JP2023176819A - Decanter type centrifugal separator, classification point setting method, and classification processing method - Google Patents

Decanter type centrifugal separator, classification point setting method, and classification processing method Download PDF

Info

Publication number
JP2023176819A
JP2023176819A JP2022089311A JP2022089311A JP2023176819A JP 2023176819 A JP2023176819 A JP 2023176819A JP 2022089311 A JP2022089311 A JP 2022089311A JP 2022089311 A JP2022089311 A JP 2022089311A JP 2023176819 A JP2023176819 A JP 2023176819A
Authority
JP
Japan
Prior art keywords
particles
bowl
coarse
classification
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089311A
Other languages
Japanese (ja)
Inventor
直樹 山根
Naoki Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022089311A priority Critical patent/JP2023176819A/en
Publication of JP2023176819A publication Critical patent/JP2023176819A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for setting a classification point of a decanter type centrifugal separator capable of reducing solid particle content having a particle size of less than 75 μm to be finally disposed using neither additive nor a filtering device.SOLUTION: A decanter type centrifugal separator 10 acquires a fine particle fraction mixing ratio and a coarse particle fraction recovery ratio from a particle size distribution of a fine particle fraction and a coarse particle fraction obtained by separating particles in a raw liquid 130 with a set particle size being a reference. A classification point of the decanter type centrifugal separator is set to a particle size of less than 75 μm by adjusting at least a height of a weir among rotation speed of an outer body bowl, differential rotation speed, throughput of the raw liquid of the decanter type centrifugal separator per unit time, and the height of the weir so as to further decrease the fine particle fraction mixing ratio and further increase the coarse particle fraction recovery ratio.SELECTED DRAWING: Figure 1

Description

新規性喪失の例外適用申請有り There is an application for exception to loss of novelty.

本発明は汚水等に含まれる固体粒子を分級する遠心分離技術に関する。 The present invention relates to a centrifugal separation technique for classifying solid particles contained in wastewater and the like.

特許文献1には、デカンタ型遠心分離装置を用いて廃液を固液分離する際に有機凝集剤を添加し、それにより分離水に含まれる浮遊物質を凝集させる廃液処理方法が開示されている。 Patent Document 1 discloses a waste liquid treatment method in which an organic flocculant is added when waste liquid is separated into solid and liquid using a decanter type centrifugal separator, thereby flocculating suspended substances contained in separated water.

また、一般的にサイズの小さな土壌粒子ほど汚染物質の濃度が高く、たとえば放射性セシウムは主に細粒分の粘土粒子に吸着・固定されていることが知られている。この知見に基づいて、放射性物質を含む土壌を除染する方法がいくつか提案されている。 In addition, it is generally known that the smaller the size of soil particles, the higher the concentration of contaminants; for example, it is known that radioactive cesium is mainly adsorbed and fixed on fine clay particles. Based on this knowledge, several methods have been proposed to decontaminate soil containing radioactive materials.

たとえば特許文献2には、放射性セシウムが75μm未満の土粒子に比較的多く吸着し集積するという知見に基づいた分級洗浄処理方法が開示されている。特許文献2によれば、高分子吸水性樹脂を含む汚染土壌の分級洗浄開始時に、汚染土壌に膨潤抑制剤を添加することで、75μm未満の土粒子に比較的多く吸着するセシウムの量を低減させることができる。 For example, Patent Document 2 discloses a classification cleaning treatment method based on the knowledge that radioactive cesium is adsorbed and accumulated in relatively large amounts on soil particles smaller than 75 μm. According to Patent Document 2, by adding a swelling inhibitor to contaminated soil at the start of classification and cleaning of contaminated soil containing a polymeric water-absorbing resin, the amount of cesium that is relatively adsorbed to soil particles less than 75 μm is reduced. can be done.

また特許文献3に開示された放射能汚染土壌の洗浄方法によれば、サイクロン型分離機により汚泥を液体と粒径0.075mm(75μm)~5mmのスラリーとに分離し、スラリーをデカンタ型遠心分離装置により脱水し、その水とサイクロン型分離機からの液体とをろ過装置により濾過する。これにより高濃度の放射性セシウムを含む粒径0.075mm未満の微細な土壌を分離する。 Furthermore, according to the method for cleaning radioactively contaminated soil disclosed in Patent Document 3, sludge is separated into liquid and slurry with a particle size of 0.075 mm (75 μm) to 5 mm using a cyclone separator, and the slurry is subjected to decanter type centrifugation. The water is dehydrated by the device, and the water and the liquid from the cyclone separator are filtered by the filtration device. This separates fine soil with a particle size of less than 0.075 mm that contains high concentrations of radioactive cesium.

特開2017-047358号公報JP 2017-047358 Publication 特開2020-163265号公報JP2020-163265A 特開2016-045113号公報JP 2016-045113 Publication

しかしながら、上述した特許文献1および2では、微粒子分を分離するために有機凝集剤や膨潤抑制剤などを添加する必要があり、処理工程の増加および複雑化を招来する。また特許文献3では、粒径0.075mm未満の土粒子を分離するためにろ過装置が必要となり、設置の増大および構成の複雑化を招来する。 However, in the above-mentioned Patent Documents 1 and 2, it is necessary to add an organic flocculant, a swelling inhibitor, etc. in order to separate the fine particles, which increases and complicates the processing steps. Further, in Patent Document 3, a filtration device is required to separate soil particles having a particle size of less than 0.075 mm, which results in an increase in the number of installations and a complicated configuration.

さらに上記特許文献2および3では、粒径75μm未満の土粒子に高濃度放射性セシウムが含まれているとして最終処分されるために、再生土壌として利用されず、したがって最終処分土壌の減容化を達成できない。 Furthermore, in Patent Documents 2 and 3, soil particles with a particle size of less than 75 μm are considered to contain highly concentrated radioactive cesium and are disposed of as final disposal, so they are not used as recycled soil, and therefore it is difficult to reduce the volume of the final disposal soil. Unachievable.

そこで、本発明の目的は、添加剤やろ過装置を用いることなく、粒径75μm未満の最終処分される固体粒子分の減容化を達成できるデカンタ式遠心分離装置、その分級点設定方法および分級処理方法を提供することにある。 Therefore, the purpose of the present invention is to provide a decanter-type centrifugal separator capable of reducing the volume of solid particles with a particle size of less than 75 μm for final disposal without using additives or filtration devices, a method for setting the classification point thereof, and a method for setting the classification point. The purpose is to provide a processing method.

本発明の一態様によれば、回転軸を中心として回転可能に支持され前記回転軸方向に延びた内壁と前記回転軸を横切る側壁とを有する外胴ボウルと、前記外胴ボウル内で前記回転軸を中心として回転可能に支持された内胴スクリュウと、前記外胴ボウルと前記内胴スクリュウとを異なる回転速度で回転させる駆動機構と、前記外胴ボウルの前記側壁の円周上に等間隔で設けられた複数の液体吐出口と、前記外胴ボウルの前記内壁と前記複数の液体吐出口との距離をせきの高さとして調整する調整機構と、を有し、粒径が異なる粒子を含む原液を設定された粒径で分離するデカンタ式遠心分離装置の分級点設定方法であって、前記外胴ボウルおよび前記内胴スクリュウを回転させて前記原液中の粒子を設定された粒径を基準として細粒分と粗粒分とに分離し、分離された細粒分と粗粒分との粒度分布から、粗粒分に含まれる細粒分混入率と、前記原液中の粗粒分に対する分離後の粗粒分の割合である粗粒分回収率と、を取得し、前記細粒分混入率をより低下させ前記粗粒分回収率をより上昇させるように、前記外胴ボウルの回転速度、前記外胴ボウルと前記内胴スクリュウの差回転速度および前記せきの高さのうち少なくとも前記せきの高さを調整することで、前記デカンタ式遠心分離装置の分級点を粒径75μm未満に設定する、ことを特徴とする。 According to one aspect of the present invention, an outer bowl includes an inner wall that is rotatably supported around a rotation axis and extends in the direction of the rotation axis, and a side wall that crosses the rotation axis; an inner barrel screw rotatably supported around a shaft; a drive mechanism that rotates the outer barrel bowl and the inner barrel screw at different rotational speeds; and an adjustment mechanism that adjusts the distance between the inner wall of the outer bowl and the plurality of liquid discharge ports as a weir height, and a A classification point setting method for a decanter-type centrifugal separator that separates a stock solution containing a predetermined particle size, the method comprising: rotating the outer bowl and the inner screw to separate the particles in the stock solution into a preset particle size; Separate into fine particles and coarse particles as a standard, and from the particle size distribution of the separated fine particles and coarse particles, calculate the mixing ratio of fine particles in the coarse particles and the coarse particles in the stock solution. of the outer body bowl so as to further reduce the fine particle mixing rate and increase the coarse particle recovery rate. By adjusting at least the height of the weir among the rotational speed, the differential rotational speed between the outer bowl and the inner screw, and the height of the weir, the classification point of the decanter type centrifugal separator can be set to a particle size of less than 75 μm. It is characterized by being set to .

外胴ボウルの回転速度、外胴ボウルと内胴スクリュウの差回転速度およびせきの高さのうち少なくともせきの高さを調整することで分級点を粒径75μm未満に設定することができ、添加剤やろ過装置を用いることなく、粒径75μm未満の最終処分される細粒分の減容化を達成できる。 By adjusting at least the rotational speed of the outer bowl, the differential rotational speed between the outer bowl and the inner screw, and the height of the weir, the classification point can be set to a particle size of less than 75 μm, and the addition It is possible to reduce the volume of fine particles with a particle size of less than 75 μm for final disposal without using agents or filtration equipment.

本発明の一態様によれば、前記外胴ボウルの回転速度は前記原液の粗粒分と細粒分との間で沈降速度の差を生じさせる遠心力に設定されることが望ましい。この設定により、外胴ボウルの回転速度が大きいと強い遠心力により細粒分も粗粒分と共に沈降して粗粒分と細粒分とを分離できない事態を回避できる。 According to one aspect of the present invention, it is preferable that the rotational speed of the outer bowl is set to a centrifugal force that causes a difference in sedimentation speed between coarse particles and fine particles of the stock solution. With this setting, it is possible to avoid a situation where the fine particles settle together with the coarse particles due to strong centrifugal force when the rotational speed of the outer body bowl is high, making it impossible to separate the coarse particles and the fine particles.

本発明の一態様によれば、回転軸を中心として回転可能に支持され前記回転軸方向に延びた内壁と前記回転軸を横切る側壁とを有する外胴ボウルと、前記外胴ボウル内で前記回転軸を中心として回転可能に支持された内胴スクリュウと、前記外胴ボウルと前記内胴スクリュウとを異なる回転速度で回転させる駆動機構と、を有し、粒径が異なる粒子を含む原液を設定された粒径で分離するデカンタ式遠心分離装置であって、前記外胴ボウルは前記側壁の前記回転軸から等距離の位置に等間隔で形成された複数の液体吐出口を有し、前記外胴ボウルの前記内壁と前記複数の液体吐出口との距離をせきの高さとし、前記外胴ボウルの前記側壁は前記せきの高さを調整する調整機構を有し、前記外胴ボウルおよび前記内胴スクリュウの回転速度をそれぞれ所定値に設定した状態で、前記調整機構により前記せきの高さを調整して分級点を粒径75μm未満に設定したことを特徴とする。 According to one aspect of the present invention, an outer bowl includes an inner wall that is rotatably supported around a rotation axis and extends in the direction of the rotation axis, and a side wall that crosses the rotation axis; It has an inner barrel screw rotatably supported around a shaft, and a drive mechanism that rotates the outer barrel bowl and the inner barrel screw at different rotational speeds, and sets a stock solution containing particles with different particle sizes. The decanter-type centrifugal separator separates particles according to their particle size, and the outer bowl has a plurality of liquid discharge ports formed at equal intervals on the side wall at positions equidistant from the rotation axis, The distance between the inner wall of the body bowl and the plurality of liquid discharge ports is the height of a weir, and the side wall of the outer body bowl has an adjustment mechanism for adjusting the height of the weir, and the outer body bowl and the inner body bowl have an adjustment mechanism for adjusting the height of the weir. The present invention is characterized in that the height of the weir is adjusted by the adjustment mechanism while the rotational speed of the barrel screw is set to a predetermined value, and the classification point is set to a particle size of less than 75 μm.

せきの高さを調整することで分級点を粒径75μm未満に設定することができ、添加剤やろ過装置を用いることなく、粒径75μm未満の最終処分される細粒分の減容化を達成できる。 By adjusting the height of the weir, the classification point can be set to a particle size of less than 75 μm, and the volume of fine particles less than 75 μm for final disposal can be reduced without using additives or filtration equipment. It can be achieved.

前記調整機構は、前記外胴ボウルの前記側壁における前記複数の液体吐出口にそれぞれ対応した位置に設けられた複数の貫通孔と、前記複数の液体吐出口の各々が中心点から外れた位置に形成された複数の円形プレートと、前記各円形プレートを所望の向きで前記液体吐出口と前記貫通孔とが重なるように前記側壁に着脱可能に固定する固定具と、からなることが望ましい。各円形プレートの向きを変更するだけでせきの高さを簡単に変更することができる。 The adjustment mechanism includes a plurality of through holes provided in the side wall of the outer body bowl at positions corresponding to the plurality of liquid ejection ports, respectively, and a plurality of through holes provided in positions corresponding to the plurality of liquid ejection ports, respectively, at positions offset from a center point. It is preferable to include a plurality of circular plates, and a fixture for removably fixing each of the circular plates to the side wall in a desired direction so that the liquid discharge port and the through hole overlap. The height of the weir can be easily changed by simply changing the orientation of each circular plate.

前記外胴ボウルおよび前記内胴スクリュウを回転させて前記原液中の粒子を設定された粒径を基準として細粒分と粗粒分とに分離し、分離された細粒分と粗粒分との粒度分布から、粗粒分に含まれる細粒分混入率と、前記原液中の粗粒分に対する分離後の粗粒分の割合である粗粒分回収率と、を取得し、前記細粒分混入率をより低下させ前記粗粒分回収率をより上昇させるように、前記外胴ボウルの回転速度、前記外胴ボウルと前記内胴スクリュウの差回転速度および前記せきの高さのうち少なくとも前記せきの高さを調整することで、前記分級点を粒径75μm未満の所望の粒径に設定することができる。したがって添加剤やろ過装置を用いることなく効率的に重金属や放射性セシウムを濃縮することができ、分級点の粒径以上の粗粒分を再生利用することが可能となる。 The outer barrel bowl and the inner barrel screw are rotated to separate the particles in the stock solution into fine particles and coarse particles based on a set particle size, and the separated fine particles and coarse particles are separated. From the particle size distribution of At least one of the rotational speed of the outer bowl, the differential rotational speed between the outer bowl and the inner screw, and the height of the weir is configured to further reduce the coarse particle mixing rate and increase the coarse particle collection rate. By adjusting the height of the weir, the classification point can be set to a desired particle size of less than 75 μm. Therefore, it is possible to efficiently concentrate heavy metals and radioactive cesium without using additives or filtration equipment, and it is possible to recycle coarse particles with a particle size larger than the classification point.

本発明の一態様によれば、上述した分級点設定方法により前記デカンタ式遠心分離装置の分級点を75μm未満の粒径に設定し、分級された粗粒分に対して複数回繰り返し洗浄と分級を実行することを特徴とする。これにより分級点未満の細粒分に重金属やセシウムを濃縮することができ、新たに分級点~75μmの分画の再生利用を増大することができる。 According to one aspect of the present invention, the classification point of the decanter centrifugal separator is set to a particle size of less than 75 μm using the classification point setting method described above, and the classified coarse particles are washed and classified multiple times. It is characterized by carrying out. This allows heavy metals and cesium to be concentrated in the fine particles below the classification point, making it possible to newly increase the recycling of the fraction from the classification point to 75 μm.

本発明によれば、添加剤やろ過装置を用いることなく、粒径75μm未満の最終処分される固体粒子分の減容化を達成できる。たとえば放射性セシウムは微細な粘土粒子に多く吸着されているため、粒径75μm未満の粒子のうち分級点の粒径未満の細粒分と分級点粒径以上の粗粒分を分離し、粗粒分を再生資材として利用することで、最終処分する土粒子量の減容化が可能となる。 According to the present invention, it is possible to reduce the volume of solid particles having a particle size of less than 75 μm and to be finally disposed of without using additives or filtration equipment. For example, radioactive cesium is adsorbed in large quantities in fine clay particles, so among particles with a particle size of less than 75 μm, we separate the fine particles, which are less than the particle size of the classification point, and the coarse particles, which are larger than the particle size of the classification point. By using the remaining soil particles as recycled materials, it is possible to reduce the volume of soil particles for final disposal.

図1は本発明の一実施形態によるデカンタ式遠心分離装置の概略的断面構成図である。FIG. 1 is a schematic cross-sectional configuration diagram of a decanter-type centrifugal separator according to an embodiment of the present invention. 図2は本実施形態によるデカンタ式遠心分離装置における粗粒分および細粒分の分布例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the distribution of coarse particles and fine particles in the decanter centrifugal separator according to this embodiment. 図3は本実施形態によるデカンタ式遠心分離装置におけるせきの高さの調整方法を説明するするオリフィスプレートの斜視図である。FIG. 3 is a perspective view of an orifice plate illustrating a method of adjusting the height of the weir in the decanter centrifugal separator according to this embodiment. 図4はデカンタ式遠心分離装置での遠心力が大きい場合(A)と小さい場合(B)の粗粒分および細粒分の分布例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the distribution of coarse particles and fine particles when the centrifugal force in the decanter centrifugal separator is large (A) and small (B). 図5は本実施形態によるデカンタ式遠心分離装置の分級原理を説明するためのせきの高さと粗粒分および細粒分の分布例とを示す模式図である。FIG. 5 is a schematic diagram showing the height of the weir and an example of the distribution of coarse particles and fine particles for explaining the classification principle of the decanter centrifugal separator according to this embodiment. 図6は本実施形態によるデカンタ式遠心分離装置における遠心分離の最適条件を決定する手順の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a procedure for determining optimal conditions for centrifugation in the decanter centrifugal separator according to this embodiment. 図7は本発明の一実施例によるデカンタ式遠心分離装置を含む土壌処理システムの概略的構成図である。FIG. 7 is a schematic diagram of a soil treatment system including a decanter-type centrifugal separator according to an embodiment of the present invention. 図8は本実施例における分級の前後の非放射性セシウム総量の物質収支を示す模式図である。FIG. 8 is a schematic diagram showing the mass balance of the total amount of non-radioactive cesium before and after classification in this example. 図9は本実施例に用いられる試験土壌の準備手順の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the test soil preparation procedure used in this example. 図10は本実施例における粗粒分回収率と細粒分混入率とを条件を変えて測定したグラフである。FIG. 10 is a graph in which the coarse particle recovery rate and the fine particle mixing rate in this example were measured under different conditions. 図11は本実施例によるデカンタ式遠心分離装置を用いた本試験の手順の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of the procedure of this test using the decanter type centrifugal separator according to this example.

<実施形態の概要>
本発明の一実施形態によるデカンタ式遠心分離装置は、後述するせきの高さ、本体回転数および差速回転数を調整することで、分級点を通常の75μmよりも細かい粒径に設定する。したがって、添加剤やろ過装置を用いることなく、デカンタ式遠心分離装置の設定だけで、設定された分級点の粒径未満の細粒分と分級点の粒径以上の粗粒分とを分離することができる。
<Overview of embodiment>
The decanter type centrifugal separator according to an embodiment of the present invention sets the classification point to a particle size finer than the usual 75 μm by adjusting the weir height, main body rotation speed, and differential speed rotation speed, which will be described later. Therefore, without using additives or filtration equipment, just by setting the decanter type centrifugal separator, fine particles with a particle size less than the particle size of the set classification point and coarse particles with a particle size larger than the particle size of the classification point can be separated. be able to.

ここで、せきの高さとはデカンタ式遠心分離装置の外胴ボウルの内壁面から液体吐出口までの距離をいう。本体回転数とは外胴ボウルの回転速度をいう。差速回転数とは外胴ボウルと内胴スクリュウとの回転速度の差をいう。分級点は、せきの高さ、本体回転数および差速回転数を調整することで粒径75μm未満の粒径に設定され得る。 Here, the height of the weir refers to the distance from the inner wall surface of the outer bowl of the decanter type centrifugal separator to the liquid discharge port. The main body rotation speed refers to the rotation speed of the outer bowl. The differential rotational speed refers to the difference in rotational speed between the outer barrel bowl and the inner barrel screw. The classification point can be set to a particle size of less than 75 μm by adjusting the weir height, body rotation speed, and differential speed rotation speed.

従来では75μm未満が最終処分される分画であったが、本実施形態によるデカンタ式遠心分離装置は粒径75μm未満の粒径を分級点に設定することができる。そのために複数回繰り返し洗浄と分級を行うことにより、新たに分級点の粒径~75μmの分画にある固体粒子分の再生利用が可能となる。 Conventionally, fractions smaller than 75 μm were ultimately disposed of, but the decanter-type centrifugal separator according to the present embodiment can set the particle size smaller than 75 μm as the classification point. For this purpose, by repeating washing and classification multiple times, it becomes possible to recycle the solid particles in the particle size fraction of 75 μm at the classification point.

以下、本実施形態によるデカンタ式遠心分離装置の構造および動作、ならびに分級点の設定方法について詳細に説明する。なお、図1~図3に示された外胴ボウルの断面形状、内胴スクリュウの形状などは説明のために簡略化されて図示されている。 Hereinafter, the structure and operation of the decanter-type centrifugal separator according to this embodiment, and the method for setting classification points will be described in detail. Note that the cross-sectional shape of the outer barrel bowl, the shape of the inner barrel screw, etc. shown in FIGS. 1 to 3 are illustrated in a simplified manner for the purpose of explanation.

1.デカンタ式遠心分離装置
図1および図2に模式的に示すように、本実施形態によるデカンタ式遠心分離装置10は、回転軸11を共通の中心として回転可能な外胴ボウル101と内胴スクリュウ102を有する。外胴ボウル101は、図示しないモータにより回転するプーリ103により回転軸11を中心として回転可能である。外胴ボウル101の回転軸101Rは一対のベアリング部104により回転可能に支持される。内胴スクリュウ102は図示しない支持部材により外胴ボウル101内に回転可能に支持されている。内胴スクリュウ102の回転軸102Rの一端は差速生成部105に接続され、外胴ボウル101とは異なる速度で回転する。差速生成部105は差速モータであってもよいし、外胴ボウル101の回転を変速するギアボックスであってもよい。
1. Decanter-type centrifugal separator As schematically shown in FIGS. 1 and 2, the decanter-type centrifuge 10 according to the present embodiment includes an outer bowl 101 and an inner screw 102 that are rotatable about a rotating shaft 11 as a common center. has. The outer bowl 101 is rotatable about a rotation shaft 11 by a pulley 103 rotated by a motor (not shown). A rotating shaft 101R of the outer bowl 101 is rotatably supported by a pair of bearing parts 104. The inner barrel screw 102 is rotatably supported within the outer barrel bowl 101 by a support member (not shown). One end of the rotating shaft 102R of the inner barrel screw 102 is connected to a differential speed generator 105, and rotates at a different speed from that of the outer barrel bowl 101. The differential speed generator 105 may be a differential speed motor or a gearbox that changes the speed of the rotation of the outer bowl 101.

内胴スクリュウ102の回転軸102Rには汚泥の原液130が供給されるフィードパイプ106が設けられ、内胴スクリュウ102の回転による遠心力により原液130が外胴ボウル101の内壁面に供給される。外胴ボウル101の回転軸101Rに直交する側壁111には複数の液体吐出口110が一定間隔、すなわち回転軸11を中心とした円周上に一定の角度ごとに設けられる。したがって、図2に例示するように、複数の液体吐出口110は外胴ボウル101の内壁から一定の距離に配置され、その内壁から液体吐出口110までの距離がせきの高さ111wとなる。 The rotating shaft 102R of the inner screw 102 is provided with a feed pipe 106 to which the undiluted sludge solution 130 is supplied, and the centrifugal force caused by the rotation of the inner screw 102 supplies the undiluted solution 130 to the inner wall surface of the outer bowl 101. A plurality of liquid discharge ports 110 are provided on a side wall 111 of the outer bowl 101 perpendicular to the rotation axis 101R at regular intervals, that is, at regular angles on the circumference around the rotation axis 11. Therefore, as illustrated in FIG. 2, the plurality of liquid discharge ports 110 are arranged at a constant distance from the inner wall of the outer body bowl 101, and the distance from the inner wall to the liquid discharge ports 110 is the weir height 111w.

図2に示すように、せきの高さ111wが高いと回転する外胴ボウル101の内壁の水深h1が深くなり、せきの高さ111wが低いと水深h1が浅くなる。分離液は、高さ111wのせきを超えて液体吐出口110から外部へ吐出する。 As shown in FIG. 2, when the weir height 111w is high, the water depth h1 of the inner wall of the rotating outer bowl 101 becomes deep, and when the weir height 111w is low, the water depth h1 becomes shallow. The separated liquid is discharged to the outside from the liquid discharge port 110 over a weir with a height of 111w.

なお、外胴ボウル101および内胴スクリュウ102はモータおよび差速生成部105からなる駆動機構により駆動される。すなわち外胴ボウル101を回転させるモータは駆動部140により駆動され、内胴スクリュウ102は差速生成部105により回転駆動される。外胴ボウル101の本体回転数と、外胴ボウル101と内胴スクリュウ102との間の差速回転数とは回転数設定部141により設定されるものとする。 Note that the outer barrel bowl 101 and the inner barrel screw 102 are driven by a drive mechanism consisting of a motor and a differential speed generating section 105. That is, the motor that rotates the outer barrel bowl 101 is driven by the drive section 140, and the inner barrel screw 102 is rotationally driven by the differential speed generating section 105. The main body rotation speed of the outer bowl 101 and the differential rotation speed between the outer bowl 101 and the inner screw 102 are set by the rotation speed setting section 141.

デカンタ式遠心分離装置10が高速で回転すると、遠心力により外胴ボウル101の内壁に押された原液130は固体の沈降が助長され、比重の大きい固体(粗粒)は素早く内壁に堆積する。たとえば図2において、外胴ボウル101を所定時間だけ高速回転させると、黒丸で示された粗粒分のほとんどは外胴ボウル101の内壁と高さ111wのせきとで囲まれた領域に堆積し、白丸で示された比重の小さい細粒分のほとんどは水深h1の液体内に浮遊状態のままとなる。逆に言えば、外胴ボウル101の回転速度および回転継続時間は、粗粒分が十分堆積し、細粒分が未だ堆積途中で浮遊状態であるように設定される。 When the decanter-type centrifugal separator 10 rotates at high speed, the centrifugal force pushes the stock solution 130 against the inner wall of the outer bowl 101, promoting the settling of solids, and solids with high specific gravity (coarse particles) quickly accumulate on the inner wall. For example, in FIG. 2, when the outer bowl 101 is rotated at high speed for a predetermined period of time, most of the coarse particles indicated by the black circles are deposited in the area surrounded by the inner wall of the outer bowl 101 and the weir of height 111w. , most of the fine particles with low specific gravity indicated by white circles remain suspended in the liquid at the water depth h1. In other words, the rotational speed and rotation duration of the outer bowl 101 are set so that the coarse particles are sufficiently deposited and the fine particles are still in the process of being deposited and in a floating state.

粗粒分が十分堆積した状態で内胴スクリュウ102が外胴ボウル101に対して所定の差速度で回転すると、外胴ボウル101の内壁に堆積した固体は内胴スクリュウ102のコンベア作用により図1の右方向へ移送され脱水されて固体吐出口112から吐出し、固体排出部121から排出される。また、比重の小さい微細粒子および液体は分離液として液体吐出口110から吐出し、液体排出部122から排出される。 When the inner barrel screw 102 rotates at a predetermined differential speed with respect to the outer barrel bowl 101 in a state where coarse particles have sufficiently accumulated, the solids accumulated on the inner wall of the outer barrel bowl 101 are removed by the conveyor action of the inner barrel screw 102 as shown in FIG. The solids are transferred to the right, dehydrated, discharged from the solid discharge port 112, and discharged from the solid discharge section 121. Further, the fine particles and liquid having a small specific gravity are discharged as a separated liquid from the liquid discharge port 110 and discharged from the liquid discharge part 122.

本実施形態によれば、液体吐出口110から吐出される微粒分の分級点は、側壁111に設けられたせきの高さ111wにより調整することができる。本実施形態では、せきの高さ111wを調整可能な調整機構が設けられ、この調整機構は液体吐出口110を有するオリフィスプレートの固定位置を変更することでせきの高さ111wを調整できる。以下、図3を参照してオリフィスプレートについて説明する。 According to this embodiment, the classification point of the fine particles discharged from the liquid discharge port 110 can be adjusted by the height 111w of the weir provided on the side wall 111. In this embodiment, an adjustment mechanism that can adjust the height 111w of the weir is provided, and this adjustment mechanism can adjust the height 111w of the weir by changing the fixed position of the orifice plate having the liquid discharge port 110. The orifice plate will be explained below with reference to FIG.

図3に例示するように、側壁111には複数の液体吐出口110の各々に対応した位置に、液体吐出口110より大きな貫通孔111aが設けられ、各貫通孔111aを覆うようにオリフィスプレート110aが固定されている。オリフィスプレート110aは円形プレートからなり、円形プレートの中心から外れた位置に液体吐出口110が形成されている。さらに円形プレートの周辺部に等間隔で複数の固定用の貫通孔が形成され、複数の固定用貫通孔の少なくとも半周部分には通し番号(以下、オリフィスNoという。)が付けられている。オリフィスプレート110aは複数のボルト110bにより外胴ボウル101の側壁111の貫通孔111a上に固定される。側壁111上にはマーク111bが設けられ、マーク111bは複数の貫通孔111aにそれぞれ固定されるオリフィスプレート110aの配置方向(オリフィスNo)を一致させるための目印として使用される。各マーク111bは、外胴ボウル101の半径方向を基準として各貫通孔111aで同一の位置に配置される。たとえば回転軸11から外胴ボウル101の半径方向に延びる線上にあって、各貫通孔111aを直径方向に貫通した位置に設けられる。オリフィスプレート110aは、同じオリフィスNoをマーク111bに一致させて各貫通孔111aに固定することで、せきの高さ111wを決定することができる。すなわち、全てのオリフィスプレート110aで同じオリフィスNoを各マーク111bに合わせて固定することで、オリフィスプレート110aの向きが決定され、中心から外れた液体吐出口110と外胴ボウル101の内壁との距離、すなわちせきの高さ111wを調整することが可能となる。以下、オリフィスプレート110aを固定する向きをオリフィスNoで表記し、オリフィスNoがせきの高さ111wを表すものとする。また、以下の実施例ではオリフィスNoが大きくなるに従ってせきの高さ111wが低くなるものとする。 As illustrated in FIG. 3, through holes 111a larger than the liquid ejection ports 110 are provided in the side wall 111 at positions corresponding to each of the plurality of liquid ejection ports 110, and an orifice plate 110a is provided to cover each of the through holes 111a. is fixed. The orifice plate 110a is made of a circular plate, and a liquid discharge port 110 is formed at a position off the center of the circular plate. Further, a plurality of fixing through holes are formed at equal intervals around the circular plate, and serial numbers (hereinafter referred to as orifice numbers) are attached to at least half the circumference of the plurality of fixing through holes. The orifice plate 110a is fixed onto the through hole 111a of the side wall 111 of the outer body bowl 101 with a plurality of bolts 110b. A mark 111b is provided on the side wall 111, and the mark 111b is used as a mark for matching the arrangement directions (orifice numbers) of the orifice plates 110a fixed to the plurality of through holes 111a. Each mark 111b is arranged at the same position in each through hole 111a with reference to the radial direction of the outer bowl 101. For example, it is provided on a line extending in the radial direction of the outer bowl 101 from the rotating shaft 11, and at a position passing through each through hole 111a in the diametrical direction. The weir height 111w of the orifice plate 110a can be determined by fixing the same orifice number to each through hole 111a with the same orifice number matching the mark 111b. That is, by fixing the same orifice number on all orifice plates 110a to each mark 111b, the orientation of the orifice plate 110a is determined, and the distance between the off-center liquid discharge port 110 and the inner wall of the outer body bowl 101 is determined. In other words, it becomes possible to adjust the height 111w of the weir. Hereinafter, the direction in which the orifice plate 110a is fixed will be expressed as an orifice number, and the orifice number will represent the weir height 111w. Further, in the following examples, it is assumed that the height 111w of the weir decreases as the orifice number increases.

以下に述べるように、せきの高さ111wは分級点が粒径75μm未満の粒径、ここでは粒径20μmとなるように設定されるものとする。この状態で原液130がフィードパイプ106を通して供給されると、分離脱水され、20μmを超える粗粒分が脱水固体として固体排出部121から、20μm以下の細粒分が分離液として液体排出部122からそれぞれ連続的に排出される。 As described below, the height 111w of the weir is set so that the classification point is a particle size of less than 75 μm, in this case a particle size of 20 μm. When the stock solution 130 is supplied through the feed pipe 106 in this state, it is separated and dehydrated. Coarse particles exceeding 20 μm are discharged from the solid discharge section 121 as dehydrated solids, and fine particles of 20 μm or less are discharged as a separated liquid from the liquid discharge section 122. Each is discharged continuously.

2.分級点の調整
デカンタ式遠心分離装置10の一般的な使用方法は、外胴ボウル101の回転速度(本体回転数)を高くし、遠心力の大きい状態で設定された粒径を基準として細粒分と粗粒分との分離を行う。しかしながら、本実施形態にように20μm程度の分級を行う場合、図4(A)に示すように、遠心力が大き過ぎると20μm未満の細粒分のほとんどが粗粒分と一緒に沈降してしまう。このために比重差による沈降速度の差が生じ難くなり、細粒分までも固体排出側へ排出されてしまう。図4(B)に示すように、遠心力をある程度小さくすることで、細粒分と粗粒分の沈降速度に差を生じさせることができる。
2. Adjustment of the classification point The general method of using the decanter type centrifugal separator 10 is to increase the rotational speed (rotation speed of the main body) of the outer bowl 101, and fine-grain particles based on the set particle size under high centrifugal force. Separate the fine particles from the coarse particles. However, when classifying particles of about 20 μm as in this embodiment, if the centrifugal force is too large, most of the fine particles of less than 20 μm will settle together with the coarse particles, as shown in FIG. 4(A). Put it away. For this reason, differences in sedimentation speed due to differences in specific gravity are less likely to occur, and even fine particles are discharged to the solid discharge side. As shown in FIG. 4(B), by reducing the centrifugal force to a certain extent, it is possible to create a difference in the sedimentation speed of fine particles and coarse particles.

後述する検証データから分かるように、傾向としては、高い遠心力の時ほど分離水側へ排出される粒径は小さくなり、遠心力が低くなるにつれて粒径が大きくなっている。しかしながら遠心力の調整だけでは分級は出来ても分級土への細粒分の混入率を低くすることはできない。 As can be seen from the verification data described below, the tendency is that the higher the centrifugal force is, the smaller the particle size discharged to the separated water side is, and the lower the centrifugal force is, the larger the particle size is. However, although it is possible to classify soil by adjusting the centrifugal force alone, it is not possible to reduce the proportion of fine particles mixed into the classified soil.

図5に例示するように、低い遠心力で回転させることで、20μmを超える粗粒分と20μm以下の細粒分との間で沈降速度の差を生じさせ、この状態で分級点が20μmとなるようにせきの高さ111wを調整する必要がある。 As illustrated in Figure 5, by rotating with a low centrifugal force, a difference in sedimentation rate is created between coarse particles exceeding 20 μm and fine particles below 20 μm, and in this state, the classification point is 20 μm. It is necessary to adjust the height 111w of the weir so that

具体例として、沈降速度の差により、せきの高さ111w=h2の位置の近傍領域で粗粒分の分布と細粒分の分布とが交差する状態(ほぼ分離した状態)になるものと仮定する。このとき、せきの高さ111wがh2より高い場合(h3>h2)、粗粒分はほとんど固体側へ排出されるので粗粒回収率が高くなるが、多くの細粒分も固体側へ排出されてしまうので細粒混入率も高くなる。逆に、せきの高さ111wがh2より低い場合(h2>h4)、細粒分は全て分離液側へ排出され固体側へ排出されないので細粒混入率は低くなるが、多くの粗粒分も分離液側へ排出されてしまい固体側へ排出される粗粒分が減少するので粗粒回収率も低くなる。 As a specific example, it is assumed that the distribution of coarse particles and the distribution of fine particles intersect (almost separated) in the area near the weir height 111w=h2 due to the difference in sedimentation speed. do. At this time, if the weir height 111w is higher than h2 (h3>h2), most of the coarse particles will be discharged to the solid side, resulting in a high coarse particle recovery rate, but many fine particles will also be discharged to the solid side. As a result, the fine particle contamination rate also increases. Conversely, when the weir height 111w is lower than h2 (h2>h4), all fine particles are discharged to the separated liquid side and not to the solid side, so the fine particle mixing rate is low, but many coarse particles are Since the coarse particles are also discharged to the separated liquid side and the coarse particles discharged to the solid side are reduced, the coarse particle recovery rate also becomes low.

たとえば200G以下の低い遠心力で上述した粗粒分と細粒分との間で沈降速度の差を生じさせたとする。その状態において、せきの高さ111wにより、粗粒回収率が高い場合は細粒混入率も高くなり、粗粒回収率が低い場合は細粒混入率も低くなる。望ましいのは粗粒回収率が最も高く細粒混入率が最も低い状態であるから、粗粒回収率と細粒混入率の両方を最適化する本体回転数、差速回転数、単位時間あたりの処理量、およびせきの高さ111wの組を最適解として探索すればよい。 For example, let us assume that a low centrifugal force of 200 G or less causes a difference in sedimentation speed between the above-mentioned coarse particles and fine particles. In this state, depending on the weir height 111w, when the coarse particle recovery rate is high, the fine particle mixing rate also becomes high, and when the coarse particle recovery rate is low, the fine particle mixing rate also becomes low. It is desirable to have the highest coarse particle recovery rate and lowest fine particle mixing rate, so the main body rotation speed, differential speed rotation speed, and rotation speed per unit time that optimize both the coarse particle recovery rate and the fine particle mixing rate are desirable. What is necessary is to search for a combination of processing amount and weir height 111w as an optimal solution.

上述したように、図4(A)に示すような20μm未満の細粒分のほとんどが粗粒分と一緒に沈降してしまう高速の本体回転数ではなく、図5に示す粗粒分と細粒分との分布となるように低速の本体回転数(たとえば200G以下の低い遠心力)および差速回転数を設定する。この分布状態で20μm以上と未満の境界線付近の水深h2に合わせてせきの高さ111wを設定することが重要である。具体的なイメージとしては、20μm未満の細粒分が沈降する前に、分離水側へ排出するようにせきの高さ111wを設定し、20μm未満の細粒分の混入ができるだけ少なくなるように粗粒分を固体吐出口112へ移動させるように差速回転数を設定する。 As mentioned above, the main body rotation speed is not high as shown in Fig. 4 (A) where most of the fine particles less than 20 μm settle together with the coarse particles, but the coarse particles and fine particles shown in Fig. 5 are Set a low main body rotation speed (for example, a low centrifugal force of 200 G or less) and a differential speed rotation speed so that the distribution is consistent with the particle content. In this distribution state, it is important to set the weir height 111w in accordance with the water depth h2 near the boundary between 20 μm or more and less than 20 μm. As a concrete image, the height of the weir is set to 111w so that fine particles less than 20 μm are discharged to the separated water side before they settle, and the contamination of fine particles less than 20 μm is minimized. The differential speed rotation speed is set so that coarse particles are moved to the solid discharge port 112.

また、単位時間あたりの泥土(原液130)の処理量も細粒混入率に影響する。処理量は、デカンタ式遠心分離装置10のデカンタ内部での泥水の滞留時間に影響する。処理量が少ないと、滞留時間が長くなるために細粒分が沈降する時間が長くなり、細粒分混入率が高くなる。逆に、処理量が多いと、滞留時間が短くなるために細粒分が沈降する時間が少なくなり、細粒分混入率が低くなる。なお、処理すべき泥土の総量に応じて、本体回転数、差速回転数およびせきの高さ111wが変化し得る。 Furthermore, the amount of mud (undiluted solution 130) processed per unit time also affects the fine particle mixing rate. The throughput affects the retention time of the muddy water inside the decanter of the decanter-type centrifugal separator 10. If the amount of treatment is small, the residence time becomes longer, so the time for fine particles to settle becomes longer, and the fine particle contamination rate increases. Conversely, when the amount of treatment is large, the residence time is shortened, so the time for fine particles to settle is shortened, and the fine particle mixing rate becomes low. Note that the main body rotation speed, differential speed rotation speed, and weir height 111w may change depending on the total amount of mud to be treated.

3.最適条件の決定
図6に例示するように、まず試験土壌を準備し(ステップ201)、続いてオリフィス(せきの高さ)試験およびその分析・評価(ステップ202)、本体回転数試験およびその分析・評価(ステップ203)、差速回転数試験およびその分析・評価(ステップ204)、処理量試験およびその分析・評価(ステップ205)を順に実行する。これらの試験結果から細粒分混入率、粗粒分回収率および非放射性セシウム低減率を指標として、デカンタ式遠心分離装置10の最適条件を決定する(ステップ206)。本実施形態によればステップ202~206を繰り返し実行する。すなわち、初回の実行(ステップ202~206)で最初の条件を決定し、これを順次繰り返すことで条件を微調整し、最終的に最適条件を決定する。このようにして、本体回転数、差速回転数、単位時間あたりの処理量、およびせきの高さ111wが異なると粗粒分回収率、細粒分混入率、非放射性セシウムの低減率および減容率がどのように変化するかを評価し、その評価結果に基づいてデカンタ式遠心分離装置10の本体回転数、差速回転数およびせきの高さ111wの最適設定値が決定される。
3. Determination of optimal conditions As illustrated in Figure 6, test soil is first prepared (step 201), followed by an orifice (height of the weir) test and its analysis and evaluation (step 202), a main body rotation speed test and its analysis. - Evaluation (step 203), differential speed rotational speed test and its analysis/evaluation (step 204), throughput test and its analysis/evaluation (step 205) are executed in order. From these test results, optimal conditions for the decanter centrifugal separator 10 are determined using the fine particle mixing rate, coarse particle recovery rate, and non-radioactive cesium reduction rate as indicators (step 206). According to this embodiment, steps 202 to 206 are repeatedly executed. That is, the initial conditions are determined in the first execution (steps 202 to 206), and the conditions are finely adjusted by sequentially repeating this process, and the optimal conditions are finally determined. In this way, if the main body rotational speed, differential speed rotational speed, processing amount per unit time, and weir height 111w are different, the coarse particle collection rate, the fine particle mixing rate, the reduction rate of non-radioactive cesium, and the How the capacity rate changes is evaluated, and based on the evaluation results, optimal setting values for the main body rotation speed, differential speed rotation speed, and weir height 111w of the decanter centrifugal separator 10 are determined.

この最適条件を決定する試験を予備試験、この最適条件を用いて行う試験を本試験という。以下、試験に使用する処理システムについて図7を参照しながら説明する。なお、本実施形態では土壌の分級を例示するが、本発明はこれに限定されるものではなく、工場排水等に含まれる汚泥中の重機属やレアメタルの分級にも適用可能である。 The test to determine these optimal conditions is called a preliminary test, and the test conducted using these optimal conditions is called a main test. The processing system used in the test will be described below with reference to FIG. Although the present embodiment exemplifies the classification of soil, the present invention is not limited thereto, and can also be applied to the classification of heavy machinery and rare metals in sludge contained in factory wastewater and the like.

4.処理システム
図7に例示するように、試験土壌受け槽301に試験土壌と後述する清水を加え、その泥土を移送用水中ポンプ(図示せず。)により解泥槽302へ移送する。この移送される泥土をサンプルaとする。解泥槽302で攪拌した後、移送用水中ポンプ(図示せず。)によりサイクロン振動篩機303へ移送する。サイクロン振動篩機303は、泥水受け槽305から水中ポンプにより供給された泥水と解泥槽302からの泥水とを分離し、液体を泥水受け・洗浄槽306へ移送すると共に、固体をフレキシブルコンテナバック(フレコン)304に収容する。このフレコン304に収容された分級固体は75μm以上の砂分であり、以下これをサンプルe(分級土壌A)とする。
4. Treatment System As illustrated in FIG. 7, test soil and fresh water (described later) are added to a test soil receiving tank 301, and the mud is transferred to a desilting tank 302 using a submersible transfer pump (not shown). This transported mud is referred to as sample a. After stirring in the desilting tank 302, the slurry is transferred to a cyclone vibrating sieve 303 by a submersible transfer pump (not shown). The cyclone vibrating sieve machine 303 separates the muddy water supplied by the submersible pump from the muddy water receiving tank 305 and the muddy water from the desilting tank 302, transfers the liquid to the muddy water receiving/cleaning tank 306, and transfers the solids to a flexible container bag. (Flexible Container) 304. The classified solid contained in this flexible container 304 is sand with a size of 75 μm or more, and will hereinafter be referred to as sample e (classified soil A).

泥水受け・洗浄槽306は泥水を泥水受け槽305へ移送する水中ポンプと水中攪拌機とを有し、同じ構造の複数の泥水受け・洗浄槽が並列接続されている。泥水受け・洗浄槽306はサイクロン振動篩機303からの液体と泥水受け槽305からの泥水とを受け、後述する清水貯留槽310からの清水を用いて、泥水受け槽305との間で泥水をやりとりしながら洗浄を繰り返す。このときの洗浄前の泥水をサンプルb、洗浄後の泥水の溶出分をサンプルc、洗浄後の泥水をサンプルdとする。なお、洗浄後の泥水は、後述する遠心分離により分級した分級土壌Bを再度清水で解泥し攪拌したものであり、サンプルcは水への溶出分、サンプルdは土壌吸着分である。 The muddy water receiving/cleaning tank 306 has a submersible pump and a submersible agitator for transferring muddy water to the muddy water receiving tank 305, and a plurality of muddy water receiving/cleaning tanks having the same structure are connected in parallel. The muddy water receiving/cleaning tank 306 receives the liquid from the cyclone vibrating sieve machine 303 and the muddy water from the muddy water receiving tank 305, and exchanges the muddy water between it and the muddy water receiving tank 305 using fresh water from a fresh water storage tank 310, which will be described later. Repeat cleaning as you go. The muddy water before cleaning at this time is designated as sample b, the eluted portion of the muddy water after cleaning is designated as sample c, and the muddy water after cleaning is designated as sample d. Note that the muddy water after washing is obtained by desilting classified soil B, which has been classified by centrifugation to be described later, with clean water and stirring it again. Sample c is the amount eluted into water, and sample d is the amount adsorbed to the soil.

本実施形態によるデカンタ式遠心分離装置10は、泥水受け・洗浄槽306から移送用ポンプPおよび流量計FMを通して洗浄後の泥水が原液130として供給される。デカンタ式遠心分離装置10は、分離脱水後に20μmを超える粗粒分を脱水固体として固体受け槽307へ排出する。上述したように、この脱水固体は21~75μmの砂分およびシルトであり、以下これをサンプルf(分級土壌B)とする。分離された20μm以下の細粒分(シルト・粘土)は分級泥水受け槽308へ排出される。この分級泥水受け槽308に排出された分離水をサンプルgとする。 In the decanter-type centrifugal separator 10 according to the present embodiment, muddy water after cleaning is supplied as a stock solution 130 from a muddy water receiving/washing tank 306 through a transfer pump P and a flow meter FM. After separation and dehydration, the decanter-type centrifugal separator 10 discharges coarse particles exceeding 20 μm as dehydrated solids to the solid receiving tank 307 . As mentioned above, this dehydrated solid is sand and silt with a size of 21 to 75 μm, and will hereinafter be referred to as sample f (classified soil B). The separated fine particles (silt and clay) of 20 μm or less are discharged to the classified mud water receiving tank 308. The separated water discharged into the classified mud water receiving tank 308 is referred to as sample g.

以下、分級泥水受け槽308に高分子凝集剤が投入され、上澄み液が上水として固体受け槽307、ろ過水槽309および清水貯留槽310へ移送され、沈殿物がろ過水槽309でろ過され、ろ過された水が清水貯留槽310へ移送される。 Thereafter, a polymer flocculant is put into the classified mud water receiving tank 308, the supernatant liquid is transferred as clean water to the solid receiving tank 307, the filtered water tank 309, and the fresh water storage tank 310, and the sediment is filtered in the filtered water tank 309. The collected water is transferred to the fresh water storage tank 310.

5.予備試験
本体回転数、差速回転数およびせきの高さ111wの違いによる粗粒分回収率、細粒分混入率、非放射性セシウムの低減率および減容率は、上記サンプルa~gを分析することで取得でき、その評価に基づいてデカンタ式遠心分離装置10の最適条件が決定される。
5. Preliminary Test The coarse particle recovery rate, fine particle contamination rate, non-radioactive cesium reduction rate, and volume reduction rate due to differences in main body rotation speed, differential speed rotation speed, and weir height 111W were analyzed for samples a to g above. The optimum conditions for the decanter centrifugal separator 10 are determined based on the evaluation.

予備試験の目的は、分級処理後土壌の非放射性セシウム重量、粗粒分回収率、細粒分混入率、減容率等の基礎データを取得することである。 The purpose of the preliminary test is to obtain basic data such as the weight of non-radioactive cesium in the soil after classification, the recovery rate of coarse particles, the mixing rate of fine particles, and the volume reduction rate.

<細粒分混入率>
20μm未満の細粒分の粒子量の混入率は、デカンタ式遠心分離装置10で分級された20μm以上の粗粒分をレーザ回折散乱法による粒度分布分析を行い、以下の式を用いて求めることができる。
細粒分混入率(%)=
{(分級後の20μm未満の粒子量)/(20μm以上に分級された粗粒分粒子量)}×100
<Fine particle mixing rate>
The mixing rate of fine particles less than 20 μm can be determined by performing particle size distribution analysis using laser diffraction scattering on the coarse particles of 20 μm or more that have been classified by the decanter centrifuge 10, and using the following formula. I can do it.
Fine particle mixing rate (%) =
{(Amount of particles less than 20μm after classification)/(Amount of coarse particles classified to 20μm or more)}×100

<粒径20μm以上の粗粒分回収率>
粒径20μm以上の粗粒分回収率は、サイクロン振動篩機303にて分級された20μm以上の粗粒分重量とデカンタ式遠心分離装置10にて分級された20μm以上の粗粒分重量とから以下の式を用いて求められる。サイクロン振動篩機303にて分級された20μm以上の粗粒分の重量は数mの泥水であるため、処理量、含水率、比重より分級された泥水中の粒子重量を求める。これにレーザ回折散乱法による粒度分布分析を行い、20μm以上の粗粒分の粒子量(%)から重量を求める。
粗粒分回収率=
{(分級土壌B中の20μm以上の粒子重量(kg-dry)/(洗浄後泥水中の20μm以上の粒子重量(kg-dry)))×100
<Recovery rate of coarse particles with particle size of 20 μm or more>
The recovery rate of coarse particles with a particle size of 20 μm or more is determined from the weight of coarse particles with a particle size of 20 μm or more classified by the cyclone vibrating sieve 303 and the weight of coarse particles with a particle size of 20 μm or more classified by the decanter type centrifugal separator 10. It is determined using the following formula. Since the weight of the coarse particles of 20 μm or more classified by the cyclone vibrating sieve 303 is several m 3 of muddy water, the weight of the particles in the classified muddy water is determined from the throughput, water content, and specific gravity. This is subjected to particle size distribution analysis using a laser diffraction scattering method, and the weight is determined from the amount (%) of coarse particles of 20 μm or more.
Coarse particle recovery rate =
{(Weight of particles of 20 μm or more in classified soil B (kg-dry)/(Weight of particles of 20 μm or more in mud after washing (kg-dry))) × 100

ここで、洗浄後泥水中20μm以上の粒子重量(kg-dry)=処理量(m)×洗浄後泥水比重×(100-含水率(%))、 Here, the weight of particles of 20 μm or more in muddy water after washing (kg-dry) = processing amount (m 3 ) x specific gravity of muddy water after washing x (100 - water content (%)),

分級土壌B中の20μm以上の粒子重量(kg-dry)=洗浄後泥水中20μm以上の粒子重量(kg-dry)-分離水量(m)×分離水の比重×(100-含水率(%))×20μm以上の粒子量(%)
である。
Weight of particles of 20 μm or more in classified soil B (kg-dry) = Weight of particles of 20 μm or more in mud after washing (kg-dry) - Separated water amount (m 3 ) x Specific gravity of separated water x (100 - Water content (%) )) × Amount of particles larger than 20 μm (%)
It is.

<非放射性セシウム総量低減率>
図8に非放射性セシウム総量の物質収支の一例を示す。20μm以上の粗粒分への20μm未満の細粒分の混入が少ない程、非放射性セシウム重量は低減する。このことから、デカンタ式遠心分離装置10で1回の分級による20μm未満の細粒分混入率を30%以下とすれば、非放射性セシウムの粒子径20μm以上の粗粒分への固着等がないと仮定した場合、図8の例では非放射性セシウム総量低減率は91.9%となる。ただし本試験では、試験土壌が農地由来であり有機物等の腐植も混在していることから20μm以上の粗粒分や有機物の粗粒分に固着した20μm未満の細粒分の混入がある程度あると推測される。
<Non-radioactive cesium total reduction rate>
Figure 8 shows an example of the material balance of the total amount of non-radioactive cesium. The less the fine particles of less than 20 μm are mixed into the coarse particles of 20 μm or more, the lower the weight of non-radioactive cesium is. From this, if the contamination rate of fine particles less than 20 μm in one classification with the decanter centrifugal separator 10 is 30% or less, there will be no adhesion of non-radioactive cesium to coarse particles with a particle size of 20 μm or more. Assuming that, in the example of FIG. 8, the total non-radioactive cesium reduction rate is 91.9%. However, in this test, since the test soil is derived from agricultural land and contains humus such as organic matter, it is assumed that there is a certain amount of coarse particles of 20 μm or more and fine particles of less than 20 μm fixed to the coarse organic matter. Guessed.

本試験では、1回目の分級後の粗粒分を更に2回の洗浄と分級を繰り返し行うことにより20μm以上の粗粒分や有機物の粗粒分に固着した20μm未満の細粒分も次第に粉砕され分級された結果、非放射性セシウム総量も低減していくものと推測できる。ただし、非放射性セシウムは水溶性であり分級された土壌は水を含んでいる為、含水率分の水に溶出した非放射性セシウム量を引いた非放射性セシウム総量で評価する。 In this test, the coarse particles after the first classification are washed and classified twice more, thereby gradually crushing the coarse particles of 20 μm or more and the fine particles of less than 20 μm that are stuck to the coarse particles of organic matter. It can be assumed that the total amount of non-radioactive cesium will be reduced as a result of the classification. However, since non-radioactive cesium is water-soluble and classified soil contains water, the total amount of non-radioactive cesium is evaluated by subtracting the amount of non-radioactive cesium eluted into water corresponding to the moisture content.

非放射性セシウム総量低減率(%)=
{1-(分級後の非放射性セシウム重量/分級前の非放射性セシウム重量)}×100
Total non-radioactive cesium reduction rate (%) =
{1-(Non-radioactive cesium weight after classification/Non-radioactive cesium weight before classification)}×100

非放射性セシウム総量低減率は、分級土中の非放射性セシウム(Cs-133)重量が分級前泥水の非放射性セシウム重量と比較してどの程度低減しているかを評価する。図8では、細粒分混入率30%、粗粒分回収率90%とした場合の物質収支が例示されている。また、粗粒分の非放射性セシウムの固着や有機物等の腐植混入はない場合を仮定した。この場合の非放射性セシウム総量低減率は下記の計算式となる。
非放射性セシウム総量低減率(%)=1-(0.081mg/1mg)×100=91.9
The total non-radioactive cesium reduction rate evaluates how much the weight of non-radioactive cesium (Cs-133) in the classified soil is reduced compared to the weight of non-radioactive cesium in the muddy water before classification. FIG. 8 illustrates the material balance when the fine particle mixing rate is 30% and the coarse particle recovery rate is 90%. In addition, it was assumed that there was no fixation of non-radioactive cesium in coarse particles or contamination of humus such as organic matter. In this case, the total non-radioactive cesium reduction rate is calculated using the following formula.
Total non-radioactive cesium reduction rate (%) = 1-(0.081mg/1mg) x 100 = 91.9

5.1)試験の実施方法
図9に示すように、試験土壌調整手順に従い塩化セシウム濃度が均質になるように水と混合して濃度5%±1%の泥水になるように調整を行った。調整は以下に述べる予備試験の各条件ごとに下記手順に従い行った。同一泥水、泥水濃度10%±2%を基準とし、せきの高さ111w、本体回転数、差速回転数による分級効果について設定条件の違いによる各種サンプルa~gを採取して分析と評価を行った。
5.1) Test implementation method As shown in Figure 9, according to the test soil preparation procedure, the cesium chloride concentration was mixed with water to make it homogeneous, and the mixture was adjusted to become muddy water with a concentration of 5% ± 1%. . Adjustments were made according to the following procedure for each condition of the preliminary test described below. Based on the same muddy water and muddy water concentration of 10% ± 2%, various samples a to g with different setting conditions were collected to analyze and evaluate the classification effect due to weir height 111W, main body rotation speed, and differential speed rotation speed. went.

<設定条件>
予備試験で設定した本体回転数、差速回転数、およびせきの高さ111wを示すオリフィスNoは以下の表5-1に示す通りである。
<Setting conditions>
The main body rotational speed, differential speed rotational speed, and orifice number indicating the weir height 111w set in the preliminary test are as shown in Table 5-1 below.

(a)Xは、条件1~11の中で最も分級効果の高かった回転数を調整。
(b)Yは、条件1~11で分級効果の高かった差速回転数を調整。
(c)Zは、条件1~10の中で最も分級効果の高かったオリフィスNoを採用。
(d)Z1は条件1~8の中で最も分級効果の高かったオリフィスNoを調整。
(a) For X, adjust the rotation speed that had the highest classification effect among conditions 1 to 11.
(b) Y adjusts the differential speed rotation speed that had a high classification effect under conditions 1 to 11.
(c) For Z, the orifice No. that had the highest classification effect among conditions 1 to 10 was adopted.
(d) For Z1, adjust the orifice number that had the highest classification effect among conditions 1 to 8.

また予備試験および本試験におけるサンプルa~gの採取箇所の概要は以下の表5-2に示すとおりである。ここで白丸○は予備試験で使用されるサンプルを、黒丸●は本試験で使用されるサンプルをそれぞれ示す。 In addition, a summary of the collection locations for samples a to g in the preliminary test and main test is as shown in Table 5-2 below. Here, white circles indicate samples used in the preliminary test, and black circles indicate samples used in the main test.

サンプルa~gは、試験土壌、サイクロン分級土(分級土壌A)、遠心分離分級土(分級土壌B)、解泥水、洗浄前泥水、洗浄後泥水、分離水、濃縮土(分離水に高分子凝集剤を添加し、ろ布で脱水した土壌)から3回採取し混ぜたものを1サンプル分とし、以下の表に示す項目の測定及び評価を行った。サイクロン分級土(分級土壌A)、遠心分離分級土(分級土壌B)については、分級処理開始後、処理中、処理後に分けて行った。 Samples a to g are test soil, cyclone classified soil (classified soil A), centrifugal classified soil (classified soil B), desilting water, muddy water before washing, muddy water after washing, separated water, and concentrated soil (polymer added to separated water) One sample was taken three times from soil (to which a flocculant was added and dehydrated with a filter cloth) and mixed, and the items shown in the table below were measured and evaluated. The cyclone-classified soil (classified soil A) and centrifugal classification soil (classified soil B) were carried out separately after the start of the classification process, during the process, and after the process.

洗浄方法については、エジェクターを使用した。エジェクターのポンプの性能が1.0m3/min、揚程10mであるため、試験泥水の泥水量に合わせた運転時間で1回の洗浄時間の管理を行った。
1回の洗浄時間(min)=試験用泥水量(m3)/1.0(m3/min)×5
As for the cleaning method, an ejector was used. Since the performance of the ejector pump is 1.0 m3/min and the lift height is 10 m, the operating time for one wash was controlled according to the amount of muddy water in the test.
One cleaning time (min) = Test slurry volume (m 3 ) / 1.0 (m 3 /min) x 5

5.2)測定結果
粒度分布(レーザ回折散乱法)の測定および分析結果は以下の表5-3に示す通りである。
5.2) Measurement Results The measurement and analysis results of particle size distribution (laser diffraction scattering method) are shown in Table 5-3 below.

なお、上記表において、試験土壌、分級土壌Aのサンプル検体は、使用した試験土壌から500gずつ取り出し混合したものから抽出した。分離水の分析条件は、土壌の性状より微粒子が凝集し易い性質を持っており、分散無しの値を用いて物質収支を求めると実際に出た分級土壌Bの重量より少なくなることから内部分散を3分間した分析値を採用した。 In the above table, the sample specimens of the test soil and classified soil A were extracted from 500 g each of the test soils used and mixed. The analysis conditions for the separated water are such that fine particles tend to aggregate more easily than the soil properties, and if the mass balance is calculated using the value without dispersion, it will be less than the actual weight of classified soil B, so internal dispersion is necessary. The analysis value obtained after 3 minutes was adopted.

粒度分布(レーザ回折散乱法)の分析値の誤差は以下の表5-4に示す通りである。ここでは上記条件1にて処理量1.5m3ごとにサンプルを採取し誤差を確認した。また、ここでは同じ条件で複数回試験を行い、nの数値は何回目の試験であるかを示している。 The errors in the analysis values of particle size distribution (laser diffraction scattering method) are shown in Table 5-4 below. Here, under the above condition 1, samples were taken every 1.5 m 3 of processing volume to check for errors. Further, here, the test was conducted multiple times under the same conditions, and the value of n indicates the number of times the test was conducted.

含水率分析の結果は以下の表5-5に示す通りである。ここで試験土壌、分級土壌Aのサンプル検体は、使用した試験土壌から500gずつ取り出し混合したものから抽出した。 The results of the moisture content analysis are shown in Table 5-5 below. Here, samples of the test soil and classified soil A were extracted from 500 g each of the test soil used and mixed.

強熱減量分析の結果は以下の表5-6に示す通りである。ここで試験土壌、分級土壌Aのサンプル検体は、使用した試験土壌から500gずつ取り出し混合したものから抽出した。 The results of the ignition loss analysis are shown in Table 5-6 below. Here, samples of the test soil and classified soil A were extracted from 500 g each of the test soil used and mixed.

比重分析の結果は以下の表5-7に示す通りである。 The results of the specific gravity analysis are shown in Table 5-7 below.

5.3)予備試験結果の分析、総合評価
試験土壌を用いて予備分級試験による分析を行い、分級効果について評価結果を一覧にしてまとめる。初期条件の設定については、一般的な土木現場で行われるシールド泥水の比重低下の条件を基準として試験を開始したが、分級土壌Bの細粒分混入率が予想より高い分析結果となったために、本体回転数を低くし遠心力を低めに設定した条件で、オリフィスNoによる分級効果を最初に検証した。次に差速回転数による掻出速度による検証を行った後に、本体回転数による遠心力の違いによる検証を行った。最後に上記の検証結果を元に各条件を調整し本試験を想定した試験を行った。
5.3) Analysis of preliminary test results and comprehensive evaluation A preliminary classification test will be conducted using the test soil, and the results of the evaluation of the classification effect will be summarized in a list. Regarding the setting of initial conditions, we started the test based on the conditions for reducing the specific gravity of shield mud water that is performed at general civil engineering sites, but the analysis result showed that the fine particle content of classified soil B was higher than expected. We first verified the classification effect of orifice number under conditions where the main body rotation speed was set low and the centrifugal force was set low. Next, after verifying the scraping speed based on the differential rotation speed, verification was performed using the difference in centrifugal force depending on the main body rotation speed. Finally, we adjusted each condition based on the above verification results and conducted a test assuming the main test.

(a)細粒分混入率について
分級土壌Bの粒度分布(レーザ回折散乱法)分析結果より細粒分混入率を求める。細粒分の混入率を以下の表5-8に示す。
(a) About the fine particle mixing rate The fine particle mixing rate is determined from the analysis results of the particle size distribution (laser diffraction scattering method) of classified soil B. The mixing rate of fine particles is shown in Table 5-8 below.

オリフィスNo=5の時には、条件1の本体回転数1,800rpm(900G)と条件2の1,273(450G)との比較では、条件2の1,273(450G)の方が低い細粒分混入率を示した。オリフィスNo=6の時には、条件3の1,800rpm(900G)の方が低い細粒分混入率を示した。同じ本体回転数でオリフィスNoによる比較では、いずれもせきの高さ111wを浅くした方が細粒分混入率は低くなる傾向であった。 When orifice No. = 5, comparing the main body rotation speed of 1,800 rpm (900G) under condition 1 with 1,273 (450G) under condition 2, 1,273 (450G) under condition 2 showed a lower fine particle mixing rate. . When orifice No. = 6, condition 3 of 1,800 rpm (900G) showed a lower fine particle mixing rate. When comparing different orifice numbers at the same main body rotation speed, it was found that the smaller the weir height (111w) was, the lower the fine particle contamination rate was.

そこで本体回転数を低回転にした方が比重差による分級点の差が生じ易くなるとの推測から、条件5よりデカンタ式遠心分離装置10の標準的な使用範囲の下限付近(本体回転数848rpm)でせきの高さ111wによる分級効果を検証した。条件7までは処理量を20m/hにすると固体排出口から水が流出してしまうため、水が流出しない上限の処理量として12.5m/hとした。 Therefore, since it is assumed that the difference in classification points due to the difference in specific gravity will occur more easily if the main body rotation speed is lowered, Condition 5 is determined to be near the lower limit of the standard usage range of the decanter type centrifugal separator 10 (main body rotation speed 848 rpm). The classification effect of the height of the weir of 111w was verified. Up to Condition 7, water would flow out from the solid discharge port if the treatment amount was set to 20 m 3 /h, so 12.5 m 3 /h was set as the upper limit treatment amount that would prevent water from flowing out.

図10に示すように、結果としては、せきの高さを浅くした方が細粒分混入率(401)は低下傾向になることがわかった。また、条件8より処理量を12.5m/hから20m/hへ変更した時に細粒分混入率が著しく低下したことから、処理量も分級効果の条件に必要なことがわかった。 As shown in FIG. 10, the results showed that the fine particle content (401) tended to decrease as the height of the weir became shallower. In addition, from condition 8, when the throughput was changed from 12.5 m 3 /h to 20 m 3 /h, the fine particle mixing rate decreased significantly, indicating that the throughput was also a necessary condition for the classification effect.

処理量20m/hにおけるせきの高さ111wによる条件8と条件9の比較では、条件5から条件7までの傾向と同じくせきの高さ111wを浅くした方が細粒分混入率(401)は低くなった。 Comparing Conditions 8 and 9 using a weir height of 111w at a throughput of 20 m 3 /h, the fine particle contamination rate (401) is higher when the weir height is shallower (401), which is the same as the trend from conditions 5 to 7. has become lower.

差速回転数による分級効果は、本体回転数848rpm(200G)と、800rpm(178G)で行った。848rpm(200G)の時には差速回転数を速くした方が混入率は低くなったが、800rpm(178G)の時は差速回転数を速くした方が細粒分混入率(401)は高くなった。 The classification effect due to the differential rotation speed was performed at a main body rotation speed of 848 rpm (200 G) and 800 rpm (178 G). At 848 rpm (200G), the faster the differential rotation speed, the lower the contamination rate, but at 800 rpm (178G), the faster the differential rotation speed, the higher the fine particle contamination rate (401). Ta.

本体回転数による分級効果は、掻き出し速度を10rpm、オリフィスNo=14に設定し、本体回転数を848rpm(200G)、800rpm(178G)、684rpm(130G)に設定して検証した。結果としては、800rpm(178G)の条件の時に、最も低い細粒分混入率(401)を示した。 The classification effect of the main body rotation speed was verified by setting the scraping speed to 10 rpm, orifice number = 14, and setting the main body rotation speed to 848 rpm (200 G), 800 rpm (178 G), and 684 rpm (130 G). As a result, the lowest fine particle mixing rate (401) was shown under the condition of 800 rpm (178 G).

また、条件13のオリフィスNo=15の時は洗浄後泥水の20μm以上の粒子量が他の試験条件より多かったため、20μm以上の粒子排出が間に合わず内部に堆積していたものに20μm未満の粒子が混入したと推測される。 In addition, when orifice No. = 15 in condition 13, the amount of particles larger than 20 μm in the muddy water after washing was larger than in other test conditions, so particles smaller than 20 μm were not discharged in time, and particles smaller than 20 μm were accumulated inside. It is assumed that it was mixed in.

(b)粒径20μm以上の粗粒分回収率
粗粒分回収率は、洗浄後泥水中の20μm以上の粒子が分級土壌Bでどれだけ回収出来たのかを求める。粗粒分回収率は以下の表5-9に示す通りである。
(b) Recovery rate of coarse particles with a particle size of 20 μm or more The recovery rate of coarse particles is calculated by determining how many particles with a size of 20 μm or more in the washed muddy water were recovered in classified soil B. The coarse particle recovery rate is shown in Table 5-9 below.

図10からも分かるように、粗粒分回収率(402)に関して、本体回転数が高く、せきの高さ111wが高い(水深が深い)ほど回収率は向上するが、細粒分混入率(401)も増加傾向にある。条件12(本体回転数684rpm)の時に粗粒分回収率(402)が著しく低下したことから、本体回転数を低くし過ぎると比重差が生じ難くなり、分離水側へ粗粒分が流出した為、粗粒分回収率(402)が低下したと思われる。 As can be seen from FIG. 10, regarding the coarse particle recovery rate (402), the higher the body rotation speed and the higher the weir height 111w (deeper the water), the better the recovery rate, but the fine particle mixing rate ( 401) is also on the rise. Since the coarse particle recovery rate (402) significantly decreased under condition 12 (main body rotation speed 684 rpm), if the main body rotation speed was too low, it became difficult to produce a difference in specific gravity, and coarse particles flowed out to the separated water side. Therefore, it is thought that the coarse particle recovery rate (402) decreased.

条件13のオリフィスNo=15の時は、洗浄後泥水の20μm以上の粒子量が他の試験条件より20%程度多かった為、堆積した20μm以上の粒子の排出が間に合わず、分離水側に流出、結果、粗粒分回収率が低下したと推測される。分級土壌Bは、細粒分混入率が高いほど含水率が高い傾向であり、見た目も明らかに違っていた。 When orifice number = 15 in condition 13, the amount of particles larger than 20 μm in the muddy water after washing was about 20% higher than in other test conditions, so the accumulated particles larger than 20 μm could not be discharged in time and flowed out to the separated water side. As a result, it is assumed that the coarse particle recovery rate decreased. Classified soil B tended to have a higher moisture content as the fine particle content increased, and the appearance was clearly different.

(c)非放射性セシウム総量低減率
予備試験では、試験土壌に自然由来のCs-133が1.0(mg/kg乾土)含まれていたため、これを元に非放射性セシウム総量低減率の評価を行った。評価方法は、細粒分混入率が一番低い条件11の洗浄後泥水、分級土壌B、分離水の非放射性セシウム(Cs-133)量を測定し、粒度別の物質収支を元に低減率を評価した。
(c) Total non-radioactive cesium reduction rate In the preliminary test, the test soil contained 1.0 (mg/kg dry soil) of naturally occurring Cs-133, so the total non-radioactive cesium reduction rate was evaluated based on this. Ta. The evaluation method is to measure the amount of non-radioactive cesium (Cs-133) in the washed mud water, classified soil B, and separated water under condition 11, which has the lowest fine particle contamination rate, and calculate the reduction rate based on the material balance by particle size. was evaluated.

まず、物質収支の有機物と土粒子の密度は、以下の表5-10に示す通りであり、予備試験1の20μm以上の粒子が混入していない分離水を強熱減量前と後の分析結果より求めた。 First, the densities of organic matter and soil particles in the mass balance are as shown in Table 5-10 below, and the analysis results of the separated water that is not contaminated with particles larger than 20 μm in preliminary test 1 before and after ignition loss are as follows. I asked for more.

なお、
強熱減量後の20μm未満の粒子重量=100×(1-34.3%)=65.7
強熱減量後の20μm未満の粒子体積=65.7/2.56=25.66
土粒子体積=100/2.009=49.79
x=強熱減量前の無機物体積-強熱減量後の有機物体積
=49.79-25.66=24.12
y=強熱減量前の有機物の重量/強熱減量前の有機物の体積
=34.3/24.12=1.422
である。
In addition,
Particle weight less than 20 μm after ignition loss = 100 x (1-34.3%) = 65.7
Volume of particles less than 20 μm after ignition loss = 65.7/2.56 = 25.66
Soil particle volume = 100/2.009 = 49.79
x = Volume of inorganic matter before loss on ignition - Volume of organic matter after loss on ignition = 49.79-25.66 = 24.12
y = Weight of organic matter before loss on ignition / Volume of organic matter before loss on ignition = 34.3/24.12 = 1.422
It is.

条件11の物質収支を以下の表5-11に示す。 The material balance for Condition 11 is shown in Table 5-11 below.

条件11の物質収支を以下の表に示す。 The material balance for Condition 11 is shown in the table below.

洗浄後泥水、分級土壌B、分離水の粒度分布別の非放射性セシウム(Cs-133)重量(kg-dry)および総量換算を以下の表5-12に示す。非放射性セシウム(Cs-133)量(kg-dry)は、粒度分布別のそれぞれの粒度別重量に洗浄後泥水、分級土壌B、分離水のそれぞれの非放射性セシウム(Cs-133)濃度になるように値を代入し求めた。 Table 5-12 below shows the non-radioactive cesium (Cs-133) weight (kg-dry) and total amount conversion by particle size distribution of the washed mud water, classified soil B, and separated water. The amount of non-radioactive cesium (Cs-133) (kg-dry) is the concentration of non-radioactive cesium (Cs-133) in muddy water, classified soil B, and separated water after washing, according to the weight of each particle size by particle size distribution. I found it by substituting the values as follows.

5.4)処理条件の決定
以上述べた予備試験の結果および分析・評価および図10のグラフにより、条件11(本体回転数800rpm、差速回転数500rpm、オリフィスNo=14)の時に、細粒分混入率が18.3%と一番低く、かつ粗粒分回収率が81%と高いレベルであることから、本試験ではこの条件11を採用した。
5.4) Determination of processing conditions Based on the preliminary test results, analysis and evaluation described above, and the graph in Figure 10, it was found that fine particles were Condition 11 was adopted in this test because the fraction mixing rate was the lowest at 18.3% and the coarse grain fraction recovery rate was at a high level of 81%.

6.本試験
6.1)本試験と評価方法
(a)試験用泥水の準備
試験土壌は2種類(試験土壌1、試験土壌2)を採取し、上述した試験土壌調整手順に従って濃度10%±1%の泥水になるように調整した。
6. Main test 6.1) Main test and evaluation method (a) Preparation of muddy water for test
Two types of test soil (test soil 1 and test soil 2) were collected and adjusted to muddy water with a concentration of 10% ± 1% according to the test soil preparation procedure described above.

(b)本試験
図11に示す手順に従って、試験用泥水を用いて本試験を実施する。すなわち、本試験は、予備試験で得られた最適な条件(ここでは条件11)を元に3回の洗浄と分級工程を行った。また、2種類の試験土壌で2tずつ1試験につき同じ条件で2回試験を行った。
(b) Main test The main test is carried out using test mud according to the procedure shown in FIG. 11. That is, in this test, the washing and classification steps were performed three times based on the optimal conditions (here, conditions 11) obtained in the preliminary test. In addition, tests were conducted twice under the same conditions for each test using two types of test soil, each having 2 tons each.

本試験で得られた試験土壌、サイクロン分級土(分級土壌A)、遠心分離分級土(分級土壌B)、解泥水、洗浄前泥水、洗浄後泥水、分離水、濃縮土から予備試験と同様の採取方法でサンプルを採取して、以下の表に示す項目の測定及び評価を行った。 From the test soil obtained in the main test, cyclone classified soil (classified soil A), centrifugation classified soil (classified soil B), desilting water, muddy water before washing, muddy water after washing, separated water, and concentrated soil, the same as in the preliminary test was prepared. Samples were collected according to the collection method and the items shown in the table below were measured and evaluated.

本試験の条件は以下の表6-1に示す通りである。なお、2回目以降の洗浄分級における洗浄水は洗浄後泥水濃度が3%±1%になるように調整した。 The conditions for this test are as shown in Table 6-1 below. In addition, the washing water in the second and subsequent washing classifications was adjusted so that the muddy water concentration after washing was 3% ± 1%.

非放射性セシウム濃度の分析結果は以下の通りである。 The analysis results of non-radioactive cesium concentration are as follows.

粒度分布(レーザ回折散乱法)の分析結果は以下の表6-3に示す通りである。 The analysis results of particle size distribution (laser diffraction scattering method) are shown in Table 6-3 below.

含水率の分析結果は以下の通りである。 The analysis results of moisture content are as follows.

強熱減量の分析結果は以下の表6-5に示す通りである。 The analysis results of loss on ignition are shown in Table 6-5 below.

比重分析結果は以下の表6-6に示す通りである。 The specific gravity analysis results are shown in Table 6-6 below.

重量分析(単位:kg)は以下の表6-7に示す通りである。 The weight analysis (unit: kg) is as shown in Table 6-7 below.

(c)本試験結果の分析および評価
本試験の結果より、デカンタ式遠心分離装置10による細粒分混入率、粒径20μm以上の粗粒子分回収率、非放射性セシウム濃度低減効果、減容率を分析し、本技術の対象とする土壌特性の適用範囲等の評価を行った。
(c) Analysis and evaluation of this test result From the results of this test, the fine particle contamination rate by the decanter centrifugal separator 10, the recovery rate of coarse particles with a particle size of 20 μm or more, the non-radioactive cesium concentration reduction effect, and the volume reduction rate. We analyzed this and evaluated the applicable range of soil characteristics targeted by this technology.

c.1)細粒分混入率
分級土壌Bの粒度分布(レーザ回折散乱法)分析結果より細粒分混入率を求める。その結果は以下の表6-8に示す通りである。
c. 1) Fine particle mixing rate The fine particle mixing rate is determined from the analysis results of the particle size distribution (laser diffraction scattering method) of classified soil B. The results are shown in Table 6-8 below.

試験土壌1の細粒分混入率は予備試験の結果より混入率が高い数値となった。原因としては、予備試験より20μm以上の粗粒分が増加したために、掻き出しが追い付かず滞留している粗粒分に細粒分が混入した可能性と、洗浄不十分による粗粒分と細粒分の固着があり、粗粒分をスクリュウで排出する間に粗粒分が崩れたり細粒分が剥がれたりしたために細粒分混入率が高くなった。このことは、洗浄後泥水の粗粒分が分級後に20%近く減少していること、本試験1、2の分級土壌Bを内部分散すると細粒分が13%程度増えたことからも搬送過程で増加していることがわかる。また、予備試験では同じ洗浄後泥水を繰り返し再利用していたため、ポンプと水中撹拌機の熱により水温が高くなり水の粘性による影響も出た可能性もある。 The fine particle content of Test Soil 1 was higher than the preliminary test results. The cause is that the number of coarse particles of 20 μm or more has increased from the preliminary test, so the scraping could not catch up and fine particles were mixed in with the remaining coarse particles, and the coarse particles and fine particles were caused by insufficient cleaning. The coarse particles were stuck together, and while the coarse particles were being discharged with a screw, the coarse particles crumbled and the fine particles were peeled off, resulting in a high proportion of fine particles. This is also confirmed by the fact that the coarse particle content of the washed mud water decreased by nearly 20% after classification, and that the fine particle content increased by about 13% when classified soil B in Tests 1 and 2 was internally dispersed. It can be seen that there is an increase in Additionally, in the preliminary tests, the same muddy water after washing was reused repeatedly, so the heat from the pump and submersible agitator caused the water temperature to rise, which may also have been affected by the viscosity of the water.

有機物の粗粒分は繰り返し分級を行っても残るが、細粒分は細粒分と同様に減少している。 The coarse part of the organic matter remains even after repeated classification, but the fine part is reduced in the same way as the fine part.

c.2)粗粒分回収率
粗粒分回収率は洗浄後泥水中の20μm以上の粒子が分級土壌Bでどれだけ回収出来たのかを求める。その結果は以下の通りである。
c. 2) Coarse particle recovery rate The coarse particle recovery rate is calculated by determining how many particles of 20 μm or more were recovered in classified soil B in the muddy water after washing. The results are as follows.

本試験1,2の1回目の分級で予備試験より回収率が低下した原因は、細粒分混入率の時と同様で粗粒分をスクリュウで排出する間に細粒分が剥がれ細粒分が多くなった事と、分級2回目から回収率が向上していることからも粗粒分と細粒分の固着をなくした状態での分級が重要であることがわかる。 The reason why the recovery rate was lower than that in the preliminary test in the first classification of main tests 1 and 2 was the same as in the case of the fine particle mixture rate, and the fine particles were peeled off while the coarse particles were being discharged with the screw. It can be seen from the fact that the number of particles increased and the recovery rate improved from the second classification that it is important to perform classification in a state where the sticking of coarse particles and fine particles is eliminated.

試験土壌2は、試験土壌1より粘土が団粒化しており分級3回目でも粗粒分が10%程度減少していることから粗粒分の団粒化が試験土壌1に比べ崩れにくいと考えられる。また、分離水の粗粒分も試験土壌1より多いため排出できなかった粗粒分が流出している。 In test soil 2, the clay is more aggregated than in test soil 1, and the coarse particles have decreased by about 10% even after the third classification, so it is thought that the aggregates of coarse particles are less likely to crumble compared to test soil 1. It will be done. Furthermore, since the coarse particle content of the separated water was greater than that of test soil 1, the coarse particle content that could not be discharged was flowing out.

c.3)非放射性セシウム総量低減率
洗浄後泥水に非放射性セシウム(Cs-133)を50g/土壌1t-dryになるように添加し、非放射性セシウム総量低減率の評価を行った。評価方法は、洗浄後泥水、分級土壌B、分離水の非放射性セシウム(Cs-133)濃度を測定し、粒度別の物質収支を元に低減率を評価した。
c. 3) Reduction rate of total amount of non-radioactive cesium Non-radioactive cesium (Cs-133) was added to the muddy water after cleaning at a rate of 50 g/1 t-dry of soil, and the reduction rate of total amount of non-radioactive cesium was evaluated. The evaluation method was to measure the non-radioactive cesium (Cs-133) concentration in the muddy water after cleaning, classified soil B, and separated water, and evaluate the reduction rate based on the material balance by particle size.

以下の表6-10に本試験1の物質収支を示す。 Table 6-10 below shows the material balance of Test 1.

以下の表6-11に本試験2の物質収支を示す。 Table 6-11 below shows the material balance of Test 2.

以下の表6-12に本試験3の物質収支を示す。 Table 6-12 below shows the material balance of Test 3.

以下の表6-13に本試験4の物質収支を示す。 Table 6-13 below shows the material balance of Test 4.

以下、洗浄後泥水、分級土壌B、分離水の粒度分布別の非放射性セシウム(Cs-133)重量(kg-dry)を示す。非放射性セシウム(Cs-133)重量(kg-dry)は、粒度分布別のそれぞれの粒度別重量に洗浄後泥水、分級土壌B、分離水のそれぞれの非放射性セシウム(Cs-133)濃度になるように値を代入し求めた。 The following shows the weight (kg-dry) of non-radioactive cesium (Cs-133) by particle size distribution of washed mud water, classified soil B, and separated water. The non-radioactive cesium (Cs-133) weight (kg-dry) is the non-radioactive cesium (Cs-133) concentration in muddy water, classified soil B, and separated water after washing, according to the weight of each particle size by particle size distribution. I found it by substituting the values as follows.

また、細粒分混入率、粗粒分回収率の粒度分布値では、非放射性セシウム(Cs-133)濃度の分析値と合わないものは、内部分散を行った粒度分布値を元に計算を行ったところ、非放射性セシウム(Cs-133)の分析値と概ね近い数値になったため、内部分散値を採用した。 In addition, if the particle size distribution values of fine particle mixing rate and coarse particle recovery rate do not match the analytical value of non-radioactive cesium (Cs-133) concentration, calculations should be made based on the particle size distribution value after internal dispersion. As a result, the internal dispersion value was adopted as the value was close to the analytical value for non-radioactive cesium (Cs-133).

以下の表6-14に本試験1の非放射性セシウム(Cs-133)総量換算表を示す。なお括弧()内の数値は分析値を示す。 Table 6-14 below shows the total amount of non-radioactive cesium (Cs-133) conversion table for Test 1. The numbers in parentheses () indicate the analytical values.

以下の表6-15に本試験2の非放射性セシウム(Cs-133)総量換算表を示す。なお括弧()内の数値は分析値を示す。 Table 6-15 below shows the total amount of non-radioactive cesium (Cs-133) conversion table for Test 2. The numbers in parentheses () indicate the analytical values.

以下の表6-16に本試験3の非放射性セシウム(Cs-133)総量換算表を示す。なお括弧()内の数値は分析値を示す。 Table 6-16 below shows the total amount of non-radioactive cesium (Cs-133) conversion table for Test 3. The numbers in parentheses () indicate the analytical values.

以下の表6-17に本試験4の非放射性セシウム(Cs-133)総量換算表を示す。なお括弧()内の数値は分析値を示す。 Table 6-17 below shows the total amount of non-radioactive cesium (Cs-133) conversion table for Test 4. The numbers in parentheses () indicate the analytical values.

以下の表6-18に非放射性セシウム(Cs-133)総量低減率を示す。 Table 6-18 below shows the total amount reduction rate of non-radioactive cesium (Cs-133).

低減率においては、非放射性セシウム(Cs-133)の添加量が加添加となったために20μm以上の粗粒分にも吸着してしまい予備試験の結果より1回目の分級後の低減率は低い結果となったが、低減率70%以上を達成することが出来た。 Regarding the reduction rate, since the amount of non-radioactive cesium (Cs-133) added was added, it was also adsorbed to coarse particles of 20 μm or more, so the reduction rate after the first classification was low based on the preliminary test results. However, we were able to achieve a reduction rate of over 70%.

本試験1、2において分級回数を増やすと20μm以上の粗粒分の非放射性セシウム濃度が低減している。このことから、デカンタ式遠心分離装置10を通過した粒度分布から分かるように、分級前の泥水中の細粒分量より分級後の分離水に含まれる細粒分量が増えていることからも内部での粒子間の摩擦により粗粒分の表面に固着した細粒分が剥がれた為に粗粒分の非放射性セシウム濃度が低減している。 In Tests 1 and 2, when the number of classifications was increased, the concentration of non-radioactive cesium in coarse particles of 20 μm or more decreased. From this, as can be seen from the particle size distribution after passing through the decanter centrifugal separator 10, the amount of fine particles contained in the separated water after classification is greater than the amount of fine particles in the muddy water before classification. The non-radioactive cesium concentration in the coarse particles is reduced because the fine particles stuck to the surface of the coarse particles are peeled off due to friction between the particles.

また、本試験3,4では本試験1,2とは逆に20μm未満の細粒分の非放射性セシウム濃度が分級回数ごとに低減している。これは、試験土壌2に多く含まれていた粘土の細粒分の団粒化していたものがデカンタ式遠心分離装置10を通過したことにより崩れた結果、非放射性セシウムがあまり付着していない団粒内部の細粒分が増えたことにより低減したと推測する。 In addition, in Tests 3 and 4, contrary to Tests 1 and 2, the non-radioactive cesium concentration in fine particles less than 20 μm decreased with each classification number. This is because the fine particles of clay, which were contained in large amounts in test soil 2, were broken down by passing through the decanter centrifugal separator 10, resulting in aggregates with less non-radioactive cesium attached. It is presumed that the reduction was due to an increase in the amount of fine particles inside the grains.

以下の表6-19に粒径別非放射性セシウム濃度を示す。 Table 6-19 below shows the non-radioactive cesium concentration by particle size.

(d)課題の抽出と対策の検討
本試験において、試験土壌1では2回分級、試験土壌2では1回の分級を行うことで細粒分混入率30%以下を達成出来た。
(d) Identification of issues and consideration of countermeasures In this test, test soil 1 was classified twice and test soil 2 was classified once, thereby achieving a fine particle contamination rate of 30% or less.

粗粒分の回収率に関しては、分級1回目と2回目では2回目以降の回収率が大きく向上している。このことから分級前の泥水中の粗粒分と細粒分の粒度分布の差が粗粒分回収率に大きく影響を及ぼしていることがわかる。本試験1,2の1回目の分級前の泥水は、20μm未満の粒子量が70~72%に対し2回目の分級前の泥水は25%以下となっており、この差が回収率の差に繋がっていると考えられる。 Regarding the recovery rate of coarse particles, the recovery rate from the second time onwards is greatly improved between the first and second classification. This shows that the difference in particle size distribution between coarse particles and fine particles in muddy water before classification has a large effect on the recovery rate of coarse particles. In the muddy water before the first classification in Tests 1 and 2, the amount of particles less than 20 μm was 70-72%, while in the muddy water before the second classification it was less than 25%, and this difference was the reason for the difference in recovery rate. It is thought that it is connected to.

もう一つの要因としては、予備試験の泥水濃度が5%程度に対し、本試験の1回目の泥水濃度が8%になり20μm以上の粒子量が増加したために粗粒分の排出が間に合わず内部に滞留していた土壌が分離水側へ流出したために予備試験より回収率が低下したと推測できる。また、2回目以降の分級では分級前の泥水濃度が2~3%の場合に粗粒分回収率が向上している事からも土壌の排出速度が粗粒分回収率に影響していると考えられる。 Another factor is that the muddy water concentration in the preliminary test was about 5%, but the muddy water concentration in the first test was 8%, and the amount of particles larger than 20 μm increased, so coarse particles could not be discharged in time and the internal It can be inferred that the recovery rate decreased from the preliminary test because the soil that had been stagnant in the water flowed out to the separated water side. In addition, in the second and subsequent classifications, the recovery rate of coarse particles improved when the slurry concentration before classification was 2 to 3%, indicating that the soil discharge rate affected the recovery rate of coarse particles. Conceivable.

粗粒分回収率を向上させるには、粗粒分の粒子量に合わせて差速モータの回転数を高くし、土壌の掻き出し速度を上げる事で粗粒分が内部に滞留しない状態を作れば粗粒分回収率は向上すると推測できる。 In order to improve the recovery rate of coarse particles, increase the rotation speed of the differential speed motor according to the amount of coarse particles and increase the soil scraping speed to create a condition where coarse particles do not stay inside. It can be assumed that the recovery rate of coarse particles will be improved.

非放射性セシウム総量低減率については、非放射性セシウム(Cs-133)の添加量が加添加になったため20μm以上の粗粒分にも非放射性セシウムが吸着してしまい本試験1,2では1回目の分級で低減率平均80.1%、2回目13.8%、3回目12.0%となり、予備試験(表5-12)の1回目の分級による低減率93.9%より低い結果となった。 Regarding the total amount reduction rate of non-radioactive cesium, since the amount of non-radioactive cesium (Cs-133) added was added, non-radioactive cesium was also adsorbed to coarse particles of 20 μm or more. The average reduction rate was 80.1% for the second classification, 13.8% for the second time, and 12.0% for the third time, which was lower than the 93.9% reduction rate for the first classification in the preliminary test (Table 5-12).

本試験3,4では1回目の分級で低減率平均90.2%、2回目19.1%、3回目11.1%となった。 In Tests 3 and 4, the average reduction rate was 90.2% in the first classification, 19.1% in the second, and 11.1% in the third.

全ての試験において、細粒分混入率が低くなるほど非放射性セシウム総量低減率が高くなることから、細粒分混入率が非放射性セシウム総量低減に大きく影響している事がわかる。また、分級土壌Bを内部分散にかけると、分級1回目の分級土壌Bで20μm未満の粒子量が最大で17%程度増加し、分級2回目以降は5%程度の増加が見られた。内部分散後の20μm未満の粒子量が少ないほど、細粒分混入率、非放射性セシウム総量も低減していることから、分級前の泥水中の粗粒分への細粒分固着を少なくすることが非放射性セシウム総量を効率よく低減させることにつながる、と考えられる。 In all tests, the lower the fine particle mixture rate, the higher the total non-radioactive cesium reduction rate, which shows that the fine particle mixture rate has a large effect on the total non-radioactive cesium reduction. Furthermore, when classified soil B was subjected to internal dispersion, the amount of particles less than 20 μm increased by about 17% at maximum in classified soil B at the first classification, and an increase of about 5% was observed from the second classification onward. The smaller the amount of particles less than 20 μm after internal dispersion, the lower the inclusion rate of fine particles and the total amount of non-radioactive cesium, so it is possible to reduce the adhesion of fine particles to coarse particles in muddy water before classification. It is thought that this will lead to an efficient reduction of the total amount of non-radioactive cesium.

以下に述べる改善策では、試験土壌2で差速回転数を高くした条件と、本試験1,2で使用した試験土壌を再利用(粗粒分への細粒分固着が少ない試験土壌)し、試験を行った。また、非放射性セシウムが20μm以上の粗粒分にも吸着していたことで粗粒分と細粒分の吸着量の差が明確ではなかったことから、本試験3の分離水に更に非放射性セシウムを10mg/kg-dryを添加した条件で試験を行った。 In the improvement measures described below, the differential speed rotation speed was increased in test soil 2, and the test soil used in main tests 1 and 2 was reused (test soil with less adhesion of fine particles to coarse particles). , conducted the test. In addition, since non-radioactive cesium was also adsorbed in coarse particles of 20 μm or more, the difference in adsorption amount between coarse particles and fine particles was not clear. The test was conducted under the condition that 10 mg/kg-dry of cesium was added.

(e)改善策の実施
粒径20μm以上の粗粒分の回収率90%以上を達成出来なかったため、下記の改善策の実施を行った。
(e) Implementation of improvement measures Since it was not possible to achieve a recovery rate of 90% or more for coarse particles with a particle size of 20 μm or more, the following improvement measures were implemented.

e.1)改善策1(差速回転数の変更)
試験土壌2を使用し、本体回転数およびせきの高さ111wを同じ条件として、差速回転数を500rpmから850rpmに変更して再度試験を行った。以下の表6-20に改善策1の物質収支を示す。
e. 1) Improvement measure 1 (change of differential speed rotation speed)
Using Test Soil 2, the test was conducted again by changing the differential rotation speed from 500 rpm to 850 rpm, with the same main body rotation speed and weir height 111w. Table 6-20 below shows the material balance for improvement measure 1.

差速回転数を高くした改善策1の粗粒分回収率および細粒分混入率を本試験3,4と比較して以下の表6-21および表6-22に示す。 The coarse particle recovery rate and fine particle contamination rate of Improvement Measure 1, which increased the differential rotation speed, are shown in Tables 6-21 and 6-22 below in comparison with Tests 3 and 4.

このように改善策1は、本試験3,4より粗粒分回収率が36%程度向上した。分離水の粒度分布においても20μm以上の粗粒分が23%~25%だったのに対し、改善策1では7%程度まで減少している。このことからも泥水中の粗粒分量に合わせて差速回転数を設定することで粗粒分回収率が向上することがわかる。細粒分混入率は概ね本試験3,4と近い値であるから、差速回転数の調整により細粒分混入率に影響を与えないまま粗粒分回収率を調整できることがわかる。 As described above, improvement measure 1 improved the coarse particle recovery rate by approximately 36% compared to tests 3 and 4. Regarding the particle size distribution of separated water, the proportion of coarse particles of 20 μm or more was 23% to 25%, but with improvement measure 1, this was reduced to about 7%. This also shows that the recovery rate of coarse particles can be improved by setting the differential rotational speed according to the amount of coarse particles in muddy water. Since the fine particle mixing rate is generally close to that of Tests 3 and 4, it can be seen that the coarse particle recovery rate can be adjusted by adjusting the differential rotation speed without affecting the fine particle mixing rate.

e.2)改善策2(細粒分の固着が少ない土壌)
本試験1,2で使用した土壌を再利用し、デカンタ式遠心分離装置10の運転は同条件で再度3回の分級試験を行った。その物質収支を表6-23、表6-24に示す。
e. 2) Improvement measure 2 (soil with less adhesion of fine particles)
The soil used in Tests 1 and 2 was reused, and the classification test was conducted three times again under the same operating conditions of the decanter centrifugal separator 10. The material balance is shown in Table 6-23 and Table 6-24.

改善策2の粗粒分回収率および細粒分混入率を以下の表6-25および表6-26に示す。 The coarse particle recovery rate and fine particle contamination rate for improvement measure 2 are shown in Tables 6-25 and 6-26 below.

改善策2では本試験1,2で使用した土壌を再利用したため、内部分散を行った結果、全てのサンプルで粒度分布は1%以内の誤差であった。このために、粗粒分回収率は、本試験1,2の1回目の分級では60%~61%であったが、改善策2では77.7%~79.5%へ向上した。 In Improvement Measure 2, the soil used in Tests 1 and 2 was reused, and as a result of internal dispersion, the particle size distribution was within 1% error for all samples. For this reason, the coarse particle recovery rate was 60% to 61% in the first classification of Tests 1 and 2, but improved to 77.7% to 79.5% in Improvement Measure 2.

細粒分混入率に関しても、本試験1,2では28.2%~33.6%であったが、改善策2では19.9%~23.7%へ向上した。このことから粗粒分への細粒分固着が少ない程、粗粒分回収率と細粒分混入率は向上することがわかる。 Regarding the fine particle content, it was 28.2% to 33.6% in Tests 1 and 2, but improved to 19.9% to 23.7% in Improvement Measure 2. From this, it can be seen that the smaller the amount of fine particles adhering to the coarse particles, the better the recovery rate of coarse particles and the rate of mixing of fine particles.

e.3)改善策3(非放射性セシウムの添加量を増やした土壌)
本試験3で分級した分離水に非放射性セシウムを10mg/kg-dryを添加し、3日間攪拌してから、新たに本試験3の設定条件で分級した非放射性セシウムを添加していない分級土壌Bと混ぜて試験用泥水を作成した。この試験用泥水を用いた改善策3の評価結果を以下の表6-27~表6-30に示す。
e. 3) Improvement measure 3 (soil with increased amount of non-radioactive cesium added)
10mg/kg-dry of non-radioactive cesium was added to the separated water classified in this test 3, stirred for 3 days, and then the classified soil without the addition of non-radioactive cesium was classified under the conditions set in this test 3. A test slurry was prepared by mixing with B. The evaluation results of Improvement Measure 3 using this test mud water are shown in Tables 6-27 to 6-30 below.

改善策3では、分級後の分離水に非放射性セシウムを添加したために、細粒分、粗粒分および有機物のそれぞれの非放射性セシウム濃度の差を明確にすることが出来た。 In improvement measure 3, since non-radioactive cesium was added to the separated water after classification, it was possible to clarify the differences in the non-radioactive cesium concentrations of fine particles, coarse particles, and organic matter.

非放射性セシウム濃度が高くなっても低減率は本試験3,4より低い結果となったが、分級回数を増やすごとに細粒分の非放射性セシウム濃度が低減していく傾向は同じであった。 Even when the non-radioactive cesium concentration increased, the reduction rate was lower than in Tests 3 and 4, but the tendency for the non-radioactive cesium concentration in fine particles to decrease as the number of classifications increased was the same. .

7.試験結果の評価
既に述べたように、デカンタ式遠心分離装置10の一般的な使用方法は、本体回転数を上げて遠心力を高くすることで設定された粒径を基準として細粒分と粗粒分との分離を行う。しかしながら、20μm程度の分級は、遠心力が高い場合、ほとんどの細粒分が粗粒分と一緒に沈降してしまい固体排出側へ細粒分が排出されてしまい、比重差による沈降速度の差が生じ難い。傾向としては、高い遠心力の時ほど分離水側へ排出される粒径は小さく、遠心力が低くなるにつれて粒径が大きくなる。したがって、遠心力の調整だけでは、分級は可能でも分級土への細粒分混入率を調整できない。そこで、低い遠心力で沈降速度の差を生じさせ、せきの高さ111wを調整する必要がある。
7. Evaluation of test results As already mentioned, the general method of using the decanter centrifugal separator 10 is to increase the centrifugal force by increasing the rotational speed of the main unit to increase the fine and coarse particles based on the set particle size. Separate from grains. However, when classifying around 20 μm, when the centrifugal force is high, most of the fine particles settle together with the coarse particles, and the fine particles are discharged to the solid discharge side, resulting in a difference in sedimentation speed due to the difference in specific gravity. is unlikely to occur. As a tendency, the higher the centrifugal force, the smaller the particle size discharged to the separated water side, and the lower the centrifugal force, the larger the particle size. Therefore, although it is possible to classify soil by adjusting the centrifugal force alone, it is not possible to adjust the proportion of fine particles mixed into the classified soil. Therefore, it is necessary to create a difference in sedimentation speed with a low centrifugal force and adjust the weir height 111w.

200(G)以下の低い遠心力では20μm程度の分級は出来ているが、せきの高さ111wを浅くするほど細粒分混入率が低下するものの粗粒分回収率も低下する傾向である。20μmでの分級点の設定は、せきの高さ111wを20μm以上と未満の境界線付近の水深に合わせることが重要である。言い換えると20μm未満の細粒分が沈降する前に分離水側へ排出していくように本体回転数、差速回転数、単位時間あたりの処理量、およびせきの高さ111wを設定することが重要である。 At a low centrifugal force of 200 (G) or less, classification of about 20 μm is possible, but as the height of the weir (111w) becomes shallower, although the fine particle mixing rate decreases, the coarse particle recovery rate also tends to decrease. When setting the classification point at 20 μm, it is important to match the weir height 111w to the water depth near the boundary between 20 μm or more and less than 20 μm. In other words, the main body rotation speed, differential speed rotation speed, throughput per unit time, and weir height 111w can be set so that fine particles less than 20 μm are discharged to the separated water side before settling. is important.

本実施形態によるデカンタ式遠心分離装置10は、本体回転数、差速回転数、単位時間あたりの処理量、およびせきの高さ111wを設定することで、通常の分級点75μmよりも細かい粒径、たとえば粒径20μmに分級点を設定することができる。それにより、20μm未満の細粒分にセシウムが濃縮することで、新たに20μm~75μmの分画の再生利用を増大させることができる。 The decanter type centrifugal separator 10 according to the present embodiment has a particle size finer than the normal classification point of 75 μm by setting the main body rotation speed, differential speed rotation speed, throughput per unit time, and weir height 111w. For example, the classification point can be set at a particle size of 20 μm. As a result, cesium is concentrated in fine particles less than 20 μm, making it possible to newly increase the recycling of the 20 μm to 75 μm fraction.

デカンタ式遠心分離装置10において、差速回転数はデカンタ式遠心分離装置10内部に堆積した固形物を排出するためのスクリュウの掻き出し速度を調整する仕組みになっているが、泥水の粗粒分量に合わせて掻き出し速度を速くすると回収率が向上する。 In the decanter type centrifugal separator 10, the differential rotation speed is a mechanism that adjusts the scraping speed of the screw for discharging the solid matter accumulated inside the decanter type centrifuge 10, but it depends on the coarse particle content of muddy water. In addition, increasing the scraping speed improves the recovery rate.

試験土壌2では、差速回転数を高くした結果、粗粒分回収率は80%に向上した。更に回収率を向上させるには、1回目、2回目、3回目の運転条件を変えて行い、1回目の分級で本体回転数を848rpm、せきの高さ111wをオリフィスNo=13に設定し、回収率を向上させ、2回目、3回目の分級で本体回転数を800rpmに、せきの高さ111wをオリフィスNo=14にすることで粗粒分回収率および細粒分混入率の性能を向上させることが期待できる。 In test soil 2, as a result of increasing the differential rotation speed, the coarse particle recovery rate improved to 80%. In order to further improve the recovery rate, the operating conditions for the first, second, and third times were changed, and in the first classification, the main body rotation speed was set to 848 rpm, the weir height was set to 111W, and the orifice number was set to 13. The performance of coarse particle recovery rate and fine particle mixing rate has been improved by increasing the recovery rate and setting the main body rotation speed to 800 rpm in the second and third classification, and setting the weir height 111W to orifice No. 14. It is expected that this will be possible.

当初、有機物が多い場合に分級しても非放射性セシウム濃度が下がらない可能性を懸念していたが、腐植等の有機物も分級出来たため細粒分混入率を低く抑えることで非放射性セシウム濃度を低下させることができた。また、分級2回目、3回目では、分級土壌Bに5μm以下の細粒分は含まれておらず全て分離水側へ排出されていた。以下の表7-1に分級土壌Bの20μm未満の粒度分布を示す。 At first, we were concerned that the concentration of non-radioactive cesium would not be reduced even if there was a large amount of organic matter, but since we were able to classify organic matter such as humus, we were able to reduce the concentration of non-radioactive cesium by keeping the fine particle content low. I was able to lower it. In addition, in the second and third classification, classified soil B did not contain fine particles of 5 μm or less, and all of them were discharged to the separated water side. Table 7-1 below shows the particle size distribution of classified soil B below 20 μm.

また、デカンタ式遠心分離装置10で分級を行うと1回目の分級時がもっとも粗粒分が減少しており、2回目以降でも減少が見られる。上述した改善策2は、3回分級後の土壌を再利用していることから減少分は少ない結果となっている。このことから、デカンタ式遠心分離装置10を分級前の前処理として使用すると分級効率が向上すると考えられる。以下の表7-2に本試験1~4と改善策2の粗粒分の減少率を表す。 Further, when classification is performed using the decanter type centrifugal separator 10, the coarse particles are reduced the most during the first classification, and a decrease can be seen even after the second classification. Improvement measure 2 described above results in a small reduction because the soil after three classifications is reused. From this, it is considered that the classification efficiency is improved when the decanter type centrifugal separator 10 is used as a pretreatment before classification. Table 7-2 below shows the reduction rate of coarse particles in Tests 1 to 4 and Improvement Measure 2.

増加した細粒分は、特に5μm以下の粒子量が増加していることから粗粒分が崩れたと考えるよりは、粗粒分の表面に固着した細粒分が摩擦により剥がれたと推測される。改善策2は、既に3回分級を行った後の試験土壌を使用していることから概ね粗粒分は細粒分が剥がれた後の状態である。これが分級回数を増やすにつれて10μm~20μmの細粒分が微増していることから粒子が徐々に研磨されていることがわかる。このことからデカンタ式遠心分離装置10には、ある程度の破砕と研磨の効果もあることがわかる。以下の表7-3に細粒分の増減率を表す。 The increased fine particles are thought to be due to the fine particles adhering to the surface of the coarse particles peeling off due to friction, rather than the coarse particles being broken down, as the amount of particles of 5 μm or less in particular has increased. Improvement measure 2 uses test soil that has already been classified three times, so the coarse particles are in a state after the fine particles have been peeled off. As the number of classification increases, the number of fine particles of 10 μm to 20 μm increases slightly, which indicates that the particles are gradually polished. From this, it can be seen that the decanter type centrifugal separator 10 also has a certain degree of crushing and polishing effect. Table 7-3 below shows the increase/decrease rate of fine particles.

非放射性セシウム濃度低減率は、粗粒分の非放射性セシウム濃度による影響が大きく、粗粒分濃度比が低いほど非放射性セシウム濃度の低減率は高くなる。粗粒分濃度比は、表6-19、表6-20の分級土壌Bの粒径別非放射性セシウム濃度の分級1回目の値より求めた。
粗粒分濃度比=粗粒分の非放射性セシウム濃度/細粒分の非放射性セシウム濃度
The non-radioactive cesium concentration reduction rate is greatly influenced by the non-radioactive cesium concentration of the coarse particles, and the lower the coarse particle concentration ratio, the higher the reduction rate of the non-radioactive cesium concentration. The coarse particle concentration ratio was determined from the non-radioactive cesium concentration by particle size of classified soil B in Tables 6-19 and 6-20 for the first time of classification.
Coarse particle concentration ratio = Non-radioactive cesium concentration in coarse particles / Non-radioactive cesium concentration in fine particles

8.再生利用の検討
物質収支の一例を表8-1に示す。
8. Consideration of recycling An example of material balance is shown in Table 8-1.

20~75μmの除去土壌の再生利用に関しては、予備試験と本試験の結果より3回の分級を行えば、細粒分混入率を20%未満に出来る。したがって、今回の試験結果より非放射性セシウム濃度低減率が最も高い40.2%とした場合では、サイクロン分級後の泥水の放射性セシウム濃度が13,000Bq/kg-dry以下であれば、8,000Bq/kg-dry以下になる。物質収支よりサイクロン分級後土壌6,955tとデカンタ式遠心分離装置10による3回目の分級土壌1,544tを合わせた8,499tが再利用出来るようになる。 Regarding the reuse of removed soil of 20 to 75 μm, the results of the preliminary test and the main test show that if the soil is classified three times, the fine particle content can be reduced to less than 20%. Therefore, if the non-radioactive cesium concentration reduction rate is 40.2%, which is the highest based on the test results, if the radioactive cesium concentration in the mud water after cyclone classification is 13,000Bq/kg-dry or less, 8,000Bq/kg-dry It becomes below. Based on the material balance, 8,499 tons, including 6,955 tons of soil after cyclone classification and 1,544 tons of soil classified for the third time using the decanter centrifuge 10, can be reused.

適用範囲は土壌の種類による制限は設けない。最も効果的な条件は、土粒子密度1~2.6(g/cm3、20℃)が混在している土壌であり、泥水濃度10%以下とする。なお、対象となる除去土壌の放射性セシウム濃度は、20μm以上の粗粒分の放射性セシウム濃度により変わるため適用範囲は除去土壌での確認が必要である。 The scope of application is not limited by soil type. The most effective conditions are soil with a soil particle density of 1 to 2.6 (g/cm 3 , 20°C), and a muddy water concentration of 10% or less. The radioactive cesium concentration in the target removed soil varies depending on the radioactive cesium concentration in coarse particles of 20 μm or more, so the scope of application must be confirmed in the removed soil.

9.まとめ
上述した本試験結果より以下の事が分かる。
9. Summary The results of this test mentioned above reveal the following.

粗粒分回収率に関しては、1回目の分級より2回目以降の方が、土質に関係なく35%以上向上している。向上した理由としては、試験土壌1で試験を行った運転条件が同じ本試験1,2と予備試験11、改善策で比較した場合、洗浄後泥水の粒度分布は、本試験1,2では細粒分が70%~71%、予備試験11では89.18%、改善策では64~68%となっているが、予備試験11は試験土壌を11回繰り返し使用し、改善策は3回分級した土壌を使用したことから粗粒分回収率は予備試験11が最もよく次いで改善策となっている。このことから粗粒分回収率は、洗浄後泥水の細粒分割合の影響は少なく粗粒分と細粒分の固着による影響が大きいと考えられる。もう一つの理由としては、洗浄後泥水の濃度が本試験1,2では9%程度であり予備試験11が5%、分級2回目以降は2~3%となっていることから洗浄後泥水濃度による影響も考えられる。粗粒分回収率は、粗粒分が多い場合に差速回転数を速くし掻き出し速度を上げることで向上していることから予め差速回転数を速い設定にしておく必要がある、と考えられる。 Regarding the coarse particle recovery rate, the second and subsequent classifications are more than 35% better than the first classification, regardless of the soil quality. The reason for the improvement is that when comparing main tests 1 and 2 with the same operating conditions in test soil 1, preliminary test 11, and improvement measures, the particle size distribution of muddy water after washing was finer in main tests 1 and 2. The particle content is 70% to 71%, 89.18% in preliminary test 11, and 64 to 68% in the improvement measure.However, in preliminary test 11, the test soil was used repeatedly 11 times, and the improvement measure was obtained by using the soil classified three times. Preliminary test 11 had the highest recovery rate for coarse particles, followed by the improvement measure. From this, it is thought that the recovery rate of coarse particles is less influenced by the proportion of fine particles in the muddy water after washing and more influenced by the adhesion of coarse particles and fine particles. Another reason is that the concentration of muddy water after washing was about 9% in main tests 1 and 2, 5% in preliminary test 11, and 2 to 3% after the second classification. It is also possible that the effects of Since the coarse particle recovery rate is improved by increasing the differential speed rotation speed and raising the scraping speed when there is a large amount of coarse particles, we believe that it is necessary to set the differential speed rotation speed high in advance. It will be done.

細粒分混入率に関しては、200G以下の低い遠心力でせきの高さを低くすることで1回の分級で30%以下に出来るが粗粒分回収率も低下してしまう。そこで粗粒分回収率を高くし細粒分混入率を低くするには、分級1回目の運転条件と2回目以降の運転条件を変える必要があると考えられる。分級1回目の運転条件は、予備試験7の条件で行い、2回目以降は予備試験11の条件で行うことで粗粒分回収率は向上する。 Regarding the fine particle content, it can be reduced to 30% or less in one classification by lowering the height of the weir using a low centrifugal force of 200 G or less, but the coarse particle recovery rate also decreases. Therefore, in order to increase the recovery rate of coarse particles and lower the mixing rate of fine particles, it is considered necessary to change the operating conditions for the first classification and the operating conditions for the second and subsequent classifications. The coarse particle recovery rate can be improved by performing the first classification under the conditions of Preliminary Test 7, and from the second time onwards under the conditions of Preliminary Test 11.

非放射性セシウム総量低減率に関しては、1回目の低減率に対し、3回の分級を行うことで5%程度低減しているが、2回目以降の分級では粗粒分回収率が95%程度のため、分級回数を増やすたびに粗粒分が5%程度は減少している。よって、粗粒分回収率から考えると分級回数は3回までに留めた方が良いと思われる。分級された20μm以上の粗粒分に対して更に2回の分級を行い細粒分混入率を低く抑えたことで非放射性セシウム総量を90%程度低減させることが実証出来た。非放射性セシウム総量低減率は、1回目の分級前泥水と比較し、1回目の分級時が黒土80.1%、赤土90.2%であり、2回目は黒土2.0%、赤土4.0%、3回目は黒土2.0%、赤土0.7%であった。また、2回目以降の分級後の粗粒分に5μm未満の細粒分が0%であったことと、腐植等の有機物も20μmで分級できていたことが特徴的であった。 Regarding the total non-radioactive cesium reduction rate, the reduction rate for the first time was reduced by about 5% by performing three classifications, but after the second classification, the coarse particle recovery rate was about 95%. Therefore, each time the number of classifications is increased, the coarse particle content decreases by about 5%. Therefore, considering the coarse particle recovery rate, it seems better to limit the number of classifications to three times or less. We were able to demonstrate that the total amount of non-radioactive cesium could be reduced by approximately 90% by classifying the classified coarse particles of 20 μm or more twice and keeping the fine particle content low. Compared to the muddy water before the first classification, the total non-radioactive cesium reduction rate was 80.1% black soil and 90.2% red soil during the first classification, 2.0% black soil and 4.0% red soil during the second classification, and 2.0% black soil during the third classification. %, red clay 0.7%. Furthermore, it was characteristic that after the second and subsequent classifications, the fine particles less than 5 μm were 0% in the coarse particles, and that organic matter such as humus could also be classified at 20 μm.

粗粒分回収率に関しては、改善策3で運転条件を変えることで80%に改善したが、運転条件を更に調整することで80%以上に出来る可能性が高い。本試験では非放射性セシウムの添加量を自然界に存在する非放射性セシウムの濃度より高い5mg/kg-dryを添加したため粗粒分にも非放射性セシウムが吸着してしまい分級後の粗粒分の非放射性セシウム総量が多くなったが、予備試験の条件13で評価したように粗粒分への非放射性セシウムの吸着が少ない場合には、3回の分級を行う事で非放射性セシウム総量を90%程度低減できる。ただし、非放射性セシウム濃度低減率については、表7-4の非放射性セシウム濃度比較によれば、粗粒分の非放射性セシウム濃度比が46.7%の時に洗浄後泥水から分級土壌Bへの1回の分級で低減率は40%となっている。非放射性セシウム濃度は、20μm以上の粗粒分の濃度により大きく左右されるため、粗粒分の放射性セシウム濃度が低くなるほど低減する。粗粒分の非放射性セシウム濃度は、試験土壌中の非放射性セシウム濃度が高いほど粗粒分の濃度も高い傾向があり、除去土壌に含有する放射性セシウム量は試験土壌に比べ極めて微量である。このことから粗粒分の非放射性セシウム濃度比は46.7%以下になる可能性があり非放射性セシウム濃度低減率も40%以上になる可能性があることから再生利用することは可能と判断した。また、デカンタ型遠心分離装置は、分級する度に粗粒分が減少し細粒分が増加していることから粗粒分の研磨作用もあるため前処理として使用することで分級効率を向上させることができる。 Regarding the coarse particle recovery rate, it was improved to 80% by changing the operating conditions in improvement measure 3, but it is likely that it can be increased to 80% or higher by further adjusting the operating conditions. In this test, the amount of non-radioactive cesium added was 5 mg/kg-dry, which is higher than the concentration of non-radioactive cesium that exists in nature, so non-radioactive cesium was also adsorbed to the coarse particles, resulting in non-radioactive cesium being added to the coarse particles after classification. Although the total amount of radioactive cesium has increased, if the adsorption of non-radioactive cesium to the coarse particles is small as evaluated in condition 13 of the preliminary test, the total amount of non-radioactive cesium can be reduced to 90% by performing classification three times. The degree can be reduced. However, regarding the non-radioactive cesium concentration reduction rate, according to the non-radioactive cesium concentration comparison in Table 7-4, when the non-radioactive cesium concentration ratio of coarse particles is 46.7%, once from muddy water after washing to classified soil B The reduction rate is 40% in this classification. Since the non-radioactive cesium concentration is greatly influenced by the concentration of coarse particles of 20 μm or more, it decreases as the radioactive cesium concentration of coarse particles decreases. Regarding the concentration of non-radioactive cesium in coarse particles, the higher the concentration of non-radioactive cesium in the test soil, the higher the concentration of coarse particles tends to be, and the amount of radioactive cesium contained in the removed soil is extremely small compared to the test soil. From this, it was determined that the non-radioactive cesium concentration ratio of the coarse particles could be 46.7% or less, and the non-radioactive cesium concentration reduction rate could be 40% or more, so it was possible to recycle it. In addition, the decanter-type centrifugal separator has the effect of polishing the coarse particles because each time it is classified, the coarse particles decrease and the fine particles increase, so it can be used as a pretreatment to improve classification efficiency. be able to.

本発明は、汚水あるいは泥水を設定された粒径を基準として細粒分と粗粒分とに分離するデカンタ式遠心分離装置一般に適用可能である。 The present invention is generally applicable to decanter-type centrifugal separators that separate wastewater or muddy water into fine particles and coarse particles based on a set particle size.

10 デカンタ式遠心分離装置
11 回転軸
101 外胴ボウル
101R 回転軸
102 内胴スクリュウ
102R 回転軸
103 プーリ
104 ベアリング部
105 差速生成部
106 フィードパイプ
110 液体吐出口
111 側壁
111w せきの高さ
112 固体吐出口
120 ケーシング
121 固体排出部
122 液体排出部
130 原液
140 駆動部
141 回転数設定部
10 Decanter type centrifugal separator 11 Rotating shaft 101 Outer bowl 101R Rotating shaft 102 Inner screw 102R Rotating shaft 103 Pulley 104 Bearing part 105 Differential speed generating part 106 Feed pipe 110 Liquid discharge port 111 Side wall 111w Weir height 112 Solid discharge Outlet 120 Casing 121 Solid discharge section 122 Liquid discharge section 130 Stock solution 140 Drive section 141 Rotation speed setting section

Claims (7)

回転軸を中心として回転可能に支持され前記回転軸方向に延びた内壁と前記回転軸を横切る側壁とを有する外胴ボウルと、前記外胴ボウル内で前記回転軸を中心として回転可能に支持された内胴スクリュウと、前記外胴ボウルと前記内胴スクリュウとを異なる回転速度で回転させる駆動機構と、前記外胴ボウルの前記側壁の円周上に等間隔で設けられた複数の液体吐出口と、前記外胴ボウルの前記内壁と前記複数の液体吐出口との距離をせきの高さとして調整する調整機構と、を有し、粒径が異なる粒子を含む原液を設定された粒径で分離するデカンタ式遠心分離装置の分級点設定方法であって、
前記外胴ボウルおよび前記内胴スクリュウを回転させて前記原液中の粒子を設定された粒径を基準として細粒分と粗粒分とに分離し、
分離された細粒分と粗粒分との粒度分布から、粗粒分に含まれる細粒分混入率と、前記原液中の粗粒分に対する分離後の粗粒分の割合である粗粒分回収率と、を取得し、
前記細粒分混入率をより低下させ前記粗粒分回収率をより上昇させるように、前記外胴ボウルの回転速度、前記外胴ボウルと前記内胴スクリュウの差回転速度、前記デカンタ式遠心分離装置の単位時間あたりの前記原液の処理量、および前記せきの高さのうち少なくとも前記せきの高さを調整することで、前記デカンタ式遠心分離装置の分級点を粒径75μm未満に設定する、
ことを特徴とするデカンタ式遠心分離装置の分級点設定方法。
an outer bowl that is rotatably supported around a rotation axis and has an inner wall extending in the direction of the rotation axis and a side wall that crosses the rotation axis; an inner barrel screw, a drive mechanism that rotates the outer barrel bowl and the inner barrel screw at different rotational speeds, and a plurality of liquid discharge ports provided at equal intervals on the circumference of the side wall of the outer barrel bowl. and an adjustment mechanism that adjusts the distance between the inner wall of the outer bowl and the plurality of liquid discharge ports as a weir height, and the adjustment mechanism adjusts the distance between the inner wall of the outer body bowl and the plurality of liquid discharge ports as a height of the weir, and the adjustment mechanism adjusts the distance between the inner wall of the outer body bowl and the plurality of liquid discharge ports as a height of the weir, and the adjustment mechanism adjusts the distance between the inner wall of the outer body bowl and the plurality of liquid discharge ports as the height of the weir. A method for setting a classification point for a decanter-type centrifugal separator for separating,
rotating the outer barrel bowl and the inner barrel screw to separate particles in the stock solution into fine particles and coarse particles based on a set particle size;
From the particle size distribution of the separated fine particles and coarse particles, the mixing ratio of fine particles contained in the coarse particles and the coarse particle fraction, which is the ratio of the coarse particles after separation to the coarse particles in the stock solution, are determined. Get the recovery rate and
The rotational speed of the outer bowl, the differential rotational speed between the outer bowl and the inner screw, and the decanter centrifugation are set to further reduce the fine particle mixing rate and increase the coarse particle recovery rate. Setting the classification point of the decanter type centrifugal separator to a particle size of less than 75 μm by adjusting at least the height of the weir among the throughput of the stock solution per unit time of the device and the height of the weir;
A classification point setting method for a decanter type centrifugal separator.
前記外胴ボウルの回転速度は前記原液の粗粒分と細粒分との間で沈降速度の差を生じさせる遠心力に設定する、ことを特徴とする請求項1に記載のデカンタ式遠心分離装置の分級点設定方法。 The decanter type centrifugal separator according to claim 1, wherein the rotational speed of the outer bowl is set to a centrifugal force that causes a difference in settling speed between coarse particles and fine particles of the stock solution. How to set the classification point of the device. 前記遠心力が450G以下であることを特徴とする請求項2に記載のデカンタ式遠心分離装置の分級点設定方法。 3. The method for setting a classification point for a decanter centrifugal separator according to claim 2, wherein the centrifugal force is 450G or less. 回転軸を中心として回転可能に支持され前記回転軸方向に延びた内壁と前記回転軸を横切る側壁とを有する外胴ボウルと、前記外胴ボウル内で前記回転軸を中心として回転可能に支持された内胴スクリュウと、前記外胴ボウルと前記内胴スクリュウとを異なる回転速度で回転させる駆動機構と、を有し、粒径が異なる粒子を含む原液を設定された粒径で分離するデカンタ式遠心分離装置であって、
前記外胴ボウルは前記側壁の前記回転軸から等距離の位置に等間隔で形成された複数の液体吐出口を有し、前記外胴ボウルの前記内壁と前記複数の液体吐出口との距離をせきの高さとし、
前記外胴ボウルの前記側壁は前記せきの高さを調整する調整機構を有し、
前記外胴ボウルおよび前記内胴スクリュウの回転速度をそれぞれ所定値に設定した状態で、前記調整機構により前記せきの高さを調整して分級点を粒径75μm未満に設定したことを特徴とするデカンタ式遠心分離装置。
an outer bowl that is rotatably supported around a rotation axis and has an inner wall extending in the direction of the rotation axis and a side wall that crosses the rotation axis; a decanter type that separates a stock solution containing particles with different particle sizes at a set particle size, and a drive mechanism that rotates the outer barrel bowl and the inner barrel screw at different rotational speeds. A centrifugal separator,
The outer bowl has a plurality of liquid discharge ports formed at equal intervals at positions equidistant from the rotation axis of the side wall, and the distance between the inner wall of the outer bowl and the plurality of liquid discharge ports is The height of the cough,
The side wall of the outer body bowl has an adjustment mechanism for adjusting the height of the weir,
The height of the weir is adjusted by the adjustment mechanism while the rotational speeds of the outer bowl and the inner screw are set to predetermined values, respectively, and the classification point is set to a particle size of less than 75 μm. Decanter type centrifugal separator.
前記調整機構は、
前記外胴ボウルの前記側壁における前記複数の液体吐出口にそれぞれ対応した位置に設けられた複数の貫通孔と、
前記複数の液体吐出口の各々が中心点から外れた位置に形成された複数の円形プレートと、
前記各円形プレートを所望の向きで前記液体吐出口と前記貫通孔とが重なるように前記側壁に着脱可能に固定する固定具と、
からなることを特徴とする請求項4に記載のデカンタ式遠心分離装置。
The adjustment mechanism is
a plurality of through holes provided in the side wall of the outer body bowl at positions corresponding to the plurality of liquid discharge ports, respectively;
a plurality of circular plates in which each of the plurality of liquid ejection ports is formed at a position offset from a center point;
a fixture that removably fixes each of the circular plates to the side wall in a desired direction so that the liquid discharge port and the through hole overlap;
The decanter type centrifugal separator according to claim 4, characterized in that it consists of:
前記外胴ボウルおよび前記内胴スクリュウを回転させて前記原液中の粒子を設定された粒径を基準として細粒分と粗粒分とに分離し、分離された細粒分と粗粒分との粒度分布から、粗粒分に含まれる細粒分混入率と、前記原液中の粗粒分に対する分離後の粗粒分の割合である粗粒分回収率と、を取得し、前記細粒分混入率をより低下させ前記粗粒分回収率をより上昇させるように、前記外胴ボウルの回転速度、前記外胴ボウルと前記内胴スクリュウの差回転速度および前記せきの高さのうち少なくとも前記せきの高さを調整することを特徴とする請求項4または5に記載のデカンタ式遠心分離装置。 The outer barrel bowl and the inner barrel screw are rotated to separate the particles in the stock solution into fine particles and coarse particles based on a set particle size, and the separated fine particles and coarse particles are separated. From the particle size distribution of At least one of the rotational speed of the outer bowl, the differential rotational speed between the outer bowl and the inner screw, and the height of the weir are set so as to further reduce the coarse particle mixing rate and increase the coarse particle collection rate. The decanter type centrifugal separator according to claim 4 or 5, wherein the height of the weir is adjusted. 請求項1-3のいずれか1項に記載の分級点設定方法により前記デカンタ式遠心分離装置の分級点を設定し、前記原液を複数回繰り返し洗浄と分級を実行することを特徴とする分級処理方法。 A classification process characterized by setting the classification point of the decanter centrifugal separator by the classification point setting method according to any one of claims 1 to 3, and repeatedly washing and classifying the stock solution a plurality of times. Method.
JP2022089311A 2022-05-31 2022-05-31 Decanter type centrifugal separator, classification point setting method, and classification processing method Pending JP2023176819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022089311A JP2023176819A (en) 2022-05-31 2022-05-31 Decanter type centrifugal separator, classification point setting method, and classification processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089311A JP2023176819A (en) 2022-05-31 2022-05-31 Decanter type centrifugal separator, classification point setting method, and classification processing method

Publications (1)

Publication Number Publication Date
JP2023176819A true JP2023176819A (en) 2023-12-13

Family

ID=89122583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089311A Pending JP2023176819A (en) 2022-05-31 2022-05-31 Decanter type centrifugal separator, classification point setting method, and classification processing method

Country Status (1)

Country Link
JP (1) JP2023176819A (en)

Similar Documents

Publication Publication Date Title
JP4256505B2 (en) How to treat dredged soil
CA2667281C (en) Installation for the flocculation of sludge loaded with suspended matter, method using the installation
US5833863A (en) Concrete reclamation system
US20040159613A1 (en) System &amp; method for enhancing cyclonic vessel efficiency with polymeric additives
CN101060899A (en) Waste concrete and aggregate reclaimer
CA2602687A1 (en) Apparatus and method for recovering oil-based drilling mud
CN107381988A (en) A kind of shield high concentration discards mud disposal system and method
JP6027921B2 (en) Treatment method of contaminated soil
JPH11169609A (en) Flocculating and settling apparatus
CA1126187A (en) Apparatus and process for extracting oil or bitumen from tar sands
US4477353A (en) Method of reclaiming water and coal from coal treatment underflow by two-stage separation of solids
CA2824543C (en) A centrifuge process for dewatering oil sands tailings
JP2014021062A (en) Classification method of contaminated soil
JP2021038540A (en) Dredging system
JP2023176819A (en) Decanter type centrifugal separator, classification point setting method, and classification processing method
JP3150844B2 (en) Excavated waste soil treatment and regeneration plant
CN104609601A (en) Treatment method for quickly clarifying oilfield produced water through micro-sand circulation
JPH1133361A (en) Process for treating liquid containing fine particle and equipment thereof
CA1050179A (en) Method of reclaiming water and coal from coal treatment underflow by two-stage separation of solids
JP2010089016A (en) Method and apparatus for treating dredged soil
JP2002239306A (en) Floc forming device, solid-liquid separation apparatus and wastewater treatment method
JP2002136977A (en) Sewage treatment apparatus of waste household electric appliance recycling treatment apparatus
CN214270628U (en) Integrated shield tunneling machine mud-water separation system
JPH0262282B2 (en)
CN110436733B (en) Silt separation device and separation method thereof

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220630