JP2023184068A - Method for producing low-dielectric-tangent silica powder - Google Patents

Method for producing low-dielectric-tangent silica powder Download PDF

Info

Publication number
JP2023184068A
JP2023184068A JP2022097985A JP2022097985A JP2023184068A JP 2023184068 A JP2023184068 A JP 2023184068A JP 2022097985 A JP2022097985 A JP 2022097985A JP 2022097985 A JP2022097985 A JP 2022097985A JP 2023184068 A JP2023184068 A JP 2023184068A
Authority
JP
Japan
Prior art keywords
silica powder
dielectric loss
loss tangent
heating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022097985A
Other languages
Japanese (ja)
Inventor
利夫 塩原
Toshio Shiobara
肇 糸川
Hajime Itokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2022097985A priority Critical patent/JP2023184068A/en
Publication of JP2023184068A publication Critical patent/JP2023184068A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

To provide a method for producing a silica powder having reinforcing properties of silica powder and a dielectric tangent close to a low dielectric tangent inherent in quartz glass.SOLUTION: A method for producing a low-dielectric-tangent silica powder in which the dielectric tangent of the silica powder is 0.0005 or less at 10 GHz and 0.0010 or less at 40 GHz includes a heating step in which a silica powder having an average particle size of 0.1 to 30 μm is placed in a heating furnace and heated in a vacuum or in a gas having a dew point of 15°C or less under conditions in which the maximum heating temperature is 100 to 1,000°C and the amount of heating represented by a heating temperature (°C) of 100°C or more×a heating time (h) under the above condition is 450 (°C h) or more.SELECTED DRAWING: None

Description

本発明は、誘電特性、特に高周波領域の誘電正接に優れるシリカ粉体の製造方法に関するものである。 The present invention relates to a method for producing silica powder that has excellent dielectric properties, especially dielectric loss tangent in a high frequency range.

現在、スマートフォン等の情報端末の高性能化、高速通信化に伴い、使用されるプリント配線板において、高密度化、極薄化とともに、低誘電化、低誘電正接化が著しく進行している。このプリント配線板の絶縁材料としては、ガラスクロスをエポキシ樹脂等の熱硬化性樹脂(以下、「マトリックス樹脂」という。)に含浸させて得られるプリプレグを積層して加熱加圧硬化させた積層板が広く使用されている。基板における信号の伝送ロスは、Ed wardA.Wolff式:伝送損失∝√ε×tanδ、が示すように、誘電率(ε)及び誘電正接(tanδ)が小さい材料ほど改善されることが知られており、特に上記の式より伝送損失に対しては誘電正接の寄与が大きいことが知られている。そのため、Dガラス、NEガラス、Lガラス、石英ガラス等の誘電特性が向上したガラスクロスに低誘電熱硬化性樹脂の組み合わせ(特許文献1)が行われているが、より低誘電化のために樹脂よりも誘電正接の低い無機粉体を添加する方法が一般的である。しかしながら、シリカ粉体の誘電正接が10GHzで0.0010以下、かつ40GHzで0.0015以下である低誘電正接シリカ粉体は記載されていない。 BACKGROUND ART Currently, as information terminals such as smartphones become more sophisticated and communicate at higher speeds, the printed wiring boards used are becoming denser, thinner, and have lower dielectric and dielectric loss tangents. The insulating material for this printed wiring board is a laminate made by laminating prepreg obtained by impregnating glass cloth with thermosetting resin such as epoxy resin (hereinafter referred to as "matrix resin") and curing it under heat and pressure. is widely used. Signal transmission loss in the board is described by Edward A. Wolff formula: Transmission loss ∝√ε×tanδ, as shown in It is known that the contribution of the dielectric loss tangent is large. Therefore, glass cloth with improved dielectric properties such as D glass, NE glass, L glass, and quartz glass is combined with a low dielectric thermosetting resin (Patent Document 1). A common method is to add an inorganic powder that has a lower dielectric loss tangent than the resin. However, there is no description of a low dielectric loss tangent silica powder having a dielectric loss tangent of 0.0010 or less at 10 GHz and 0.0015 or less at 40 GHz.

代表的な汎用の無機粉体の一つであるシリカ粉体は、樹脂に添加する無機粉体として膨張係数も小さく、絶縁性や誘電特性にも優れた材料である。シリカ粉体の誘電特性、特に誘電正接を本来の石英ガラスのレベルに下げることができれば、今後大きく成長が期待できる高速通信用半導体等の封止材や高速通信用基板、またアンテナ基板等の充填剤として幅広い用途に展開できると考えられる。このような目的で10GHzでの誘電正接が0.0005以下のシリカ粉体が見出された(特許文献2)。しかしながら、高温で処理することでシリカ粉体表面に歪層が形成されやすいことから、シリカ粉体を充填した樹脂組成物の硬化物は強度が低下しやすい。そのため、シリカ粉体表面の歪層除去のため、エッチング液等に浸漬するエッチング工程が必要であり、通常、半導体用封止材等の充填剤として容易に入手できる2,000℃程度の高温で処理したシリカ粉体でも、目的とする誘電正接のものは入手することができなかった。 Silica powder, which is one of the typical general-purpose inorganic powders, has a small coefficient of expansion as an inorganic powder added to resins, and is a material with excellent insulation and dielectric properties. If the dielectric properties of silica powder, especially the dielectric loss tangent, can be lowered to the level of original silica glass, significant growth can be expected in the future as encapsulating materials for high-speed communication semiconductors, high-speed communication substrates, and fillings for antenna substrates, etc. It is thought that it can be used in a wide range of applications as an agent. For this purpose, silica powder having a dielectric loss tangent of 0.0005 or less at 10 GHz was discovered (Patent Document 2). However, since a strained layer is likely to be formed on the surface of the silica powder by treatment at high temperatures, the strength of the cured product of the resin composition filled with the silica powder is likely to decrease. Therefore, in order to remove the strained layer on the surface of the silica powder, an etching process is required in which the silica powder is immersed in an etching solution. Even with the treated silica powder, it was not possible to obtain one with the desired dielectric loss tangent.

特開2021-195689号公報Japanese Patent Application Publication No. 2021-195689 特開2021-187714号公報Japanese Patent Application Publication No. 2021-187714

本発明は、上記問題点に鑑みてなされたものであり、エッチング工程をすることなく、シリカ粉体が持つ補強性と石英ガラス本来の低誘電正接に近い誘電正接を有する、シリカ粉体を製造する方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to produce silica powder that has the reinforcing properties of silica powder and a dielectric loss tangent close to the low dielectric loss tangent inherent to silica glass, without an etching process. The purpose is to provide a method for

本発明者らは、上記目的を達成するため鋭意検討した。シリカ粉体は、表面のSi-OH基(シラノール基)の活性が強く、特に、高温雰囲気では水分を水素結合で取り込み、Si-O-Si結合を開裂させることでさらにSi-OH基が生じると考えられる(SiO2+H2O⇔Si-OH)。 The present inventors have made extensive studies to achieve the above object. Silica powder has a strong surface Si-OH group (silanol group) activity, and especially in high-temperature atmospheres, it absorbs moisture through hydrogen bonds and cleaves Si-O-Si bonds, which generates additional Si-OH groups. (SiO 2 +H 2 O⇔Si-OH).

シリカ粉体の吸着水除去を目的とする加熱炉の熱源は、一般的にガス炉や電気炉が使用される。ガス炉は都市ガス等の燃焼を熱源としていることから、生成物として大量の二酸化炭素と水が生じる。結果として加熱機構に水分を発生させる加熱炉を用いることで上記反応をSi-OH基が生成する方向に平衡が傾くことを見出した。 A gas furnace or an electric furnace is generally used as a heat source for a heating furnace for removing adsorbed water from silica powder. Since gas furnaces use the combustion of city gas as a heat source, large amounts of carbon dioxide and water are produced as products. As a result, it was found that by using a heating furnace that generates moisture as a heating mechanism, the equilibrium of the above reaction can be tilted in the direction in which Si--OH groups are produced.

さらに、本発明者らは、シリカ粉体の低誘電正接化のためにSi-OH基の減少が必要であることを見出した。水分を発生させない発熱機構を有する加熱炉を使用し、かつ露点をコントロールして水分の少ない雰囲気で加熱及び降温することでSi-OH基の増加を防ぎ、さらには加熱によるSi-OH基の縮合で生成した縮合水を除去することで、Si-OH基を減少させ、結果としてシリカ粉体の誘電正接を低下させることができることを見出した。 Furthermore, the present inventors have found that it is necessary to reduce the Si--OH groups in order to lower the dielectric loss tangent of the silica powder. By using a heating furnace with a heat generating mechanism that does not generate moisture, and by controlling the dew point and heating and cooling in an atmosphere with low moisture, the increase in Si-OH groups can be prevented, and furthermore, the condensation of Si-OH groups due to heating can be prevented. It has been found that by removing the condensation water generated in step 1, it is possible to reduce the Si--OH groups and, as a result, to lower the dielectric loss tangent of the silica powder.

上記知見に基づき、平均粒径が0.1~30μmのシリカ粉体を加熱炉に入れ、真空又は露点15℃以下の気体中で、最高加熱温度が100~1,000℃、前記条件下での100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する加熱工程を含むことで、上記課題を解決できることを知見し、本発明をなすに至ったものである。 Based on the above findings, silica powder with an average particle size of 0.1 to 30 μm is placed in a heating furnace, and the maximum heating temperature is 100 to 1,000 °C in a vacuum or a gas with a dew point of 15 °C or less under the above conditions. It was discovered that the above problem could be solved by including a heating step in which the heating amount expressed by heating temperature (°C) x heating time (h) of 100°C or more was 450 (°C / h) or more. However, the present invention has been completed.

従って、本発明は低誘電正接シリカ粉体の製造方法を提供する。
1.平均粒径が0.1~30μmのシリカ粉体を加熱炉に入れ、真空又は露点15℃以下の気体中で、最高加熱温度が100~1,000℃、かつ前記条件下での100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する加熱工程を含む、シリカ粉体の誘電正接が10GHzで0.0005以下、かつ40GHzで0.0010以下である低誘電正接シリカ粉体の製造方法。
2.加熱前、昇温中、温度保持中及び降温中のいずれか1つ以上に、露点が0℃以下の乾燥気体を、加熱炉内に導入する1記載の低誘電正接シリカ粉体の製造方法。
3.降温中に、露点が0℃以下の乾燥気体を、加熱炉内に導入する2記載の低誘電正接シリカ粉体の製造方法。
4.気体が、空気及び不活性ガスから選ばれ、露点15℃以下の気体である1~3のいずれかに記載の低誘電正接シリカ粉体の製造方法。
5.加熱炉が、単位発熱量(1,000kcal)当たりに生じる水の量が0.12L以下となるような発熱機構を有する加熱炉である、1~4のいずれかに記載の低誘電正接シリカ粉体の製造方法。
6.低誘電正接シリカ粉体中のケイ素に結合した水酸基(Si-OH)含有量が、300ppm以下である、1~5のいずれかに記載の低誘電正接シリカ粉体の製造方法。
7.低誘電正接シリカ粉体の最大粒径が、100μm以下である、1~6のいずれかに記載の低誘電正接シリカ粉体の製造方法。
8.さらに、加熱工程後に、加熱処理された低誘電正接シリカ粉体の表面を、カップリング剤処理する工程を含む、1~7のいずれかに記載の低誘電正接シリカ粉体の製造方法。
Therefore, the present invention provides a method for producing a low dielectric loss tangent silica powder.
1. Silica powder with an average particle size of 0.1 to 30 μm is placed in a heating furnace, and the maximum heating temperature is 100 to 1,000 °C and 100 °C or higher under the above conditions in vacuum or in a gas with a dew point of 15 °C or less. The dielectric loss tangent of the silica powder is 0.0005 or less at 10 GHz, including a heating step in which the heating amount expressed as heating temperature (°C) x heating time (h) is 450 (°C / h) or more. , and a low dielectric loss tangent of 0.0010 or less at 40 GHz.
2. 2. The method for producing a low dielectric loss tangent silica powder according to 1, wherein dry gas having a dew point of 0° C. or less is introduced into the heating furnace at least one of the following steps: before heating, during temperature increase, during temperature maintenance, and during temperature decrease.
3. 2. The method for producing a low dielectric loss tangent silica powder according to 2, wherein dry gas having a dew point of 0° C. or lower is introduced into the heating furnace during cooling.
4. 4. The method for producing a low dielectric loss tangent silica powder according to any one of 1 to 3, wherein the gas is selected from air and inert gas and has a dew point of 15° C. or lower.
5. The low dielectric loss tangent silica powder according to any one of 1 to 4, wherein the heating furnace has a heat generation mechanism such that the amount of water generated per unit calorific value (1,000 kcal) is 0.12 L or less. How the body is manufactured.
6. 6. The method for producing a low dielectric loss tangent silica powder according to any one of 1 to 5, wherein the content of silicon-bonded hydroxyl groups (Si-OH) in the low dielectric loss tangent silica powder is 300 ppm or less.
7. 7. The method for producing low dielectric loss tangent silica powder according to any one of 1 to 6, wherein the maximum particle size of the low dielectric loss tangent silica powder is 100 μm or less.
8. 8. The method for producing a low dielectric loss tangent silica powder according to any one of 1 to 7, further comprising a step of treating the surface of the heat-treated low dielectric loss tangent silica powder with a coupling agent after the heating step.

本発明によれば、シリカ粉体が持つ補強性と石英ガラス本来の低誘電正接に近い誘電正接を有する、シリカ粉体を製造することができる。この方法で得られたシリカ粉体は今後増えていく5G等の高速通信等に用いられる基板の伝送損失を抑えることができるという著大な効果を奏する。 According to the present invention, it is possible to produce silica powder that has the reinforcing properties of silica powder and a dielectric loss tangent close to the low dielectric loss tangent inherent to silica glass. The silica powder obtained by this method has the remarkable effect of suppressing the transmission loss of substrates used in high-speed communications such as 5G, which will increase in the future.

乾燥気体の導入装置の例を示す図である。FIG. 3 is a diagram showing an example of a dry gas introduction device. 本発明の加熱量の計算方法を示す図である。It is a figure showing the calculation method of the amount of heating of the present invention. シリカ粉体の誘電正接の計算法を説明する図である。It is a figure explaining the calculation method of the dielectric loss tangent of silica powder.

以下、本発明について詳細に説明する。
[原料シリカ粉体]
低誘電正接シリカ粉体の原料となるシリカ粉体は、平均粒径が0.1~30μmのシリカ粉体である。シリカ粉体としては、天然に産出する結晶性の石英を粉砕した粉末を2,000℃程度の高温の火炎中を通すことで球状化した溶融シリカ粉体、水ガラスを原料として高純度化し高温で焼結させ粉砕したシリカ粉体等が使用可能であるが、シリカ粉体であれば特に上記した製法に関係なく使用することができる。なお、半導体用封止材としては、樹脂へ高充填化できることから粉体の形状は球状のものが好ましいものの、破砕形状のものでも使用することができる。
The present invention will be explained in detail below.
[Raw material silica powder]
The silica powder that is the raw material for the low dielectric loss tangent silica powder has an average particle size of 0.1 to 30 μm. Silica powder is fused silica powder, which is made by crushing naturally occurring crystalline quartz and passing it through a high-temperature flame of around 2,000°C to make it spherical. Silica powder sintered and pulverized can be used, but any silica powder can be used regardless of the manufacturing method described above. Note that as the semiconductor encapsulant, it is preferable that the powder be in a spherical shape because it can be highly filled into the resin, but a powder in a crushed shape can also be used.

原料のシリカ粉体は、平均粒径0.1~30μmであり、0.5~20μmが好ましい。最大粒径は100μm以下が好ましく、50μm以下がさらに好ましい。平均粒径が0.1μm未満では、比表面積が大きく樹脂へ高充填化ができず、30μmを超えると狭部への充填性が悪く、未充填等の不具合が発生する。なお、本発明において、最大粒径及び平均粒径は、レーザー回折式粒度分布測定装置(例えば、SALD-3100:島津製作所製等)により測定することができ、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として求めることができる。 The raw material silica powder has an average particle size of 0.1 to 30 μm, preferably 0.5 to 20 μm. The maximum particle size is preferably 100 μm or less, more preferably 50 μm or less. If the average particle size is less than 0.1 μm, the specific surface area is large and the resin cannot be highly filled, and if it exceeds 30 μm, the ability to fill into narrow areas is poor and problems such as non-filling occur. In the present invention, the maximum particle size and the average particle size can be measured using a laser diffraction particle size distribution analyzer (for example, SALD-3100: manufactured by Shimadzu Corporation, etc.), and the average particle size can be measured using a laser light diffraction method. It can be determined as the mass average value D 50 (that is, the particle diameter or median diameter when the cumulative mass is 50%) in the particle size distribution measurement.

不純物濃度を低く抑えることでシリカ粉体の誘電特性等がより好ましいものとなる点から、本発明の低誘電正接シリカ粉体の内部及び表面中のアルミニウム、マグネシウム、チタン及びその酸化物、ならびにB(ホウ素)、P(リン)、U(ウラン)及びTh(トリウム)の含有量は、より少ない方が好ましい。また、腐蝕防止の観点から、アルカリ金属及びアルカリ土類金属の含有量は、より少ない方が好ましい。さらに、放射線による誤動作を防止する観点から、U(ウラン)及びTh(トリウム)の含有量は、より少ない方が好ましい。低誘電正接シリカ粉体のこれらの量を調整するため、適宜、原料のシリカ粉体を選択することができる。 Since the dielectric properties of the silica powder become more preferable by keeping the impurity concentration low, aluminum, magnesium, titanium and their oxides, and B in the inside and surface of the low dielectric loss tangent silica powder of the present invention The content of (boron), P (phosphorus), U (uranium), and Th (thorium) is preferably smaller. Further, from the viewpoint of preventing corrosion, the content of alkali metals and alkaline earth metals is preferably smaller. Furthermore, from the viewpoint of preventing malfunctions due to radiation, the content of U (uranium) and Th (thorium) is preferably smaller. In order to adjust these amounts of the low dielectric loss tangent silica powder, the raw material silica powder can be selected as appropriate.

[加熱工程]
本発明の製造方法における加熱工程は、真空又は露点15℃以下の気体中で、最高加熱温度が100~1,000℃、かつ前記気体中での100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する加熱工程である。
[Heating process]
The heating step in the production method of the present invention is performed in a vacuum or in a gas with a dew point of 15°C or lower, with a maximum heating temperature of 100 to 1,000°C, and a heating temperature (°C) of 100°C or higher in the gas x heating time. This is a heating step in which heating is performed under conditions such that the heating amount represented by (h) is 450 (°C.h) or more.

(加熱炉)
加熱に用いる加熱炉は、100~1,000℃に加熱することができ、炉内を真空又は露点15℃以下の乾燥気体雰囲気下にすることができるものを用いることができ、このような加熱炉であれば特に限定されず、加熱炉としては、ガス炉、電気炉、マッフル炉、レーザー加熱等が挙げられる。
(heating furnace)
The heating furnace used for heating can be one that can heat to 100 to 1,000°C and can create a vacuum or a dry gas atmosphere with a dew point of 15°C or less in the furnace. There is no particular limitation as long as it is a furnace, and examples of heating furnaces include gas furnaces, electric furnaces, muffle furnaces, laser heating, and the like.

中でも、単位発熱量(1,000kcal)当たりに生じる水の量が0.12L以下となるような発熱機構を有する加熱炉を用いることが好ましい。このような発熱機構を有していれば、特に限定されず、電気炉、マッフル炉、レーザー加熱等で、上記が可能な発熱機構を有する加熱炉を含む装置が挙げられる。特に、電気炉は燃焼を伴わないため、気体中の水の量を0.12L以下、特に0.10L未満とすることができる。 Among these, it is preferable to use a heating furnace having a heat generating mechanism such that the amount of water generated per unit calorific value (1,000 kcal) is 0.12 L or less. As long as it has such a heat generating mechanism, it is not particularly limited, and examples thereof include an electric furnace, a muffle furnace, a laser heating, and the like, which include a heating furnace having a heat generating mechanism capable of the above. In particular, since electric furnaces do not involve combustion, the amount of water in the gas can be kept at 0.12 L or less, particularly less than 0.10 L.

加熱炉には、乾燥気体を炉内に送り込む装置を有することが好ましい。この装置としては、シリカ粉体2を入れる加熱炉1、アルミナ等の容器に収容されたシリカ粉体2、コンプレッサー又はエアドライヤー等の乾燥気体を生成する機構4、乾燥気体を充填又は導入する、乾燥気体を生成する機構と炉内を結合する配管3、炉内から排気を行う排出機構6を有しているものが挙げられる。加熱炉への乾燥気体導入の一例を図1に示す。但し、本導入方法に限定されるものではない。 It is preferable that the heating furnace has a device for feeding dry gas into the furnace. This device includes a heating furnace 1 containing silica powder 2, a silica powder 2 housed in a container such as alumina, a mechanism 4 for generating dry gas such as a compressor or an air dryer, and a device for filling or introducing dry gas. Examples include those having piping 3 that connects a mechanism for generating dry gas and the inside of the furnace, and a discharge mechanism 6 that exhausts air from the inside of the furnace. An example of introducing dry gas into a heating furnace is shown in FIG. However, the introduction method is not limited to this method.

(加熱雰囲気)
本発明においては、真空又は露点15℃以下の気体中で、原料シリカ粉体を加熱する。気体としては、空気、窒素及びアルゴン等の不活性ガスが好ましい。炉内を真空にする場合は、島津製作所製 真空加熱焼成炉VASTA等の、真空加熱焼成炉を用いることができる。
(Heating atmosphere)
In the present invention, raw silica powder is heated in vacuum or in a gas having a dew point of 15° C. or lower. As the gas, inert gases such as air, nitrogen, and argon are preferred. When creating a vacuum inside the furnace, a vacuum heating and firing furnace such as a vacuum heating and firing furnace VASTA manufactured by Shimadzu Corporation can be used.

炉内を露点15℃以下の気体中にする方法としては、炉内が露点15℃以下の気体中であれば特に限定されないが、加熱前に、露点15℃以下の乾燥気体で炉内を充填、又は露点15℃以下の乾燥気体を、炉内に導入する方法が挙げられる。導入は、加熱前、昇温中、温度保持中及び降温中のいずれでもよく、この中から複数を選んで導入してもよい。中でも、露点15℃以下、好ましくは0℃以下の乾燥気体を、炉内に導入することが好ましく、降温中に、炉内に導入することが好ましい。乾燥気体としては、空気、窒素及びアルゴン等の不活性ガスから選択される露点15℃以下の乾燥気体が挙げられる。中でも、生産効率の面で乾燥空気が好ましい。上記の乾燥空気を生成する装置としてはコンプレッサーやエアドライヤー等が挙げられる。なお、本発明における露点とは大気圧露点をいう。充填又は導入する乾燥気体の露点は、15℃以下(水分含有量;12.8g/m3)が好ましく、0℃(水分含有量;4.85g/m3)以下がより好ましく、-20℃以下(水分含有量;1.07g/m3)がさらに好ましく、-60℃(水分含有量;0.0193g/m3)以下が特に好ましい。気体中での加熱工程では、SiO2+H2O⇔Si-OHの反応は、露点が低ければ低いほど平衡が左に傾き、石英ガラスクロスの誘電正接を低下させる。 The method of filling the inside of the furnace with a gas with a dew point of 15°C or less is not particularly limited as long as the inside of the furnace is in a gas with a dew point of 15°C or less, but it is possible to fill the inside of the furnace with dry gas with a dew point of 15°C or less before heating. Alternatively, a method of introducing dry gas having a dew point of 15° C. or lower into the furnace may be mentioned. The introduction may be performed before heating, during temperature rise, during temperature maintenance, or during temperature fall, and a plurality of these may be selected and introduced. Among these, it is preferable to introduce a dry gas having a dew point of 15° C. or lower, preferably 0° C. or lower, into the furnace, and it is preferable to introduce the dry gas into the furnace during cooling. Examples of the drying gas include drying gases having a dew point of 15° C. or lower and selected from air, nitrogen, and inert gases such as argon. Among these, dry air is preferred in terms of production efficiency. Examples of devices that generate the dry air include a compressor, an air dryer, and the like. Note that the dew point in the present invention refers to an atmospheric pressure dew point. The dew point of the dry gas to be filled or introduced is preferably 15°C or lower (moisture content; 12.8 g/m 3 ), more preferably 0°C (water content: 4.85 g/m 3 ) or lower, and -20°C. The temperature is more preferably below (moisture content; 1.07 g/m 3 ), particularly preferably below -60°C (moisture content: 0.0193 g/m 3 ). In the heating step in gas, the lower the dew point, the more the equilibrium of the SiO 2 +H 2 O⇔Si-OH reaction tilts to the left, lowering the dielectric loss tangent of the quartz glass cloth.

加熱前に、炉内に予め充填・導入する乾燥気体は露点15℃以下であり、0℃以下が好ましく、生産効率、経済性の点から、-20℃以下の乾燥空気がより好ましい。
加熱炉に導入する乾燥気体の露点は15℃以下であり、さらに石英ガラスクロスを低誘電正接化させるために、昇温から降温に至る加熱工程における乾燥気体の露点は0℃以下が好ましく、-20℃がより好ましく、-60℃以下がさらに好ましい。
The drying gas that is previously filled and introduced into the furnace before heating has a dew point of 15° C. or lower, preferably 0° C. or lower, and more preferably -20° C. or lower from the viewpoint of production efficiency and economic efficiency.
The dew point of the drying gas introduced into the heating furnace is preferably 15°C or less, and in order to further reduce the dielectric loss tangent of the quartz glass cloth, the dewpoint of the drying gas in the heating process from temperature rise to temperature drop is preferably 0°C or less, - The temperature is more preferably 20°C, and even more preferably -60°C or lower.

乾燥気体の導入量については特には限定されないが、炉内の露点を十分に低下させ、かつ炉内の温度を一定に保てる範囲として一時間当たり炉の体積に対して0.5~20倍が好ましい。 The amount of drying gas to be introduced is not particularly limited, but it is 0.5 to 20 times the volume of the furnace per hour to sufficiently lower the dew point inside the furnace and keep the temperature inside the furnace constant. preferable.

(加熱温度)
SiO2+H2O⇔Si-OHの反応は100℃以上で活性化し、温度が高くなればなるほど平衡が左に傾いてSi-OH基は再度結合してSi-O-Si結合を形成する。すなわち露点が低く、加熱温度が高いほどSi-OH基は減少し、石英ガラスクロスの誘電正接が低下する。しかしながら、加熱温度が高いほどシリカ粉体表面に歪が発生し、シリカ粉体による補強効果が低下する。そのため本発明におけるシリカ粉体の加熱温度は、最高加熱温度が100~1,000℃であり、300~600℃が好ましく、350~450℃がさらに好ましい。100℃未満では水酸基を除去するには十分なエネルギーを付与できず低誘電化ができない。また、1,000℃を超えて加熱を行うとシリカ粒子同士が融着し大きな粒子となってしまい、後工程で問題を生じてしまう。1,000℃以下で、目的の効果を得るのは十分である。
(Heating temperature)
The reaction of SiO 2 +H 2 O⇔Si-OH is activated at temperatures above 100°C, and as the temperature rises, the equilibrium shifts to the left and the Si-OH groups combine again to form a Si-O-Si bond. That is, the lower the dew point and the higher the heating temperature, the fewer Si--OH groups and the lower the dielectric loss tangent of the quartz glass cloth. However, the higher the heating temperature, the more distortion occurs on the surface of the silica powder, and the reinforcing effect of the silica powder decreases. Therefore, the maximum heating temperature of the silica powder in the present invention is 100 to 1,000°C, preferably 300 to 600°C, and more preferably 350 to 450°C. If the temperature is less than 100° C., sufficient energy cannot be applied to remove hydroxyl groups, and the dielectricity cannot be lowered. Moreover, if heating is performed above 1,000° C., the silica particles will fuse together and become large particles, which will cause problems in subsequent steps. A temperature of 1,000° C. or lower is sufficient to obtain the desired effect.

(加熱量)
真空又は露点15℃以下の気体中での100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上である。なお、加熱量には、真空又は露点15℃以下の気体中ではない場合、100℃未満である範囲は含まれない。図2にこの加熱量の算出法を示す。塗りつぶし部分が加熱量であり、昇温中、温度保持中及び降温中には影響されない。熱量が450(℃・h)以下だとSiO2+H2O⇔Si-OHの平衡反応を十分に左に傾ける時間が足りなく、石英ガラスクロスの誘電正接が低下しきらないために不適である。加熱量が450(℃・h)以上であれば特には限定されないが、生産効率の点で450~50,000(℃・h)が好ましく、3,000~50,000(℃・h)がより好ましく、4,000~45,000(℃・h)がさらに好ましい。
(Amount of heating)
The amount of heating expressed as heating temperature (°C) x heating time (h) of 100°C or higher in vacuum or in a gas with a dew point of 15°C or lower is 450 (°C·h) or higher. Note that the amount of heating does not include a range of less than 100°C unless it is in a vacuum or in a gas with a dew point of 15°C or less. FIG. 2 shows a method for calculating this amount of heating. The shaded area is the amount of heating, which is not affected by heating, holding, and cooling. If the amount of heat is less than 450 (℃・h), there is not enough time to tilt the equilibrium reaction of SiO 2 + H 2 O ⇔ Si-OH to the left, and the dielectric loss tangent of the quartz glass cloth does not decrease completely, making it unsuitable. . There is no particular limitation as long as the heating amount is 450 (℃・h) or more, but from the point of view of production efficiency, 450 to 50,000 (℃・h) is preferable, and 3,000 to 50,000 (℃・h) is preferable. More preferably, 4,000 to 45,000 (°C.h) is even more preferable.

加熱は、昇温中、温度保持中及び降温中に関しては数ステップに分けてもよく、温度保持も複数の温度で保持してもよい。また上記の加熱量が満たせれば保持時間がなくてもよい。昇温及び降温レートに関しては特に限定されないが、生産性の点から、10℃/h以上が好ましく、シリカ粉体の強度の点から、200℃/h未満が好ましい。 Heating may be divided into several steps during temperature increase, temperature maintenance, and temperature reduction, and temperature may be maintained at a plurality of temperatures. Further, as long as the above heating amount can be satisfied, there is no need for holding time. There are no particular limitations on the temperature increase and temperature decrease rates, but from the viewpoint of productivity, it is preferably 10° C./h or more, and from the viewpoint of the strength of the silica powder, it is preferably less than 200° C./h.

特に、200~300℃の雰囲気は、活性化エネルギーは超えるものの低温領域のためSiO2+H2O⇔Si-OHの平衡が右に傾きやすく、最もSi-O-Si結合が開裂しやすいため、特に露点を低く保つ必要がある。乾燥気体の導入タイミングについては昇温中、降温中、温度保持中のいずれのタイミングでもよい。炉内の露点を低く保ち続ける点から、昇温中、温度保持中、降温中の100~600℃の全加熱中で、乾燥気体を炉内に導入し続けることが好ましい。特に、加熱最高温度から室温まで、特に100℃までの降温中に、乾燥気体を炉内に導入することが、誘電正接の改善に有効である。 In particular, in an atmosphere of 200 to 300°C, although the activation energy is exceeded, the equilibrium of SiO 2 + H 2 O ⇔ Si-OH tends to tilt to the right because it is a low temperature region, and the Si-O-Si bond is most likely to be cleaved. In particular, it is necessary to keep the dew point low. The drying gas may be introduced at any timing during temperature rise, temperature fall, or temperature maintenance. In order to keep the dew point in the furnace low, it is preferable to continue introducing dry gas into the furnace during the entire heating at 100 to 600° C. during heating, holding, and cooling. In particular, it is effective to introduce dry gas into the furnace during cooling from the maximum heating temperature to room temperature, particularly to 100° C., for improving the dielectric loss tangent.

[カップリング剤処理工程]
本発明の製造方法において、さらに、上記加熱工程後又は降温工程後に、加熱処理シリカ粉体へ、カップリング剤処理工程を有していてもよい。これは、カップリング剤等でシリカ粉体表面を処理する工程である。この工程により、カップリング剤により加熱処理シリカ粉体の表面の一部又は全部が被覆され、カップリング剤処理シリカ粉体を用いて樹脂組成物等を製造する際に、樹脂と低誘電正接シリカ粉体表面の接着を強固にすることができる。
[Coupling agent treatment process]
The manufacturing method of the present invention may further include a step of treating the heat-treated silica powder with a coupling agent after the heating step or the temperature-lowering step. This is a process in which the surface of the silica powder is treated with a coupling agent or the like. Through this step, part or all of the surface of the heat-treated silica powder is coated with the coupling agent, and when producing a resin composition etc. using the coupling agent-treated silica powder, the resin and the low dielectric loss tangent silica are coated. It is possible to strengthen the adhesion on the powder surface.

カップリング剤としては、例えば、公知のシランカップリング剤を用いることができ、1種単独で又は2種以上組み合わせて用いることができる。中でも、アルコキシシランが好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン等が挙げられる。 As the coupling agent, for example, known silane coupling agents can be used, and one type can be used alone or two or more types can be used in combination. Among them, alkoxysilanes are preferred, and vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-(3,4 -Epoxycyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxy Examples include silane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, and trifluoropropyltrimethoxysilane.

シラン処理液に関しては特に限定はされないが、ヘンシェルやロッキングミキサー等による乾式処理、0.1~5質量%希薄水溶液で処理する湿式処理が好ましい。カップリング剤の量としては、シリカ粉体に対して0.05~3質量%で適宜調整される。 The silane treatment liquid is not particularly limited, but dry treatment using a Henschel or rocking mixer, or wet treatment using a 0.1 to 5% by mass dilute aqueous solution is preferred. The amount of the coupling agent is appropriately adjusted to 0.05 to 3% by mass based on the silica powder.

[低誘電正接シリカ粉体]
上記加熱工程、加熱工程及び降温工程後の低誘電正接シリカ粉体の誘電正接は、10GHzで0.0005以下、かつ40GHzで0.0010以下である。10GHzで0.0004以下が好ましく、0.0003以下がより好ましい。40GHzで0.0009以下が好ましく、0.0008以下がより好ましい。誘電正接の測定方法は共振法に基づくものであり、具体的には、後述する実施例の記載に基づくものである。
[Low dielectric loss tangent silica powder]
The dielectric loss tangent of the low dielectric loss tangent silica powder after the heating step, heating step, and temperature cooling step is 0.0005 or less at 10 GHz and 0.0010 or less at 40 GHz. At 10 GHz, it is preferably 0.0004 or less, more preferably 0.0003 or less. At 40 GHz, it is preferably 0.0009 or less, more preferably 0.0008 or less. The method for measuring the dielectric loss tangent is based on the resonance method, and specifically, it is based on the description of the examples described later.

低誘電正接シリカ粉体の水酸基(Si-OH)含有量は、300ppm以下が好ましく、280ppm以下がより好ましく、150ppm以下がさらに好ましい。水酸基(Si-OH)含有量の測定方法は、後述する実施例の記載に基づくものである。 The hydroxyl group (Si-OH) content of the low dielectric loss tangent silica powder is preferably 300 ppm or less, more preferably 280 ppm or less, and even more preferably 150 ppm or less. The method for measuring the hydroxyl group (Si-OH) content is based on the description in the Examples described below.

低誘電正接シリカ粉体の内部及び表面中の、アルミニウム、マグネシウム、チタン及びその酸化物の含有量が、アルミニウム、マグネシウム、チタン金属質量として、それぞれ300ppm以下が好ましく、150ppm以下がより好ましく、100ppm以下がさらに好ましい。この範囲となることで、加熱処理の工程で容易に結晶化せず、目的とする低誘電正接のシリカ粉体を得ることができる。 The content of aluminum, magnesium, titanium, and their oxides in the interior and surface of the low dielectric loss tangent silica powder is preferably 300 ppm or less, more preferably 150 ppm or less, and 100 ppm or less as aluminum, magnesium, and titanium metal mass. is even more preferable. By falling within this range, it is possible to obtain a silica powder that does not easily crystallize during the heat treatment process and has the desired low dielectric loss tangent.

アルカリ金属及びアルカリ土類金属の含有量が、それぞれ質量換算で10ppm以下が好ましく、8ppm以下がより好ましく、5ppm以下がさらに好ましい。
なお、本発明において、アルカリ金属とは、周期表において第1族に属する元素のうち水素を除いたリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムをいう。また、アルカリ土類金属とは、周期表において第2族に属する元素のうちベリリウムとマグネシウムを除いたカルシウム、ストロンチウム、バリウム、ラジウムをいう。アルカリ金属、アルカリ土類金属の多いシリカ粉体は、高速通信基板や半導体素子の電極を腐蝕する問題があり、腐蝕防止の観点からもこれらが少ないシリカ粉体が要求されている。
The content of alkali metals and alkaline earth metals is preferably 10 ppm or less, more preferably 8 ppm or less, and even more preferably 5 ppm or less, each in terms of mass.
In the present invention, the alkali metal refers to lithium, sodium, potassium, rubidium, cesium, and francium, which are elements belonging to Group 1 in the periodic table, excluding hydrogen. In addition, alkaline earth metals refer to calcium, strontium, barium, and radium, excluding beryllium and magnesium, among elements belonging to Group 2 in the periodic table. Silica powder containing a large amount of alkali metals and alkaline earth metals has the problem of corroding the electrodes of high-speed communication boards and semiconductor devices, and from the viewpoint of corrosion prevention, silica powder containing a small amount of these metals is required.

低誘電正接シリカ粉体の内部及び表面中のB(ホウ素)の含有量は、2ppm以下が好ましく、1ppm以下がより好ましい。P(リン)の含有量は、2ppm以下が好ましく、1ppm以下がより好ましい。U(ウラン)及びTh(トリウム)の含有量は、それぞれ0.1ppb以下が好ましい。このように、不純物濃度を低く抑えることでシリカ粉体の誘電特性等がより好ましいものとなる。 The content of B (boron) inside and on the surface of the low dielectric loss tangent silica powder is preferably 2 ppm or less, more preferably 1 ppm or less. The content of P (phosphorus) is preferably 2 ppm or less, more preferably 1 ppm or less. The contents of U (uranium) and Th (thorium) are each preferably 0.1 ppb or less. In this way, by keeping the impurity concentration low, the dielectric properties and the like of the silica powder become more preferable.

上記アルミニウム、マグネシウム、チタン及びその酸化物、アルカリ金属及びアルカリ土類金属、ならびにB(ホウ素)、P(リン)、U(ウラン)及びTh(トリウム)の濃度は、原子吸光光度法や、誘導結合プラズマ(ICP)発光分光分析法等により測定することができる。 The concentrations of aluminum, magnesium, titanium and their oxides, alkali metals and alkaline earth metals, as well as B (boron), P (phosphorus), U (uranium) and Th (thorium) can be determined by atomic absorption spectrometry, induction It can be measured by coupled plasma (ICP) emission spectroscopy or the like.

低誘電正接シリカ粉体の形状、平均粒径は上記原料のシリカ粉体と同様であり、平均粒径0.1~30μmが好ましく、0.5~20μmがより好ましい。最大粒径は100μm以下が好ましく、50μm以下がさらに好ましい。なお、低誘電正接シリカ粉体は、流動性や加工性等特性向上のため、異なる平均粒径のシリカ粉体をブレンドしてもよい。アンダーフィル材や高速基板の充填剤として使用する場合は、平均粒径が0.1~5μmで、最大粒径は20μm以下が好ましく、平均粒径が0.1~3μmで最大粒径は10μm以下がより好ましい。 The shape and average particle size of the low dielectric loss tangent silica powder are similar to those of the raw material silica powder, and the average particle size is preferably 0.1 to 30 μm, more preferably 0.5 to 20 μm. The maximum particle size is preferably 100 μm or less, more preferably 50 μm or less. Note that the low dielectric loss tangent silica powder may be a blend of silica powders having different average particle diameters in order to improve properties such as fluidity and processability. When used as an underfill material or filler for high-speed substrates, the average particle size is preferably 0.1 to 5 μm and the maximum particle size is 20 μm or less, and the average particle size is 0.1 to 3 μm and the maximum particle size is 10 μm. The following are more preferable.

このような優れた特性のシリカ粉体は、半導体用封止材や高速通信基板、アンテナ基板等基板向けの充填剤として好適である。また、樹脂に配合することにより、低誘電樹脂組成物を容易に得ることができる。また、前記低誘電正接シリカ粉体は、低誘電有機基板用の充填剤としても有用なものである。なお、カップリング剤処理工程を経た場合も、上記同様の物性を得ることができる。 Silica powder with such excellent properties is suitable as a filler for semiconductor encapsulants, high-speed communication boards, antenna boards, and other substrates. Furthermore, by blending it with a resin, a low dielectric resin composition can be easily obtained. The low dielectric loss tangent silica powder is also useful as a filler for low dielectric organic substrates. Note that physical properties similar to those described above can be obtained also when the coupling agent treatment step is performed.

[プリプレグ]
上記低誘電正接化したシリカ粉体をエポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、テフロン(登録商標)樹脂、マレイミド樹脂、ポリフェニレンエーテル樹脂、等の充填剤として熱硬化性樹脂や熱可塑性樹脂に配合することができる。また、ガラスクロス等を用いて、プリプレグ化も問題なく行うことができる。
[Prepreg]
The above-described low dielectric loss tangent silica powder may be blended into thermosetting resins or thermoplastic resins as a filler for epoxy resins, silicone resins, polyimide resins, Teflon (registered trademark) resins, maleimide resins, polyphenylene ether resins, etc. Can be done. Further, prepreg formation using glass cloth or the like can be performed without any problem.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
本実施例、比較例で使用する材料は以下の通りである。
<シリカ粉体>
(A)RS8225(龍森社製)
平均粒径:15μm
誘電正接(10GHz):0.0008
(40GHz):0.0013
水酸基含有量:370ppm
(B)SO-E5(アドマテック社製)
平均粒径:1.5μm
誘電正接(10GHz):0.0011
(40GHz):0.0015
水酸基含有量:290ppm
(C)SO-E2(アドマテック社製)
平均粒径:0.5μm
誘電正接(10GHz):0.0023
(40GHz):0.0031
水酸基含有量:410ppm
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.
The materials used in this example and comparative example are as follows.
<Silica powder>
(A) RS8225 (manufactured by Ryumorisha)
Average particle size: 15μm
Dielectric loss tangent (10GHz): 0.0008
(40GHz): 0.0013
Hydroxyl group content: 370ppm
(B) SO-E5 (manufactured by Admatec)
Average particle size: 1.5μm
Dielectric loss tangent (10GHz): 0.0011
(40GHz): 0.0015
Hydroxyl group content: 290ppm
(C) SO-E2 (manufactured by Admatec)
Average particle size: 0.5μm
Dielectric loss tangent (10GHz): 0.0023
(40GHz): 0.0031
Hydroxyl group content: 410ppm

[実施例1]
平均粒径15μm、誘電正接(10GHz)0.0006、(40GHz):0.0013、水酸基含有量370ppmのシリカ粉体(A)(龍森社製 RS8225)5Kgを、アルミナ容器に入れ、ネムス社製電気炉B80×85×200-3Z12-10を用い、400℃・24時間加熱処理する時、昇温から降温時までHITATHI社製インバーターパッケージオイルフリーベビコン POD-15VNPを用いて作製した露点-20℃の乾燥空気を、一時間当たり電気炉の体積の5倍量送り込んで加熱処理を行った。また、昇温速度は100℃/h、降温昇温は30℃/hで行い、以降同様の昇温、降温速度で行った。加熱処理後のシリカ粉体の誘電正接と水酸基含有量を表中に併記する。
[Example 1]
Put 5 kg of silica powder (A) (manufactured by Ryumori Co., Ltd. RS8225) with an average particle size of 15 μm, a dielectric loss tangent (10 GHz) of 0.0006, (40 GHz): 0.0013, and a hydroxyl group content of 370 ppm into an alumina container. When heat-treated at 400°C for 24 hours using an electric furnace B80 x 85 x 200-3Z12-10, the dew point was -20 using HITATHI's inverter package oil-free Bebicon POD-15VNP from temperature rise to temperature fall. Heat treatment was carried out by feeding dry air at a temperature of 5 times the volume of the electric furnace per hour. Further, the temperature increase rate was 100° C./h, the temperature decrease was 30° C./h, and thereafter the same temperature increase and temperature decrease rates were performed. The dielectric loss tangent and hydroxyl group content of the silica powder after heat treatment are also listed in the table.

[実施例2]
シリカ粉体(A)を、平均粒径1.5μm、誘電正接(10GHz)0.0011、(40GHz):0.0015、水酸基含有量290ppmのシリカ粉体(B)(アドマテックス社製 SO-E5)とし、加熱時間(h)を24時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(B)の誘電正接と水酸基含有量を表中に併記する。
[Example 2]
The silica powder (A) was mixed with a silica powder (B) (manufactured by Admatex, SO- E5), and the heat treatment was performed in the same manner as in Example 1, except that the heating time (h) was changed to 24 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (B) after heat treatment are also listed in the table.

[実施例3]
シリカ粉体(A)を、平均粒径0.5μm、誘電正接(10GHz)0.0023、(40GHz):0.0031、水酸基含有量410ppmのシリカ粉体(C)(アドマテックス社製 SO-E2)とし、加熱時間(h)を24時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(C)の誘電正接と水酸基含有量を表中に併記する。
[Example 3]
The silica powder (A) was mixed with a silica powder (C) (manufactured by Admatex, SO- E2), and the heat treatment was performed in the same manner as in Example 1, except that the heating time (h) was changed to 24 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (C) after heat treatment are also listed in the table.

[実施例4]
実施例1のシリカ粉体(A)の加熱処理において、400℃・12時間加熱する時、実施例1の露点-20℃の乾燥空気を、CKD株式会社製 スーパーヒートレスドライヤー SHD3025で作製した露点-70℃の乾燥空気に変更した以外は実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 4]
In the heat treatment of the silica powder (A) of Example 1, when heating at 400°C for 12 hours, the dry air with the dew point of Example 1 of -20°C was used with a dew point of CKD Co., Ltd.'s Super Heatless Dryer SHD3025. Heat treatment was carried out in the same manner as in Example 1 except that the temperature was changed to -70°C dry air. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例5]
実施例1のシリカ粉体(A)の加熱処理において、昇温時、温度保持時は乾燥空気を送り込まず、露点20℃の空気中で加熱処理し、降温時に露点-20℃の乾燥空気を炉内に送り込んで加熱処理したこと以外は、実施例1と同様にして加熱処理した。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 5]
In the heat treatment of the silica powder (A) of Example 1, the heat treatment was performed in air with a dew point of 20°C without introducing dry air when the temperature was raised or maintained, and when the temperature was lowered, dry air with a dew point of -20°C was supplied. The heat treatment was carried out in the same manner as in Example 1, except that the sample was sent into a furnace and heat treated. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例6]
実施例3のシリカ粉体(C)の加熱処理において、昇温時、温度保持時は乾燥空気を送り込まず、露点20℃の空気中で加熱処理し、降温時に露点-20℃の乾燥空気を炉内に送り込んで加熱処理したこと以外は、実施例3と同様にして加熱処理した。加熱処理後のシリカ粉体(C)の誘電正接と水酸基含有量を表中に併記する。
[Example 6]
In the heat treatment of the silica powder (C) in Example 3, dry air was not introduced when the temperature was raised or maintained, but the heat treatment was performed in air with a dew point of 20 °C, and dry air with a dew point of -20 °C was supplied when the temperature was lowered. The heat treatment was carried out in the same manner as in Example 3, except that the sample was sent into a furnace and heat treated. The dielectric loss tangent and hydroxyl group content of the silica powder (C) after heat treatment are also listed in the table.

[実施例7]
実施例1のシリカ粉体(A)の加熱処理において、降温時は乾燥空気を送り込まず、露点20℃の空気中で加熱処理した以外は、実施例1と同様にして加熱処理した。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 7]
In the heat treatment of the silica powder (A) of Example 1, the heat treatment was carried out in the same manner as in Example 1, except that dry air was not introduced when the temperature was lowered, and the heat treatment was performed in air with a dew point of 20°C. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例8]
実施例3のシリカ粉体(C)の加熱処理において、降温時は乾燥空気を送り込まず、露点20℃の空気中で加熱処理した以外は、実施例3と同様にして加熱処理した。加熱処理後のシリカ粉体(C)の誘電正接と水酸基含有量を表中に併記する。
[Example 8]
In the heat treatment of the silica powder (C) of Example 3, the heat treatment was carried out in the same manner as in Example 3, except that when the temperature was lowered, dry air was not introduced and the heat treatment was performed in air with a dew point of 20°C. The dielectric loss tangent and hydroxyl group content of the silica powder (C) after heat treatment are also listed in the table.

[実施例9]
シリカ粉体(A)を、実施例1の電気炉の代わりに単位発熱量(1000kcal)当たりに生じる水の量が0.1L未満である島津製作所製 真空加熱焼成炉VASTAを用いて昇温から降温まで真空状態で400℃・12時間加熱処理した。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 9]
The silica powder (A) was heated using a vacuum heating and calcining furnace VASTA manufactured by Shimadzu Corporation, which produces less than 0.1 L of water per unit calorific value (1000 kcal) instead of the electric furnace of Example 1. Heat treatment was performed at 400° C. for 12 hours in a vacuum state until the temperature decreased. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例10]
シリカ粉体(A)の加熱温度・加熱時間を、400℃・12時間から150℃・48時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 10]
Heat treatment was performed in the same manner as in Example 1, except that the heating temperature and heating time of the silica powder (A) were changed from 400° C. and 12 hours to 150° C. and 48 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例11]
シリカ粉体(A)の加熱温度・加熱時間を、400℃・12時間から700℃・7時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Example 11]
Heat treatment was performed in the same manner as in Example 1, except that the heating temperature and heating time of the silica powder (A) were changed from 400° C. and 12 hours to 700° C. and 7 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[実施例12]
シリカ粉体(C)の加熱温度・加熱時間を、400℃・24時間から900℃・5時間に変更した以外は、実施例3と同様にして加熱処理を行った。加熱処理後のシリカ粉体(C)の誘電正接と水酸基含有量を表中に併記する。
[Example 12]
Heat treatment was performed in the same manner as in Example 3, except that the heating temperature and heating time of the silica powder (C) were changed from 400° C. and 24 hours to 900° C. and 5 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (C) after heat treatment are also listed in the table.

[比較例1]
シリカ粉体(A)を、ネムス社製電気炉B80×85×200-3Z12-10を用いて400℃・12時間、電気炉内の露点20℃の空気中で加熱して加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Comparative example 1]
Silica powder (A) was heat-treated by heating it in air at a dew point of 20°C in the electric furnace at 400°C for 12 hours using an electric furnace B80 x 85 x 200-3Z12-10 manufactured by Nems. . The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[比較例2]
シリカ粉体(A)の加熱温度・加熱時間を400℃・12時間から80℃・32時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Comparative example 2]
Heat treatment was performed in the same manner as in Example 1, except that the heating temperature and heating time of the silica powder (A) were changed from 400° C. and 12 hours to 80° C. and 32 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[比較例3]
シリカ粉体(A)の加熱温度・加熱時間を、400℃・12時間から1,200℃・4時間に変更した以外は、実施例1と同様にして加熱処理を行った。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Comparative example 3]
Heat treatment was performed in the same manner as in Example 1, except that the heating temperature and heating time of the silica powder (A) were changed from 400° C. and 12 hours to 1,200° C. and 4 hours. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

[比較例4]
実施例1と同じ装置を用いて、露点-20℃の乾燥空気を一時間当たり電気炉の体積の5倍量送り込み、400℃に加熱した電気炉内にシリカ粉体(A)を入れ、1時間後に降温を待たずに取り出した。加熱処理後のシリカ粉体(A)の誘電正接と水酸基含有量を表中に併記する。
[Comparative example 4]
Using the same equipment as in Example 1, dry air with a dew point of -20°C was fed in an amount of 5 times the volume of the electric furnace per hour, and silica powder (A) was placed in the electric furnace heated to 400°C. After a certain period of time, it was taken out without waiting for the temperature to cool down. The dielectric loss tangent and hydroxyl group content of the silica powder (A) after heat treatment are also listed in the table.

また、本発明における特性値は、下記の方法にて測定した。
<誘電正接の測定方法>
誘電正接の測定方法について説明する。
下記表1に示す割合で、シリカ粉体を低誘電マレイミド樹脂であるSLK-3000(信越化学工業社製)と硬化剤としてラジカル重合開始剤であるジクミルパーオキサイド(パークミルD:日油(株)社製)を含むアニソール溶剤に混合、分散、溶解してワニスを作製した。
シリカ粉体を下記表1に示す割合で、シリカ粉体と樹脂(SLK-3000)との合計量に対して、体積%で0%、17.6%、33.3%、48.1%となるように添加し、バーコーターで厚さ200mmに引き延ばし、80℃、30分間、乾燥機に入れてアニソール溶剤を除去することで未硬化のマレイミド樹脂組成物を調製した。
Further, the characteristic values in the present invention were measured by the following method.
<Measurement method of dielectric loss tangent>
The method for measuring dielectric loss tangent will be explained.
Silica powder was mixed with SLK-3000 (manufactured by Shin-Etsu Chemical Co., Ltd.), a low dielectric maleimide resin, and dicumyl peroxide (Percumyl D: NOF Corporation), a radical polymerization initiator, as a curing agent in the proportions shown in Table 1 below. A varnish was prepared by mixing, dispersing, and dissolving it in an anisole solvent containing (manufactured by ) Co., Ltd.).
Silica powder was added in the proportions shown in Table 1 below, and the volume% was 0%, 17.6%, 33.3%, and 48.1% based on the total amount of silica powder and resin (SLK-3000). An uncured maleimide resin composition was prepared by adding the anisole solvent, stretching it to a thickness of 200 mm using a bar coater, and placing it in a dryer at 80° C. for 30 minutes to remove the anisole solvent.

Figure 2023184068000001
Figure 2023184068000001

調製した未硬化のマレイミド樹脂組成物を60mm×60mm×100μmの型に入れ、ハンドプレスにて180℃、10分、30MPaにて硬化後、乾燥器にて180℃、1時間で完全に硬化させて樹脂硬化シートを作製した。樹脂硬化シートを50mm×50mmの大きさに切り、誘電率測定用SPDR(Split post dielectric resonators)誘電体共振器周波数10GHz(キーサイト・テクノロジー株式会社製)を用いて、10GHzにおける誘電正接を測定した。 The prepared uncured maleimide resin composition was placed in a 60 mm x 60 mm x 100 μm mold, and after curing with a hand press at 180 ° C. for 10 minutes at 30 MPa, it was completely cured in a dryer at 180 ° C. for 1 hour. A cured resin sheet was prepared. The cured resin sheet was cut into a size of 50 mm x 50 mm, and the dielectric loss tangent at 10 GHz was measured using a dielectric constant measurement SPDR (Split post dielectric resonators) dielectric resonator frequency 10 GHz (manufactured by Keysight Technologies Co., Ltd.). .

得られた誘電正接の値を図3に示すように横軸にシリカ粉体の体積%を、縦軸に測定した誘電正接を取ることで得られるプロットから、シリカ粉体の体積%と誘電正接との直線を作成した。この直線を外挿し、シリカ粉体100体積%の誘電正接をシリカ粉体の誘電正接の値とした。 As shown in Figure 3, the obtained dielectric loss tangent value is plotted by taking the volume % of the silica powder on the horizontal axis and the measured dielectric loss tangent on the vertical axis. I created a straight line with. This straight line was extrapolated, and the dielectric loss tangent of 100% by volume of silica powder was taken as the value of the dielectric loss tangent of the silica powder.

シリカ粉体を直接測定できるとする測定機もあるが、測定ポットの中にシリカ粉体を充填して測定するため、混入した空気の除去が困難である。特に、比表面積の大きいシリカ粉体は混入空気の影響が大きいため、なおさら困難である。そこで混入した空気の影響を排除し、実際の使用態様に近い状態での値を得るために、本発明では、上記した測定方法からシリカ粉体の誘電正接を求めた。実施例及び比較例の10GHz、40GHzの誘電正接は、同様の計算から行った。 There are measuring devices that claim to be able to directly measure silica powder, but since the silica powder is filled in a measuring pot and the measurement is performed, it is difficult to remove air mixed in. In particular, silica powder with a large specific surface area is more difficult to obtain because it is greatly affected by air. Therefore, in order to eliminate the influence of the mixed air and obtain a value in a state close to the actual usage mode, in the present invention, the dielectric loss tangent of the silica powder was determined by the above-mentioned measurement method. The dielectric loss tangents at 10 GHz and 40 GHz in the Examples and Comparative Examples were calculated using similar calculations.

<水酸基(Si-OH)含有量の測定方法>
シリカ粉体を厚さ1.5mmのアルミパンに摺り切りまで充填したサンプルを調製し、このサンプルの赤外吸収スペクトルを、フーリエ変換赤外分光光度計(IRAffinity-1S)、拡散反射測定装置(DRS-8000A)を用いて拡散反射法によって水酸基起因である3680cm-1付近のピークの透過率Tを測定した。得られた透過率の値を基に、下記に示すLambert-Beerの法則を適用し、吸光度Aを求めた。
・吸光度A=-Log10T
T=3680cm-1付近の透過率
次いで、前記式により求めた吸光度から、下記式により水酸基のモル濃度C(mol/L)を求めた。
・C=A/εL
ε:モル吸光係数(水酸基のモル吸光係数ε=77.5dm3/mol・cm)
C:モル濃度(mol/L)
L:サンプルの厚さ(光路長)(1.5mm)
得られた吸光度Aから上記式を用いてモル濃度Cを求めた。
得られたモル濃度Cを用いて下記式によってシリカ粉体中の水酸基の含有量(ppm)を求めた。
・水酸基の含有量(ppm)={(C×M)/(d×1000)}×106
シリカ粉体の比重d=2.2g/cm3
水酸基の分子量M(Si-OH)=45g/mol
<Measurement method of hydroxyl group (Si-OH) content>
A sample was prepared by filling an aluminum pan with a thickness of 1.5 mm with silica powder up to the cutting edge. DRS-8000A) was used to measure the transmittance T at a peak around 3680 cm -1 caused by hydroxyl groups by a diffuse reflection method. Based on the obtained transmittance value, the Lambert-Beer law shown below was applied to determine the absorbance A.
・Absorbance A=-Log10T
Transmittance around T=3680 cm −1 Next, from the absorbance determined by the above formula, the molar concentration C (mol/L) of hydroxyl groups was determined by the following formula.
・C=A/εL
ε: molar absorption coefficient (molar absorption coefficient of hydroxyl group ε=77.5dm 3 /mol・cm)
C: Molar concentration (mol/L)
L: Sample thickness (optical path length) (1.5 mm)
The molar concentration C was determined from the obtained absorbance A using the above formula.
Using the obtained molar concentration C, the content (ppm) of hydroxyl groups in the silica powder was determined by the following formula.
・Hydroxyl group content (ppm) = {(C×M)/(d×1000)}×106
Specific gravity d of silica powder = 2.2g/cm 3
Molecular weight of hydroxyl group M (Si-OH) = 45g/mol

Figure 2023184068000002
Figure 2023184068000002

Figure 2023184068000003
Figure 2023184068000003

Figure 2023184068000004
Figure 2023184068000004

表2,3より、炉内の最高温度が100~1,000℃で、炉内が真空雰囲気又は炉内へ導入する乾燥気体の露点が低く、加熱温度が高いほど、また降温時への乾燥空気の導入により、より低誘電正接のシリカ粉体を得ることができる。
比較例2の80℃加熱では、活性化エネルギーが足りないため、加熱処理を行っても誘電正接が変化しなかった。
From Tables 2 and 3, the maximum temperature inside the furnace is 100 to 1,000°C, the inside of the furnace is in a vacuum atmosphere, or the dew point of the drying gas introduced into the furnace is low, the higher the heating temperature, and the drying when the temperature drops. By introducing air, silica powder with a lower dielectric loss tangent can be obtained.
In the heating at 80° C. in Comparative Example 2, the activation energy was insufficient, so the dielectric loss tangent did not change even after the heat treatment.

本発明によれば、加熱工程の露点をコントロール、即ち加熱時と降温時の露点をコントロールした加熱工程のみで、エッチング工程を有することなく、石英ガラス本来の低誘電正接に近い誘電正接を有するシリカ粉体を製造する方法を提供できる。 According to the present invention, silica glass having a dielectric loss tangent close to the low dielectric loss tangent of silica glass can be produced by controlling the dew point of the heating process, that is, by controlling the dew point during heating and cooling, without an etching process. A method for producing powder can be provided.

1 加熱炉
2 シリカ粉体(容器中)
3 配管
4 乾燥気体を生成する機構
5 乾燥気体
6 排出機構
1 Heating furnace 2 Silica powder (in container)
3 Piping 4 Mechanism for generating dry gas 5 Dry gas 6 Discharge mechanism

Claims (8)

平均粒径が0.1~30μmのシリカ粉体を加熱炉に入れ、真空又は露点15℃以下の気体中で、最高加熱温度が100~1,000℃、かつ前記条件下での100℃以上の加熱温度(℃)×加熱時間(h)で表される加熱量が450(℃・h)以上となる条件で加熱する加熱工程を含む、シリカ粉体の誘電正接が10GHzで0.0005以下、かつ40GHzで0.0010以下である低誘電正接シリカ粉体の製造方法。 Silica powder with an average particle size of 0.1 to 30 μm is placed in a heating furnace, and the maximum heating temperature is 100 to 1,000 °C and 100 °C or higher under the above conditions in vacuum or in a gas with a dew point of 15 °C or less. The dielectric loss tangent of the silica powder is 0.0005 or less at 10 GHz, including a heating step in which the heating amount expressed as heating temperature (°C) x heating time (h) is 450 (°C / h) or more. , and a low dielectric loss tangent of 0.0010 or less at 40 GHz. 加熱前、昇温中、温度保持中及び降温中のいずれか1つ以上に、露点が0℃以下の乾燥気体を、加熱炉内に導入する請求項1記載の低誘電正接シリカ粉体の製造方法。 The production of the low dielectric loss tangent silica powder according to claim 1, wherein dry gas having a dew point of 0° C. or less is introduced into the heating furnace at least one of the following steps: before heating, during heating, during temperature holding, and during temperature cooling. Method. 降温中に、露点が0℃以下の乾燥気体を、加熱炉内に導入する請求項2記載の低誘電正接シリカ粉体の製造方法。 3. The method for producing low dielectric loss tangent silica powder according to claim 2, wherein a dry gas having a dew point of 0° C. or less is introduced into the heating furnace during cooling. 気体が、空気及び不活性ガスから選ばれ、露点15℃以下の気体である請求項1記載の低誘電正接シリカ粉体の製造方法。 2. The method for producing a low dielectric loss tangent silica powder according to claim 1, wherein the gas is selected from air and an inert gas and has a dew point of 15° C. or lower. 加熱炉が、単位発熱量(1,000kcal)当たりに生じる水の量が0.12L以下となるような発熱機構を有する加熱炉である、請求項1記載の低誘電正接シリカ粉体の製造方法。 The method for producing low dielectric loss tangent silica powder according to claim 1, wherein the heating furnace is a heating furnace having a heat generation mechanism such that the amount of water generated per unit calorific value (1,000 kcal) is 0.12 L or less. . 低誘電正接シリカ粉体中のケイ素に結合した水酸基(Si-OH)含有量が、300ppm以下である、請求項1記載の低誘電正接シリカ粉体の製造方法。 The method for producing a low dielectric loss tangent silica powder according to claim 1, wherein the content of silicon-bonded hydroxyl groups (Si-OH) in the low dielectric loss tangent silica powder is 300 ppm or less. 低誘電正接シリカ粉体の最大粒径が、100μm以下である、請求項1記載の低誘電正接シリカ粉体の製造方法。 The method for producing low dielectric loss tangent silica powder according to claim 1, wherein the maximum particle size of the low dielectric loss tangent silica powder is 100 μm or less. さらに、加熱工程後に、加熱処理された低誘電正接シリカ粉体の表面を、カップリング剤処理する工程を含む、請求項1~7のいずれか1項記載の低誘電正接シリカ粉体の製造方法。 The method for producing a low dielectric loss tangent silica powder according to any one of claims 1 to 7, further comprising a step of treating the surface of the heat-treated low dielectric loss tangent silica powder with a coupling agent after the heating step. .
JP2022097985A 2022-06-17 2022-06-17 Method for producing low-dielectric-tangent silica powder Pending JP2023184068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022097985A JP2023184068A (en) 2022-06-17 2022-06-17 Method for producing low-dielectric-tangent silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022097985A JP2023184068A (en) 2022-06-17 2022-06-17 Method for producing low-dielectric-tangent silica powder

Publications (1)

Publication Number Publication Date
JP2023184068A true JP2023184068A (en) 2023-12-28

Family

ID=89333351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097985A Pending JP2023184068A (en) 2022-06-17 2022-06-17 Method for producing low-dielectric-tangent silica powder

Country Status (1)

Country Link
JP (1) JP2023184068A (en)

Similar Documents

Publication Publication Date Title
EP0441622B1 (en) Epoxy resin compositions containing highly transparent silica-titania glass beads
KR102595535B1 (en) Spherical crystalline silica particles and method for producing the same
JP4893880B2 (en) Sealing material for solid oxide fuel cell and method for producing the same
JP7478031B2 (en) Manufacturing method of low dielectric silica powder
CN109836141B (en) High-thermal-conductivity low-temperature co-fired ceramic material and preparation method thereof
WO2020241902A1 (en) Spherical crystalline silica particles, spherical silica particle mixture, and composite material
TW202342369A (en) Low dielectric amorphous silica powder, method for producing same, slurry, resin composition, prepreg, and printed wiring board
JPH0761852B2 (en) Method for producing non-sintered cristobalitized silica
TW202233406A (en) Resin substrate having dielectric characteristics with little frequency dependence
WO2023109165A1 (en) Underfill material, and preparation method therefor and use thereof
JP2023184068A (en) Method for producing low-dielectric-tangent silica powder
CN115697907A (en) Spherical crystalline silica particles and method for producing same
US20230416482A1 (en) Fluoroplastic substrate for high-speed communications and copper-clad fluoroplastic substrate for high-speed communications
TW202323193A (en) Silica for electronic materials and method for producing same
TW202342371A (en) Preparation method of spherical silicon dioxide micro powder with ultralow dielectric loss
JP2021134101A (en) Manufacturing method of alumina particle with improved water resistance
TW202229197A (en) Low dielectric substrate for high-speed millimeter-wave communication
JP7269416B1 (en) Method for manufacturing quartz glass cloth
CN108410406A (en) A kind of preparation method of modified epoxy casting glue
JP7480832B1 (en) How to store quartz glass fiber
JP5975589B2 (en) Paste for mounting semiconductor devices
Li et al. The Densification Behavior and Microwave Dielectric Properties of the CBS Glass-ceramics for LTCC Application
JP2023064041A (en) Resin material and metal substrate
TW202337826A (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2023182511A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240524