron oxide from the side. Other embodiments of the invention relate to glass fibers comprising boron oxide and at least one rare earth oxide and articles of manufacture made therefrom. [Prior Art] Oxidation rot (B2〇3) is often added to a glass composition to improve the processing characteristics of the glass composition. For example, B2?3 can be added to the fiberizable glass composition to improve the fiber forming characteristics of the glass composition. As used herein, the term "fibrable glass composition" means a glass that can be formed into substantially continuous glass fibers by any method known in the art for forming substantially continuous glass fibers. combination. More specifically, the addition of B2〇3 to the fiberizable glass composition results in a decrease in the forming temperature of the glass fibers and a wider fiber forming window. As used by this university, surgery «. The forming temperature " means the temperature at which the glass composition has a viscosity of 丨000 poise (or l〇g3 temperature "). Therefore, the addition of B2〇3 to the fiberizable glass composition can be advantageous in reducing the processing cost while improving the robustness of the fiber forming process. However, when the viable glass composition including 匕〇3 is processed at a high temperature, a part of B2〇3 in the σ is volatilized. B2〇3 during processing 95764.doc 1330622 The volatilization of the viable glass composition is undesirable because it causes the boron-containing particulate matter to be emitted from the processing equipment (hereinafter referred to as "boron emission") because it is expected to come from The boron emission of the processing equipment is controlled to some extent or below certain limits. Sometimes expensive emission control systems are installed to reduce or control the shed launch from the equipment. Therefore, the use and use of b2〇3 is improved. Processing Costs Associated with Glass Compositions One example of a commercially important bismuth-containing fiberizable glass composition that can be effectively used to make glass fibers suitable for a variety of applications, including electronic and structural reinforcement applications, is B2-containing E glass of 〇3. The E glass composition containing boron oxide usually contains up to ίο重量百分比 ("% by weight) of the intentional b2〇3 additive. As used herein, the term "standard contains 3" broken glass" or "standard E glass composition containing B2"3 means "2 to 10% by weight of B2"3; 16 to 25% by weight iCaO; 12 to 16 wt% A1203; 52 to 62 wt% 3丨02; 〇 to 5% by weight iMgO; 0 to 2 wt% iNa2C^K20; 0 to 1.5 wt% Ti02; 0.05 to 0.8 weight a glass composition of %iFe2〇3; and 0 to 1% by weight of F2.

在美國材料試驗學會標準編號:D . °'〇0 » "StandardIn the American Society for Testing Materials Standard Number: D. °'〇0 » "Standard

Specification for Glass Fiber Strands"中料、 對可有效用於製造 95764.doc 1330622 電子及航空航天應用之玻璃纖維的標準含1〇3之e玻璃組 合物的一實例作出如下闡述: 5 至 10 重量 %tB2〇3 ; 16至 25 重量 %tCaO ; 12至16重量%之Al2〇3 ; 52至56重量%之Si〇2 ; 0至5重量%tMgO ; 0至2重量°/◦之Na20及K20 ; 0至0.8重量%之Ti02 ; 〇·〇5 至 0.4 重量 %iFe203;及 〇至1重量%iF2。 然而,如先前所論述,硼在加工期間自此等含b2〇3之可 纖維化玻璃組合物揮發係不良現象。儘管可得到無硼E玻璃 組合物(意即’不含B2〇3的E玻璃組合物)及低硼£玻璃組合 物(意即’含有少於2重量%之Βζ〇3的E玻璃組合物),但是此 等E玻璃組合物可能需要比標準的含1〇3之£玻璃組合物更 尚的溫度以用於熔化及纖維成形二者。因此,不僅用於熔 化及形成此等組合物之能量消耗高於用於炫化及形成標準 含B2〇3之E玻璃的能量消耗,而且由於上升溫度的要求,加 工設備(意即,熔化爐及用於形成纖維的軸襯)之壽命比較 短。此外,對於某些應用(例如,電子應用)而言,低硼及無 硼玻璃纖維不能滿足上述美國材料試驗學會標準編號: D578-00,-Standard Specification for Glass Fiber Strands" 之要求。 95764.doc 1330622 因此,有利之舉係研製-種包括b2o3之玻璃組合物,且 評言之,研製-種包含b2〇3之可纖維化玻璃組合物, 合用於形成電子及結構加固應用之纖維,且與標準含B = ⑽璃組合物相比其侧揮發減少。此外,有利之舉係開發3 -種用於抑制硼自包括㈣並可與多種含B203之玻璃組合 物一起使用的玻璃組合物揮發的方法。 【發明内容】 本發明之某些非限制性實施例提供了可纖維化玻璃組合 物。舉例而言,本發明之—非限制性實施例提供了一種可 纖維化玻璃組合物,其包括9至16重量百分比之A1203、05 至13重量百分比之B2〇3、16至25重量百分比之Ca〇、〇至6 重量百分比之MgO、48至62重量百分比之Si〇2、〇至4重量 百分比之Ti〇2及ίο;,其中1〇3與1〇3之莫耳比自〇 〇1變 化至0.33,且R為至少一種稀土元素。 本發明之另一非限制性實施例提供了一種可纖維化玻璃 組合物,其包括12至16重量百分比之Al2〇3、5至1〇重量百 分比之ΙΟ3、16至25重量百分比之Ca〇、〇至4重量百分比 之MgO、52至56重量百分比之Si〇2、〇至〇8重量百分比之 Ti02、及R203 ’其中尺2〇3與b2〇3之莫耳比自〇 〇1變化至 0.33 ’且R為至少一種稀土元素。 本發明之另一非限制性實施例提供了一種可纖維化玻璃 組合物’其包括9至16重量百分比之a12〇3、〇.5至13重量百 分比之B2〇3、16至25重量百分比之CaO、〇至6重量百分比 之MgO、48至62重量百分比之si〇2、〇至4重量百分比之 95764.doc 1330622Specification for Glass Fiber Strands" Intermediate material, an example of a standard glass composition containing 1〇3 of e-glass fiber that can be effectively used in the manufacture of 95764.doc 1330622 for electronic and aerospace applications is as follows: 5 to 10% by weight tB2〇3; 16 to 25 wt% tCaO; 12 to 16 wt% Al2〇3; 52 to 56 wt% Si〇2; 0 to 5 wt% tMgO; 0 to 2 wt%/◦ Na20 and K20; 0 to 0.8% by weight of Ti02; 〇·〇5 to 0.4% by weight of iFe203; and 〇 to 1% by weight of iF2. However, as previously discussed, boron is deficient in volatilization of the viable glass composition containing b2〇3 during processing. Although a boron-free E-glass composition (ie, an E-glass composition without B2〇3) and a low-boron glass composition (ie, an E-glass composition containing less than 2% by weight of yttrium 3) are available However, such E-glass compositions may require more temperatures than standard glass compositions containing 1 to 3 for both melting and fiber forming. Therefore, not only the energy consumption for melting and forming such compositions is higher than the energy consumption for smashing and forming standard E-glass containing B2〇3, but also due to the requirement of rising temperature, processing equipment (ie, melting furnace) The life of the bushing used to form the fiber is relatively short. In addition, for certain applications (e.g., electronic applications), low boron and boron free glass fibers do not meet the requirements of the American Society for Testing and Materials Standard No.: D578-00, - Standard Specification for Glass Fiber Strands. 95764.doc 1330622 Accordingly, it is advantageous to develop a glass composition comprising b2o3 and, in the opinion, to develop a fiberizable glass composition comprising b2〇3 for use in forming fibers for electronic and structural reinforcement applications, And the side volatilization is reduced compared to the standard B = (10) glass composition. Further, it is advantageous to develop a method for suppressing the volatilization of boron from the glass composition comprising (iv) and being usable together with a plurality of glass compositions containing B203. SUMMARY OF THE INVENTION Certain non-limiting embodiments of the present invention provide a fiberizable glass composition. For example, a non-limiting embodiment of the present invention provides a fiberizable glass composition comprising 9 to 16 weight percent A 1203, 05 to 13 weight percent B2 〇 3, 16 to 25 weight percent Ca 〇, 〇 to 6 weight percent of MgO, 48 to 62 weight percent of Si 〇 2, 〇 to 4 weight percent of Ti 〇 2 and ίο;, where 1 〇 3 and 1 〇 3 molar ratio varies from 〇〇 1 To 0.33, and R is at least one rare earth element. Another non-limiting embodiment of the present invention provides a fiberizable glass composition comprising 12 to 16 weight percent Al 2 〇 3, 5 to 1 weight percent ΙΟ 3, 16 to 25 weight percent Ca 〇, 〇 to 4% by weight of MgO, 52 to 56% by weight of Si 〇 2, 〇 to 〇 8 weight percent of TiO 2 , and R 203 ' wherein the molar ratio of 〇 2 〇 3 and b 2 〇 3 varies from 〇〇 1 to 0.33 'And R is at least one rare earth element. Another non-limiting embodiment of the present invention provides a fiberizable glass composition comprising 9 to 16 weight percent of a 12 〇 3, 〇 5 to 13 weight percent of B 2 〇 3, 16 to 25 weight percent CaO, 〇 to 6 weight percent of MgO, 48 to 62 weight percent of si 〇 2, 〇 to 4 weight percent of 95,764.doc 1330622

Ti〇2、及La203 ’其中La203與B2〇3之莫耳比自ooi變化至 0.33。 本發明之又一非限制性實施例提供了一種可纖維化玻璃 組合物,其包括12至16重量百分比之Ai2〇3、5至1〇重量百 分比之B2〇3、16至25重量百分比之ca〇、2至4重量百分比 之MgO、52至56重量百分比之si〇2、〇至〇8重量百分比之 Τι〇2及R2〇3 ’其中r2〇3與b2〇3之莫耳比自〇 〇1變化至〇 33, 且R為至少一種稀土元素。 本發明之另一非限制性實施例提供了一種可纖維化玻璃 組合物,其包括12至16重量百分比之Al2〇3、5至1〇重量百 刀比之B2〇3、16至25重量百分比之Ca〇、〇至4重量百分比 之MgO、52至56重量百分比之Si〇2、〇至〇8重量百分比之Ti〇2, and La203' wherein the molar ratio of La203 to B2〇3 varies from ooi to 0.33. Yet another non-limiting embodiment of the present invention provides a fiberizable glass composition comprising 12 to 16 weight percent Ai2〇3, 5 to 1 weight percent B2〇3, 16 to 25 weight percent ca 〇, 2 to 4 weight percent of MgO, 52 to 56 weight percent of si 〇 2, 〇 to 〇 8 weight percent of Τι〇2 and R2〇3 'where r2〇3 and b2〇3 are molar ratios 1 varies to 〇33, and R is at least one rare earth element. Another non-limiting embodiment of the present invention provides a fiberizable glass composition comprising 12 to 16 weight percent Al2〇3, 5 to 1 weight percent, and a B2〇3, 16 to 25 weight percent Ca 〇, 〇 to 4% by weight of MgO, 52 to 56% by weight of Si 〇 2, 〇 to 〇 8 weight percent

Ti〇2及NdA3,其中Nd2〇3與ΙΑ之莫耳比自〇〇1變化至 0.33。 本發明之其它非限制性實施例提供了由根據本發明之多 種非限制性實施例之可纖維化玻璃組合物形成的玻璃纖 維,而其它非限制性實施例提供了使用根據本發明之多種 非限制性實施例之玻璃纖維而製成的聚合複合物,且詳言 之’印刷電路板。 本發明之某些非限制性實施例提供了在熔化及成形期間 用於抑制硼自包括ΙΑ的玻璃組合物揮發的方法。舉例而 言,根據一非限制性實施例,提供了 一種用於抑制硼自包 括ΙΑ的玻璃組合物揮發的方法,該方法包括在加工該玻 璃組合物之前將R2〇3添加至該玻璃組合物,使得該玻璃組 95764.doc 1330622 合物在加工之前具有自0.0〗變化至〇33的化〇3與匕〇3之莫 耳比’其中R為至少一種稀土元素;並加工該玻璃組合物, 其中在加工之後,該玻璃組合物之相對侧損失不大於最初 供給該組合物之B2〇3量的5重量百分比。 【實施方式】 本發明之某些實施例可有利地提供可纖維化玻璃組合 物,其包括B2〇3且與標準含1〇3之£玻璃組合物相比具有降 低的硼揮發,同時其保持了商業纖維成形操作所要的log3 成形溫度及可接受之加工窗。此外,根據本發明之某些實 施例的可纖維化玻璃組合物可適用於形成能用於多種應用 (包含電子及結構加固應用二者)中的玻璃纖維。 此外,如下文之詳細論述,發明者已經發現根據本發明 之某二實施例之可纖維化玻璃組合物可具有有利的介電特 I·生且可用於提供具有有利的介電特性且可能希望用於某些 微電子封裝應用(諸如印刷電路板應用)中的玻璃纖維。此 外,當被倂入印刷電路板中時,根據本發明之實施例之玻 璃纖維可賦予該印刷電路板經改良之雷射鑽孔回應。此 卜根據本發明之某些實施例而製成的玻璃纖維在被倂入 種聚合基質材料中時可提供經改良之複合物強度。 本發明之其它實施例可有利地提供用於在高溫下加工玻 璃組合物期間抑制硼自包括B2〇3之玻璃組合物揮發的方 法。根據此等非限制性實施例之方法可特別有效地用於減 ^'自玻璃炼化爐及其它炼化玻璃加工設備的硼發射,且可 特另】有效地用於減少自直接熔化纖維成形設備的硼發射。 95764.doc 1330622 現在將論述本發明之特定非限制性實施例。應瞭解,本 文中所論述的數值(諸如但不限於材料之重量百分比及時 間長度或溫度)為近似值且由於為熟習此項技術者所熟知 的多種因素(諸如但不限於量測標準、設備及技術)而易受變 化。雖然用以闡述本發明之寬範疇的數值及參數為近似 值’但是將該等特定實例中所闡述的數值報道得儘量精 確。然而,如將為普通的熟習此項技術者所瞭解,此等數 值可此含有必然由各自量測技術及設備所引起的某些錯 誤0 現在將描述根據本發明之各種非限制性實施例之可纖維 化玻璃組合物。在根據本發明之可纖維化玻璃組合物的第 一非限制性實施例中’提供了 一種可纖維化玻璃組合物, 其包括: 9至16重量百分比之Al2〇3 ; 0.5至13重量百分比之b203 ; 16至25重量百分比之CaO ; 0至6重量百分比之MgO ; 48至62重量百分比之Si〇2 ; 〇至4重量百分比之Ti02;及 R203,其中R2〇3與B2〇3的莫耳比自o w變化至 〇_33 ’且R為至少一種稀土元素。Ti〇2 and NdA3, wherein the molar ratio of Nd2〇3 to ΙΑ varies from 〇〇1 to 0.33. Other non-limiting embodiments of the present invention provide glass fibers formed from the fiberizable glass compositions in accordance with various non-limiting embodiments of the present invention, while other non-limiting embodiments provide for the use of various non-accurants in accordance with the present invention. Polymeric composites made from glass fibers of the limiting examples, and in detail 'printed circuit boards. Certain non-limiting embodiments of the present invention provide methods for inhibiting the volatilization of boron from a glass composition comprising ruthenium during melting and forming. For example, according to one non-limiting embodiment, a method for inhibiting volatilization of boron from a glass composition comprising ruthenium is provided, the method comprising adding R2 〇3 to the glass composition prior to processing the glass composition , such that the glass group 95764.doc 1330622 has a molar ratio of bismuth 3 to 匕〇3 from the change of 0.0 to 〇33 before processing, wherein R is at least one rare earth element; and the glass composition is processed, Where after processing, the opposite side loss of the glass composition is no more than 5 weight percent of the amount of B2 〇3 initially supplied to the composition. [Embodiment] Certain embodiments of the present invention advantageously provide a viable glass composition comprising B2〇3 and having reduced boron volatilization compared to a standard glass composition comprising 1〇3, while maintaining The log3 forming temperature and acceptable processing window required for commercial fiber forming operations. Moreover, the fiberizable glass compositions in accordance with certain embodiments of the present invention can be adapted to form glass fibers that can be used in a variety of applications, including both electronic and structural reinforcement applications. Moreover, as discussed in detail below, the inventors have discovered that a fiberizable glass composition in accordance with certain embodiments of the present invention can have advantageous dielectric properties and can be used to provide advantageous dielectric properties and may be desirable Glass fiber used in certain microelectronic packaging applications, such as printed circuit board applications. In addition, the glass fibers in accordance with embodiments of the present invention can impart improved laser drilling response to the printed circuit board when incorporated into a printed circuit board. The glass fibers made in accordance with certain embodiments of the present invention provide improved composite strength when incorporated into a polymeric polymeric matrix material. Other embodiments of the present invention advantageously provide a method for inhibiting the volatilization of boron from a glass composition comprising B2〇3 during processing of the glass composition at elevated temperatures. The method according to these non-limiting embodiments can be particularly effective for reducing boron emissions from glass refining furnaces and other refining and tempering glass processing equipment, and can be used effectively to reduce self-directed melt fiber formation. The boron emission of the device. 95764.doc 1330622 A specific, non-limiting embodiment of the invention will now be discussed. It will be appreciated that the values discussed herein, such as, but not limited to, the weight percent of the material and the length of time or temperature, are approximate and due to a variety of factors well known to those skilled in the art (such as, but not limited to, measurement standards, equipment, and Technology) and subject to change. Although the numerical values and parameters used to describe the broad scope of the invention are approximated, the numerical values set forth in the specific examples are reported as precise as possible. However, as will be appreciated by those of ordinary skill in the art, such values may contain certain errors necessarily caused by the respective measurement techniques and devices. 0 Various non-limiting embodiments in accordance with the present invention will now be described. Fibrillatable glass composition. In a first non-limiting embodiment of the fiberizable glass composition according to the present invention, a fiberizable glass composition is provided which comprises: 9 to 16 weight percent Al2?3; 0.5 to 13 weight percent B203; 16 to 25 weight percent of CaO; 0 to 6 weight percent of MgO; 48 to 62 weight percent of Si〇2; 〇 to 4 weight percent of Ti02; and R203, of which R2〇3 and B2〇3 of mole The ratio varies from ow to 〇_33' and R is at least one rare earth element.

如下文中之更詳細論述’因為根據本發明之此非限制性實 施例之可纖維化玻璃組合物包括至少一種稀土氧化物,所 以該等可纖維化玻璃組合物與包括相似量的B2〇3之含B 95764.doc ㈣玻璃組合物相比可具有減少的蝴揮發。此外,儘管在本 文中不具有限制性’但是咸信根據此非限制性實施例之可 纖維化玻璃組合物適合㈣大多數其中❹標準的含B2〇3 之E玻璃纖維的應用中。 根據本發明之可纖維化玻璃組合物之第二非限制性實施 例提供了一種可纖維化玻璃組合物,其包括: 12至16重量百分比之Al2〇3 ; 5至10重量百分比之β2〇3 ;As discussed in more detail below, 'because the fiberizable glass composition according to this non-limiting embodiment of the invention includes at least one rare earth oxide, the fiberizable glass compositions comprise a similar amount of B2〇3 The B 95764.doc (iv) glass composition may have reduced butterfly volatilization compared to the glass composition. Moreover, although not limiting herein, it is believed that the fibrillable glass compositions according to this non-limiting embodiment are suitable for use in most of the standard B2〇3-containing E glass fibers. A second non-limiting embodiment of the fiberizable glass composition according to the present invention provides a fiberizable glass composition comprising: 12 to 16 weight percent Al 2 〇 3 ; 5 to 10 weight percent β 2 〇 3 ;

16至25重量百分比之ca〇 ; 〇至4重量百分比之MgO ; 52至56重量百分比之Si〇2 ; 0至0.8重量百分比之Ti02 ;及 R2〇3 ’其中R2〇3與B2〇3的莫耳比自0.01變化至 0.33 ’且R為至少一種稀土元素。16 to 25 weight percent of ca 〇; 〇 to 4 weight percent of MgO; 52 to 56 weight percent of Si 〇 2; 0 to 0.8 weight percent of TiO 2 ; and R 2 〇 3 ' of which R 2 〇 3 and B 2 〇 3 The ear ratio varies from 0.01 to 0.33 ' and R is at least one rare earth element.

如以上關於第一非限制性實施例所論述,因為根據本發明 之此非限制性實施例之可纖維化玻璃組合物包括至少一種 稀土氧化物’所以根據此實施例之可纖維化玻璃組合物與 包括相似量的B2〇3之標準E玻璃組合物相比可具有減少的 硼揮發。此外,儘管在本文中不具有限制性,但是因為根 據此非限制性實施例之可纖維化玻璃組合物包括5至1 〇重 量百分比之B2〇3,所以該等可纖維化玻璃組合物特別適於 形成電子應用之玻璃纖維。 儘管未予要求,但是根據上述可纖維化玻璃組合物之非 限制性實施例,該至少一種稀土元素'R'可選自元素週期表 95764.doc 12- 1330622 中的第3族元素,且希望選自由銃(sc)、釔(γ)及鑭系元素(意 即,具有原子數57(鑭(La))至71(縳(Lu))的元素)所組成的 群。儘管並非意欲在本文中具有限制性,但是咸信選自Sc、 Y及鑭系元素之稀土元素是用於此等可纖維化玻璃組合物 之所要的稀土元素,因為此等元素通常具有穩定的3+價或 氧化態以及比鹼金屬或鹼土元素更高之玻璃中的離子電 位。如本文所用,術語"離子電位"意指陽離子之電荷或氧 化態("z")除以陽離子之離子半徑("r")或z/r,單位為埃(入或As discussed above with respect to the first non-limiting embodiment, the fibrillatable glass composition according to this non-limiting embodiment of the invention includes at least one rare earth oxide, so the fiberizable glass composition according to this embodiment There may be reduced boron volatilization compared to a standard E glass composition comprising a similar amount of B2〇3. Further, although not limiting herein, since the fiberizable glass composition according to this non-limiting embodiment includes 5 to 1% by weight of B2〇3, the fiberizable glass compositions are particularly suitable. For the formation of glass fibers for electronic applications. Although not required, according to a non-limiting embodiment of the above-described fiberizable glass composition, the at least one rare earth element 'R' may be selected from the group 3 element of the periodic table 95764.doc 12-1330622, and it is desirable A group consisting of 铳 (sc), 钇 (γ), and lanthanoid elements (that is, elements having an atomic number of 57 (镧La) to 71 (Lu)) is selected. Although not intended to be limiting herein, it is believed that rare earth elements selected from the group consisting of Sc, Y and lanthanides are the preferred rare earth elements for such fiberizable glass compositions because such elements are generally stable. 3+ valence or oxidation state and ionic potential in glass higher than alkali or alkaline earth elements. As used herein, the term "ion potential" means the charge or oxidation state of a cation ("z") divided by the ionic radius of a cation ("r") or z/r in angstroms (in or

米)。此外,術語,,玻璃中的離子電位”意指陽離子之電 荷或氧化態除以玻璃中的陽離子之離子半徑。Meter). Further, the term "ion potential in glass" means the charge or oxidation state of a cation divided by the ionic radius of a cation in the glass.

一更明確地說,咸信此等元素之穩定的3 +氧化態及玻璃1 向的離子電位可促進上述根據本發明之非限制性實施例: 可纖維化玻璃組合物中的某些稀土 ·硼酸鹽錯合物之優3 成形。如下文中之詳細論述,此等稀土-彌酸鹽錯合物可4 利地抑㈣自可纖維化玻璃組合物揮發並提供比得上或名 於標準的含32〇3之时璃組合物之介電特性。然而_般兩 吕,任何具有穩定的3 +氧化態及玻璃中適當高的離子電石 之稀土元素可有效歸上述根據本發明之祕制性實施命 的可纖維化㈣組合物I更具體言之,儘管在本文中不 具有限制性’但是咸信具有3 +氧化態及至少25的玻璃 離子電位的稀土元辛為用於h、十 缺 冑70素為用於上述根據本發明之非限制性實 列之玻璃組合物中的特別所要之稀土元素。 =1中、出了適合用於上述本發明之非限制性實施 的右干稀土元素之非限制性實例及其破璃中的離 95764.doc -13- 1330622 位。為進行比較,表1亦給出了若干驗金屬及驗土元素之玻 璃中的離子電位。可在R.D· Shannon及C.T. Prewitt的 "Effective Ionic Radii in Oxides and Fluorides"(Acta Cryst. B25(1969)925-946)中找到關於其它稀土族成員之離子半徑 (可用於計算其對應的玻璃中之離子電位)的額外資訊,該文 獻以引用的方式特定地倂入本文中。 表1 族 元素 氧化態 玻璃中的離子電位1 稀土 1 Sc 3+ 3.448-4.110 Y 3+ 2.956-3.363 La 3+ 2.542-2.828 Ce 3+ 2.632-2.901 Nd 3+ 2.752-3.015 Sm 3+ 2.752-3.112 Eu 3+ 2.804-3.158 Gd 3+ 2.830-3.198 Er 3+ 3.000-3.405 Lu 3+ 3.093-3.538 驗金屬 Li 1+ 1.351 Na 1+ 0.885-0.980 K 1+ 0.662-0.725 Rb 1+ 0.625-0.671 Cs 1+ 0.588 驗土 Mg 2+ 2.778, 4.082 Ca 2+ 1.786-2.00 Sr 2+ 1.250-1.160 Ba 2+ 1.360-1.420 95764.doc •14- 1 基於6至8的與氧之配位數。 在根據本發明之可纖維化玻璃組合物之第三非限制性實 施例中,稀土元素R為鑭。更明確地說,根據此非限制性實 施例,該可纖維化玻璃組合物包括: 9至16重量百分比之Al2〇3 ; 1330622 0.5至13重量百分比之b2〇3 ; 16至25重量百分比之Ca〇; 〇至6重量百分比之Mg0 ; 48至62重量百分比之Si〇2 ; 〇至4重量百分比之Ti〇2 ;及More specifically, it is believed that the stable 3 + oxidation state of these elements and the ionic potential of the glass 1 direction promote the above non-limiting examples according to the invention: certain rare earths in the fiberizable glass composition Excellent formation of borate complexes. As discussed in detail below, such rare earth-methane complexes can be used to volatilize (4) from the viable glass composition and provide a glass composition that is comparable to or under the standard 32. Dielectric properties. However, any rare earth element having a stable 3 + oxidation state and a suitably high ionized carbide in the glass can be effectively classified into the above-mentioned fibrillating (four) composition I according to the present invention. More specifically, Rather, there is no limitation in this context, but a rare earth element symplectic having a 3 + oxidation state and a glass ion potential of at least 25 is used for h, and 10 is used for the above non-limiting according to the present invention. A particularly desirable rare earth element in the actual glass composition. =1. A non-limiting example of a right dry rare earth element suitable for use in the non-limiting embodiment of the invention described above, and a position in the glass from 95764.doc -13-133252. For comparison, Table 1 also shows the ion potentials in several glass and metal elements. The ionic radii for other rare earth members can be found in RD Shannon and CT Prewitt "Effective Ionic Radii in Oxides and Fluorides" (Acta Cryst. B25 (1969) 925-946) (can be used to calculate the corresponding glass Additional information on the ionic potentials is specifically incorporated herein by reference. Table 1 Ionic potential in the oxidation state of the group element 1 Rare earth 1 Sc 3+ 3.448-4.110 Y 3+ 2.956-3.363 La 3+ 2.542-2.828 Ce 3+ 2.632-2.901 Nd 3+ 2.752-3.015 Sm 3+ 2.752-3.112 Eu 3+ 2.804-3.158 Gd 3+ 2.830-3.198 Er 3+ 3.000-3.405 Lu 3+ 3.093-3.538 Metal Li 1+ 1.351 Na 1+ 0.885-0.980 K 1+ 0.662-0.725 Rb 1+ 0.625-0.671 Cs 1 + 0.588 Soil test Mg 2+ 2.778, 4.082 Ca 2+ 1.786-2.00 Sr 2+ 1.250-1.160 Ba 2+ 1.360-1.420 95764.doc • 14- 1 Based on the coordination number of 6 to 8 with oxygen. In a third non-limiting embodiment of the fiberizable glass composition according to the present invention, the rare earth element R is cerium. More specifically, according to this non-limiting embodiment, the fiberizable glass composition comprises: 9 to 16 weight percent Al2〇3; 1330622 0.5 to 13 weight percent b2〇3; 16 to 25 weight percent Ca 〇; 〇 to 6 weight percent of MgO; 48 to 62 weight percent of Si 〇 2; 〇 to 4 weight percent of Ti 〇 2 ;

La203 ’其中!^2〇3與]32〇3的莫耳比自〇 〇1變化 至 0.33。 儘管並非意欲在本文中具有限制性,但是因為根據本發明 之此非限制性實施例之可纖維化玻璃組合物包括La2〇3,所 以該等可纖維化玻璃組合物具有比包括相似量的b2〇3之標 準E玻璃組合物低的硼揮發。此外,根據此非限制性實施例 之可纖維化玻璃組合物為用於低成本、高容量的纖維成形 操作之所要的組合物以形成將被倂入聚合複合物中的玻璃 纖維。更明確地說,儘管在本文中不具有限制性,但是在 根據此非限制性實施例之可纖維化玻璃組合物中使用La203 ’ among them! The molar ratio of ^2〇3 and ]32〇3 varies from 〇1 to 0.33. Although not intended to be limiting herein, since the fibrillatable glass composition according to this non-limiting embodiment of the invention comprises La2〇3, the viable glass compositions have a similar amount of b2 The standard E glass composition of 〇3 has a low boron volatilization. Moreover, the fiberizable glass composition according to this non-limiting embodiment is a desirable composition for a low cost, high capacity fiber forming operation to form glass fibers to be incorporated into the polymeric composite. More specifically, although not limiting herein, it is used in a fiberizable glass composition according to this non-limiting embodiment.

La^3是吾人所要的,因為“2〇3將不會促成玻璃組合物之 顏色或氧化還原態、,並且La2〇3為目前可得到的最低成本之 稀土氧化物。 如先前所提及,將至少一種稀土氧化物添加至根據本發 明之非限制性實施例之可纖維化玻璃組合物可有利地在高 溫下加工玻璃、组合物期間(諸如在熔化及/或纖維成形期間) 抑制硼自該等玻璃組合物揮發。此外,如下文所述,咸信 在根據本發明之非限制性實施例之玻璃組合物中存在至少 一種稀土氧化物可促進由此形成的玻璃纖維中增強的介電 95764.doc -15· 1330622 特性及雷射鑽孔回應。 雖然並非意欲受到任何特定理論的約束,但是一般而 言’由侧矽酸鹽組合物形成的玻璃包括非晶系Si〇2網狀物 及非晶系B2〇3網狀物二者。參見s Wang及J.F. Stebbins的 Multiple-Quantum Magic-Angle Spinning 17〇 NMR Studies of Borate, Borosilicate, and Boroaluminate Glasses,"(J. Am. Ceram· Soc·,82 (1999) 1519)。非晶系B2〇3網狀物通常包括 二角形B〇3結構單元。然而’當鹼金屬氧化物被引入棚石夕酸 鹽玻璃組合物中(諸如標準的含B2〇3 E玻璃組合物中)時,驗 金屬氧化物趨於優先擴散或分割進入非晶系b2〇3網狀物 中。當驗金屬氧化物被引入非晶系Βζ03網狀物中時,會形 成四面體B〇4結構單元,鹼金屬陽離子藉由形成鹼金屬硼酸 鹽錯合物而起到補償局部電荷的作用。參見j. Zh〇ng及p.j.La^3 is what we want because "2〇3 will not contribute to the color or redox state of the glass composition, and La2〇3 is the lowest cost rare earth oxide currently available. As mentioned earlier, The addition of at least one rare earth oxide to the fiberizable glass composition according to non-limiting embodiments of the present invention can advantageously inhibit boron during processing of the glass at elevated temperatures, such as during melting and/or fiber formation. The glass compositions are volatilized. Further, as described below, the presence of at least one rare earth oxide in the glass composition according to the non-limiting embodiment of the present invention promotes enhanced dielectric in the glass fibers thus formed. 95764.doc -15· 1330622 Characteristics and Laser Drilling Responses Although not intended to be bound by any particular theory, generally the glass formed from the bismuth citrate composition includes an amorphous Si 〇 2 mesh. And amorphous B2〇3 mesh. See s Wang and JF Stebbins Multiple-Quantum Magic-Angle Spinning 17〇 NMR Studies of Borate, Borosilicate, and Boroaluminate Glas Ses, " (J. Am. Ceram. Soc., 82 (1999) 1519). Amorphous B2〇3 mesh usually comprises a polygonal B〇3 structural unit. However, when an alkali metal oxide is introduced into the shed In a stellate glass composition (such as a standard B2〇3 E glass composition), the metal oxide tends to preferentially diffuse or split into the amorphous b2〇3 network. When the material is introduced into the amorphous Βζ03 network, a tetrahedral B〇4 structural unit is formed, and the alkali metal cation acts to compensate the local charge by forming an alkali metal borate complex. See j. Zh〇 Ng and pj

Bray 的"Change in Boron Coordination in Alkali BorateBray's "Change in Boron Coordination in Alkali Borate

Glasses, and Mixed Alkali Effects, as Elucidated by NMR,"(J. Non-Cryst. Solids,111(1989) 67-76)。然而,此等鹼金屬硼 酸鹽錯合物具有高的汽相壓力且容易在高溫下揮發。因 此’當一種包括一或多種驗金屬氧化物之硼石夕酸鹽玻璃組 合物被熔化時,該玻璃組合物中的一部分爛便會由於高汽 相壓力之鹼金屬硼酸鹽錯合物揮發而損失掉。 驗土氧化物在於含AO3玻璃組合物中形成硼酸鹽錯合物 方面具有與驗金屬氧化物類似的表現。然而,雖然驗土陽 離子具有比驗金屬陽離子更高的玻璃中之離子電位(來見 表1)且鹼性硼酸鹽錯合物比鹼金屬硼酸鹽錯合物較不易揮 95764.doc • 16· 1330622 發’但是將高濃度的CaO加上少量MgO(意即,約0.5重量% 或更少的MgO添加物)添加至標準的含b2〇3之E玻璃組合物 有時不能如所要地那樣能有效地抑制硼自熔化的玻璃揮 發。 添加至鹼矽酸鹽玻璃組合物之稀土氧化物亦將趨於分割 進入非晶系B2〇3網狀物中。然而,與驗金屬氧化物形成對 比,當稀土氧化物被引入非晶系B2〇3網狀物中時,咸信稀 土陽離子會形成具有兩個BO3結構單元及一個b〇4結構單 元的錯合物。參見 H. Li、L. Li、J.D· Vienna、M. Qian、Z. Wang、J.G. Darab、D.K. Peeler 的"Neodymium (III) inGlasses, and Mixed Alkali Effects, as Elucidated by NMR, " (J. Non-Cryst. Solids, 111 (1989) 67-76). However, such alkali metal borate complexes have a high vapor phase pressure and are easily volatilized at high temperatures. Thus, when a borophosphonate glass composition comprising one or more metal oxides is melted, a portion of the rot in the glass composition will volatilize due to the high vapor phase pressure of the alkali metal borate complex. Lost. The soil oxides have similar behavior to metal oxides in forming borate complexes in AO3 glass compositions. However, although the soil cation has a higher ionic potential in the glass than the metal cation (see Table 1) and the alkaline borate complex is less prone than the alkali metal borate complex, 95764.doc • 16· 1330622 hair 'but adding a high concentration of CaO plus a small amount of MgO (ie, about 0.5% by weight or less of MgO additive) to a standard b2〇3 containing E glass composition sometimes cannot be as desired Effectively inhibits the volatilization of boron from the molten glass. The rare earth oxide added to the alkali tellurite glass composition will also tend to split into the amorphous B2〇3 network. However, in contrast to the metal oxides, when rare earth oxides are introduced into the amorphous B2〇3 network, the rare earth cations form a mismatch with two BO3 structural units and one b〇4 structural unit. Things. See H. Li, L. Li, J.D. Vienna, M. Qian, Z. Wang, J.G. Darab, D.K. Peeler "Neodymium (III) in

Alumino-Borosilicate Glasses,"(Journal of Non-Crystalline Solids,278(2000)35_57)及 H. Li、γ Su、L L^D M Strachan的"Raman Spectr〇sc〇pic Study 〇f Gad〇linium(ni) in Sodium-aluminoborosilicate Glass,"(Journal of Non-Qyst· Solids,292(2001)^7-176)。因為此等稀土硼酸鹽錯 合物具有比上述鹼金屬硼酸鹽錯合物更低的汽相壓力,所 以田玻璃熔化時該等稀土硼酸鹽錯合物將不會容易地揮 發。因此,自包括稀土氧化物之玻璃組合物的硼揮發之比 率應低於不含有稀土氧化物之類似玻璃組合物。此外,因 為稀土陽離子(且詳言之,選自由〜、γ組成之群的元素及 鑭系元素之陽離子)具有比鹼金屬陽離子及大多數鹼土陽 離子二者更高的離子電位(參見表1},所以當將稀土氧化物 及鹼土氧化物及/或鹼金屬氧化物添加至硼矽酸鹽玻璃組 α物時#土硕酸鹽錯合物將比驗金屬㈣酸鹽及大多數鹼 95764.doc 1330622 性硼酸鹽錯合物優先形成。 現在參考圖la及lb(其在下文實例1得以更詳細地說明), 展示了 "B MAS NMR(魔角自旋核磁共振)之曲線,該"b MAS NMR源自在實例1中被識別為組合物丨_4的根據本發 明之非限制性實施例之可纖維化玻璃組合物之一系列非限 制性實例(由圖1 a及1 b中的數字1 _4指示)以及在實例1中闡 明的標準含Βζ〇3之E玻璃組合物(在圖1&及比中指示為"A”) 中硼的物種形成。更明確地說,圖la展示了用於根據先前 論述之本發明之非限制性實施例的可纖維化玻璃組合物之 一系列非限制性實例及一標準含B203之E玻璃組合物的作 為莫耳% La2〇3之函數的呈B〇3結構單元之莫耳百分數(”莫 *%”)B203的曲線;而圖lb展示了作為用於相同玻璃組合物 之莫耳◦/〇 La2〇3之函數的呈BO4結構單元之形式的莫耳% B2〇3之曲線。如自圖ia&lb之曲線可以看出,隨著La2〇3的 含量在玻璃組合物中增大,呈B〇4結構單元形式的b2〇3之百 分比減小,而呈B〇3結構單元形式的匕〇3之百分比則增大。 如上所述,咸信此可歸因於玻璃結構中的稀土硼酸鹽錯合 物與具有漸增的LkO3添加物之鹼金屬硼酸鹽錯合物相比 可優先成形。此外,如先前所論述,因為稀土硼酸鹽錯合 物具有比鹼金屬硼酸鹽錯合物更低的汽相壓力,所以預期 硼自先前所論述之根據本發明之非限制性實施例的一系列 非限制性實例玻璃組合物揮發的比率將低於硼自標準含 B2〇3之E玻璃組合物揮發的比率。 現在參考圖2及3 如下文在實例2中之 更詳細論述,圖2 95764.doc -18- 二展示了在實例!中被識別為組合物4的根據非限制性實施 2·之可纖維化玻璃組合物之—非限制性實例(在圖2中指示 為4")的硼發射率對時間 们曲線及私準含B2〇3之E玻璃組 5 =(指示為"A")之蝴發射率對時間的曲、線。此外,如下文 在貫例3中之更詳細論述,圖3中展千^ 圆J宁展不了在實例丨中被識別為 、、且合物1的根據本發明之非限制性實施例之可纖維化玻璃 組合物的另—非限制性實例(在圖3中指示為,],,)之领發射 率對時間的曲線及標準含Β2〇<ε玻璃組合物(指示為"Α") 之類似的曲線。圖2及圖3二者之曲線係使用此項技術中為 吾人所熟知#熱重分析(或"TGA”)而獲得。如自圖⑴可看 出,實例可纖維化玻璃組合物4及丨分別具有比標準含ία 之E玻璃組合物低的领發射率。 儘管在本文中不具有限制性,但是本文中所論述的根據 本發明之多種非限制性實施例之可纖維化玻璃組合物可在 加工期間(例如,在熔化及纖維成形期間)具有低於5。/。的相 對硼損失。如本文所用,術語"相對硼損失"意指在玻璃配 料組合物中ΙΑ的量(”Wb")(意即,加工前)減去經判定在加 工後的玻璃中的B2〇3的量("WG")以後所得的量再除以玻璃 配料組合物中的B2〇3的量(意即,(Wb_Wg)/Wb),並且其可 指不加工期間的硼揮發。然而,熟習此項技術者將瞭解, 通常希望擁有可能之最低的相對硼損失。因此,來自根據 本發明之非限制性實施例之可纖維化玻璃組合物的相對硼 損失可小於2%。此外,本文中所論述之根據本發明之多種 非限制性實施例之可纖維化玻璃組合物在加工期間可沒有 95764.doc •19- 1330622 相對硼損失。 除了所希望之低的硼揮發之外’如先前所論述,根據本 · 發月之非限制性貫施例之可纖維化玻璃組合物可具有所希 望的”電特性(且詳言之,可與市售含b2〇aE玻璃組合物 相比或低於其的介電常數及低耗散因子),該等市售含b2〇3 之E玻璃組合物通常具有丨MHz下之約73的介電常數及^ MHz下之約0.01的耗散因子。舉例而言,儘管在本文中不 有限制|·生但疋根據本發明之非限制性實施例之可纖維 化玻璃組合物可具有1 MHz下之不大於約7.5的介電常數及 · 1 MHz下之不大於約〇 〇1的耗散因子。更希望根據本發明之 非限制性實施例之可纖維化玻璃組合物可具有1 MHz下之 小於約7.3的介電常數及i MHz下之不大於約〇 〇〇5的耗散 因子。 如先前所論述,由於標準含B2〇32E玻璃組合物_存在鹼 金屬陽離子,所以鹼金屬硼酸鹽錯合物將得以形成。此等 錯合物附帶四面體配位硼(;意即,四面體3〇4結構單元)之形 成。然而,此等四面體B〇4結構單元含有非橋接氧,其極性 · 大體上大於橋接氧。相反地,三面體B〇3結構單元僅包括橋 接氧且因此極性小於B〇4結構單元。結果,僅具有B〇3結構 單元的硼酸鹽玻璃具有在1 MHz為接近3的介電常數,而具 有BO3單元及B〇4單元之混合物的硼酸鹽玻璃則具有在1 MHz下高達8的介電常數。參見由MJ Larkin翻譯的η · Scholze之 Glass Nature. Structure,and Properties(Springer_Alumino-Borosilicate Glasses,"(Journal of Non-Crystalline Solids, 278 (2000) 35_57) and H. Li, γ Su, LL^DM Strachan "Raman Spectr〇sc〇pic Study 〇f Gad〇linium (ni ) in Sodium-aluminoborosilicate Glass, " (Journal of Non-Qyst· Solids, 292 (2001)^7-176). Since these rare earth borate complexes have a lower vapor phase pressure than the above alkali metal borate complexes, such rare earth borate complexes will not readily volatize when the field glass melts. Therefore, the ratio of boron volatilization from the glass composition including the rare earth oxide should be lower than that of a similar glass composition not containing the rare earth oxide. Further, since the rare earth cation (and, in particular, the element selected from the group consisting of ~, γ, and the cation of the lanthanoid element) has a higher ion potential than both the alkali metal cation and most of the alkaline earth cation (see Table 1) Therefore, when rare earth oxides and alkaline earth oxides and/or alkali metal oxides are added to the borosilicate glass group α, the soil complex salt complex will be compared with the metal (tetra) acid salt and most of the base 95764. Doc 1330622 The borate complex is preferentially formed. Referring now to Figures la and lb (which are described in more detail below in Example 1), a "B MAS NMR (Magic Angle Spin Nuclear Magnetic Resonance) curve is shown, &quot ;b MAS NMR is derived from a series of non-limiting examples of a fibrillatable glass composition according to a non-limiting embodiment of the invention identified as composition 丨_4 in Example 1 (by Figures 1a and 1b) The number 1 _4 indicates) and the formation of boron in the standard E 3 glass composition of Βζ〇 3 (indicated as "A in Figure 1 & and ratio) as set forth in Example 1. More specifically, Figure la shows the use of the invention according to the previously discussed A non-limiting example of a non-limiting example of a viable glass composition of a non-limiting embodiment and a percentage of moles of B〇3 structural units as a function of mole % La2〇3 of a standard B203-containing E glass composition ("Mo*%") curve of B203; and Figure lb shows the curve of Molar% B2〇3 in the form of BO4 structural unit as a function of moir/〇La2〇3 for the same glass composition As can be seen from the graph of ia & lb, as the content of La2〇3 increases in the glass composition, the percentage of b2〇3 in the form of B〇4 structural unit decreases, and B〇3 structure The percentage of 匕〇3 in the form of a unit increases. As mentioned above, this is attributable to the rare earth borate complex in the glass structure and the alkali metal borate complex with increasing LkO3 addition. The ratio may be preferentially shaped. Furthermore, as previously discussed, since the rare earth borate complex has a lower vapor phase pressure than the alkali metal borate complex, boron is contemplated from the previously discussed non-limiting according to the present invention. A series of non-limiting example glass compositions of the examples The rate of volatilization will be lower than the ratio of boron volatilized from the standard E glass composition containing B2〇3. Referring now to Figures 2 and 3, as discussed in more detail below in Example 2, Figure 2 95764.doc -18-II shows Boron emissivity vs. time curve for a non-limiting example of a viable glass composition according to non-limiting embodiment 2 of the composition 4 (indicated as 4" in Figure 2) Privately defined B glass 3 E glass group 5 = (indicated as "A") butterfly emissivity versus time curve, line. In addition, as discussed in more detail in Example 3 below, Figure 3 shows the thousand ^ 圆 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁 宁, ], , , ) The curve of the emissivity versus time and the standard Β2〇<ε glass composition (indicated as "Α"). The curves of both Figures 2 and 3 are obtained using the thermogravimetric analysis (or "TGA" which is well known in the art. As can be seen from Figure (1), an example of a fiberizable glass composition 4 The bismuth has a lower emissivity than the standard E-glass composition containing ία. Although not limiting herein, the fiberizable glass compositions according to various non-limiting embodiments of the invention discussed herein are contemplated. The relative boron loss may be less than 5% during processing (eg, during melting and fiber formation). As used herein, the term "relative boron loss" means the amount of bismuth in the glass batch composition ( "Wb") (ie, before processing) minus the amount of B2〇3 ("WG") determined in the processed glass divided by the amount of B2〇3 in the glass batch composition Amount (ie, (Wb_Wg) / Wb), and it may refer to boron volatilization during no processing. However, those skilled in the art will appreciate that it is generally desirable to have the lowest possible relative boron loss. Thus, the relative boron loss from the fiberizable glass composition in accordance with non-limiting embodiments of the present invention can be less than 2%. Moreover, the fiberizable glass compositions of various non-limiting embodiments in accordance with the present invention as discussed herein may have no relative loss of boron during processing of 95764.doc • 19-1330622. In addition to the desired low boron volatilization, as previously discussed, the fiberizable glass compositions according to the non-limiting examples of this disclosure may have desirable "electrical characteristics (and in particular, These commercially available B2〇3 containing E glass compositions typically have an intercalation of about 73 at 丨MHz, as compared to or below the dielectric constant and low dissipation factor of commercially available b2〇aE glass compositions. Electrical constant and dissipation factor of about 0.01 at ^ MHz. For example, although not limited herein, the fiberizable glass composition according to a non-limiting embodiment of the present invention may have 1 MHz. The dielectric constant of no more than about 7.5 and the dissipation factor of no more than about 1 at 1 MHz. It is more desirable that the fiberizable glass composition according to a non-limiting embodiment of the invention may have a frequency of 1 MHz. A dielectric constant of less than about 7.3 and a dissipation factor of no more than about 〇〇〇5 at i MHz. As previously discussed, the alkali metal borate is present due to the presence of an alkali metal cation in the standard B2〇32E glass composition. Complex compounds will be formed. These complexes are accompanied by tetrahedral complexes. Boron (meaning, tetrahedral 3〇4 structural unit). However, such tetrahedral B〇4 structural units contain non-bridged oxygen, the polarity of which is substantially greater than bridging oxygen. Conversely, trihedral B〇3 The structural unit only includes bridging oxygen and thus is less polar than the B〇4 structural unit. As a result, only the borate glass having the B〇3 structural unit has a dielectric constant close to 3 at 1 MHz, and has a BO3 unit and a B〇4 unit. The borate glass of the mixture has a dielectric constant of up to 8 at 1 MHz. See η · Scholze's Glass Nature. Structure, and Properties (Springer_) translated by MJ Larkin

Verlag,紐約,1991)第3 18頁及其中所引用的參考資料。因 95764.doc -20- 1330622 此,隨著玻璃組合物中B〇4結構單元數目的増加,玻璃組合 物之介電常數及耗散因子亦應增大。然而,當將稀土氣化 物添加至玻璃組合物時’如上文所論述,稀土陽離子將優 先形成稀土硼酸鹽錯合物,藉此減少或防止形成驗金屬测 酸鹽錯合物。如圖la及lb中所示,對於給定的b2〇3含量, 隨著稀土氧化物添加物的量增大,B〇4結構單元的數目減小 而B〇3結構單元的數目則增加。因此,預期根據本發明之非 限制性實施例之可纖維化玻璃組合物將具有比具有類似 B2〇3含量的標準含1〇3之E玻璃組合物低的介電常數及耗 散因子。 在圖4中為上文關於圖1 a及1 b而論述的一系列可纖維化 玻璃組合物進一步論證了此效果。如圖4中所示,隨著La2〇3 與B2〇3的莫耳比增大,經標準化的BO3結構單元與玻璃組合 物中B〇3+B〇4結構單元之和的莫耳比增大。如先前所論 述’增加B〇3結構單元之數目對於向可纖維化玻璃組合物提 供所要的介電常數很有利。因此,儘管未要求,但是上述 根據本發明之非限制性實施例之可纖維化玻璃組合物可包 括至少為0.775的BCV(B〇3+B〇4)之莫耳比,且希望具有大 於 0.775 的B03/(B〇3+B〇4)之莫耳比。 因為根據本發明之各種非限制性實施例之可纖維化玻璃 組合物可具有比標準含B2〇3之E玻璃組合物低的介電常數 及耗散因子,所以根據本發明之非限制性實施例之可纖維 化組合物可特別希望用於微電子封裝應用中,例如印刷電 路板("PCB")應用。舉例而言,儘管在本文中不具有限制 95764、doc -21- 1330622 性,但是在此項技術中應通常瞭解,訊號線中之一訊號的 傳播速度文到周圍材料之介電常數的影響。舉例而言,電 路板之介電常數將影響PCB訊號線中的訊號之傳播逮度。 更明確地說,PCB之介電常數愈高,則訊號傳播時間將愈 長(意即,傳播速度愈慢)^ 此外,熟習此項技術者將瞭解,PCB通常由經玻璃纖維 加固的聚合物材料或複合物形成,其包括經編織或非編織 之玻璃織物加固的聚合基質材料(諸如環氧樹脂)。因此,此 等複合PCB之介電常數受到該聚合基質材料之介電常數及 加固型玻璃纖維之介電常數的影響。因此,對於一給定的 聚合基質材料而言,減小玻璃纖維的介電常數將導致減小 PCB之介電常數,並導致PCB中訊號傳播時間相對較短。 同樣地,訊號在傳播經過訊號線時的降級受到周圍材料 之耗散因子的影響。舉例而言,PCB之耗散因子將影響pcB 訊號線中的訊號降級。一般而言,PCB之耗散因子愈高, 則訊號在傳播經過訊號線時被降級得愈多。由於PCB之耗 散因子與聚合基質材料及加固型玻璃纖維之耗散因子有 關所以對於一給定的聚合基質材料而言,減小玻璃纖維 之耗散因子之可導致減小PCB之耗散因子,並因此導致訊 號降級相對較少。 令人驚訝的是,發明者已經觀察到當將至少2重量百分比 的MgO添加至根據本發明之非限制性實施例之可纖維化玻 璃組合物中時,與市售E玻璃組合物相比可在介電常數及耗 散因子方面達成進一步改良。因此,根據本發明之可纖維 95764.doc 1330622 化玻璃組合物之第四非限制性實施例提供了 一種可纖維化 玻璃組合物’其包括: 12至16重量百分比之Al2〇3 ; 5至10重量百分比之b2〇3 ; 16至25重量百分比之ca〇 ; 2至4重量百分比之Mg〇 ; 52至56重量百分比之si〇2 ; 0至0.8重量百分比之Ti〇2 ;及 R2〇3,其中R203與B2〇3的莫耳比自〇 〇1變化至 0.33,且R為至少一種稀土元素。 根據此非限制性實施例,可如上述所述選擇該至少一種稀 土元素R。儘管並非意欲在本文中具有限制性(且如下文在 實例6中所述)’但是對於根據本發明之此非限制性實施例 之可纖維化玻璃組合物的非限制性實例而言,已經觀察到 在1 MHz下具有不大於7.2的介電常數及在1 ΜΗζτ具有不 大於0.003的耗散因子。 此外,發明者已經觀察到上述根據本發明之多種非限制 性實施例之可纖維化玻璃組合物可賦予倂入了由此製成的 玻璃纖維之PCB良好的雷射鑽孔回應。意即,一般而言, 由於切除玻璃纖維需要高能量,所以經玻璃纖維加固的 PCB之雷射鑽孔很困難。然而,儘管並非意欲在本文中具 有限制性’但是藉由增加根據本發明之非限制性實施例之 可纖維化玻璃組合物的UV吸收作用,該等可纖維化玻璃組 合物中的稀土氧化物可改良由此製成的玻璃纖維之雷射鑽 95764.doc •23- 1330622 孔回應。因此,含有由根據本發明之非限制性實施例之可 纖維化玻璃組合物製成的玻璃纖維的PCB亦應具有良好的 雷射鑽孔回應。 為說明根據本發明之可纖維化玻璃組合物的uv吸收 率,將表2中被表示為組合物”a”的用於電子應用之市售含 B2〇3之E玻璃組合物的uv吸收率與表2中的組合物i之 吸收率相比較。組合物1在約355 nm至約370 nm的範圍内始 終顯示出比組合物"A"高的UV能量吸收。藉由進一步比較 此等兩種組合物論證了此提高的uv吸收作用可改良由可 纖維化玻璃組合物形成的玻璃纖維之雷射鑽孔回應。具體 吕之,在自約60 mJ變化至約120 mJ的脈衝能量級的範圍上 量測UV雷射鑽孔進入組合物”A”及組合物1之玻璃樣品中 的單個脈衝之穿透深度,且觀察到組合物丨之穿透深度顯著 大於組合物"A"之穿透深度。 儘營並不限於本發明,但是在稀土氧化物當中,氧化鈥 (意即Ν^〇3)可特別有利於改良根據本發明之多種非限制 性實施例之可纖維化玻璃組合物的雷射鑽孔回應。雖然並 非意欲受到任何特定理論之約束,但是已經觀察到Nd2〇3 可在與典型UV雷射鑽孔波長(例如約3 5 5 nm) —致的波長下 促成玻璃組合物之額外吸收率。對於根據本發明之第五非 限制性實施例的一系列非限制性實例玻璃組合物(下文論 述)而言,當玻璃組合物中Nd2〇3的重量百分比由約1重量% 增加至約8重量%時,同時使ίο;含量保持於約6重量%(對 應於分別自0.03變化至0.26的Nd2〇3與ΙΟ;之莫耳比),可觀 95764.doc •24- 1330622 察到玻瑪組合物於355 nm下的吸收率增大。 因此,藉由選擇敍作為稀土元素H達成根據本“ 之第五非限制性實施例之可纖維化玻璃組合物的雷射鑽孔 效率之進-步改良。更具體言之’可纖維化玻璃組合物之 第五非限制性實施例提供了一種可纖維化玻璃組合物 包括: ' 12至16重量百分比之Al2〇3 ; 5至10重量百分比之β2〇3 ; 16至25重量百分比之CaO ; 0至4重量百分比之MgO ; 52至56重量百分比之Si〇2 ; 0至0.8重量百分比之Ti〇2 ;及Verlag, New York, 1991), p. 3, 18, and references cited therein. As a result of the increase in the number of B〇4 structural units in the glass composition, the dielectric constant and dissipation factor of the glass composition should also increase. However, when a rare earth gasification is added to the glass composition' as discussed above, the rare earth cation will preferentially form a rare earth borate complex, thereby reducing or preventing the formation of a metal test acid salt complex. As shown in Figures la and lb, for a given b2 〇 3 content, as the amount of rare earth oxide additive increases, the number of B 〇 4 structural units decreases and the number of B 〇 3 structural units increases. Accordingly, it is contemplated that a fiberizable glass composition in accordance with a non-limiting embodiment of the present invention will have a lower dielectric constant and dissipation factor than a standard glass composition containing 1 in 3 having a similar B2?3 content. This effect is further demonstrated in Figure 4 for a series of fibrillatable glass compositions discussed above with respect to Figures 1a and 1b. As shown in Figure 4, as the molar ratio of La2〇3 to B2〇3 increases, the molar ratio of the normalized BO3 structural unit to the sum of the B〇3+B〇4 structural units in the glass composition increases. Big. Increasing the number of B〇3 building blocks as previously discussed is advantageous for providing the desired dielectric constant to the fiberizable glass composition. Thus, although not required, the above-described non-limiting embodiment of the fiberizable glass composition according to the present invention may comprise a molar ratio of BCV (B〇3+B〇4) of at least 0.775, and desirably has greater than 0.775 The molar ratio of B03/(B〇3+B〇4). Because the fiberizable glass composition according to various non-limiting embodiments of the present invention may have a lower dielectric constant and dissipation factor than a standard B2〇3 containing E glass composition, a non-limiting implementation in accordance with the present invention Example fiberizable compositions are particularly desirable for use in microelectronic packaging applications, such as printed circuit board ("PCB") applications. For example, although there is no limitation in the text 95764, doc -21 - 1330622, it is generally understood in the art that the propagation speed of one of the signal lines is affected by the dielectric constant of the surrounding material. For example, the dielectric constant of the board will affect the propagation of the signal in the PCB signal line. More specifically, the higher the dielectric constant of the PCB, the longer the signal propagation time (ie, the slower the propagation speed) ^ In addition, those skilled in the art will appreciate that PCBs are typically made of glass fiber reinforced polymers. A material or composite is formed comprising a polymeric matrix material (such as an epoxy resin) reinforced with a woven or non-woven glass fabric. Therefore, the dielectric constant of such composite PCBs is affected by the dielectric constant of the polymeric matrix material and the dielectric constant of the reinforced glass fibers. Thus, for a given polymeric matrix material, reducing the dielectric constant of the glass fiber will result in a reduction in the dielectric constant of the PCB and a relatively short signal propagation time in the PCB. Similarly, the degradation of the signal as it propagates through the signal line is affected by the dissipation factor of the surrounding material. For example, the dissipation factor of the PCB will affect the degradation of the signal in the pcB signal line. In general, the higher the dissipation factor of the PCB, the more the signal is degraded as it propagates through the signal line. Since the dissipation factor of the PCB is related to the dissipation factor of the polymeric matrix material and the reinforced glass fiber, reducing the dissipation factor of the glass fiber for a given polymeric matrix material can result in a reduction in the dissipation factor of the PCB. And thus cause the signal to be downgraded relatively less. Surprisingly, the inventors have observed that when at least 2 weight percent of MgO is added to the fiberizable glass composition according to a non-limiting embodiment of the invention, it is comparable to a commercially available E glass composition. Further improvements were made in terms of dielectric constant and dissipation factor. Thus, a fourth non-limiting embodiment of the fiber 96564.doc 1330622 glass composition according to the present invention provides a fiberizable glass composition comprising: 12 to 16 weight percent Al2?3; 5 to 10 Weight percent b2〇3; 16 to 25 weight percent ca〇; 2 to 4 weight percent Mg〇; 52 to 56 weight percent si〇2; 0 to 0.8 weight percent Ti〇2; and R2〇3, Wherein the molar ratio of R203 to B2〇3 varies from 〇〇1 to 0.33, and R is at least one rare earth element. According to this non-limiting embodiment, the at least one rare earth element R can be selected as described above. Although not intended to be limiting herein (and as described below in Example 6) 'but for non-limiting examples of fibrillatable glass compositions in accordance with this non-limiting embodiment of the invention, it has been observed It has a dielectric constant of not more than 7.2 at 1 MHz and a dissipation factor of not more than 0.003 at 1 ΜΗζτ. Furthermore, the inventors have observed that the above-described non-limiting embodiments of the fiberizable glass compositions according to the present invention impart a good laser drilling response to the PCB in which the glass fibers thus formed are incorporated. That is, in general, laser drilling of glass fiber reinforced PCBs is difficult because of the high energy required to cut glass fibers. However, although not intended to be limiting herein, rare earth oxides in such viable glass compositions are enhanced by increasing the UV absorption of the fiberizable glass compositions in accordance with non-limiting embodiments of the present invention. The laser drill made of the glass fiber can be improved 95764.doc • 23-1330622 hole response. Accordingly, a PCB containing glass fibers made from a fiberizable glass composition according to a non-limiting embodiment of the present invention should also have a good laser drilling response. To illustrate the uv absorption rate of the fiberizable glass composition according to the present invention, the uv absorption rate of a commercially available B2〇3-containing E glass composition for electronic applications, which is represented as composition "a" in Table 2, is shown. It is compared with the absorption rate of the composition i in Table 2. Composition 1 always exhibited a higher UV energy absorption than the composition "A" in the range of about 355 nm to about 370 nm. This further uv absorption was demonstrated by further comparison of these two compositions to improve the laser drilling response of the glass fibers formed from the fiberizable glass composition. Specifically, the penetration depth of a single pulse in the glass sample of the composition "A" and the composition 1 is measured by a range of pulse energy levels varying from about 60 mJ to about 120 mJ, It was also observed that the penetration depth of the composition was significantly greater than the penetration depth of the composition "A". The present invention is not limited to the present invention, but among the rare earth oxides, cerium oxide (i.e., Ν 〇 3) may be particularly advantageous for improving the laser of the fiberizable glass composition according to various non-limiting embodiments of the present invention. Drill holes to respond. While not intending to be bound by any particular theory, it has been observed that Nd2〇3 can contribute to the additional absorption of the glass composition at wavelengths typical of typical UV laser drilling wavelengths (e.g., about 35 5 nm). For a series of non-limiting example glass compositions (discussed below) in accordance with a fifth non-limiting embodiment of the present invention, the weight percentage of Nd2〇3 in the glass composition is increased from about 1% by weight to about 8 weights. At the same time, at the same time, the content of ίο; was kept at about 6% by weight (corresponding to Nd2〇3 and ΙΟ, which were changed from 0.03 to 0.26, respectively; the molar ratio) was observed, 95764.doc • 24-1330622. The absorption rate at 355 nm increases. Therefore, an advance improvement of the laser drilling efficiency of the fibrillatable glass composition according to the fifth non-limiting embodiment of the present invention is achieved by selecting the rare earth element H. More specifically, the fiberizable glass A fifth non-limiting embodiment of the composition provides a viable glass composition comprising: '12 to 16 weight percent Al2〇3; 5 to 10 weight percent β2〇3; 16 to 25 weight percent CaO; 0 to 4% by weight of MgO; 52 to 56% by weight of Si〇2; 0 to 0.8% by weight of Ti〇2;

Nd2〇3 ’其中Nd^與BA的莫耳比自〇〇1變化 至 0.33。 如上文所論述,儘管並不意欲在本文中具有限制性,但 疋根據本發明之第五非限制性實施例之可纖維化玻璃組合 物可由於該玻璃組合物中存在稀土氡化物(如上所述)而具 有所要的低硼發射。此外,如上文所論述,根據此非限制 性實施例之可纖維化玻璃組合物可由於該可纖維化玻璃組 合物中存在Nd2〇3而特別適合用於需要雷射鑽孔之印刷電 路板應用中。 如上文所指示’上述根據本發明之多種非限制性實施例 之可纖維化玻璃組合物可包括自0.01變化至^的心仏與 Βζ〇3的莫耳比,其中R為至少一種稀土元素。儘管並非意欲 95764.doc -25- 1330622Nd2〇3 'where the molar ratio of Nd^ to BA varies from 〇〇1 to 0.33. As discussed above, although not intended to be limiting herein, the fibrillable glass composition according to the fifth non-limiting embodiment of the present invention may be due to the presence of a rare earth halide in the glass composition (as above) Said) and have the desired low boron emission. Moreover, as discussed above, the fiberizable glass composition according to this non-limiting embodiment may be particularly suitable for use in printed circuit board applications requiring laser drilling due to the presence of Nd2〇3 in the fiberizable glass composition. in. As indicated above, the above-described various non-limiting embodiments of the fiberizable glass composition according to the present invention may comprise a molar ratio of 仏3 to Βζ〇3, wherein R is at least one rare earth element. Although not intended 95764.doc -25- 1330622

在本文中具有限制性’但是咸信從在高溫下加 則可纖維化玻璃組合物揮發並因而降低自加工設備之^ 發射的觀點來說,大於0·33(或1/3)的R2〇3_办的莫耳比 並無必要。如先前所論述,儘管並㈣欲受到任何特定理 論之約束,但是因為咸信玻额合物中的每—稀土陽離子 與兩個B03及—個B04結構單讀結以形成所要的稀土领 酸鹽錯合物,所以當⑽與⑽的比率大於1/3時將產生 比可形成所要之硼酸鹽錯合物的稀土陽離子更多的稀土陽 離子。此外,熟習此項技術者將瞭解,稀土氧化物很昂貴。 因此,在成本敏感性應用中,一般需要利用可能之最低有 效的h〇3與B2〇3之莫耳比。然而,咸信小於〇〇1的112〇3與 B2〇3之莫耳比在明顯程度地減少硼發射方面較不有效或無 效,由於將僅可得到小數目的稀土陽離子來形成所要的稀 土硼酸鹽錯合物。因而,舉例而言,當成本為一因數時,There is a restriction in this context, but R2〇 greater than 0·33 (or 1/3) from the point of view that the fibrillable glass composition volatilizes at a high temperature and thus reduces the emission from the processing equipment. 3_Morby is not necessary. As previously discussed, although (4) is intended to be bound by any particular theory, each rare earth cation in the Xianxin glass complex is single-read with two B03 and one B04 structures to form the desired rare earth complex. A complex, so when the ratio of (10) to (10) is greater than 1/3, more rare earth cations are produced than the rare earth cations which form the desired borate complex. In addition, those skilled in the art will appreciate that rare earth oxides are expensive. Therefore, in cost sensitive applications, it is generally desirable to utilize the lowest possible molar ratio of h〇3 to B2〇3. However, the molar ratio of 112〇3 to B2〇3, which is less than 〇〇1, is less effective or ineffective in significantly reducing boron emission, since only a small number of rare earth cations will be available to form the desired rare earth boric acid. Salt complex. Thus, for example, when the cost is a factor,

可根據本文中所論述之可纖維化玻璃組合物之多種非限制 性實施例來使用自0.01變化至〇_15的尺2〇3與]82〇3的莫耳比。 此外’因為先前論述之根據本發明之多種非限制性實施 例的可纖維化玻璃組合物包括B2〇3,所以此等玻璃組合物 之log3成形溫度及加工窗口類似於包括類似量的b2〇3之標 準含1〇3的E玻璃之l〇g3成形溫度及加工窗口。舉例而言, 上述根據本發明之多種非限制性實施例之可纖維化玻璃組 合物可具有不大於1200 °C的l〇g3成形溫度、不大於114〇 的液相線溫度及至少55°C的AT值。如本文所用,"△丁"或" 德爾塔Τ"意指玻璃組合物之log3成形溫度與液相線溫度之 95764.doc -26- 間的數值差且其為纖維成形過程之堅固性的指示。舉例而 吕,當ΔΤ值小於約551時,通常認為纖維成形窗口對於商 業的、直接熔化纖維成形運作而言是不可接受的窄。意即’ 纖維成形溫度(意即,1 〇 g 3成形溫度)與玻璃將開始結晶或反 玻璃化的溫度(意即’液相線溫度)之間的差相對較小。相 反,當ΔΤ為約55°C或更大時,通常認為玻璃組合物之纖維 成形窗口對於商業的、直接熔化纖維成形運作來說是可接 受的,因為纖維成形溫度與玻璃將反玻璃化的溫度之間的 差相對較大。 儘管未要求’但是為了調整玻璃組合物之加工特性及氧 化還原態’上述根據本發明之多種非限制性實施例之可纖 維化玻璃組合物可進一步包括0至1重量%之以2〇3、不多於1 重量之F2、及〇至2重量%之選自由Na2〇、κ20及Li20組成 之群的至少一種鹼金屬氧化物。若需要,則較小量(意即, 少於約0,5重量%)的其它玻璃精煉劑(諸如sb2〇3、Mn〇2、 AS2〇3)亦可與本發明之可纖維化玻璃組合物結合使用。 此外’熟習此項技術者將瞭解,可纖維化玻璃組合物一 般亦含有較少量的雜質,其可歸因於(例如)物料配合劑中的 雜質及/或熔爐耐熔材料之腐蝕。舉例而言,儘管在本文中 不具有限制性’但是諸如Na20、K20、Cr203、SrO、BaO 及Zr〇2之氧化物雜質以及硫酸鹽及硫化物亦可存在於根據 本發明之多種實施例之可纖維化玻璃組合物中。此外,諸 如Pb、Ni、Cu、Zn之其它雜質亦可存在於玻璃組合物中。 現在將描述根據本發明之玻璃纖維的非限制性實施例。 95764.doc •27· 1330622 根據本發明之玻璃纖維的一個非限制性實施例提供了—種 玻璃纖維,其包括: 9至16重量百分比之ai2〇3 ; 0.5至13重量百分比之b2〇3 ; 16至25重量百分比之ca〇 ; 0至6重量百分比之Mg〇 ; 48至62重量百分比之si〇2 ; 0至4重量百分比之Ti〇2;及 R2〇3 ’其中1〇3與1〇3的莫耳比自〇·01變化至 0.33,且R為至少一種稀土元素。 儘管在本文中不具有限制性,但是由於上文關於根據本發 明之可纖維化玻璃組合物的第一非限制性實施例所論述的 理由’所以咸信根據此非限制性實施例之玻璃纖維適合用 於多種應用中,包含電子及結構加固應用二者。 根據本發明之玻璃纖維之第二非限制性實施例提供了一 種玻璃纖維,其包括: 12至16重量百分比之Α12〇3 ; 5至10重量百分比之Β2〇3 ; 16至25重量百分比之CaO ; 0至4重量百分比之MgO ; 52至56重量百分比之Si02 ; 0至0.8重量百分比之Ti02 ;及 R2〇3,其中R203與B2〇3的莫耳比自〇.〇1變化至 0.33,且R為至少一種稀土元素。 95764.doc • 28 - 1330622 儘管在本文t不具有限制性,但是由於上文關於根據本發 明之可纖維化玻璃組合物之第二非限制性實施例所論述的 理由,所以咸信根據此非限制性實施例之玻璃纖維特別適 合用於電子應用中。 根據本發明之玻璃纖維之第三非限制性實施例提供了一 種玻璃纖維,其包括: 9至16重量百分比之A1203 ; 〇·5至13重量百分比之b2〇3 ; 16至25重量百分比之CaO ; 〇至6重量百分比之MgO ; 48至62重量百分比之si〇2 ; 0至4重量百分比之Ti〇2;及The molar ratios of the scales 2〇3 and 8〇3 from 0.01 to 〇15 can be used in accordance with various non-limiting examples of the fiberizable glass compositions discussed herein. Further, 'because the previously described fiberizable glass compositions according to various non-limiting embodiments of the present invention include B2〇3, the log3 forming temperatures and processing windows of such glass compositions are similar to b2〇3 including similar amounts. The standard contains 1〇3 E glass l〇g3 forming temperature and processing window. For example, the above-described fiberizable glass composition according to various non-limiting embodiments of the present invention may have a l〇g3 forming temperature of not more than 1200 ° C, a liquidus temperature of not more than 114 及, and at least 55 ° C. AT value. As used herein, "Δ丁" or "deltaΤ" means the numerical difference between the log3 forming temperature of the glass composition and the liquidus temperature of 95764.doc -26- and which is robust to the fiber forming process. Sexual indication. For example, when the ΔΤ value is less than about 551, the fiber forming window is generally considered to be unacceptably narrow for commercial, direct melt fiber forming operations. That is, the difference between the fiber forming temperature (i.e., 1 〇 g 3 forming temperature) and the temperature at which the glass will start to crystallize or devitrify (i.e., the liquidus temperature) is relatively small. Conversely, when ΔΤ is about 55 ° C or greater, it is generally believed that the fiber forming window of the glass composition is acceptable for commercial, direct melt fiber forming operations because the fiber forming temperature and the glass will be devitrified. The difference between the temperatures is relatively large. Although not required 'but in order to adjust the processing characteristics and redox state of the glass composition', the above-described fiberizable glass composition according to various non-limiting examples of the present invention may further comprise 0 to 1% by weight of 2〇3, Not more than 1 part by weight of F2 and 〇 to 2% by weight of at least one alkali metal oxide selected from the group consisting of Na2〇, κ20 and Li20. If desired, smaller amounts (i.e., less than about 0,5% by weight) of other glass refining agents (such as sb2〇3, Mn〇2, AS2〇3) may also be combined with the fiberizable glass of the present invention. Use in combination. Moreover, those skilled in the art will appreciate that fiberizable glass compositions generally also contain minor amounts of impurities which can be attributed to, for example, impurities in the material compounding agent and/or corrosion of the furnace refractory material. For example, although not limiting herein, oxide impurities such as Na20, K20, Cr203, SrO, BaO, and Zr〇2, as well as sulfates and sulfides, may also be present in various embodiments in accordance with the present invention. Fibrillable glass compositions. Further, other impurities such as Pb, Ni, Cu, and Zn may be present in the glass composition. Non-limiting examples of glass fibers in accordance with the present invention will now be described. 95764.doc • 27· 1330622 A non-limiting embodiment of a glass fiber according to the present invention provides a glass fiber comprising: 9 to 16 weight percent of ai2〇3; 0.5 to 13 weight percent of b2〇3; 16 to 25 weight percent of ca 〇; 0 to 6 weight percent of Mg 〇; 48 to 62 weight percent of si 〇 2; 0 to 4 weight percent of Ti 〇 2; and R 2 〇 3 ' of which 1 〇 3 and 1 〇 The molar ratio of 3 varies from 〇01 to 0.33, and R is at least one rare earth element. Although not limiting herein, due to the reasons discussed above with respect to the first non-limiting embodiment of the fiberizable glass composition of the present invention, it is believed that the glass fibers according to this non-limiting embodiment Suitable for a variety of applications, including both electronic and structural reinforcement applications. A second non-limiting embodiment of the glass fiber according to the present invention provides a glass fiber comprising: 12 to 16 weight percent Α12〇3; 5 to 10 weight percent Β2〇3; 16 to 25 weight percent CaO 0 to 4 weight percent of MgO; 52 to 56 weight percent of SiO 2 ; 0 to 0.8 weight percent of Ti02; and R2〇3, wherein the molar ratio of R203 to B2〇3 varies from 〇1 to 0.33, and R is at least one rare earth element. 95764.doc • 28-1330622, although not limiting herein, due to the reasons discussed above with respect to the second non-limiting embodiment of the fiberizable glass composition of the present invention, The glass fibers of the limiting embodiments are particularly suitable for use in electronic applications. A third non-limiting embodiment of the glass fiber according to the present invention provides a glass fiber comprising: 9 to 16 weight percent of A1203; 〇·5 to 13 weight percent of b2〇3; 16 to 25 weight percent of CaO 〇 to 6 weight percent of MgO; 48 to 62 weight percent of si 〇 2; 0 to 4 weight percent of Ti 〇 2;

La203,其中La203與B2〇3的莫耳比自〇.〇1變化 至0.33 。 儘管在本文中不具有限制性,但是由於上文關於根據本發 明之可纖維化玻璃組合物之第三非限制性實施例所論述的 理由’所以咸信根據此非限制性實施例之玻璃纖維特別適 合用於其中玻璃纖維之顏色及/或成本很重要的彼等應用 申。 根據本發明之玻璃纖維之第四非限制性實施例提供了一 種玻璃纖維,其包括: 12至16重量百分比之A1203 ; 5至10重量百分比之b2〇3 ; 16至25重量百分比之CaO ; 95764.doc •29- 1330622 2至4重量百分比之MgO ; 52至56重量百分比之Si02 ; 0至0.8重量百分比之Ti02 ;及 R2O3 ’其中R_2〇3與B2〇3的莫耳比自0.01變化至 〇·3 3 ’且R為至少一種稀土元素。 儘官在本文中不具有限制性,但是由於上文關於根據本發 明之可纖維化玻璃組合物之第四非限制性實施例所論述的 理由,所以咸信根據此實施例之玻璃纖維特別適合用於 PCB應用中。 根據本發明之玻璃纖維之第五非限制性實施例提供了一 種玻璃纖維,其包括: 12至16重量百分比之Al2〇3 ; 5至1 0重量百分比之b2〇3 ; 16至25重量百分比之ca〇 ; 〇至4重量百分比之Mg〇 ; 52至56重量百分比之si〇2 ; 0至0.8重量百分比之Ti〇2 ;及La203, in which the molar ratio of La203 to B2〇3 varies from 〇1 to 0.33. Although not limiting herein, due to the reasons discussed above with respect to the third non-limiting embodiment of the fiberizable glass composition of the present invention, it is believed that the glass fibers according to this non-limiting embodiment It is particularly suitable for applications in which the color and/or cost of glass fibers are important. A fourth non-limiting embodiment of the glass fiber according to the present invention provides a glass fiber comprising: 12 to 16 weight percent of A1203; 5 to 10 weight percent of b2〇3; 16 to 25 weight percent of CaO; .doc •29- 1330622 2 to 4 weight percent of MgO; 52 to 56 weight percent of SiO 2 ; 0 to 0.8 weight percent of Ti02; and R2O3 'where the molar ratio of R 2 〇 3 to B 2 〇 3 varies from 0.01 to 〇 · 3 3 ' and R is at least one rare earth element. It is not intended to be limiting herein, but because of the reasons discussed above with respect to the fourth non-limiting embodiment of the fiberizable glass composition of the present invention, it is particularly suitable for the glass fibers according to this embodiment. Used in PCB applications. A fifth non-limiting embodiment of the glass fiber according to the present invention provides a glass fiber comprising: 12 to 16 weight percent Al2?3; 5 to 10 weight percent b2?3; 16 to 25 weight percent Ca〇; up to 4% by weight of Mg〇; 52 to 56% by weight of si〇2; 0 to 0.8% by weight of Ti〇2;

Nd2〇3 ’其中叫〇3與1〇3的莫耳比自〇 〇1變化 至 0.33。 但是由於上文關於根據本發Nd2〇3 ’, the molar ratios of 〇3 and 1〇3 vary from 〇1 to 0.33. But as a result of the above

括雷射鑽孔的PCB應用中。 儘管在本文中不具有限制性, 之玻璃纖 此外,因為根據本發明之多種非限制性實施例之 95764.doc •30- 1330622 維含有B2〇3,所以預期由其而形成玻璃纖維的玻璃組合物 將具有與標準含B2〇3之E玻璃組合物類似的加工特性。然 而,與標準含丑2〇3之£玻璃纖維不同的是,因為根據本發明 之非限制性實施例之玻璃纖維由包括ΙΑ及至少一種稀土 氧化物的玻璃組合物形成,所以預期當使用等量32〇3時, 在溶化及$成根據本發明之非限制性實施例之玻璃纖維期 間來自纖維加工設備的硼發射低於來自標準含心〇3之五玻 璃纖維成形運作的硼發射。 此外,根據本發明之非限制性實施例之玻璃纖維可有效 用於形成P C B。如先前關於根據本發明之可纖維化玻璃組 合物的論述,將稀土氧化物添加至包括匕〇3的可纖維化玻 璃組合物可導致在玻璃組合物中產生比在標準含32〇3之丑 f璃組合物中更少的極性B〇4結構單元及更多的B〇3結構 單元。由於BO3結構單元的極性小於go*結構單元的極性, 所乂由包括B2〇3及至少一種稀土氧化物的此等可纖維化玻 璃組合物形成之玻璃纖維可具有與增加之數目的B〇3結構 單疋相關聯的有利的介電特性。舉例而言,儘管在本文中 不具有限制性,但是根據本發明之多種非限制性實施例之 玻璃纖維可在丨MHz下具有不大於7.5的介電常數及在】 MHz下具有不大於〇.〇1的耗散因子;且更希望在丨下具 有小於7.3的介電常數及在丨MHzT具有不大於請$的耗 散因子。此外,如先前關於根據本發明之非限制性實施例 之可纖維化玻璃組合物的論述,根據本發明之多種非限制 性實施例之玻璃纖維亦可具有與標準含匕〇3之£玻璃纖維 95764.doc -31 · 1330622 相比經改良之雷射鑽孔回應。 儘管在本文中不具有限制性,但是根據本發明之非限制 性實施例的玻璃纖維亦可有效用於結構加固應用中,並可 賦予由此製成的聚合複合物經改良之強度。儘管並非意欲 受到任何特定理論㈣束,但是發明者相信使用根據本發 明之非限制性實施例之玻璃纖維而製成的聚合複合物可由 於玻璃組合物中存在稀土氧化物而具有經改良的抗拉強 度。更具體言之,已經觀察到具有存在於其表面上之稀土 元素的纖維可具有經改良之機械特性。參見γ. xue、X Chengs "Effect of Rare Earth Elements* Surface Treatment on Tensile Properties and Microstructure of Glass Fiber-Reinforced Polytetrafluoroethylene Composites5"(j. Appl. P〇lymerSci.,86(2002)1667—1672)。因此,因為根據本發明 之非限制性實施例之玻璃纖維包括稀土氧化物,所以使用 此等玻璃纖維而製成的聚合複合物與使用不含稀土氧化物 添加物之類似的含1〇3之E玻璃纖維而製成的聚合複合物 相比’可顯示出經改良的機械特性。 可使用此項技術中已知之用於形成玻璃纖維的任何過 程’且更希望使用此項技術令已知之用於形成基本上連續 之玻璃纖維的任何過程來形成根據本發明之多種非限制性 貫^&例之玻璃纖維。舉例而言’儘管在本文中不具有限制 性,但是可使用直接熔化或間接熔化纖維成形方法來形成 根據本發明之非限制性實施例之玻璃纖維。此等方法在此 項技術t已為吾人所熟知,且考慮到本揭示内容,咸信其 95764.doc -32- 1330622 進一步論述並無必要。參見K L L〇ewenstein的The Manufacturing Technology 〇f Continu〇us ⑴挪阳如,第三 版(Elsevier,New York,1993)第 47-48 頁及 1 17-234頁,其因 此以引用的方式被特定地倂入本文十。 本發明進一步涵蓋了由根據本發明之多種實施例之玻璃 纖維而製成的聚合複合物,且詳言之PCB。如先前所論述, 本發明之實施例可有利於提供具有所要之介電特性(諸如 可與標準含B2〇3之E玻璃纖維相比或更低的介電常數及/或 耗散因子)的玻璃纖維。此外,本發明之某些實施例可有利 地提供具有與標準含B2〇3之e玻璃纖維相比經改良之雷射 鑽孔回應的玻璃纖維。因此,根據本發明之多種非限制性 實施例之玻璃纖維可特別有利於用於PCB應用中。 舉例而5,在根據本發明之聚合複合物之一非限制性實 施例中’提供了 一種聚合複合物’其包括一種聚合基質材 料及該聚合基質材料中的至少一種玻璃纖維,該至少一種 玻璃纖維包括: 9至16重量百分比之A1203 ; 0.5至13重量百分比之B203 ; 16至25重量百分比之CaO ; 〇至6重量百分比之MgO ; 48至62重量百分比之Si〇2 ; 〇至4重量百分比之Ti02 ;及 R2〇3 ’其中R203與B2〇3的莫耳比自〇 〇1變化至 0.33,且R為至少一種稀土元素。 95764.doc 丄330622 儘管在本文中不具有限制性,但是咸信根據本發明之此非 限制性實施例之聚合複合物適合用於電子及結構應用二者 中。 在根據本發明之聚合複合物之另一非限制性實施例中, 提供了-種聚合複合物’其包括一種聚合基質材料及該聚 合基質材料中的至少—種玻璃纖維,該至少—種玻璃纖維 包括: 12至16重量百分比之Al2〇3 ; 5至10重量百分比之b2〇3 ; 16至25重量百分比之CaO ; 0至4重量百分比之Mg〇 ; 52至56重量百分比之Si〇2 ; 0至0.8重量百分比之Ti〇2 ;及 R2〇3 ’其中ΙΑ與ΙΑ的莫耳比自〇 〇1變化至 0.33 ’且R為至少一種稀土元素。 儘管在本文中不具有限制性,但是咸信根據本發明之此非 限制性實施例之聚合複合物特別適合用於電子應用中。 在根據本發明之聚合複合物之另一非限制性實施例中, 提供了一種聚合複合物,其包括一種聚合基質材料及該聚 合基質材料中的至少一種玻璃纖維,該至少一種玻璃纖維 包括: 9至16重量百分比之Al2〇3 ; 0_5至13重量百分比之b2〇3 ; 16至25重量百分比之Ca〇 ; 95764.doc 1330622 0至6重量百分比之MgO ; 48至62重量百分比之Si〇2 ; 0至4重量百分比之Ti〇2 ;及In laser applications including laser drilling. Although not limiting, glass fiber in addition, since the 95764.doc • 30-13130622 dimension according to various non-limiting embodiments of the present invention contains B2〇3, a glass combination from which glass fibers are formed is expected The article will have similar processing characteristics to the standard E glass composition containing B2〇3. However, unlike the standard ambiguous glass fiber, since the glass fiber according to the non-limiting embodiment of the present invention is formed of a glass composition comprising cerium and at least one rare earth oxide, it is expected to be used, etc. At a volume of 32 Torr 3, the boron emission from the fiber processing equipment during melting and in the glass fibers according to the non-limiting embodiment of the present invention is lower than the boron emission from the standard glass-containing glass fiber forming operation. Furthermore, glass fibers in accordance with non-limiting embodiments of the present invention are useful for forming P C B. As previously discussed with respect to the fiberizable glass composition according to the present invention, the addition of rare earth oxides to the fiberizable glass composition comprising cerium 3 can result in ugly production in the glass composition than in the standard 32 〇 3 Feorous polar B〇4 structural units and more B〇3 structural units in the glass composition. Since the polarity of the BO3 structural unit is less than the polarity of the go* structural unit, the glass fibers formed from such fibrillatable glass compositions comprising B2〇3 and at least one rare earth oxide may have an increased number of B〇3 The advantageous dielectric properties associated with the structure unit. For example, although not limiting herein, glass fibers in accordance with various non-limiting embodiments of the present invention may have a dielectric constant of no greater than 7.5 at 丨MHz and no greater than 〇 at MHz MHz. The dissipation factor of 〇1; and it is more desirable to have a dielectric constant of less than 7.3 under the armpit and a dissipation factor of no more than 请MHzT. Moreover, as previously discussed with respect to the fiberizable glass compositions in accordance with non-limiting embodiments of the present invention, glass fibers in accordance with various non-limiting embodiments of the present invention may also have glass fibers in accordance with standard cerium-containing 3 95764.doc -31 · 1330622 Respond to improved laser drilling. Although not limiting herein, glass fibers in accordance with non-limiting embodiments of the present invention are also useful in structural reinforcement applications and impart improved strength to the resulting polymeric composites. Although not intended to be bound by any particular theory, the inventors believe that polymeric composites made using glass fibers in accordance with non-limiting embodiments of the present invention may have improved resistance due to the presence of rare earth oxides in the glass composition. Pull strength. More specifically, it has been observed that fibers having rare earth elements present on the surface thereof can have improved mechanical properties. See γ. xue, X Chengs " Effect of Rare Earth Elements* Surface Treatment on Tensile Properties and Microstructure of Glass Fiber-Reinforced Polytetrafluoroethylene Composites 5 " (j. Appl. P〇lymer Sci., 86 (2002) 1667-1672). Therefore, since the glass fiber according to the non-limiting embodiment of the present invention includes a rare earth oxide, the polymer composite prepared using the glass fibers is similar to the one containing the rare earth oxide-free additive. Polymer composites made of E glass fibers can exhibit improved mechanical properties compared to '. Any process known in the art for forming glass fibers can be used' and it is more desirable to use the process to make any of the processes known to form substantially continuous glass fibers to form a variety of non-limiting aspects in accordance with the present invention. ^& Example of fiberglass. For example, although not limiting herein, direct melting or indirect melting fiber forming methods can be used to form glass fibers in accordance with non-limiting embodiments of the present invention. These methods are well known in the art, and in view of the present disclosure, it is not necessary to further discuss it in the letter 95764.doc -32-1330622. See KLL 〇ewenstein, The Manufacturing Technology 〇f Continu〇us (1) Novgorod, 3rd edition (Elsevier, New York, 1993) pp. 47-48 and 1 17-234, which is therefore specifically cited by way of citation Break into this article ten. The invention further encompasses polymeric composites made from glass fibers in accordance with various embodiments of the present invention, and in detail PCBs. As previously discussed, embodiments of the present invention may be advantageous to provide a dielectric constant having a desired dielectric property (such as a dielectric constant and/or a dissipation factor comparable to or lower than a standard B2〇3-containing E glass fiber). glass fiber. Moreover, certain embodiments of the present invention advantageously provide glass fibers having improved laser drilling response as compared to standard B2〇3-containing e-glass fibers. Thus, glass fibers in accordance with various non-limiting embodiments of the present invention may be particularly advantageous for use in PCB applications. By way of example, 5, in one non-limiting embodiment of the polymeric composite according to the present invention, 'providing a polymeric composite' comprising a polymeric matrix material and at least one glass fiber of the polymeric matrix material, the at least one glass The fibers include: 9 to 16 weight percent of A1203; 0.5 to 13 weight percent of B203; 16 to 25 weight percent of CaO; 〇 to 6 weight percent of MgO; 48 to 62 weight percent of Si 〇 2; 〇 to 4 weight percent Ti02; and R2〇3' wherein the molar ratio of R203 and B2〇3 varies from 〇〇1 to 0.33, and R is at least one rare earth element. 95764.doc 丄330622 Although not limiting herein, it is believed that the polymeric composites according to this non-limiting embodiment of the invention are suitable for use in both electronic and structural applications. In another non-limiting embodiment of the polymeric composite according to the present invention, there is provided a polymeric composite comprising a polymeric matrix material and at least one of the polymeric matrix materials, the at least one glass The fibers include: 12 to 16 weight percent Al2〇3; 5 to 10 weight percent b2〇3; 16 to 25 weight percent CaO; 0 to 4 weight percent Mg〇; 52 to 56 weight percent Si〇2; 0 to 0.8% by weight of Ti〇2; and R2〇3' wherein the molar ratio of lanthanum and cerium varies from 〇〇1 to 0.33' and R is at least one rare earth element. Although not limiting herein, it is believed that the polymeric composites according to this non-limiting embodiment of the invention are particularly suitable for use in electronic applications. In another non-limiting embodiment of the polymeric composite according to the present invention, there is provided a polymeric composite comprising a polymeric matrix material and at least one glass fiber of the polymeric matrix material, the at least one glass fiber comprising: 9 to 16 weight percent of Al2〇3; 0_5 to 13 weight percent of b2〇3; 16 to 25 weight percent of Ca〇; 95764.doc 1330622 0 to 6 weight percent of MgO; 48 to 62 weight percent of Si〇2 0 to 4 weight percent of Ti〇2; and

La203 ’其中La2〇3與b2〇3的莫耳比自〇 〇1變化 至 0.33。 儘管在本文中不具有限制性,但是咸信根據本發明之此非 限制性實施例之聚合複合物適合用於其中複合物之外觀及 成本很重要的電子及結構應用二者中。 在根據本發明之聚合複合物之另一非限制性實施例中, 提供了一種聚合複合物,其包括一種聚合基質材料及該聚 合基質材料中的至少一種玻璃纖維,該至少—種玻璃纖維 包括: 12至16重量百分比之A1203 ; 5至10重量百分比之B2〇3 ; 16至25重量百分比之CaO ; 2至4重量百分比之MgO ; 52至56重量百分比之Si02 ; 0至0.8重量百分比之Ti02 ;及 R2O3,其中R2O3與B2〇3的莫耳比自〇 〇1變化至 0.33,且R為至少一種稀土元素。 儘管在本文中不具有限制性,但是咸信根據本發明之此非 限制性實施例之聚合複合物特別適合用於電子應用中,且 詳言之用於PCB應用中。 在根據本發明之聚合複合物之另一非限制性實施例中, 95764.doc -35· 1330622 2七、了-種聚合複合物,其包括—種聚合基質材料及該聚 口基質材料中的至少_種玻璃纖維,該至少—種玻璃纖維 包括: 12至16重量百分比之Ai2〇3 ; 5至1〇重量百分比之b2〇3 ; 16至25重量百分比之CaO ; 0至4重量百分比之MgO ; 48至62重量百分比之Si02 ;La203' wherein the molar ratios of La2〇3 and b2〇3 vary from 〇1 to 0.33. Although not limiting herein, it is believed that the polymeric composites according to this non-limiting embodiment of the invention are suitable for use in both electronic and structural applications where the appearance and cost of the composite are important. In another non-limiting embodiment of the polymeric composite according to the present invention, there is provided a polymeric composite comprising a polymeric matrix material and at least one glass fiber of the polymeric matrix material, the at least one glass fiber comprising : 12 to 16 weight percent of A1203; 5 to 10 weight percent of B2〇3; 16 to 25 weight percent of CaO; 2 to 4 weight percent of MgO; 52 to 56 weight percent of SiO 2 ; 0 to 0.8 weight percent of Ti02 And R2O3, wherein the molar ratio of R2O3 to B2〇3 varies from 〇〇1 to 0.33, and R is at least one rare earth element. Although not limiting herein, it is believed that the polymeric composites according to this non-limiting embodiment of the present invention are particularly suitable for use in electronic applications, and are described in detail for use in PCB applications. In another non-limiting embodiment of the polymeric composite according to the present invention, 95764.doc -35. 1330622 2-7, a polymeric composite comprising a polymeric matrix material and the polymeric matrix material At least _ kinds of glass fibers, the at least one type of glass fiber comprises: 12 to 16 weight percent of Ai2〇3; 5 to 1 weight percent of b2〇3; 16 to 25 weight percent of CaO; 0 to 4 weight percent of MgO 48 to 62 weight percent of SiO 2 ;

〇至1.0重量百分比之Ti〇2 ;及Up to 1.0% by weight of Ti〇2; and

Nd2〇3,其中N(j2〇3與b2〇3的莫耳比自〇〇1變化 至 0.33。 本文中不具有限制性,但是咸信根據本發明之此非 限制丨生實鈿例之聚合複合物特別適合用於包括雷射鑽孔的 PCB應用中。Nd2〇3, wherein N (the molar ratio of j2〇3 and b2〇3 varies from 〇〇1 to 0.33. There is no limitation herein, but the polymerization of this non-limiting twin example according to the present invention is The composite is particularly suitable for use in PCB applications including laser drilling.

可藉由此項技術中已知之用於製造聚合複合物及/或^ 的任何方法來製造根據本發明之多種實施例之聚合複合 = PCB。舉例而言,儘管在本文中不具有限制性,但是 藉由使用一種聚合基質材料來浸潰編織織物或非編織織 或玻璃纖維魅並隨後使該聚合基質材料固化而製成根據 發明之聚合複合物。或者’可將切碎的玻璃纖維併入一 聚合基質材料中且將所得之混合物擠麼成所要的形狀。 外,儘管在本文中不具有限制性,但是(例如)可藉由使用 種聚合基質材料來浸潰編織玻璃織物並隨後使該聚合基 材料部分固化或"时_-吨)"形成預浸潰片而形^ 95764.doc -36- 1330622 本發明之POB。此後,可將該預浸潰片㈣成所要的尺 寸^狀並可將該預浸潰片之一或多個層層愿在一起以形 成疊層。可將銅包覆於該叠層之一或兩個表面上,且若 需要’則可對銅進行圖案化以形成-或多個電路及/或可將 一或f個洞鑽孔進入該包覆疊層以提供電互連。此後,可 將该等疊層堆疊在一起以形成pCB。然而應瞭解,用於形 成以上未予以描述且適合用於形成本發明之聚合複合物及 PCB的聚合複合物及pCB之其它方法在此項技術中已為吾 人所熟知。因&,以上所給出的非限制性實例並非意欲以 任何方式限制本發明且僅為說明之目的而提供。 現在將描述用於抑制硼自根據本發明之包括82〇3的玻璃 組口物揮發的方法…種用於抑制棚自包括b办的玻璃組 合物揮發的方法之一非限制性實施例包括:在加工玻璃組 合物之前將1〇3添加至玻璃組合物,使得玻璃組合物在加 工前具有自0.01變化至0.33的1〇3與B2〇3之莫耳比(其中R 為至少一種稀土元素);並加工該玻璃組合物,其中在加工 後,玻璃組合物具有不大於百分之5的相對硼損失。此外, 根據本發明之此非限制性實施例,玻璃組合物在加工期間 可具有不大於百分之2的相對硼損失,或更理想地,在加工 之後可沒有相對硼損失。 如先前所論述,將稀土氧化物添加至含ΙΑ的玻璃組合 物中可藉由優先形成低汽相壓力的稀土蝴酸鹽錯合物來有 利地減少硼自玻璃組合物揮發。儘管未要求,但是根據本 發明之此實施例,玻璃組合物可包括〇 2至13重量百分比的 95764.doc -37· 丄330622 B2〇3。此外,儘管未要求,但是當玻璃組合物為一種用於 · 製造適合用於電子應用中的玻璃纖維之可纖維化玻璃組合 , 物時,該玻璃組合物可包括5至10重量百分比的B2〇3。 根據用於抑制硼自包括B2〇3的玻璃組合物揮發的方法之 此實施例,該至少一種稀土元素,R,可選自元素週期表第3 族的兀素,且希望其選自由銃(Sc)、釔及鑭系元素(意 即,具有原子數57(鋼(La))至71(錄(Lu))的元素)組成的群。 如先前關於根據本發明之實施例之可纖維化玻璃組合物的 論述,Sc、Y及鋼系元素具有穩定的3 +氧化態以及相對高的 · 玻璃中之離子電位(參見上文表1)β因此,此等元素為用於 根據本發明抑制硼揮發的方法中特別所要的元素。然而, 一般而言,具有敎的3 +氧化態及至少為2.5的玻璃中之離 子電位的任何稀土元素均可根據本發明之此實施例之方法 加以利用。 :匕外’儘管在本文中不具有限制性,但是根據此非限制 !生實施例之方法,對玻璃組合物進行加工可包括在該玻^ 組合物之I 〇 g 3成形溫度或大於該溫度下對該玻璃組合物進 行加工。舉例而言,加工可包含熔化玻璃組合物 璃組合物形成纖維。 在㈣本發明之此非限制性實施例之方法的一特殊非限 制性實例中’稀土元素尺為鑭’其中咸信該實例可有效用於. 減少硼自使用高容量商業過程而形成的標準含B2〇M玻. 璃組合物揮發。 此外’儘管在本文中不具有限制性’但是根據本發明之 95764.doc -38- ΟΔΔ 上述實施例之用於抑制硼揮發 平货的方法與包括β2ο3及至少一 種驗金屬氧化物的玻璃组合物 _ °物結合可特別有用。舉例而 & ’儘管在本文中不具有限制地 、 韦眼制性,但是此非限制性實施例 之方法可特別有效用於減少爛自 目標準含Β2〇3之Ε玻璃組合 物揮發。 現在將在以下非限制性實例中 具1 J Τ說明本發明之多種非限制 性實施例。 實例 實例1 : 如下製備分別具有實例玻璃組合物卜4(在以下表2中給 出)的四種玻璃配料及一種具有比較例玻璃組合物"Α”(在 表2中闡明)的玻璃配料。如表2中所指示,將試劑級氧化物 粉末摻^以形成所要的組合物。摻合之後,在#1〇%鍊掛 堝中將每一玻璃配料組合物加熱至約145〇它歷經約4小時 以熔化該玻璃組合物。此後,隨後藉由將來自坩堝之熔化 玻璃倒入一不銹鋼模中來製備每一玻璃組合物之"按鈕", 隨後將其置放於750°C下的烘箱中歷經3小時。隨後關閉該 烘箱之電源且允許玻璃在烘箱中冷卻至室溫隔夜以允許玻 璃退火。除了熔化期間的ΙΑ損失之外,預期玻璃按鈕之 、’且a與玻璃配料組合物之組合類似。如下文所論述,預期 來自貫例玻璃組合物1 _4的ΙΟ;損失低於比較例玻璃組合 物Α之Β2〇3損失。儘管ν&2〇及Κ2〇以及氟化物(若存在)在玻 璃炼化中具有揮發性,但是因為此等材料在所測試的玻璃 組合物中濃度低,所以認為由於此等材料揮發而對全部玻 95764.doc •39- 1330622 璃組合物造成的任何改變無關緊要。 在冷卻至室溫之後,使用11B MAS NMR*析該等按鈕以 判定每一玻璃組合物中硼的物種形成。基於NMR資料,產 生了呈B〇3形式的莫耳% B2〇3及呈B〇4形式的莫耳% 對莫耳% La2〇3的曲線。上文已分別關於圖1&及^論述了此 專曲線。 如先前所論述,如可由圖la&lb中看出,隨著玻璃組合 物中莫耳%1^2〇3增大,呈B〇3結構單元形式的莫耳%b2〇3 增大,而呈B〇4結構單元形式的莫耳%82〇3則減小。因此, 發現比較例玻璃組合物A具有比實例玻璃組合物丨_4中任何 一個都高的呈BO*結構單元形式的莫耳% B2〇p此外,發 現比較例玻璃組合物A具有比實例玻璃組合物14中任何一 個都低的呈BO3結構單元形式的莫耳% b2〇3。 如先前所論述,B〇4結構單元的形成與高汽相壓力之鹼金 屬硼酸鹽錯合物的形成相關聯,而B〇3結構單元的形成與低 汽相壓力的稀土硼酸鹽錯合物的形成相關聯。因此,由於 實例玻璃組合物1-4具有比該比較例玻璃組合物入高的百分 比之B〇3結構單元及低的百分比之B〇4結構單元所以預期 實例玻璃組合物1 4在高溫下加工期間具有比比較玻璃組 合物A低的硼發射。此外,因為B〇3結構單元之極性小於b〇4 結構單元之極性,所以預期實例玻璃組合物14具有與比較 例玻璃組合物A相比低的介電常數及耗散因子。 此外,如表2中所指示,判定了每一玻璃組合物之液相線 溫度(Ί、丨og3成形溫度(,,Tf")及Δτ值。根據Α§τΜ 95764.doc -40· 1330622 C829"Standard Practices for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method.”來判 定液相線溫度(TL)。根據 ASTM C965 " Standard Practice for Measuring Viscosity of Glass Above the Softening Point."來 判定1000泊熔化黏度時的log3成形溫度(TF)。如可由表2看 出,實例玻璃組合物2-4具有與比較例組合物A類似的TL、 TF及ΔΤ值。儘管實例玻璃組合物1具有比比較例組合物A低 的ΔΤ值,但是仍然認為實例組合物1適合用於商業纖維成形 操作中。 表2 玻璃組合物號碼 A 1 2 3 4 La203/B203(莫耳比) 0.00 0.03 0.05 0.08 0.15 重量 % 莫耳 % 重量 % 莫耳 % 重量 % 莫耳 % 重量 % 莫耳 % 重量 % 莫耳 % ai2o3 13.04 8.03 12.92 8.01 12.85 8.01 12.73 7.99 12.48 7.96 B2〇3 6.42 5.79 6.36 5.78 6.32 5.77 6.27 5.76 6.14 5.74 CaO 24.47 27.39 24.25 27.34 24.11 27.31 23.89 27.27 23.41 27.16 Fe2〇3 0.38 0.15 0.38 0.15 0.38 0.15 0.37 0.15 0.37 0.15 κ2〇 0.11 0.07 0.10 0.07 0.10 0.07 0.10 0.07 0.10 0.07 La2〇3 0.00 0.00 0.89 0.17 1.48 0.29 2.35 0.46 4.31 0.86 MgO 1.30 2.02 1.29 2.02 1.28 2.02 1.27 2.01 1.24 2.00 Na20 0.40 0.41 0.40 0.41 0.40 0.41 0.39 0.41 0.39 0.41 Si02 53.27 55.66 52.80 55.56 52.48 55.50 52.02 55.40 50.98 55.18 T1O2 0.61 0.48 0.60 0.48 0.60 0.48 0.59 0.48 0.58 0.47 總量 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 TL(°C) 1070 1074 1065 1065 1060 TF(°C) 1169 1128 1167 1159 1157 △T(0C) 99 54 102 94 97 實例2 : 如上文在實例1中所論述,製備一種具有表2中所闡明之 實例玻璃組合物4的玻璃配料與一種具有比較例玻璃組合 物A的玻璃配料。隨後使用TGA判定每一玻璃組合物之作為 時間之函數的重量損失。對每一玻璃組合物之三個50.0克 95764.doc •41 - 1330622 樣品進行個別地測試。TGA單元包括一個鉑-20%铑合金掛 堝及懸掛於一熔爐内的懸桿。該懸桿被連接至位於該熔爐 之外並具有0.001克精度的數位天平,且每隔3 0秒自動記錄 作為時間之函數的重量變化之量測。將該等樣品加熱至足 以達成約25泊之熔化黏度(其對應於兩種玻璃組合物之約 1470°C的溫度)的溫度。在達到所要黏度之後,將該等樣品 保持於彼溫度下歷經6 0 0分鐘。自為每一玻璃組合物收集到 的資料產生了平均硼重量損失對熔化時間(即固定時間)的 曲線圖。自此資料產生了每一玻璃組合物之平均硼發射率 對熔化時間的曲線(上文展示於圖2中)。 如圖2之曲線中所指示,來自實例玻璃組合物4之硼發射 率低於來自比較例組合物A之硼發射率。丹次,儘管在本文 中不具有限制性且如先前所論述,咸信此可歸因於與比較 性實例玻璃組合物A中的高汽相壓力鹼金屬硼酸鹽錯合物 之形成相比,在熔化實例玻璃組合物4期間低汽相壓力的稀 土硼酸鹽錯合物優先形成。 實例3 : 如上文在實例丨中所論述,製備一種具有表2中所闡明之 實例玻璃組合物4的玻璃配料與一種具有比較例玻璃組合 物A的玻璃配料。隨後如上文在實例2中所描述使用tga來 測試每-玻璃組合物之樣品,然而,使用⑽泊的炼化黏 度(對應於實例玻璃組合物i之約1447它的溫度及比較性實 例玻璃組合物A之約1488°C的溫痄〉。h1 刃,现度)。如圖3所示,根據本發 明之玻璃組合物(意即,實例玻璁細人札β 故啤組合物1)具有比比較例玻 95764.doc -42- 1330622 璃組合物A低的硼發射率β 實例4 : 如上文在實例1中所論述,製造表3中所闡明的實例玻璃 組合物5-22中的每一個之按鈕樣品。該等實例玻璃組合物 5-22係基於一經設計的試驗,其中隨意地改變Aha、 B2〇3、CaO、MgO及1^2〇3之重量百分比以模擬商業纖維玻 璃生產,同時保持其它微量氧化物添加物恆定。調整每一 玻璃組合物中Si〇2的量以達成100重量百分比的總氧化物。 在形成每一組合物之按鈕樣品之後,由Maumee,〇hi〇之 Monarch Analytical Laboratory使用體積滴定、濕式分析法 來疋里地里測每一樣品之重量百分比羽。隨後將相對硼損 失計算為配料組合物中ΙΑ的量與被判定是在按鈕樣品中 的B2〇3的量之間的差除以玻璃配料組合物中b2〇3的量。 如表3中所指示’來自實例玻璃組合物之相對硼損失在炼 化期間通常小於1 5〇/(^比較而言,發明者已經發現來自含 有與實例玻璃組合物5-22類似量的仏〇3之商業E玻璃組合 物之相對硼損失為5%左右(使用相同的濕式分析方法)。 此外’如表3所示,實例玻璃組合物5-22全部具有不大於 1200°C的l〇g3成形溫度,且at值大於55°C。 95764.doc •43- 1330622 表3 玻璃組合物號碼 5 6 7 8 9 10 11 12 13 La2〇3/B2〇3 (莫耳比) 0.030 0.028 0.030 0.030 0.028 0.030 0.030 0.032 0.032 組合物(重量°/〇) A1203 13.04 13.00 12.96 12.72 12.77 12.90 12.89 13.10 12.76 B2O3 6.52 6.50 6.15 6.49 6.52 6.35 6.25 6.21 6.18 CaO 23.84 24.49 24.43 24.49 23.87 24.21 24.08 23.95 24.54 Fe203 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 K20 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.10 La2〇3 0.92 0.86 0.86 0.92 0.86 0.89 0.87 0.93 0.92 MgO 1.17 1.16 1.39 1.40 1.40 1.28 1.18 1.41 1.17 Na20 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 Si02 52.87 52.36 52.57 52.35 52.93 52.71 53.07 52.76 52.81 SrO 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.13 Ti02 0.60 0.60 0.60 0.60 0.60 0.60 0.61 0.61 0.60 Zr02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 總量 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 特性 B2〇3(重量 %) 6.47 6.42 6.11 6.43 6.34 6.26 6.22 6.23 6.19 相對硼損失(%) 0.77 1.23 0.65 0.92 2.76 1.42 0.48 氺 參 TL(°C) 1059 1066 1069 1068 1064 1066 1068 1064 1085 Tf(°C) 1172 1160 1168 1156 1161 1162 1163 1164 1163 △T(〇C) 113 94 99 88 97 96 95 100 78 玻璃組合物號碼 14 15 16 17 18 19 20 21 22 La2〇3/B2〇3 (莫耳比) 0.030 0.028 0.030 0.030 0.028 0.030 0.030 0.032 0.032 組合物(重量%) Al2〇3 13.09 12.81 13.03 12.90 12.84 13.06 12.77 12.71 12.91 B203 6.21 6.21 6.18 6.35 6.56 6.53 6.19 6.49 6.45 CaO 23.94 23.93 24.56 24.21 23.99 23.88 24.58 24.48 24.34 Fe2〇3 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.37 Κ20 0.11 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 La2〇3 0.87 0.93 0.92 0.89 0.93 0.86 0.86 0.86 0.91 MgO 1.17 1.41 1.17 1.28 1.18 1.40 1.40 1.16 1.39 Na2〇 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 Si02 53.08 53.07 52.50 52.71 52.86 52.62 52.56 52.67 52.37 95764.doc • 44· 1330622Polymeric composites = PCBs in accordance with various embodiments of the present invention can be fabricated by any of the methods known in the art for making polymeric composites and/or. For example, although not limiting herein, a polymeric composite according to the invention is made by impregnating a woven fabric or a non-woven woven or fiberglass with a polymeric matrix material and subsequently curing the polymeric matrix material. Things. Alternatively, the chopped glass fibers can be incorporated into a polymeric matrix material and the resulting mixture extruded into the desired shape. In addition, although not limiting herein, it is possible, for example, to impregnate a woven glass fabric by using a polymeric polymeric matrix material and then partially cure the polymeric base material or "time _-ton" Immersing the sheet and forming it ^ 95764.doc -36 - 1330622 The POB of the present invention. Thereafter, the prepreg sheet (4) can be formed into a desired size and one or more layers of the prepreg sheet can be joined together to form a laminate. Copper may be coated on one or both surfaces of the laminate, and if desired 'the copper may be patterned to form - or multiple circuits and/or one or f holes may be drilled into the package Overlay to provide electrical interconnection. Thereafter, the stacks can be stacked together to form a pCB. It will be appreciated, however, that other methods for forming polymeric composites and pCBs which are not described above and which are suitable for use in forming the polymeric composites and PCBs of the present invention are well known in the art. The non-limiting examples given above are not intended to limit the invention in any way and are provided for illustrative purposes only. A method for inhibiting the volatilization of boron from a glass composition comprising 82 〇 3 according to the present invention will now be described. One non-limiting embodiment of a method for inhibiting volatilization of a glass composition comprising a b panel comprises: Adding 1〇3 to the glass composition prior to processing the glass composition such that the glass composition has a molar ratio of 1〇3 to B2〇3 from 0.01 to 0.33 before processing (where R is at least one rare earth element) And processing the glass composition, wherein after processing, the glass composition has a relative boron loss of no more than 5 percent. Moreover, in accordance with this non-limiting embodiment of the invention, the glass composition can have a relative boron loss of no more than 2 percent during processing, or more desirably no relative boron loss after processing. As previously discussed, the addition of rare earth oxides to the cerium-containing glass composition advantageously reduces the volatilization of boron from the glass composition by preferentially forming a low vapor phase pressure rare earth complex salt complex. Although not required, according to this embodiment of the invention, the glass composition may comprise from 2 to 13 weight percent of 95764.doc -37·丄330622 B2〇3. Further, although not required, when the glass composition is a fiberizable glass combination for producing glass fibers suitable for use in electronic applications, the glass composition may include 5 to 10 weight percent of B2 〇. 3. According to this embodiment of the method for inhibiting the volatilization of boron from a glass composition comprising B2〇3, the at least one rare earth element, R, may be selected from the group consisting of halogens of Group 3 of the Periodic Table of the Elements, and is desirably selected from the group consisting of Sc), lanthanum and lanthanide elements (that is, groups of elements having an atomic number of 57 (steel (La)) to 71 (Lu)). As previously discussed with respect to the fiberizable glass compositions in accordance with embodiments of the present invention, Sc, Y, and steel elements have a stable 3 + oxidation state and a relatively high ion potential in the glass (see Table 1 above). β Therefore, these elements are elements which are particularly desirable in the method for suppressing boron volatilization according to the present invention. In general, however, any rare earth element having a 3 + oxidation state of ruthenium and an ion potential in the glass of at least 2.5 can be utilized in accordance with the method of this embodiment of the invention. "External", although not limiting herein, according to this non-limiting method of the raw embodiment, processing the glass composition may include forming a temperature at or above the I 〇 g 3 of the glass composition. The glass composition is processed below. For example, processing can include melting the glass composition composition to form fibers. In a special, non-limiting example of the method of this non-limiting embodiment of the invention, 'the rare earth element is 镧', wherein the example can be effectively used. The standard for reducing boron from the use of high volume commercial processes Contains B2〇M glass. The glass composition volatilizes. Further, 'although there is no limitation herein', 95764.doc -38- ΟΔΔ according to the present invention, the method for suppressing boron volatilization, and the glass composition comprising β2ο3 and at least one metal oxide _ ° material combination can be particularly useful. By way of example, &''''''''''''''''''' Various non-limiting embodiments of the invention will now be described in the following non-limiting examples. EXAMPLES Example 1 : Four glass batches each having an example glass composition Bu 4 (given in Table 2 below) and a glass batch having a comparative example glass composition "Α" (illustrated in Table 2) were prepared as follows The reagent grade oxide powder was blended to form the desired composition as indicated in Table 2. After blending, each glass batch composition was heated to about 145 in #1〇% chain hangings. The glass composition was melted for about 4 hours. Thereafter, the "button" of each glass composition was prepared by pouring the molten glass from the crucible into a stainless steel mold, and then placed at 750 ° C. The oven was passed for 3 hours. The oven was then turned off and the glass was allowed to cool in the oven to room temperature overnight to allow the glass to anneal. In addition to the enthalpy loss during melting, the glass button was expected, and a and glass ingredients were The combination of compositions is similar. As discussed below, bismuth from the example glass composition 1 _4 is expected; the loss is less than the Β2〇3 loss of the glass composition of the comparative example. Although ν & 2〇 and Κ2〇 and fluoride ( If present, it is volatile in glass refining, but because of the low concentration of these materials in the glass composition tested, it is believed that all of the glass 95764.doc •39-13325622 glass composition is caused by the volatilization of these materials. Any change was irrelevant. After cooling to room temperature, the buttons were analyzed using 11B MAS NMR* to determine the species formation of boron in each glass composition. Based on NMR data, a molar % in the form of B〇3 was produced. B2〇3 and the curve of Mohr% in the form of B〇4 versus Molar% La2〇3. This specific curve has been discussed above with respect to Figures 1 & and ^. As previously discussed, as can be seen by la&lb It is seen that as the molar %1^2〇3 in the glass composition increases, the molar %b2〇3 in the form of the B〇3 structural unit increases, while the molar % in the form of the B〇4 structural unit 82 〇 3 was reduced. Therefore, it was found that the comparative glass composition A had a molar % B2 〇p in the form of BO* structural unit higher than any of the example glass compositions 丨_4, and the comparative glass was found. Composition A has a lower than any of the example glass compositions 14 Molar % b2 〇 3 in the form of a BO3 structural unit. As previously discussed, the formation of the B 〇 4 structural unit is associated with the formation of an alkali metal borate complex of high vapor phase pressure, while the B 〇 3 structural unit Formation of a rare earth borate complex formed with a low vapor phase pressure. Thus, since the example glass compositions 1-4 have a higher percentage of B〇3 structural units and a lower percentage than the comparative glass composition The B 〇 4 structural unit is therefore expected to have a lower boron emission during processing at elevated temperatures than at the comparative glass composition A. Furthermore, since the polarity of the B 〇 3 structural unit is less than the polarity of the b 〇 4 structural unit, It is therefore contemplated that the example glass composition 14 has a lower dielectric constant and dissipation factor than the comparative glass composition A. Further, as indicated in Table 2, the liquidus temperature (Ί, 丨 og3 forming temperature (,, Tf ") and Δτ value of each glass composition was determined. According to Α§τΜ 95764.doc -40· 1330622 C829&quot "Standard Practices for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method." to determine the liquidus temperature (TL). According to ASTM C965 " Standard Practice for Measuring Viscosity of Glass Above the Softening Point. Log3 forming temperature (TF) at melt viscosity. As can be seen from Table 2, Example Glass Compositions 2-4 have similar TL, TF, and ΔΤ values as Comparative Example Composition A. Although Example Glass Composition 1 has a comparative ratio Example Composition A has a low ΔΤ value, but Example Composition 1 is still considered suitable for use in commercial fiber forming operations. Table 2 Glass Composition Number A 1 2 3 4 La203/B203 (Morby) 0.00 0.03 0.05 0.08 0.15 Weight % Mo % % by weight Mo % % by weight Mo % % by weight Mo % % by weight Mo % % ai2o3 13.04 8.03 12.92 8.01 12.85 8.01 12.73 7.99 12.48 7.96 B2〇3 6.42 5.7 9 6.36 5.78 6.32 5.77 6.27 5.76 6.14 5.74 CaO 24.47 27.39 24.25 27.34 24.11 27.31 23.89 27.27 23.41 27.16 Fe2〇3 0.38 0.15 0.38 0.15 0.38 0.15 0.37 0.15 0.37 0.15 κ2〇0.11 0.07 0.10 0.07 0.10 0.07 0.10 0.07 0.10 0.07 La2〇3 0.00 0.00 0.89 0.17 1.48 0.29 2.35 0.46 4.31 0.86 MgO 1.30 2.02 1.29 2.02 1.28 2.02 1.27 2.01 1.24 2.00 Na20 0.40 0.41 0.40 0.41 0.40 0.41 0.39 0.41 0.39 0.41 Si02 53.27 55.66 52.80 55.56 52.48 55.50 52.02 55.40 50.98 55.18 T1O2 0.61 0.48 0.60 0.48 0.60 0.48 0.59 0.48 0.58 0.47 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 TL (°C) 1070 1074 1065 1065 1060 TF (°C) 1169 1128 1167 1159 1157 △T(0C) 99 54 102 94 97 Example 2: As above As discussed in Example 1, a glass batch having the example glass composition 4 set forth in Table 2 and a glass batch having the glass composition A of Comparative Example were prepared. The weight loss of each glass composition as a function of time was then determined using TGA. Three 50.0 grams of 95764.doc • 41 - 1330622 samples were individually tested for each glass composition. The TGA unit consists of a platinum-20% niobium alloy hanging rod and a suspension rod suspended in a furnace. The suspension rod is connected to a digital balance located outside the furnace and having an accuracy of 0.001 gram, and the measurement of the weight change as a function of time is automatically recorded every 30 seconds. The samples were heated to a temperature sufficient to achieve a melt viscosity of about 25 poise which corresponds to a temperature of about 1470 ° C for the two glass compositions. After reaching the desired viscosity, the samples were held at the temperature for 60 minutes. The data collected for each glass composition produced a graph of average boron weight loss versus melting time (i.e., fixed time). From this data, a plot of the average boron emissivity versus melting time for each glass composition (shown above in Figure 2) was generated. As indicated in the graph of Figure 2, the boron emissivity from the example glass composition 4 was lower than the boron emissivity from the comparative composition A. Danji, although not limiting herein and as previously discussed, is believed to be attributable to the formation of a high vapor phase pressure alkali metal borate complex in Comparative Example Glass Composition A, The low vapor phase pressure rare earth borate complex during the melting of the example glass composition 4 is preferentially formed. Example 3: A glass batch having the example glass composition 4 set forth in Table 2 and a glass batch having the glass composition of Comparative Example A were prepared as discussed above in the Examples. The sample per glass composition was then tested using tga as described above in Example 2, however, using a refining viscosity of (10) poise (corresponding to the temperature of the example glass composition i of about 1447 and its comparative example glass combination) A temperature of about 1488 ° C of the object A. h1 blade, the degree of presence). As shown in Fig. 3, the glass composition according to the present invention (i.e., the example glassy fines of the beer composition 1) has a lower boron emission than the glass composition of the comparative example glass 95764.doc - 42-13325622. Rate β Example 4: Button samples for each of the example glass compositions 5-22 set forth in Table 3 were made as discussed above in Example 1. The example glass compositions 5-22 are based on a designed test in which the weight percentages of Aha, B2〇3, CaO, MgO and 1^2〇3 are optionally varied to simulate commercial fiberglass production while maintaining other trace oxidations. The additive is constant. The amount of Si 〇 2 in each glass composition was adjusted to achieve 100 weight percent total oxide. After forming the button sample for each composition, the Monarch Analytical Laboratory of Maumee, 〇hi〇 used a volumetric titration, wet analysis method to measure the weight percent plume of each sample. The relative boron loss is then calculated as the difference between the amount of rhodium in the furnish composition and the amount of B2〇3 determined to be in the button sample divided by the amount of b2〇3 in the glass furnish composition. As indicated in Table 3, the relative boron loss from the example glass composition is typically less than 15 〇 during refining. (Comparatively, the inventors have found bismuth from a similar amount to the example glass composition 5-22. The relative boron loss of the Commercial E glass composition of 〇3 is about 5% (using the same wet analysis method). Further, as shown in Table 3, the example glass compositions 5-22 all have a temperature of not more than 1200 °C. 〇g3 forming temperature, and the at value is greater than 55 ° C. 95764.doc •43- 1330622 Table 3 Glass composition number 5 6 7 8 9 10 11 12 13 La2〇3/B2〇3 (Morby) 0.030 0.028 0.030 0.030 0.028 0.030 0.030 0.032 0.032 Composition (weight °/〇) A1203 13.04 13.00 12.96 12.72 12.77 12.90 12.89 13.10 12.76 B2O3 6.52 6.50 6.15 6.49 6.52 6.35 6.25 6.21 6.18 CaO 23.84 24.49 24.43 24.49 23.87 24.21 24.08 23.95 24.54 Fe203 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 K20 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.10 La2〇3 0.92 0.86 0.86 0.92 0.86 0.89 0.87 0.93 0.92 MgO 1.17 1.16 1.39 1.40 1.40 1.28 1.18 1.41 1.17 Na20 0.40 0.4 0 0.40 0.40 0.40 0.40 0.40 0.40 0.40 Si02 52.87 52.36 52.57 52.35 52.93 52.71 53.07 52.76 52.81 SrO 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.13 Ti02 0.60 0.60 0.60 0.60 0.60 0.60 0.61 0.61 0.60 Zr02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Characteristic B2〇3 (% by weight) 6.47 6.42 6.11 6.43 6.34 6.26 6.22 6.23 6.19 Relative boron loss (%) 0.77 1.23 0.65 0.92 2.76 1.42 0.48 氺 TL (°C) 1059 1066 1069 1068 1064 1066 1068 1064 1085 Tf(°C) 1172 1160 1168 1156 1161 1162 1163 1164 1163 △T(〇C) 113 94 99 88 97 96 95 100 78 Glass composition number 14 15 16 17 18 19 20 21 22 La2〇3 /B2〇3 (Morby) 0.030 0.028 0.030 0.030 0.028 0.030 0.030 0.032 0.032 Composition (% by weight) Al2〇3 13.09 12.81 13.03 12.90 12.84 13.06 12.77 12.71 12.91 B203 6.21 6.21 6.18 6.35 6.56 6.53 6.19 6.49 6.45 CaO 23.94 23.93 24.56 24.21 23.99 23.88 24.58 24.48 24.34 Fe2〇3 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.37 Κ20 0.11 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 La2〇3 0.87 0.93 0.92 0.89 0.93 0.86 0.86 0.86 0.91 MgO 1.17 1.41 1.17 1.28 1.18 1.40 1.40 1.16 1.39 Na2〇0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 Si02 53.08 53.07 52.50 52.71 52.86 52.62 52.56 52.67 52.37 95764.doc • 44· 1330622

SrO 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 Ti02 0.60 0.60 0.60 0.60 0.61 0.60 0.60 0.60 0.60 Zr02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 總量 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 特性 8203(重量%)量測 6.04 6.22 6.06 6.26 6.51 6.46 6.12 6.25 6.35 相對硼損失(〇/〇) 2.74 * 1.62 1.42 0.76 1.07 1.13 3.70 1.55 Tl(°C) 1064 1065 1080 1061 1057 1051 1083 1081 1071 Tf(°C) 1172 1168 1158 1161 1170 1166 1160 1164 1171 △T(0C) 108 103 78 100 113 115 77 83 100 *在樣品中不能偵測到硼損失,因為如使用上述濕式分析法 而量測到的所配組合物中的重量百分比硼與按鈕樣品中的 重量百分比硼之間的差異在試驗誤差之内。 實例5 : 如先前所論述,除了具有降低的硼揮發之外,根據本發 明之實施例的可纖維化玻璃組合物可具有所要的介電特 性。舉例而言,下表4展示了根據本發明之非限制性實施例 之兩種實例玻璃組合物(分別為23及24)及比較例玻璃組合 物(標記為玻璃組合物B)的介電常數及耗散因子。實例玻璃 組合物23及24與比較例玻璃組合物B二者均包含約6重量% BZ〇3及約0.6重量% MgO。比較例玻璃組合物B亦包含約 0.01重里% κ20、約0.9重量% Na20、約〇· 1重量% Sr〇及約 〇·〇2重量%Zr〇2,其模擬商業e玻璃組合物中常見的雜質含 量。 如上文在實例1中所指示,製備以下展示於表4中的每一 破璃組合物之玻璃按鈕樣品。隨後分別在丨MHz&i GHz下 對每一玻璃按鈕樣品進行介電常數及耗散因子量測(由 95764.doc -45- 1330622SrO 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 Ti02 0.60 0.60 0.60 0.60 0.61 0.60 0.60 0.60 0.60 Zr02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Characteristic 8203 (% by weight) Measure 6.04 6.22 6.06 6.26 6.51 6.46 6.12 6.25 6.35 Relative boron loss (〇/〇) 2.74 * 1.62 1.42 0.76 1.07 1.13 3.70 1.55 Tl(°C) 1064 1065 1080 1061 1057 1051 1083 1081 1071 Tf(°C) 1172 1168 1158 1161 1170 1166 1160 1164 1171 △T(0C) 108 103 78 100 113 115 77 83 100 *No boron loss can be detected in the sample because the weight percentage of the composition is as measured using the wet analysis method described above. The difference between the weight percent boron in the button sample and the test sample is within the experimental error. Example 5: As previously discussed, in addition to having reduced boron volatilization, the fiberizable glass composition according to embodiments of the present invention can have the desired dielectric properties. For example, Table 4 below shows the dielectric constants of two example glass compositions (23 and 24, respectively) and comparative glass compositions (labeled as glass composition B) in accordance with non-limiting examples of the present invention. And dissipation factor. Example Glass Compositions 23 and 24 and Comparative Glass Composition B both contained about 6% by weight BZ 〇 3 and about 0.6% by weight MgO. Comparative Example Glass Composition B also comprised about 0.01% by weight of κ20, about 0.9% by weight of Na20, about 1% by weight of Sr〇, and about 2% by weight of Zr〇2, which were simulated in commercial e-glass compositions. Impurity content. The glass button samples of each of the glass breaking compositions shown below in Table 4 were prepared as indicated above in Example 1. Dielectric constant and dissipation factor measurements were then taken for each glass button sample at 丨MHz & i GHz (by 95764.doc -45-1330622)

East of Hunt Valley,Maryland 之 Trace Lab)。根據 ASTM D150-98 "Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant)of Solid Electrical Insulation."來執行介電常數及耗散因子量 測。 如表4中所指示,實例玻璃組合物23及24在1 MHz下的介 電常數("Dk")不大於7.5且實例可纖維化玻璃組合物之耗散 因子不大於0.01。此外,實例可纖維化玻璃組合物23及24 在1 MHz下的Dk小於7·3且實例可纖維化玻璃組合物23及24 在1 MHz下的Df不大於0.005。 此外,實例玻璃組合物23及24在1 GHz下的Dk及Df值比 比較例可纖維化玻璃組合物B的Dk及Df值低。儘管比較例 玻璃組合物B中的模擬驗金屬氧化物雜質理論上可增大此 玻璃組合物之介電常數及耗散因子’但是咸信該玻璃組合 物之大體上更大的CaO含量將對此玻璃組合物中的介電特 性具有主要的影響。 此外,如表4所示,實例可纖維化玻璃組合物23及24具有 不大於1200°C的log3成形溫度,且ΔΤ值大於55°C。 表4 玻璃組合物號碼 B 23 24 莫耳比La2〇3/B2〇3 0. 00 0. D6 0.12 重量& 莫耳% 重量% 莫耳% 重量% 莫耳% _ αι20, 13.86 8.57 13.88 8.73 13.64 8.70 B203 6.03 5.46 6.03 5.56 5.93 5.54 _ CaO 22.97 25.82 23.00 26.31 22.61 26.22 F, 0.70 1.16 0 0 0 — 〇 -Fe20, 0.36 0.14 0.36 0.14 0.35 0.14 K,0 0.10 0.07 0 0 0 〇 La2〇' 0.00 0.00 1.69 0.33 3.33 0.67 ~ 95764.doc -46-East of Hunt Valley, Trace Lab, Maryland. The dielectric constant and dissipation factor measurements were performed in accordance with ASTM D150-98 "Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation.". As indicated in Table 4, the dielectric constants ("Dk") of the example glass compositions 23 and 24 at 1 MHz are no greater than 7.5 and the dissipation factor of the example fiberizable glass composition is no greater than 0.01. Moreover, the example fiberizable glass compositions 23 and 24 have a Dk of less than 7.3 at 1 MHz and the example fiberizable glass compositions 23 and 24 have a Df of no greater than 0.005 at 1 MHz. Further, the Dk and Df values of the example glass compositions 23 and 24 at 1 GHz were lower than the Dk and Df values of the comparative fiberizable glass composition B. Although the simulated metal oxide impurity in Comparative Example Glass Composition B theoretically increases the dielectric constant and dissipation factor of the glass composition, it is believed that the substantially larger CaO content of the glass composition will be The dielectric properties in this glass composition have a major impact. Further, as shown in Table 4, the example fiberizable glass compositions 23 and 24 have a log 3 forming temperature of not more than 1200 ° C and a ΔΤ value of more than 55 ° C. Table 4 Glass Composition No. B 23 24 Mobi La2〇3/B2〇3 0. 00 0. D6 0.12 Weight & Mo % % by weight Mo % % by weight Mo % % _ αι20, 13.86 8.57 13.88 8.73 13.64 8.70 B203 6.03 5.46 6.03 5.56 5.93 5.54 _ CaO 22.97 25.82 23.00 26.31 22.61 26.22 F, 0.70 1.16 0 0 0 — 〇-Fe20, 0.36 0.14 0.36 0.14 0.35 0.14 K,0 0.10 0.07 0 0 0 〇La2〇' 0.00 0.00 1.69 0.33 3.33 0.67 ~ 95764.doc -46-

實例6 : 丄⑽622 下表5展示了根據本發明之非限制性實施例之兩種實例 玻璃、、且0物(分別為25及26)及一種比較例玻璃組合物(標記 為玻璃組合物C)的介電常數及耗散因子。該等實例玻璃組 〇物包含約8至約10重量% B2〇3及約〇·〇2之La203/B203莫耳 比中的La2〇3 ;而該比較例玻璃組合物含有約1 〇重量%b2〇3 且不含有稀土氧化物。此外,表5中所展示之所有可纖維化 玻璃組合物包含2至3重量%之間的MgO。 如上文在實例1中所指示,製備以下展示於表5中的可纖 維化玻璃組合物中的每一種之玻璃按鈕樣品,且如上文在 實例5中所描述進行介電常數及耗散因子量測。如表5中所 指不’實例組合物25在1 MHz以及1 GHz下的介電常數稍微 南於比較例組合物C »然而,實例組合物25在1 MHz以及1 GHz下的耗散因子低於比較例組合物c。實例可纖維化玻璃 組合物26亦具有稍高於比較組合物c之介電常數,然而,咸 信此可部分地歸因於實例組合物26中與比較例組合物C相 比較低的ΙΟ〗含量。儘管如此,實例組合物26在1 MHz以 95764.doc • 47· 1330622 及1 GHz下具有明顯低於比較例組合物。的]3£值。 儘管並非意欲受到任何特定理論的約束,但是發明者認 為由於組σ物C具有相對高的Mg〇含量,所以比較例破璃 組合物C之介電特性可優於用於電子應用之市售含ίο〗之 E玻璃所預期的介電特性。 此外,如表5所示,可纖維化玻璃組合物25及%具有不大 於1200 C的lod3成形溫度,且ΔΤ值大於55〇c。 玻璃組合物號碼 C 25 26 莫耳比La2〇3/B2〇3 0.00 0.02 0.02 重量% 莫耳% 重量% 莫耳% 重量% 莫耳% AI2O3 13.49 8.33 13.36 8.31 13.66 8 48 B2O3 10.17 9.19 10.07 9.17 8.12 7.38 CaO 19.76 22.17 19.57 22.13 20.00 22 57 F2 0.34 0.57 0.34 0.56 0.35 〇 58 Fe203 0.35 0.14 0.35 0.14 0.35 0.14 K2O 0.10 0.06 0.10 0.06 0.10 0 07 L&2〇3 0 0 0.97 0.19 0.94 0 18 MgO 2.43 3.80 2.41 3.79 2.46 3.86 Na20 0.42 0.43 0.42 0.43 0.43 0 44 Si〇2 52.39 54.87 51.88 54.77 53.04 55 86 SrO 0 0 0' 0 0 0 T1O2 0.56 0.44 0.55 0.44 0.56 0.45 Zr02 0 0 0 0 0 0 總量 100.0 100.0 100.0 100.0 100.0 100.0 TL(°C) 1085 10 76 10 77 TF(°C) 1170 1161 1181 △t(oc) 85 85 104 Dk, 1MHz 7.01 7.03 7.11 Dk, 1GHz 6.83 6.94 6.97 Df, 1MHz 0.0038 0.0026 0.0020 Df, 1GHz 0.0440 0.0144 0.0052 應理解’本說明書說明了與本發明之清晰的理解有關的 本發明之態樣。為了簡化本發明,對於普通的熟習此項技 術者而言將顯而易見且因此將不會促進對本發明之更好的 理解的本發明之某些態樣未予提供。儘管已連同某些實施 95764.doc -48- 1330622 例而說明了本發明,但是本發明並不限於所揭示的特定實 施例’而是意欲涵蓋在如由附加之中請專利範圍所界定的 本發明之精神及範疇内的修改。 【圖式簡單說明】 圓1&係一系列可纖維化玻璃組合物之莫耳百分比La2〇3 與呈BO3形式的莫耳百分比b2〇3之曲線。 圖lb係一系列可纖維化玻璃組合物之莫耳百分&La2〇3 與呈BO4形式的莫耳百分比匕〇3之曲線。 圓2係根據本發明之非限制性實施例的可纖維化玻璃組 合物及一種作為比較的可纖維化玻璃組合物之硼發射率對 時間的曲線。 圖3係根據本發明之非限制性實施例的可纖維化玻璃組 合物及一種作為比較的可纖維化玻璃組合物之硼發射率對 時間的曲線。 圖4係一系列可纖維化玻璃組合物之b〇3/(b〇3+B〇4)之莫 耳比對La2〇3/B2〇3之莫耳比的曲線。 95764.doc 49-Example 6: 丄 (10) 622 Table 5 below shows two example glasses according to non-limiting examples of the invention, and zero (25 and 26, respectively) and a comparative glass composition (labeled as glass composition C) Dielectric constant and dissipation factor. The example glass compositions of the present invention comprise from about 8 to about 10% by weight of B2〇3 and from La2〇3 in a La203/B203 molar ratio of about 〇·〇2; and the comparative example glass composition contains about 1% by weight. B2〇3 and does not contain rare earth oxides. In addition, all of the fiberizable glass compositions shown in Table 5 contain between 2 and 3% by weight of MgO. The glass button samples of each of the fibrillable glass compositions shown below in Table 5 were prepared as indicated above in Example 1, and the dielectric constant and dissipation factor amount were as described above in Example 5. Measurement. The dielectric constant of the example composition 25 at 1 MHz and 1 GHz as indicated in Table 5 is slightly souther than the comparative composition C » However, the example composition 25 has a low dissipation factor at 1 MHz and 1 GHz. In Comparative Example Composition c. The example fiberizable glass composition 26 also has a slightly higher dielectric constant than the comparative composition c, however, this can be attributed in part to the lower 实例 of the example composition 26 compared to the comparative composition C. content. Nonetheless, the example composition 26 was significantly lower than the comparative composition at 95 MHz at 95764.doc • 47·1330622 and 1 GHz. The value of 3]. Although not intended to be bound by any particular theory, the inventors believe that the dielectric properties of the comparative glass composition C may be superior to those commercially available for electronic applications due to the relatively high Mg content of the group σ. The dielectric properties expected of the E glass. Further, as shown in Table 5, the fiberizable glass compositions 25 and % have a lod3 forming temperature of not more than 1200 C, and the ΔΤ value is more than 55 〇c. Glass composition number C 25 26 Mo Erbi La2〇3/B2〇3 0.00 0.02 0.02% by weight Moen% % by weight Mo % % by weight Mo % % AI2O3 13.49 8.33 13.36 8.31 13.66 8 48 B2O3 10.17 9.19 10.07 9.17 8.12 7.38 CaO 19.76 22.17 19.57 22.13 20.00 22 57 F2 0.34 0.57 0.34 0.56 0.35 〇58 Fe203 0.35 0.14 0.35 0.14 0.35 0.14 K2O 0.10 0.06 0.10 0.06 0.10 0 07 L&2〇3 0 0 0.97 0.19 0.94 0 18 MgO 2.43 3.80 2.41 3.79 2.46 3.86 Na20 0.42 0.43 0.42 0.43 0.43 0 44 Si〇2 52.39 54.87 51.88 54.77 53.04 55 86 SrO 0 0 0' 0 0 0 T1O2 0.56 0.44 0.55 0.44 0.56 0.45 Zr02 0 0 0 0 0 0 Total 100.0 100.0 100.0 100.0 100.0 100.0 TL ( °C) 1085 10 76 10 77 TF(°C) 1170 1161 1181 △t(oc) 85 85 104 Dk, 1MHz 7.01 7.03 7.11 Dk, 1GHz 6.83 6.94 6.97 Df, 1MHz 0.0038 0.0026 0.0020 Df, 1GHz 0.0440 0.0144 0.0052 It should be understood The present specification describes aspects of the invention that are related to a clear understanding of the invention. In order to simplify the present invention, some aspects of the present invention which will be apparent to those skilled in the art and which will not facilitate a better understanding of the present invention are not provided. Although the invention has been described in connection with certain embodiments of the inventions, the disclosure of the invention is not limited to the specific embodiments disclosed, but rather is intended to cover the invention as defined by the appended claims. Modifications within the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Circle 1 & is a plot of the molar percentage of a series of fibrillable glass compositions, La2〇3, and the percentage of molar b2〇3 in the form of BO3. Figure lb is a plot of the molar percentage & La2〇3 of a series of fibrillatable glass compositions versus the molar percentage 匕〇3 of the BO4 form. Circle 2 is a graph of boron emissivity versus time for a viable glass composition according to a non-limiting embodiment of the invention and a comparative fibrillatable glass composition. Figure 3 is a graph of boron emissivity versus time for a viable glass composition and a comparative fibrillatable glass composition in accordance with a non-limiting embodiment of the present invention. Figure 4 is a graph showing the molar ratio of the molar ratio of b〇3/(b〇3+B〇4) to the molar ratio of La2〇3/B2〇3 of a series of fibrillatable glass compositions. 95764.doc 49-

Claims (1)

1330622 第093127071號專利申請率 ^^一.、—·——-— 中文申請專利範圍替換^(96年了月^^年7乃y b 十、申請專利範圍: L. --------------- 1 · 一種可纖維化玻璃組合物,其包括, 9至16重量百分比之Al2〇3 ; 〇·5至13重量百分比之b2〇3 ; 16至25重量百分比之CaO ; 0至6重量百分比之MgO ; 48至62重量百分比之si〇2 ; 0至4重量百分比之Ti〇2 ;及 R2〇3 ’其中R2〇3與b203之莫耳比範圍為自0.〇1至0.33, 且R為至少一種稀土元素。 2. 如請求項1之玻璃組合物,其中該可纖維化破璃組合物具 有一不大於1200°C的log3成形溫度;一不大於114〇〇c的液 相線溫度及一至少為55°C的△ T » 3. 如請求項1之可纖維化玻璃組合物,其中該玻璃組合物包 括5至10重量百分比的b203。 4. 如請求項1之可纖維化玻璃組合物,其中化仏與化…的該 莫耳比範圍為自0.01至0.15。 5 _如睛求項1之可纖維化玻璃組合物’其中該稀土元素係選 自由銳、紀及該等鋼系元素組成的群。 6. 如請求項1之可纖維化玻璃組合物’其中該稀土元素具有 一 3 +氧化態及一至少為2.5的玻璃中之離子電位。 7. 如請求項丨之可纖維化玻璃組合物’其中該可纖維化玻璃 組合物包括至少為0.775之B〇3結構單元對b〇3結構單元 加上B〇4結構單元之和的莫耳比。 95764-960725.doc 1330622 8. 如請求項1之可纖維化玻璃組合物,其中該玻璃組合物具 有小於百分之5的一相對硼損失。 9. 如請求項1之可纖維化玻璃組合物,其中該玻璃組合物具 有在1 MHz下不大於7.5的一介電常數。 1 〇·如請求項1之可纖維化玻璃組合物,其中該玻璃組合物具 有在1 MHz下不大於0.01的一耗散因子。 11.如請求項1之可纖維化玻璃組合物,其進一步包括〇至1 〇 重量百分比的Fe2〇3 ;不大於1重量百分比的ρ2;及〇至2 重量%之選自由NazO、K2〇及Li20組成的群的至少一種鹼 金屬氧化物。 12 ·如請求項1之可纖維化玻璃組合物,其包括, 12至16重量百分比之Al2〇3 ; 5至10重量百分比之B2〇3 ; 16至25重量百分比之CaO ; 0至4重量百分比之MgO ; 52至56重量百分比之Si〇2 ; 0至0.8重量百分比之Ti02;及 R2O3 ’其中R2〇3與B2〇3的莫耳比範圍為自0.01至0.33, 且R為至少一種稀土元素。 13. 如請求項1之可纖維化玻璃組合物,其中R2〇3包括La2〇3。 14. 如請求項1之可纖維化玻璃組合物,其中該Mg〇含量為2 至4重量百分比。 15. 如請求項12之可纖維化玻璃組合物,其中r2〇3包括 Nd203 〇 95764-960725.doc 16. 16. 17. 18. 19. 20. 21. 22. 23. 24. 種玻璃纖維’其係由如請求項1之玻璃組合物所製得。 種聚合複合物,其包括. 一聚合基質材料;及 該聚合基質材料中之至少一種如請求項16之玻璃纖 維。 如吻求項17之聚合複合物,其中該聚合複合物為一電子 電路之一基板。 種用於抑制侧自—種包括ΙΑ的玻璃組合物揮發的方 法’該方法包括: 在加工該玻璃組合物之前將R2〇3添加至該玻璃組合 物,使得該玻璃組合物在加工之前具有範圍為自0 01至 0.33的尺2〇3對32〇3之莫耳比,其中r為至少一種稀土元 素;及 加工該玻璃组合物,其中在加工之後’該玻璃組合物 具有一不大於百分之5的相對硼損失。 如請求項19之方法’其中R選自线、紀及㈣元素組成 的群。 如請求項19之方法,其中R為鑭。 如-月求項19之方法,其中r2〇3對ίο]之該莫耳比範圍為 自 0.01 至 0.15。 如請求項19之方法,廿+ 一, 其中包括B2〇3的該玻璃組合物包括 0.2至13重量百分比之b2〇3。 如請求項19之方法,使士 /、中包括Β2〇3的該玻璃組合物包括5 至10重量百分比之β2〇3。 95764-960725.doc 1330622 25. 如請求項19之方法,其中加工該玻璃組合物包括在該玻 璃組合物之l〇g3成形溫度或更高的溫度下加工該玻璃組 合物。 26. 如請求項19之方法,其中該玻璃組合物具有一不大於2% 的相對硼損失。 27. 如請求項19之方法,其中該玻璃組合物不具有相對硼損 失。1330622 No. 093127071 Patent application rate ^^一.,—·——-- Chinese application patent scope replacement ^ (96 years month ^^ year 7 is yb X. Application patent scope: L. ------- -------- 1 · A fibrillable glass composition comprising 9 to 16 weight percent of Al2〇3; 〇·5 to 13 weight percent of b2〇3; 16 to 25 weight percent of CaO 0 to 6 weight percent of MgO; 48 to 62 weight percent of si〇2; 0 to 4 weight percent of Ti〇2; and R2〇3 'where R2〇3 and b203 have molar ratios from 0.〇 1 to 0.33, and R is at least one rare earth element. 2. The glass composition of claim 1, wherein the fiberizable glass composition has a log3 forming temperature of not more than 1200 ° C; The liquidus temperature of c and a Δ T of at least 55 ° C. 3. The fibrillable glass composition of claim 1, wherein the glass composition comprises 5 to 10 weight percent of b203. The fibrillable glass composition of 1, wherein the molar ratio of the ruthenium and the ruthenium ranges from 0.01 to 0.15. The rare earth element is selected from the group consisting of sharp, kiln and the steel element. 6. The fiberizable glass composition of claim 1 wherein the rare earth element has a 3 + oxidation state and at least An ion potential in the glass of 2.5. 7. The fibrillable glass composition of claim </ RTI> wherein the viable glass composition comprises at least 0.775 B 〇 3 structural unit plus b 〇 3 structural unit plus B The moiré ratio of the sum of the structural units of 〇4. 95764-960725.doc 1330622 8. The fibrillable glass composition of claim 1, wherein the glass composition has a relative boron loss of less than 5 percent. The fibrillable glass composition of claim 1, wherein the glass composition has a dielectric constant of not more than 7.5 at 1 MHz. The fiberizable glass composition of claim 1, wherein the glass composition The material has a dissipation factor of not more than 0.01 at 1 MHz. 11. The fiberizable glass composition of claim 1 further comprising 〇 to 1 〇 by weight of Fe 2 〇 3 ; not more than 1% by weight of ρ 2 ; and 〇 to 2% by weight At least one alkali metal oxide of the group consisting of free NazO, K2 and Li20. 12. The fiberizable glass composition of claim 1, comprising 12 to 16 weight percent of Al2?3; 5 to 10 weight percent B2〇3; 16 to 25 weight percent of CaO; 0 to 4 weight percent of MgO; 52 to 56 weight percent of Si〇2; 0 to 0.8 weight percent of Ti02; and R2O3 'where R2〇3 and B2〇3 The molar ratio ranges from 0.01 to 0.33, and R is at least one rare earth element. 13. The fibrillatable glass composition of claim 1, wherein R2〇3 comprises La2〇3. 14. The fibrillatable glass composition of claim 1 wherein the Mg bismuth content is from 2 to 4 weight percent. 15. The fibrillatable glass composition of claim 12, wherein r2〇3 comprises Nd203 〇95764-960725.doc 16. 16. 17. 18. 19. 20. 21. 22. 23. 24. It is made from the glass composition of claim 1. A polymeric composite comprising: a polymeric matrix material; and at least one of the polymeric matrix materials, such as the glass fibers of claim 16. A polymeric composite of the invention of claim 17, wherein the polymeric composite is a substrate of an electronic circuit. A method for inhibiting volatilization of a glass composition comprising a ruthenium', the method comprising: adding R2〇3 to the glass composition prior to processing the glass composition such that the glass composition has a range prior to processing a molar ratio of 2 〇 3 to 32 〇 3 from 0 01 to 0.33, wherein r is at least one rare earth element; and processing the glass composition, wherein after processing, the glass composition has a ratio of not more than The relative boron loss of 5. The method of claim 19 wherein R is selected from the group consisting of a line, a record, and a (four) element. The method of claim 19, wherein R is 镧. For example, the method of claim 19, wherein the molar ratio of r2〇3 to ίο] ranges from 0.01 to 0.15. The method of claim 19, 廿 + one, wherein the glass composition comprising B2 〇 3 comprises from 0.2 to 13 weight percent of b2 〇3. The method of claim 19, wherein the glass composition comprising Β2〇3 comprises 5 to 10% by weight of β2〇3. The method of claim 19, wherein processing the glass composition comprises processing the glass composition at a temperature of 10 g of the glass composition or higher. 26. The method of claim 19, wherein the glass composition has a relative boron loss of no greater than 2%. 27. The method of claim 19, wherein the glass composition does not have a relative boron loss. 95764-960725.doc 1330622 第093127071號專利申請案 中文圖式替換頁(96年7月) 十一、圖式:95764-960725.doc 1330622 Patent Application No. 093127071 Chinese Graphic Replacement Page (July 96) XI. Schema: 厂 呈Β〇3形式的 Β2〇3 (莫耳%) 4.64 4.60 4.56 4.52 4.48 4.44The factory is in the form of Β2〇3 (mole%) 4.64 4.60 4.56 4.52 4.48 4.44 0.0 0.2 0.4 0.6 0.8 La203 (莫耳%) 圖la 1.0 呈Β〇4形式的 Β203 (莫耳%) 1.16 1.36 1.32 1.28 1.24 1.200.0 0.2 0.4 0.6 0.8 La203 (mole%) Figure la 1.0 is in the form of Β〇4 Β203 (mole%) 1.16 1.36 1.32 1.28 1.24 1.20 0.0 0.2 0.4 0.6 0.8 1.0 La2〇3〈莫耳%) 圖lb c!E/6) ιρ/ΜΡ 1.4x10-3 1.2x10'3 1.0x10'3 8.0x10'4 6.0x1 Ο*4 4.0x10'4 2.0x1 ο-40.0 0.2 0.4 0.6 0.8 1.0 La2〇3 <mole%) Figure lb c!E/6) ιρ/ΜΡ 1.4x10-3 1.2x10'3 1.0x10'3 8.0x10'4 6.0x1 Ο*4 4.0x10'4 2.0x1 ο-4 Ο 60 120 180 240 300 360 420 480 540 600 熔化時間(分鐘)Ο 60 120 180 240 300 360 420 480 540 600 Melting time (minutes) 圖3 95764-960725.docFigure 3 95764-960725.doc
TW93127071A 2003-09-09 2004-09-07 Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions TWI330622B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50138603P 2003-09-09 2003-09-09

Publications (2)

Publication Number Publication Date
TW200526536A TW200526536A (en) 2005-08-16
TWI330622B true TWI330622B (en) 2010-09-21

Family

ID=45074583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93127071A TWI330622B (en) 2003-09-09 2004-09-07 Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions

Country Status (1)

Country Link
TW (1) TWI330622B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784352B (en) * 2020-11-18 2022-11-21 南亞塑膠工業股份有限公司 Processing method of fiberglass cloth

Also Published As

Publication number Publication date
TW200526536A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
US7449419B2 (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
US11724958B2 (en) Ion exchangeable glass with high crack initiation threshold
KR102128490B1 (en) Ion Exchangeable Li-Containing Glass Compositions For 3-D Forming
KR102341851B1 (en) Hybrid Soda-Lime Silicate and Aluminosilicate Glass Articles
TWI408118B (en) Low dielectric glass and fiber glass for electronic applications
EP3562792B1 (en) Low dielectric glass composition, fibers, and article
KR102258352B1 (en) Ion exchangeable glasses with high crack initiation threshold
JP5356683B2 (en) Glass strand capable of strengthening organic and / or inorganic materials
TW201012771A (en) Glass fiber composition and printed circuit board made from the glass fiber composition
JP5086066B2 (en) Glass strands that can reinforce organic and / or inorganic materials
JP7466729B2 (en) Electronic grade glass fiber composition, glass fiber and electronic grade glass fiber fabric
CA2811360A1 (en) Low dielectric glass and fiber glass
JP2022503330A (en) Electronic grade fiberglass composition, its fiberglass and electronic grade fiberglass cloth
TWI330622B (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
Naka et al. Development of glass fiber with high dielectric constant
TWI254037B (en) Zinc phosphate glass compositions
JPS6346017B2 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees