JP2014021062A - Classification method of contaminated soil - Google Patents

Classification method of contaminated soil Download PDF

Info

Publication number
JP2014021062A
JP2014021062A JP2012162885A JP2012162885A JP2014021062A JP 2014021062 A JP2014021062 A JP 2014021062A JP 2012162885 A JP2012162885 A JP 2012162885A JP 2012162885 A JP2012162885 A JP 2012162885A JP 2014021062 A JP2014021062 A JP 2014021062A
Authority
JP
Japan
Prior art keywords
particles
contaminated soil
classification
tank
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012162885A
Other languages
Japanese (ja)
Other versions
JP5155487B1 (en
Inventor
Nobuyuki Okajima
伸行 岡島
Itaru Yoshihara
到 吉原
Masahito Sakakibara
雅人 榊原
Koji Uehara
弘次 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomi Construction Co Ltd
Original Assignee
Aomi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomi Construction Co Ltd filed Critical Aomi Construction Co Ltd
Priority to JP2012162885A priority Critical patent/JP5155487B1/en
Application granted granted Critical
Publication of JP5155487B1 publication Critical patent/JP5155487B1/en
Publication of JP2014021062A publication Critical patent/JP2014021062A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a classification method of contaminated soil capable of classifying and collecting fine particles having a harmful substance easily adhering thereto from the contaminated soil to achieve volume reduction of the contaminated soil.SOLUTION: A classification method of contaminated soil comprises: cleaning slurry adjusted by adding water to contaminated soil S so as to be concentration of 10 wt.% or less by a cavitation water jet; stirring the slurry by a flow rate variable water jet allowing a flow rate to be changed; precipitating and separating sand grains in a coarse particle classification tank 2; centrifuging the sand grains into silt particles and clay particles by a centrifugal separator 4; precipitating and separating the silt particles in a fine particle precipitator 5 to classify the clay particles; precipitating and depositing the clay particles in a fine particle precipitator 6; and classifying and collecting the clay particles from the contaminated soil.

Description

本発明は、放射性物質を含む汚染土壌の分級工法に関するものであり、特に、粒径が小さく比表面積が大きい粒子を選択的に分級し除去することで、この細かい粒子に吸着しがちな放射性物質を汚染土壌から除去し、汚染土壌の減容化を実現する汚染土壌の分級工法に関するものである。   The present invention relates to a method for classifying contaminated soil containing a radioactive substance, and in particular, by selectively classifying and removing particles having a small particle size and a large specific surface area, the radioactive substance tends to be adsorbed on the fine particles. It is related with the classification method of contaminated soil which removes from contaminated soil and realizes volume reduction of contaminated soil.

放射性物質に汚染された汚染土壌は、最終処分を行うまで中間貯蔵施設内で一時的に保管する必要があり、汚染土壌が大量になる程に広大な保管スペースを要する。したがって、保管スペースを圧縮するために、汚染土壌の体積を低減すること、すなわち、汚染土壌の減容化が望まれている。   Contaminated soil contaminated with radioactive materials must be temporarily stored in the intermediate storage facility until final disposal, and the storage space becomes so large that the amount of contaminated soil becomes large. Therefore, in order to compress the storage space, it is desired to reduce the volume of the contaminated soil, that is, to reduce the volume of the contaminated soil.

一般的に、汚染物質は、粒径の小さい粒子、特に粘土分に吸着することが知られている。汚染物質のこのような特性を利用して汚染土壌の減容化を実現する方法として、汚染土壌の土粒子を粒径の大きさに応じて分級して、汚染物質が吸着した土粒子ごと取り除く汚染土壌の分級方法が知られている。   In general, it is known that contaminants are adsorbed on particles having a small particle size, particularly clay. As a method of reducing the volume of contaminated soil using these characteristics of the pollutants, the soil particles of the contaminated soil are classified according to the size of the particles, and the soil particles adsorbed with the pollutants are removed. Methods for classifying contaminated soil are known.

そして、このような汚染土壌の分級は、次のような構成の分級システムを用いて行われる。すなわち、汚染土壌から粒径5mm以上の砂利や草木等の異物を除去する篩と、加水されてスラリー状になった汚染土壌を撹拌翼を回転させることで撹拌して粒径2mm以上の礫分を沈降分離すると共に粒径が2mmより小径の砂分等をオーバーフローさせる分離槽と、スラリーを貯留して撹拌しながら超音波洗浄する洗浄槽と、洗浄されたスラリーを流通しながら超音波洗浄を行う仕上洗浄管と、仕上洗浄されたスラリーを分級して30μm以上の土壌粒子を洗浄土壌として取り出すサイクロン式分級機とで構成されている(例えば、特許文献1参照)。   And classification of such contaminated soil is performed using the classification system of the following structures. That is, a sieve that removes foreign matter such as gravel and vegetation having a particle diameter of 5 mm or more from the contaminated soil and a contaminated soil that has been hydrated into a slurry state by rotating the stirring blade and stirring the gravel component having a particle diameter of 2 mm or more A separation tank that sediments and separates sand having a particle diameter smaller than 2 mm, a cleaning tank that stores and agitates the slurry and ultrasonically cleans it while stirring, and performs ultrasonic cleaning while circulating the washed slurry. The finishing washing tube is configured to be classified into a cyclone classifier that classifies the finish-washed slurry and takes out soil particles of 30 μm or more as washing soil (see, for example, Patent Document 1).

特開2005−81247号公報JP 2005-81247 A

特許文献1に記載の従来技術においては、主に粗い粒子から成る砂質の汚染土壌を分級する場合には、汚染土壌から放射性物質を吸着していない礫分や砂分を分級して汚染土壌を減容化し易いものの、湿地等の主に細かい粒子から成る粘土質の汚染土壌を分級する場合には、比較的大きい粒径を基準に分級するため、礫分よりも小径で粘土分より大径のシルト分を多く含んだまま汚染土壌を保管することになり、依然として汚染土壌が多くなりがちであった。   In the prior art described in Patent Document 1, when the sandy contaminated soil mainly composed of coarse particles is classified, the gravel and sand not adsorbing radioactive substances are classified from the contaminated soil to contaminate the soil. However, when categorizing clay-contaminated soil consisting mainly of fine particles such as wetlands, the classification is based on a relatively large particle size, so the diameter is smaller than the gravel and larger than the clay content. The contaminated soil was stored while containing a large amount of silt of the diameter, and the contaminated soil still tended to increase.

また、粘土分が礫分に付着している場合には、分離槽内で槽底部に沈降分離されて槽外部に排出される礫分内に粘土分が混入してしまい、この粘土分に吸着した放射性物質が外部に拡散してしまう虞があった。   In addition, when the clay is attached to the gravel, the clay is mixed in the gravel that is settled and separated to the bottom of the tank in the separation tank and discharged to the outside of the tank. There was a risk that the radioactive material diffused to the outside.

そこで、放射性物質を含み長期に渡って隔離保管する必要がある汚染土壌のうち、有害物質が付着しがちな微細粒子を効率的に回収し、汚染土壌を減容化して保管スペースを縮小し、さらに、微細粒子が沈降速度の速い粗粒子や細粒子に混入して回収されることを防止するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決する
ことを目的とする。
Therefore, among the contaminated soil that contains radioactive substances and needs to be isolated and stored for a long period of time, the fine particles that are likely to adhere to harmful substances are efficiently recovered, the volume of the contaminated soil is reduced, and the storage space is reduced. Furthermore, there is a technical problem to be solved in order to prevent fine particles from being mixed and collected in coarse particles and fine particles having a high sedimentation speed, and the present invention solves this problem. Objective.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、放射性物質を含む汚染土壌の分級工法において、前記汚染土壌を加水して成る泥水を粗粒子分級タンク内で撹拌する撹拌工程と、前記粗粒子分級タンク内で第1の粒径以上に大径の粗粒子を沈降分離すると共に、第1の分級粒径以下の細粒子及び微細粒子を上昇水流でオーバーフローさせる一次分級工程と、前記汚染土壌に含まれる異物を除去する異物除去工程と、前記一次分級工程を経た泥水を細粒子分級タンク内で第2の粒径以上に大径の細粒子を沈降分離するとともに前記第2の粒径より小径の微細粒子を回収する二次分級工程とで構成される汚染土壌の分級工法を提供する。   The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 is a method for classifying contaminated soil containing a radioactive substance. A stirring step of stirring in the inside, and coarse particles having a diameter larger than the first particle size are settled and separated in the coarse particle classification tank, and fine particles and fine particles smaller than the first classified particle size are separated by rising water flow. A primary classification step for overflowing, a foreign matter removal step for removing foreign matters contained in the contaminated soil, and sludge that has undergone the primary classification step settles fine particles larger than the second particle size in a fine particle classification tank. Provided is a method for classifying contaminated soil which comprises a secondary classification step of separating and collecting fine particles having a diameter smaller than the second particle size.

この構成によれば、汚染土壌に含まれる粗粒子、細粒子及び微細粒子を2段階で分級して、放射性物質が吸着し易い微細粒子を粒径の小さい方から所定量だけ効率的に取り除くことができる。すなわち、まず、汚染土壌を加水し懸濁して第1の分級粒径より大径の粗粒子を粗粒子分級タンクのタンク底部に沈降分離させると共に、粗粒子タンク内を第1の分級粒径以下の細粒子及び微細粒子が沈降せずに上昇するように設定された所定の流速で上昇する上昇水流により細粒子及び微細粒子が粗粒子分級タンクのタンク上部に浮遊する。続いて、細粒子及び微細粒子を含む泥水が細粒子分級タンクに送られて、細粒子分級タンクにて、第2の分級粒径より大径の細粒子を細粒子分級タンクのタンク底部に沈降分離させると共に、細粒子分級タンク内を第2の分級粒径以下の微細粒子をタンク上部に浮遊させて分級する。これにより、粗粒子や細粒子と比較して小径で比表面積(粒子1gあたりの表面積)が大きく、有害物質が付着しやすい微細粒子のみを確実に分級して回収できる。   According to this configuration, coarse particles, fine particles, and fine particles contained in the contaminated soil are classified in two stages, and fine particles that are easily adsorbed by radioactive substances are efficiently removed by a predetermined amount from the smaller particle size. Can do. That is, first, the contaminated soil is hydrated and suspended so that coarse particles having a diameter larger than the first classified particle size are settled and separated at the bottom of the coarse particle classification tank, and the inside of the coarse particle tank is equal to or smaller than the first classified particle size. The fine particles and fine particles float on the upper part of the coarse particle classification tank by the rising water flow rising at a predetermined flow rate set so that the fine particles and fine particles rise without settling. Subsequently, the fine particles and the muddy water containing the fine particles are sent to the fine particle classification tank, where fine particles larger in diameter than the second classified particle size settle to the bottom of the fine particle classification tank. In addition to the separation, fine particles having a particle size equal to or smaller than the second classified particle size are suspended in the upper part of the fine particle classification tank and classified. Thereby, it is possible to reliably classify and collect only fine particles that are small in diameter and large in specific surface area (surface area per 1 g of particles) and easily adhere to harmful substances as compared with coarse particles and fine particles.

また、泥水内で粗粒子、細粒子及び微細粒子が互いに付着しているような場合であっても、粗粒子分級タンク内で泥水を撹拌して粒子間を切り離すことで微細粒子が粗粒子や細粒子に付着した状態で分級されることを回避できる。   In addition, even when coarse particles, fine particles, and fine particles adhere to each other in the muddy water, the fine particles can be separated by separating the particles by stirring the muddy water in the coarse particle classification tank. It is possible to avoid classification while adhering to fine particles.

請求項2記載の発明は、請求項1記載の発明において、前記汚染土壌の撹拌は、キャビテーションを含むキャビテーションジェット水と、前記上昇水流の流速を維持する流量可変ジェット水とを前記泥水に吹き付けて行う汚染土壌の分級工法を提供する。   According to a second aspect of the present invention, in the first aspect of the invention, the contaminated soil is agitated by spraying the mud water with cavitation jet water including cavitation and flow rate variable jet water that maintains the flow rate of the rising water flow. Provide a method for classifying contaminated soil.

この構成によれば、粗粒子分級タンク内に貯留される泥水中の粗粒子、細粒子及び微細粒子が互いに付着している場合であっても、キャビテーションジェット水に含まれるキャビテーションに起因する振動により粒子を洗浄し、すなわち、粒子同士を切り離して粒子間の付着を解除すると共に、第1の分級粒径より小径の粒子を一定流速の上昇水流で粗粒子分級タンクのタンク上部まで舞い上げ続けることで、細粒子や微細粒子が粗粒子分級タンクのタンク底部に沈降堆積する粗粒子内に混入することを回避できる。   According to this configuration, even when the coarse particles, fine particles, and fine particles in the muddy water stored in the coarse particle classification tank adhere to each other, vibrations caused by cavitation contained in the cavitation jet water. Cleaning particles, that is, separating particles and releasing adhesion between particles, and continuously raising particles smaller than the first classified particle size to the upper part of the coarse particle classification tank with a rising water flow at a constant flow rate Thus, it can be avoided that fine particles and fine particles are mixed in the coarse particles that settle and deposit at the bottom of the coarse particle classification tank.

請求項3記載の発明は、請求項1又は請求項2記載の発明において、前記一次分級工程と前記二次分級工程との間に、前記細粒子と前記微細粒子とを遠心分離器で分離する遠心分離工程を含む汚染土壌の分級工法を提供する。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the fine particles and the fine particles are separated by a centrifuge between the primary classification step and the secondary classification step. Provided is a method for classifying contaminated soil including a centrifugation step.

この構成によれば、一次分級工程を経た泥水に含まれる微細粒子のうち、遠心分離工程において、泥水内を細粒子に付着することなく独立して浮遊する微細粒子を遠心分離器で分級し回収することで、細粒子分級タンク内の微細粒子の濃度が低下して、二次分級工程における分級を効率的に行うことができる。   According to this configuration, among the fine particles contained in the muddy water that has undergone the primary classification process, in the centrifugal separation process, fine particles that float independently without being attached to the fine particles in the muddy water are classified and collected by the centrifuge. By doing so, the concentration of fine particles in the fine particle classification tank is reduced, and classification in the secondary classification step can be performed efficiently.

請求項4記載の発明は、請求項1乃至請求項3の1項記載の発明において、前記細粒子に許容される放射性物質の残留濃度に応じて、前記第2の分級粒径が任意に設定可能な汚染土壌の分級工法を提供する。   According to a fourth aspect of the present invention, in the first aspect of the first to third aspects, the second classified particle size is arbitrarily set according to the residual concentration of the radioactive substance allowed in the fine particles. Provide a possible method for classifying contaminated soil.

この構成によれば、再利用される土壌中に許容される放射性物質の残留濃度を付着する細粒子の粒径を第2の分級粒径に設定することで、細粒子を細粒子分級タンク内で沈降分離させるまでに要する時間を短縮できる。   According to this configuration, the fine particle is set in the fine particle classification tank by setting the particle size of the fine particle adhering to the residual concentration of the radioactive material allowed in the reused soil to the second classified particle size. The time required for sedimentation can be reduced.

請求項5記載の発明は、請求項1乃至請求項4の1項記載の発明において、前記泥水が、前記粗粒子分級タンク内で10wt%以下の濃度に加水調整されている汚染土壌の分級工法を提供する。   According to a fifth aspect of the present invention, there is provided a method for classifying contaminated soil in which the muddy water is hydrated to a concentration of 10 wt% or less in the coarse particle classification tank according to the first aspect of the present invention. I will provide a.

この構成によれば、泥水の濃度を10wt%以下に設定することで、第1の分級粒径前後における粗粒子及び細粒子間の沈降速度の差を大きくして、粗粒子を粗粒子分級タンク内で沈降分離されるまでに要する時間を短縮できる。   According to this configuration, by setting the concentration of the mud water to 10 wt% or less, the difference in the sedimentation speed between the coarse particles and the fine particles before and after the first classified particle size is increased, and the coarse particles are converted into the coarse particle classification tank. It is possible to shorten the time required for sedimentation and separation in the inside.

請求項1記載の発明は、放射性物質を含み長期に渡って隔離保管する必要がある汚染土壌のうち、主に有害物質が付着する微細粒子を確実かつ効率的に回収することができるため、従来のような粗粒子が多く含まれる砂質の土壌の分級だけではなく、細粒子が多く含まれる粘土質の土壌であっても、放射性物質が付着する微細粒子を分級し除去して汚染土壌を減容化して、保管スペースを縮小することができ、かつ、除染作業の効率化を実現して処分費を大幅に低減できる。また、泥水を撹拌して相互に付着している粒子間を引き剥がすため、微細粒子が沈降速度の速い粗粒子や細粒子に混入したまま沈降することを防止し、粗粒子や細粒子に放射性物質を含む微細粒子が紛れ込むことを回避できる。   Since the invention described in claim 1 can reliably and efficiently recover fine particles mainly containing harmful substances from contaminated soil that contains radioactive substances and needs to be kept isolated for a long period of time, In addition to the classification of sandy soil that contains a lot of coarse particles, such as clay soil that contains a lot of fine particles, fine particles adhering to radioactive substances are classified and removed to remove contaminated soil. The volume can be reduced, the storage space can be reduced, and the efficiency of the decontamination work can be increased to greatly reduce the disposal cost. In addition, since the mud is agitated and the particles adhering to each other are separated, the fine particles are prevented from settling into the coarse particles and fine particles that have a high settling speed, and the coarse particles and fine particles are radioactive. It can avoid that the fine particle containing a substance mixes in.

請求項2記載の発明は、請求項1記載の発明の効果に加えてさらに、粗粒子分級タンク内に貯留される泥水中の粗粒子、細粒子及び微細粒子が互いに付着している場合であっても、細粒子や微細粒子が粗粒子分級タンク内に堆積する粗粒子に混入してしまうことを防止するため、粗粒子分級タンクから回収されて再利用される粗粒子内に放射性物質が不用意に混入されて外部に拡散することを回避できる。   The invention described in claim 2 is a case where the coarse particles, fine particles, and fine particles in the muddy water stored in the coarse particle classification tank are adhered to each other in addition to the effect of the invention described in claim 1. However, in order to prevent fine particles and fine particles from being mixed into the coarse particles accumulated in the coarse particle classification tank, there is no radioactive substance in the coarse particles recovered from the coarse particle classification tank and reused. It is possible to avoid being mixed and spread outside.

請求項3記載の発明は、請求項1又は請求項2記載の発明の効果に加えてさらに、遠心分離工程で泥水内を独立して浮遊する微細粒子を分級回収して、二次分級工程の分級を効率的に行うため、一次分級工程を経た泥水から微細粒子を短時間で分級することができる。   In addition to the effects of the invention described in claim 1 or 2, the invention described in claim 3 further classifies and collects fine particles floating independently in the muddy water in the centrifugal separation process, and performs the secondary classification process. In order to perform classification efficiently, fine particles can be classified in a short time from the muddy water that has undergone the primary classification process.

請求項4記載の発明は、請求項1乃至請求項3の1項記載の発明の効果に加えてさらに、第2の分級粒径を細粒子に許容される放射性物質の濃度に応じて設定可能なため、分級流速が不必要に遅くなることを回避して、汚染土壌の土質や求める除染率に応じて二次分級工程に要する時間を短縮することができる。   In the invention according to claim 4, in addition to the effect of the invention according to claim 1 to claim 3, the second classified particle size can be set according to the concentration of the radioactive substance allowed in the fine particles. Therefore, the time required for the secondary classification process can be shortened according to the soil quality of the contaminated soil and the desired decontamination rate by avoiding an unnecessarily slow classification flow rate.

請求項5記載の発明は、請求項1乃至請求項4の1項記載の発明の効果に加えてさらに、粗粒子分級タンク内の泥水の濃度を粗粒子の沈降速度が細粒子の沈降速度に対して十分に大きくなるように設定することで、粗粒子と細粒子とを確実に分級すると共に粗粒子がタンク底部に沈降堆積するまでに要する時間を短縮することができる。   In addition to the effects of the invention described in claim 1 to claim 4, the invention described in claim 5 further reduces the concentration of mud water in the coarse particle classification tank to the settling rate of fine particles. On the other hand, by setting it to be sufficiently large, it is possible to reliably classify the coarse particles and fine particles and reduce the time required for the coarse particles to settle and deposit on the bottom of the tank.

図は本発明の実施例に係る汚染土壌の分級工法を示すものである。
粒子の粒径と質量通貨率及び表面積除去率の関係を示す図。 粒子の粒径と沈降速度との関係を示す図。 分級システムの概要を示す図。
The figure shows a method for classifying contaminated soil according to an embodiment of the present invention.
The figure which shows the relationship between the particle size of a particle, a mass currency rate, and a surface area removal rate. The figure which shows the relationship between the particle size of particle | grains, and a sedimentation speed. The figure which shows the outline | summary of a classification system.

本発明は、放射性物質を含み長期に渡って隔離保管する必要がある汚染土壌のうち、有害物質が付着しがちな微細粒子を効率的に回収し、汚染土壌を減容化して保管スペースを縮小し、さらに、微細粒子が沈降速度の速い粗粒子や細粒子に混入して回収されることを防止するという目的を達成するために、汚染土壌を加水して成る泥水を粗粒子分級タンク内で撹拌する撹拌工程と、粗粒子分級タンク内で第1の分級粒径より大径の粗粒子を沈降分離すると共に、第1の分級粒径以下の細粒子及び微細粒子を上昇水流でオーバーフローさせる一次分級工程と、汚染土壌に含まれる異物を除去する異物除去工程と、一次分級工程を経た泥水を細粒子分級タンク内で第2の分級粒径より大径の細粒子を沈降分離するとともに第2の分級粒径以下の微細粒子を回収する二次分級工程とで実現した。   The present invention efficiently collects fine particles, which contain radioactive substances and need to be isolated and stored for a long period of time, and to which harmful substances tend to adhere, and reduces the storage space by reducing the volume of contaminated soil. In addition, in order to prevent the fine particles from being collected and collected in the coarse particles and fine particles having a high sedimentation rate, mud water formed by hydrating contaminated soil is contained in the coarse particle classification tank. Stirring step for stirring, and primary particles in which coarse particles larger than the first classified particle size are settled and separated in the coarse particle classification tank, and fine particles and fine particles smaller than the first classified particle size are overflowed by the rising water flow. In the fine particle classification tank, the fine particles larger than the second classified particle size are settled and separated in the fine particle classification tank from the classification step, the foreign matter removal step for removing foreign matters contained in the contaminated soil, and the primary classification step. Fine particle size less than or equal to It was realized by the secondary classification step to recover the particles.

以下、本発明の実施例に係る汚染土壌の分級工法を図1乃至図3を参照して説明する。   Hereinafter, a method for classifying contaminated soil according to an embodiment of the present invention will be described with reference to FIGS.

まず、汚染土壌の分級メカニズムについて説明する。本実施例における汚染土壌とは、放射性物質を吸着した土粒子を含む土壌である。放射性物質は、粒径の大きな粗粒子には殆ど吸着することはなく、細粒子、特に、微細粒子に強く吸着する。これは、細かい粒子は、1g当たりの表面積(比表面積)が大きく、その分吸着できる汚染物質の量が多いためである。このため、一般的に、微細粒子(いわゆる、粘土粒子)が、粗粒子(いわゆる、礫粒子、砂粒子)よりも多量の放射性物質を含んでおり、汚染土壌から粘土粒子を分級回収することが、汚染土壌の減容化に有効である。   First, the classification mechanism of contaminated soil will be described. The contaminated soil in the present embodiment is soil containing soil particles that have adsorbed radioactive substances. The radioactive substance hardly adsorbs to coarse particles having a large particle size, and strongly adsorbs to fine particles, particularly fine particles. This is because fine particles have a large surface area (specific surface area) per gram, and the amount of contaminants that can be adsorbed accordingly is large. For this reason, generally, fine particles (so-called clay particles) contain a larger amount of radioactive material than coarse particles (so-called gravel particles, sand particles), and clay particles can be classified and recovered from contaminated soil. It is effective in reducing the volume of contaminated soil.

比表面積とは、粒子の大きさと形状で決まり、土粒子を構成する砂粒子、シルト粒子、粘土粒子の代表的な粒径を、砂粒子:シルト粒子:粘土粒子=1:0.01:0.001(mm)とすると、粒子が球形状の場合には、その比表面積は砂粒子の場合を1とすれば、砂:シルト:粘土の比表面積の比は、1:100:1000となる。これより、例えば、土粒子の分類比率が、砂粒子が2%、シルト粒子が42%、粘土粒子が56%の粘土質の土壌においては、図1に示すように、各々の表面積が、砂粒子が0.01%、シルト粒子が1.99%、粘土粒子が98.0%となる。そのため、このような土壌では、粘土粒子を除去するだけで汚染土壌に含まれる放射性物質のうちこの粘土粒子に吸着した放射性物質分、すなわち、98.0%の表面積に付着した放射性物質を除去することができる。さらに、土壌質量においては、図1に示すように、粘土粒子の除去量が全質量の68%なので、32%の減容化になる。   The specific surface area is determined by the size and shape of the particles, and representative particle sizes of sand particles, silt particles, and clay particles constituting the soil particles are: sand particles: silt particles: clay particles = 1: 0.01: 0. .001 (mm), when the particles are spherical, the specific surface area of sand particles is 1, and the specific surface area ratio of sand: silt: clay is 1: 100: 1000. . Thus, for example, in a clay soil having a classification ratio of soil particles of 2% sand particles, 42% silt particles, and 56% clay particles, as shown in FIG. The particles are 0.01%, the silt particles are 1.99%, and the clay particles are 98.0%. Therefore, in such a soil, by removing the clay particles, the radioactive material adsorbed on the clay particles among the radioactive materials contained in the contaminated soil, that is, the radioactive materials adhering to the surface area of 98.0% is removed. be able to. Furthermore, in the soil mass, as shown in FIG. 1, since the removal amount of clay particles is 68% of the total mass, the volume is reduced by 32%.

そこで、粘土質の汚染土壌から粘土粒子を分級回収するために、土粒子が流体中を沈降する際に粒径に応じた沈降速度の差を利用して汚染土壌を2段階で分級し粘土粒子を選択的に回収する。粒子が流体中を沈降する速度は、粒子の比重、流体の温度に依存する粘性係数、粒子の大きさと形等に関係する。   Therefore, in order to classify and recover clay particles from clay contaminated soil, clay particles are classified in two stages using the difference in sedimentation speed according to the particle size when the soil particles settle in the fluid. Is selectively recovered. The speed at which the particles settle in the fluid is related to the specific gravity of the particles, the viscosity coefficient depending on the temperature of the fluid, the size and shape of the particles, and the like.

沈降速度vを表す式は、理想的な条件下(例えば、粒子は球と仮定)で、ストークスの法則として知られており、1つの土粒子が流体中を沈降するときに受ける抵抗力Fは、数式1に示すとおりである。   The equation representing the settling velocity v is known as Stokes' law under ideal conditions (for example, assuming that the particle is a sphere), and the resistance force F received when one soil particle sinks in the fluid is , As shown in Equation 1.

また、その土粒子に働く浮力Fbは、数式2に示すとおりである。   The buoyancy Fb acting on the soil particles is as shown in Formula 2.

そして、その土粒子に動く重力Fgは、数3に示すとおりである。 And the gravity Fg which moves to the soil particle is as shown in Formula 3.

したがって、土粒子が流体中を沈降する終端速度Vsにおいては、F+Fb=Fbが成り立つため、終端速度Vsは、数式4に示すとおりである。   Therefore, since F + Fb = Fb holds at the terminal velocity Vs at which the soil particles settle in the fluid, the terminal velocity Vs is as shown in Equation 4.

そして、土粒子が粗粒子分級タンク内を終端速度Vsより大きい流速Vupの上昇水流の場にあれば、沈降しない又は上向きに動く土粒子が存在する。   If the soil particles are in a rising water flow field having a flow velocity Vup larger than the terminal velocity Vs in the coarse particle classification tank, there are soil particles that do not settle or move upward.

次に、汚染土壌を粗粒子分級タンク内で加水する際の泥水濃度について説明する。例えば、図2に示すように、泥水濃度が15wt%の場合には、第1の分級粒径として粒径75μmを設定すると、粒径75μmの粒子とこの粒径より僅かに小さい粒径60μmの粒子との間で、10分間で沈降する深度に大きな差はない。一方、泥水濃度が10wt%以下の場合、両者の沈降深度に30cm以上の差が生じる。したがって、泥水濃度を10wt%以下に設定することで、比較的短い時間で所定粒径以上の粒子を沈降分離することができる。   Next, the concentration of muddy water when the contaminated soil is hydrated in the coarse particle classification tank will be described. For example, as shown in FIG. 2, when the muddy water concentration is 15 wt%, if the particle size of 75 μm is set as the first classified particle size, the particle size of 75 μm and the particle size of 60 μm slightly smaller than this particle size are set. There is no significant difference in the depth of settling between the particles in 10 minutes. On the other hand, when the muddy water concentration is 10 wt% or less, a difference of 30 cm or more occurs in the sedimentation depth between the two. Therefore, by setting the mud concentration to 10 wt% or less, particles having a predetermined particle diameter or more can be settled and separated in a relatively short time.

次に、粗粒子分級タンク内を流れて、細粒子及び微細粒子をオーバーフローさせる上昇水流について説明する。表1に示すように、例えば、泥水濃度8wt%に調整した泥水内の粒径60μm以下の粒子を浮遊させて粒径75μm以下の粒子を沈降分離させる場合には、0,13828cm/s〜0.21607cm/sの間の流速、例えば、0.20cm/sの流速を設定すれば良い。流速を0.20cm/sに設定した場合には、粒径60μmの粒子が20分間で70cm以上も上昇するため、粗粒子分級タンクの高さを70cmに設定しておけば、粒径60μm以下の粒子がタンク上部よりオーバーフローして粗粒子と細粒子とを分級することができる。   Next, the rising water flow that flows in the coarse particle classification tank and overflows the fine particles and the fine particles will be described. As shown in Table 1, for example, when particles having a particle diameter of 60 μm or less in a muddy water adjusted to a muddy water concentration of 8 wt% are suspended and particles having a particle diameter of 75 μm or less are settled and separated, 0,13828 cm / s to 0 A flow rate between 21607 cm / s, for example, a flow rate of 0.20 cm / s may be set. When the flow rate is set to 0.20 cm / s, particles with a particle size of 60 μm rise by 70 cm or more in 20 minutes. Therefore, if the height of the coarse particle classification tank is set to 70 cm, the particle size is 60 μm or less. The particles overflow from the upper part of the tank and can classify coarse particles and fine particles.


次に、汚染土壌を分級するシステムを説明する。なお、本方法は、汚染土壌に含まれる粘土粒子を水の中で浮遊させて、粘土粒子よりも粒径の大きい砂粒子やシルト粒子を2段階で沈降分離させるものであるなら、どのようなものでも適用できる。   Next, a system for classifying contaminated soil will be described. In this method, any clay particles contained in the contaminated soil are suspended in water, and sand particles and silt particles having a larger particle size than the clay particles are settled and separated in two stages. Even things can be applied.

この分級システムは、図3に示すように、汚染土壌Sを搬送するベルトコンベヤ1と、汚染土壌Sを投入して粗粒子としての礫粒子及び砂粒子とこれらより小径の細粒子としてのシルト粒子及び微細粒子としての粘土粒子とに分級する粗粒子分級タンク2と、粗粒子分級タンク2を経た泥水に浮遊する異物を回収する浮遊物回収タンク3と、シルト粒子と粘土粒子とを分級するサイクロン式の遠心分離器4と、遠心分離されたシルト粒子に混入した粘土粒子をシルト粒子から分級する細粒子分級タンクとしての細粒子沈殿槽5と、粘土粒子を含む泥水から粘土粒子を沈降分離する微細粒子沈殿槽6と、粘土粒子を固液分離する水処理システム7と、粘土粒子を脱水して回収するフィルタープレス8とを備えている。   As shown in FIG. 3, the classification system includes a belt conveyor 1 for conveying the contaminated soil S, gravel particles and sand particles as coarse particles by introducing the contaminated soil S, and silt particles as fine particles smaller than these. And a coarse particle classification tank 2 for classifying into clay particles as fine particles, a suspended matter collection tank 3 for collecting foreign matter floating in the muddy water that has passed through the coarse particle classification tank 2, and a cyclone for classifying silt particles and clay particles. Type centrifugal separator 4, fine particle settling tank 5 as a fine particle classification tank for classifying clay particles mixed in centrifugally separated silt particles from silt particles, and sedimentation separation of clay particles from muddy water containing clay particles A fine particle settling tank 6, a water treatment system 7 for solid-liquid separation of clay particles, and a filter press 8 for dehydrating and collecting clay particles are provided.

ベルトコンベヤ1は、汚染土壌Sを堆積場から粗粒子分級タンク2内に投下するものである。ベルトコンベヤ1の上流には、汚染土壌Sを通過させる振動篩9が設けられている。この振動篩9は、比較的大きな、例えば、粒径30mm以上の異物を除去する。なお、この振動篩9で除去する異物の粒径は、汚染土壌Sの種類に応じて適宜設定して構わない。   The belt conveyor 1 drops the contaminated soil S from the sedimentation field into the coarse particle classification tank 2. An oscillating sieve 9 that allows the contaminated soil S to pass is provided upstream of the belt conveyor 1. The vibration sieve 9 removes relatively large foreign matters having a particle size of, for example, 30 mm or more. The particle size of the foreign matter removed by the vibrating sieve 9 may be set as appropriate according to the type of the contaminated soil S.

粗粒子分級タンク2は、キャビテーションジェットポンプ10及び流量可変ジェットポンプ11を介して清水を貯水する貯水槽12に接続されている。貯水槽12の清水は、粗粒子分級タンク2に投入された汚染土壌Sを10wt%以下の濃度に調整するために供給される。これにより、粗粒子分級タンク2内の泥水の濃度を砂粒子の沈降速度がシルト粒子の沈降速度に対して十分に大きくなるように設定されて、シルト粒子及び粘土粒子を確実にオーバーフローさせて砂粒子及び礫粒子から分級すると共に、砂粒子及び礫粒子がタンク底部に沈降堆積するまでに要する時間を短縮することができる。なお、粗粒子分級タンク2による分級をバッチ処理で行う場合には、シルト粒子や粘土粒子がオーバーフローした分だけ粗粒子分級タンク2内の泥水濃度が低下してポンプ流量の制御が必要になるところ、本実施例では、汚染土壌Sを25ton/hrでベルトコンベヤ1から粗粒子分級タンク2に汚染土壌Sを連続投下している。これにより、粗粒子分級タンク2内の泥水濃度を維持してポンプ流量を制御することなく簡便に連続分級することができる。   The coarse particle classification tank 2 is connected to a water storage tank 12 for storing fresh water via a cavitation jet pump 10 and a variable flow rate jet pump 11. The fresh water in the water storage tank 12 is supplied to adjust the contaminated soil S introduced into the coarse particle classification tank 2 to a concentration of 10 wt% or less. As a result, the concentration of the muddy water in the coarse particle classification tank 2 is set so that the settling speed of the sand particles is sufficiently larger than the settling speed of the silt particles, and the sand particles and clay particles are surely overflowed to sand. While classifying from the particles and gravel particles, the time required for the sand particles and gravel particles to settle and deposit at the bottom of the tank can be shortened. In addition, when the classification by the coarse particle classification tank 2 is performed by batch processing, the muddy water concentration in the coarse particle classification tank 2 is reduced by the amount of overflow of the silt particles or clay particles, and the pump flow rate needs to be controlled. In this embodiment, the contaminated soil S is continuously dropped from the belt conveyor 1 to the coarse particle classification tank 2 at 25 ton / hr. Thereby, continuous classification can be simply performed without maintaining the mud concentration in the coarse particle classification tank 2 and controlling the pump flow rate.

キャビテーションジェットポンプ10は、図示しないキャビテーションノズルで生じるキャビテーションを含むキャビテーションジェット水を吐出する。このキャビテーション

ジョット水を泥水に吹き付けることにより、泥水内で粒子同士が付着しているような場合であっても、粒子同士を引き剥がして、粘土粒子が礫粒子やシルト粒子に付着したまま沈降堆積することを防止できる。
The cavitation jet pump 10 discharges cavitation jet water including cavitation generated by a cavitation nozzle (not shown). This cavitation

By spraying Giotto water on the muddy water, even if the particles adhere to each other in the muddy water, the particles are peeled apart and the clay particles are settled and deposited while adhering to the gravel particles and silt particles. Can be prevented.

流量可変ジェットポンプ11は、図示しないインバーターにより流量を変更可能な流量可変ジェット水を吐出する。これにより、粗粒子分級タンク2内を流れる上昇水流の流速を一定に維持することができると共に、連続して汚染土壌Sが投下される粗粒子分級タンク2内の泥水濃度を一定に保つことができる。また、流量可変ジョットポンプ11から粗粒子分級タンク2内に供給される上昇水流は、第1の分級粒径である75μmに対応した流速に設定されており、75μmより小径のシルト粒子及び粘土粒子をタンク上部からオーバーフローさせ続けると共に、75μm以上に大径の礫粒子及び砂粒子をタンク底部に沈降分離する。これにより、礫粒子及び砂粒子をシルト粒子及び粘土粒子から分級することができる。なお、上昇水流は、それぞれ自由に変更可能な汚染土壌の泥水濃度と第1の分級粒径に応じて自由に設定される。例えば、泥水濃度が8wt%で第1の分級粒径を75μmに設定した場合には、上昇流速は、0.20cm/sと設定する。   The variable flow rate jet pump 11 discharges variable flow rate jet water whose flow rate can be changed by an inverter (not shown). As a result, the flow rate of the ascending water flowing in the coarse particle classification tank 2 can be kept constant, and the mud concentration in the coarse particle classification tank 2 where the contaminated soil S is continuously dropped can be kept constant. it can. The ascending water flow supplied from the variable flow rate Giotto pump 11 into the coarse particle classification tank 2 is set to a flow velocity corresponding to the first classification particle size of 75 μm, and silt particles and clay particles having a diameter smaller than 75 μm. Is continued to overflow from the upper part of the tank, and gravel particles and sand particles having a diameter of 75 μm or more are settled and separated at the bottom of the tank. Thereby, gravel particles and sand particles can be classified from silt particles and clay particles. The rising water flow is freely set according to the muddy water concentration of the contaminated soil and the first classified particle size, which can be freely changed. For example, when the muddy water concentration is 8 wt% and the first classified particle size is set to 75 μm, the ascending flow rate is set to 0.20 cm / s.

粗粒子分級タンク2には、タンク底部に沈降堆積した砂粒子や礫粒子を搬出するスクリューコンベヤ13が設けられている。このスクリューコンベヤ13で搬出された砂粒子や礫粒子は、ベルトコンベヤ14で回収袋15まで運搬されて袋詰め脱水される。この砂粒子や礫粒子は、粒径が大きく放射性物質が吸着していないため、再利用することができる。   The coarse particle classification tank 2 is provided with a screw conveyor 13 for carrying out sand particles and gravel particles settled and deposited on the bottom of the tank. The sand particles and gravel particles carried out by the screw conveyor 13 are transported to the collection bag 15 by the belt conveyor 14 and dehydrated in a bag. These sand particles and gravel particles can be reused because they have a large particle size and do not adsorb radioactive substances.

ベルトコンベア14には、粗粒子分級タンク2のタンク底部に堆積した砂粒子や礫粒子を搬送する搬送路の上方から搬送路に向かって照射される超音波を発信する超音波発信装置16が並設されている。これにより、砂粒子及び礫粒子にシルト粒子及び粘土粒子が混入した場合であっても、超音波発信装置16から発せられる超音波振動によって再度付着したシルト粒子及び粘土粒子を砂粒子及び礫粒子から引き離して洗い流す。これらシルト粒子及び粘土粒子は、浮遊物回収タンク3に送られる。   In the belt conveyor 14, an ultrasonic transmission device 16 that transmits ultrasonic waves irradiated from the upper side of the conveyance path for conveying the sand particles and gravel particles deposited on the bottom of the coarse particle classification tank 2 toward the conveyance path is arranged. It is installed. Thus, even if the silt particles and the clay particles are mixed in the sand particles and gravel particles, the silt particles and the clay particles adhered again by the ultrasonic vibration generated from the ultrasonic transmission device 16 are removed from the sand particles and gravel particles. Pull away and wash away. These silt particles and clay particles are sent to the suspended matter collection tank 3.

浮遊物回収タンク3は、粗粒子分級タンク2のタンク上部からオーバーフローしたシルト粒子及び粘土粒子を含む泥水と、超音波発信装置16で砂粒子や礫粒子から剥離されたシルト粒子及び粘土粒子を含む泥水とを通過させる浮遊物回収カゴ17を有している。本実施例では、浮遊物回収カゴ17のメッシュを0.5mmに設定しており、泥水に含まれる落葉や枝等の異物を除去する。   The suspended matter recovery tank 3 includes muddy water containing silt particles and clay particles overflowed from the upper part of the coarse particle classification tank 2, and silt particles and clay particles separated from sand particles and gravel particles by the ultrasonic transmission device 16. It has a suspended matter collection basket 17 through which muddy water passes. In this embodiment, the mesh of the suspended matter collection basket 17 is set to 0.5 mm, and foreign matters such as fallen leaves and branches contained in the muddy water are removed.

遠心分離器4は、圧送ポンプ18を介して送られる浮遊物回収タンク3内の泥水を、第2の分級粒径である粒径5μm以下の粘土粒子を含むトップ液L1と、粒径5μmより大径のシルト粒子を含むボトム液L2とに遠心分離する。なお、本実施例では、後述する細粒子沈殿槽5におけるボトム液L2の分級を早期に達成するために遠心分離器4を介在させているが、汚染土壌Sの土質、すなわち、細粒子分の割合によっては遠心分離器4を介在させずに浮遊物回収タンク3に細粒子沈殿槽5を直結させても構わない。   Centrifugal separator 4 uses a top liquid L1 containing clay particles having a particle size of 5 μm or less, which is a second classified particle size, and muddy water in suspended matter collection tank 3 sent via a pressure pump 18 and a particle size of 5 μm. Centrifuge into bottom liquid L2 containing large diameter silt particles. In this embodiment, the centrifuge 4 is interposed in order to achieve early classification of the bottom liquid L2 in the fine particle sedimentation tank 5 described later, but the soil quality of the contaminated soil S, that is, the fine particle content. Depending on the ratio, the fine particle sedimentation tank 5 may be directly connected to the suspended matter collection tank 3 without the centrifuge 4 interposed.

細粒子沈殿槽5は、ボトム液L2内のシルト粒子に混入した僅かな粘土粒子を回収するものである。具体的には、まず、遠心分離器4から細粒子沈殿槽5にボトム液L2を適量流入させた後に、図示しない希釈水槽の希釈水を加圧して成るジェット水を細粒子沈殿槽5の底部から注入してボトム液L2を撹拌し、シルト粒子と粘土粒子とを水面に浮上させる。そして、水面を浮遊するシルト粒子と粘土粒子とが、第2の分級粒径である5μmより大径のシルト粒子と粒径5μm以下の粘土粒子との粒径の差による沈降速度の差を利用して、所定の静置時間経過後に、槽底部に堆積するシルト粒子と、粘土粒子を含む上澄液L3とに分離する。細粒子沈殿槽5における分級は、シルト粒子と粘土粒子との沈降分離をバッチ処理で行うため、粒子の沈降が進むと上澄み液L3の泥水濃度が低下する。従って、例えば、遠心分離器5から排出された40wt%のボトム液L2をジェット水で6wt%に希釈する場合には、粒子は、沈降開始当初は、表2に示すような6wt%の沈降深度まで沈降するが、時間が経つにつれて、表3に示すような清水中の沈降深度まで沈降し得る。そのため、静置時間を10時間とすると、粒径5μm以下の粘土粒子は、水面から40cm〜80cmに浮遊しており、この深度より上方の上澄み液L3をポンプで汲み取って微細粒子沈殿槽6に送ることで細粒子沈殿槽5の槽上部に浮遊する粘土粒子を分級回収することができる。槽底部に堆積したシルト粒子は、槽外部の回収袋19に袋詰めして脱水する。なお、シルト粒子の脱水処理は、水処理して固液分離した後に、フィルタープレスを介して脱水するものであっても構わない。また、脱水された細粒子に付着する放射性物質濃度は、許容される値以下であり、再利用することも可能である。   The fine particle settling tank 5 collects a few clay particles mixed in the silt particles in the bottom liquid L2. Specifically, first, an appropriate amount of the bottom liquid L2 is introduced from the centrifuge 4 into the fine particle precipitation tank 5, and then jet water obtained by pressurizing dilution water in a dilution water tank (not shown) is added to the bottom of the fine particle precipitation tank 5. The bottom liquid L2 is stirred and the silt particles and the clay particles are floated on the water surface. Then, the silt particles floating on the water surface and the clay particles use the difference in the sedimentation speed due to the difference in particle size between the silt particles larger than the second classified particle size of 5 μm and the clay particles having a particle size of 5 μm or less. Then, after elapse of a predetermined standing time, it is separated into silt particles deposited on the tank bottom and supernatant L3 containing clay particles. In the classification in the fine particle sedimentation tank 5, since the sedimentation separation of the silt particles and the clay particles is carried out by batch processing, the concentration of the muddy water in the supernatant liquid L3 decreases as the particles settle. Therefore, for example, when the 40 wt% bottom liquid L2 discharged from the centrifuge 5 is diluted to 6 wt% with jet water, the particles have a 6 wt% settling depth as shown in Table 2 at the beginning of settling. However, as time passes, it can sink to the settling depth in fresh water as shown in Table 3. Therefore, when the standing time is 10 hours, the clay particles having a particle size of 5 μm or less are suspended from 40 cm to 80 cm from the water surface, and the supernatant L3 above this depth is pumped to the fine particle sedimentation tank 6. The clay particles floating in the upper part of the fine particle settling tank 5 can be classified and recovered by sending. The silt particles deposited on the bottom of the tank are dehydrated by being packed in a collection bag 19 outside the tank. The silt particle may be dehydrated through a filter press after being subjected to water treatment and solid-liquid separation. Further, the concentration of the radioactive substance adhering to the dehydrated fine particles is less than the allowable value, and can be reused.

細粒子沈殿槽5では、シルト粒子を沈降分離するまでの時間を調整することで第2の分級粒径、すなわち、堆積させるシルト粒子の粒径の下限を調整可能であり、汚染土壌Sの土質やシルト粒子に許容される放射性物質の残留濃度に応じて変更することができる。これにより、シルト粒子の沈降速度が不必要に遅くなることを回避して、汚染土壌Sの土質や求める除染率に応じて細粒子沈殿槽5での分級に要する時間を短縮することができる。   In the fine particle settling tank 5, the second classification particle size, that is, the lower limit of the particle size of the silt particles to be deposited can be adjusted by adjusting the time until the silt particles are settled and separated. And can be changed according to the residual concentration of radioactive material allowed in the silt particles. Thereby, it can avoid that the sedimentation speed | rate of silt particle | grains becomes slow unnecessarily, and the time required for the classification in the fine particle sedimentation tank 5 can be shortened according to the soil quality of the contaminated soil S and the required decontamination rate. .

微細粒子沈殿槽6は、遠心分離器4から送られてくるトップ液L1と、細粒子沈殿槽5から送られてくる上澄液L3とに含まれる粘土粒子を粒径に応じて沈降分離して更に分級するものである。微細粒子沈殿槽6内のトップ液L1と上澄液L3とは、所定時間を経過した後に、微細粒子沈殿槽6の槽底部に堆積する比較的粒径の大きな粘土粒子を含む堆積物Mと、この堆積物Mの上方に堆積する比較的粒径の小さな粘土粒子を含む残留泥水L4と、粘土粒子を含まない上澄液L5とに沈降分離される。この上澄液L5は、汚染物質を含んでいないため、ポンプ20で貯水槽12に送られて汚染土壌Sの加水に再利用される。   The fine particle sedimentation tank 6 settles and separates the clay particles contained in the top liquid L1 sent from the centrifuge 4 and the supernatant liquid L3 sent from the fine particle sedimentation tank 5 according to the particle size. Is further classified. The top liquid L1 and the supernatant liquid L3 in the fine particle sedimentation tank 6 are a deposit M containing clay particles having a relatively large particle size deposited on the tank bottom of the fine particle sedimentation tank 6 after a predetermined time has elapsed. The residual mud water L4 containing clay particles having a relatively small particle size deposited above the deposit M and the supernatant L5 containing no clay particles are separated by sedimentation. Since this supernatant L5 does not contain contaminants, it is sent to the water storage tank 12 by the pump 20 and reused for hydration of the contaminated soil S.

水処理システム7は、微細粒子沈殿槽6からポンプ21を介して水処理前泥水濃度調整槽22に送られ希釈水槽23内の希釈水で加水調整された残留泥水L4を固液分離する。なお、水処理システム7は、液中の放射性物質を吸着する沈降促進剤を備えていても構わない。これにより、液中の放射性物質を除去して希釈水として残留泥水L4の加水調整に再利用可能となる。   The water treatment system 7 solid-liquid separates the residual mud water L4 that is sent from the fine particle sedimentation tank 6 to the muddy water concentration adjusting tank 22 before water treatment via the pump 21 and adjusted with the diluted water in the diluted water tank 23. The water treatment system 7 may include a settling accelerator that adsorbs radioactive substances in the liquid. Thereby, the radioactive substance in a liquid is removed and it becomes reusable for hydration adjustment of the residual mud water L4 as dilution water.

フィルタープレス8は、水処理システム7で残留泥水L4から固液分離された粘土粒子と微細粒子沈殿槽6の槽底部から圧送ポンプ24で搬出される堆積物Mとに、希釈水槽23の希釈水を加水する脱水前泥水濃度調整槽25から圧送ポンプ26を介して送られる泥水を脱水処理して粘土粒子を回収する。これにより、汚染土壌Sのうち有害物質を強固に吸着させる粘土粒子を分離回収して、汚染土壌Sを減容化できる。   The filter press 8 is used for diluting water in the diluting water tank 23 to the clay particles solid-liquid separated from the residual mud water L4 by the water treatment system 7 and the deposit M carried out from the tank bottom of the fine particle settling tank 6 by the pressure pump 24. The muddy water sent from the pre-dehydrating muddy water concentration adjusting tank 25 for adding water through the pressure pump 26 is dehydrated to recover the clay particles. Thereby, the clay particles which adsorb | suck a harmful substance firmly among the contaminated soil S can be isolate | separated and collect | recovered, and the contaminated soil S can be reduced in volume.

上述したように、放射性物質を含み長期に渡って隔離保管する必要がある汚染土壌Sのうち、主に有害物質が付着する粘土粒子を効率的に回収することができるため、放射性物質の除染処置が必要な土壌の容量を減容化して、保管スペースを縮小することができ、かつ、除染作業の効率化を実現して処分費を大幅に低減することができる。また、粘土粒子を砂粒子、礫粒子及びシルト粒子から引き剥がすため、粘土粒子が砂粒子等に混入して沈降することを防止して、砂粒子等に放射性物質を含む粘土粒子が紛れ込むことを回避することができる。したがって、従来のような砂質の土壌の分級だけではなく、粘土質の土壌であっても、放射性物質が付着する粘土粒子を分級し除去して汚染土壌の減容化を達成することができる。   As mentioned above, since contaminated soil S that contains radioactive substances and needs to be kept in isolation for a long period of time, clay particles to which mainly harmful substances adhere can be efficiently recovered, so decontamination of radioactive substances The volume of soil that requires treatment can be reduced, the storage space can be reduced, and the efficiency of the decontamination work can be increased to significantly reduce the disposal cost. Also, since the clay particles are peeled off from the sand particles, gravel particles, and silt particles, the clay particles are prevented from being mixed into the sand particles and settling, and the clay particles containing radioactive substances are mixed into the sand particles. It can be avoided. Therefore, not only conventional sandy soil classification, but also clay soil, it is possible to classify and remove clay particles to which radioactive substances adhere to achieve volume reduction of contaminated soil. .

また、粗粒子分級タンク2内で礫粒子、砂粒子、シルト粒子及び粘土粒子が互いに付着している場合であっても、シルト粒子や粘土粒子が、粗粒子分級タンク2内に堆積する砂粒子や礫粒子に混入してしまうことを防止するため、粗粒子分級タンク2から回収されて再利用される砂粒子、礫粒子に放射性物質が不用意に混入されて外部に拡散することを回避できる。   Further, even if gravel particles, sand particles, silt particles, and clay particles are adhered to each other in the coarse particle classification tank 2, the sand particles that are accumulated in the coarse particle classification tank 2 are collected. In order to prevent contamination with gravel particles, radioactive materials can be avoided from being inadvertently mixed with sand particles and gravel particles collected from the coarse particle classification tank 2 and reused. .

さらに、回収するシルト粒子に許容される放射性物質の残留濃度に応じて第2の分級粒径を設定可能なため、汚染土壌Sの土質や求める除染率に応じて細粒子沈殿槽5での分級に要する時間を短縮することができる。   Furthermore, since the second classified particle size can be set according to the residual concentration of radioactive material allowed in the recovered silt particles, the fine particle settling tank 5 can be set according to the soil quality of the contaminated soil S and the required decontamination rate. The time required for classification can be shortened.

そして、粗粒子分級タンク2内の泥水の濃度を砂粒子及び礫粒子の沈降速度がシルト粒子及び粘土粒子の沈降速度に対して十分に大きくなるように設定することで、砂粒子とシルト粒子及び粘土粒子とを確実に分級すると共に、砂粒子がタンク底部に沈降堆積するまでに要する時間を短縮することができる。   Then, by setting the concentration of the mud water in the coarse particle classification tank 2 so that the sedimentation speed of the sand particles and gravel particles is sufficiently larger than the sedimentation speed of the silt particles and clay particles, the sand particles, the silt particles, and While classifying clay particles with certainty, the time required for the sand particles to settle and deposit on the bottom of the tank can be shortened.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなることができ、そして、本発明が該改変されたものにも及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

粒径が小さく比表面積が大きい粒子を選択的に除去して、この細かい粒子に吸着しがちな汚染物質を汚染土壌から除去することで、汚染土壌の減容化を実現することが不可欠な砂質土壌の分級にも適用可能である。   Sand that is essential to reduce the volume of contaminated soil by selectively removing particles with a small particle size and large specific surface area, and removing contaminants that tend to adsorb on these fine particles from the contaminated soil It can also be applied to classification of quality soil.

1 ・・・ ベルトコンベヤ
2 ・・・ 粗粒子分級タンク
3 ・・・ 浮遊物回収タンク
4 ・・・ 遠心分離器
5 ・・・ 細粒子沈殿槽
6 ・・・ 微細粒子沈殿槽
7 ・・・ 水処理システム
8 ・・・ フィルタープレス
9 ・・・ 振動篩
10・・・ キャビテーションジェットポンプ
11・・・ 流量可変ジェットポンプ
12・・・ 貯水槽
13・・・ スクリューコンベヤ
14・・・ ベルトコンベヤ
15・・・ 回収袋
16・・・ 超音波発信装置
17・・・ 浮遊物回収カゴ
18・・・ 圧送ポンプ
19・・・ 回収袋
20・・・ ポンプ
21・・・ ポンプ
22・・・ 水処理前泥水濃度調整槽
23・・・ 希釈水槽
24・・・ 圧送ポンプ
25・・・ 脱水前泥水濃度調整槽
26・・・ 圧送ポンプ
DESCRIPTION OF SYMBOLS 1 ... Belt conveyor 2 ... Coarse particle classification tank 3 ... Floating matter collection tank 4 ... Centrifugal separator 5 ... Fine particle precipitation tank 6 ... Fine particle precipitation tank 7 ... Water Treatment system 8 ・ ・ ・ Filter press 9 ・ ・ ・ Vibrating sieve 10 ・ ・ ・ Cavitation jet pump 11 ・ ・ ・ Variable flow jet pump 12 ・ ・ ・ Water storage tank 13 ・ ・ ・ Screw conveyor 14 ・ ・ ・ Belt conveyor 15 ・ ・・ Recovery bag 16 ... Ultrasonic transmission device 17 ... Floating substance recovery basket 18 ... Pressure feed pump 19 ... Recovery bag 20 ... Pump 21 ... Pump 22 ... Concentration of muddy water before water treatment Adjustment tank 23 ... Dilution water tank 24 ... Pressure feed pump 25 ... Pre-dehydration mud concentration control tank 26 ... Pressure feed pump

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、放射性物質を含む汚染土壌の分級工法において、前記汚染土壌を加水して成る泥水を粗粒子分級タンク内で撹拌する撹拌工程と、前記粗粒子分級タンク内で第1の粒径以上に大径の粗粒子を沈降分離すると共に、第1の分級粒径以下の細粒子及び微細粒子を上昇水流でオーバーフローさせる一次分級工程と、前記第1の分級粒径以下の細粒子及び微細粒子に含まれる異物を除去する異物除去工程と、前記一次分級工程を経た泥水を細粒子分級タンク内で第2の粒径以上に大径の細粒子を沈降分離するとともに前記第2の粒径より小径の微細粒子を回収する二次分級工程とで構成される汚染土壌の分級工法を提供する。 The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 is a method for classifying contaminated soil containing a radioactive substance. A stirring step of stirring in the inside, and coarse particles having a diameter larger than the first particle size are settled and separated in the coarse particle classification tank, and fine particles and fine particles smaller than the first classified particle size are separated by rising water flow. A primary classification step for overflowing, a foreign matter removal step for removing foreign particles contained in fine particles and fine particles having a particle size equal to or smaller than the first classified particle size, and a muddy water that has undergone the primary classification step in a fine particle classification tank Provided is a method for classifying contaminated soil comprising a secondary classification step in which fine particles having a diameter larger than the particle size are settled and separated, and fine particles having a diameter smaller than the second particle size are collected.

本発明は、放射性物質を含み長期に渡って隔離保管する必要がある汚染土壌のうち、有害物質が付着しがちな微細粒子を効率的に回収し、汚染土壌を減容化して保管スペースを縮小し、さらに、微細粒子が沈降速度の速い粗粒子や細粒子に混入して回収されることを防止するという目的を達成するために、汚染土壌を加水して成る泥水を粗粒子分級タンク内で撹拌する撹拌工程と、粗粒子分級タンク内で第1の分級粒径より大径の粗粒子を沈降分離すると共に、第1の分級粒径以下の細粒子及び微細粒子を上昇水流でオーバーフローさせる一次分級工程と、第1の分級粒径以下の細粒子及び微細粒子に含まれる異物を除去する異物除去工程と、一次分級工程を経た泥水を細粒子分級タンク内で第2の分級粒径より大径の細粒子を沈降分離するとともに第2の分級粒径以下の微細粒子を回収する二次分級工程とで実現した。 The present invention efficiently collects fine particles, which contain radioactive substances and need to be isolated and stored for a long period of time, and to which harmful substances tend to adhere, and reduces the storage space by reducing the volume of contaminated soil. In addition, in order to prevent the fine particles from being collected and collected in the coarse particles and fine particles having a high sedimentation rate, mud water formed by hydrating contaminated soil is contained in the coarse particle classification tank. Stirring step for stirring, and primary particles in which coarse particles larger than the first classified particle size are settled and separated in the coarse particle classification tank, and fine particles and fine particles smaller than the first classified particle size are overflowed by the rising water flow. The fine particle having the first classification particle size or less and the foreign material removal step for removing foreign substances contained in the fine particle, and the muddy water that has undergone the primary classification step are larger than the second classification particle size in the fine particle classification tank. Sediment separation of fine particles Both were achieved in the secondary classification step of recovering the second classifying particle diameter or less of a fine particle.

したがって、土粒子が流体中を沈降する終端速度Vsにおいては、F+Fb=Fが成り立つため、終端速度Vsは、数式4に示すとおりである。 Therefore, in the terminal velocity Vs of the soil particles settle in the fluid, since the F + Fb = F g is satisfied, terminal velocity Vs is shown in Equation 4.

細粒子沈殿槽5は、ボトム液L2内のシルト粒子に混入した僅かな粘土粒子を回収するものである。具体的には、まず、遠心分離器4から細粒子沈殿槽5にボトム液L2を適量流入させた後に、図示しない希釈水槽の希釈水を加圧して成るジェット水を細粒子沈殿槽5の底部から注入してボトム液L2を撹拌し、シルト粒子と粘土粒子とを水面に浮上させる。そして、水面を浮遊するシルト粒子と粘土粒子とが、第2の分級粒径である5μmより大径のシルト粒子と粒径5μm以下の粘土粒子との粒径の差による沈降速度の差を利用して、所定の静置時間経過後に、槽底部に堆積するシルト粒子と、粘土粒子を含む上澄液L3とに分離する。細粒子沈殿槽5における分級は、シルト粒子と粘土粒子との沈降分離をバッチ処理で行うため、粒子の沈降が進むと上澄み液L3の泥水濃度が低下する。従って、例えば、遠心分離器から排出された40wt%のボトム液L2をジェット水で6wt%に希釈する場合には、粒子は、沈降開始当初は、表2に示すような6wt%の沈降深度まで沈降するが、時間が経つにつれて、表3に示すような清水中の沈降深度まで沈降し得る。そのため、静置時間を10時間とすると、粒径5μm以下の粘土粒子は、水面から40cm〜80cmに浮遊しており、この深度より上方の上澄み液L3をポンプで汲み取って微細粒子沈殿槽6に送ることで細粒子沈殿槽5の槽上部に浮遊する粘土粒子を分級回収することができる。槽底部に堆積したシルト粒子は、槽外部の回収袋19に袋詰めして脱水する。なお、シルト粒子の脱水処理は、水処理して固液分離した後に、フィルタープレスを介して脱水するものであっても構わない。また、脱水された細粒子に付着する放射性物質濃度は、許容される値以下であり、再利用することも可能である。 The fine particle settling tank 5 collects a few clay particles mixed in the silt particles in the bottom liquid L2. Specifically, first, an appropriate amount of the bottom liquid L2 is introduced from the centrifuge 4 into the fine particle precipitation tank 5, and then jet water obtained by pressurizing dilution water in a dilution water tank (not shown) is added to the bottom of the fine particle precipitation tank 5. The bottom liquid L2 is stirred and the silt particles and the clay particles are floated on the water surface. Then, the silt particles floating on the water surface and the clay particles use the difference in the sedimentation speed due to the difference in particle size between the silt particles larger than the second classified particle size of 5 μm and the clay particles having a particle size of 5 μm or less. Then, after elapse of a predetermined standing time, it is separated into silt particles deposited on the tank bottom and supernatant L3 containing clay particles. In the classification in the fine particle sedimentation tank 5, since the sedimentation separation of the silt particles and the clay particles is carried out by batch processing, the concentration of the muddy water in the supernatant liquid L3 decreases as the particles settle. Therefore, for example, when the 40 wt% bottom liquid L2 discharged from the centrifuge 4 is diluted to 6 wt% with jet water, the particles have a settling depth of 6 wt% as shown in Table 2 at the beginning of settling. However, as time passes, it can sink to the settling depth in fresh water as shown in Table 3. Therefore, when the standing time is 10 hours, the clay particles having a particle size of 5 μm or less are suspended from 40 cm to 80 cm from the water surface, and the supernatant L3 above this depth is pumped to the fine particle sedimentation tank 6. The clay particles floating in the upper part of the fine particle settling tank 5 can be classified and recovered by sending. The silt particles deposited on the bottom of the tank are dehydrated by being packed in a collection bag 19 outside the tank. The silt particle may be dehydrated through a filter press after being subjected to water treatment and solid-liquid separation. Further, the concentration of the radioactive substance adhering to the dehydrated fine particles is less than the allowable value, and can be reused.

Claims (5)

放射性物質を含む汚染土壌の分級工法において、
前記汚染土壌を加水して成る泥水を粗粒子分級タンク内で撹拌する撹拌工程と、
前記粗粒子分級タンク内で第1の分級粒径より大径の粗粒子を沈降分離すると共に、第1の分級粒径以下の細粒子及び微細粒子を上昇水流でオーバーフローさせる一次分級工程と、
前記汚染土壌に含まれる異物を除去する異物除去工程と、
前記一次分級工程を経た泥水を細粒子分級タンク内で第2の分級粒径より大径の細粒子を沈降分離するとともに前記第2の分級粒径以下の微細粒子を回収する二次分級工程と
から成ることを特徴とする汚染土壌の分級工法。
In the classification method for contaminated soil containing radioactive substances,
An agitation step of agitating mud water obtained by hydrating the contaminated soil in a coarse particle classification tank;
A primary classification step of precipitating and separating coarse particles having a diameter larger than the first classified particle size in the coarse particle classification tank and overflowing fine particles and fine particles having a particle size equal to or smaller than the first classified particle size with an ascending water flow;
A foreign matter removing step of removing foreign matter contained in the contaminated soil;
A secondary classification step of separating and separating fine particles having a diameter larger than the second classified particle size in the fine particle classification tank from the muddy water that has undergone the primary classification step, and collecting fine particles having a particle size equal to or smaller than the second classified particle size; A method for classifying contaminated soil, characterized by comprising:
前記汚染土壌の撹拌は、キャビテーションを含むキャビテーションジェット水と、前記上昇水流の流速を維持する流量可変ジェット水とを前記泥水に吹き付けて行うことを特徴とする請求項1に記載の汚染土壌の分級工法。   2. The contaminated soil classification according to claim 1, wherein the agitation of the contaminated soil is performed by spraying the mud water with cavitation jet water including cavitation and a flow rate variable jet water that maintains a flow rate of the rising water flow. Construction method. 前記一次分級行程と前記二次分級行程との間に、前記細粒子と前記微細粒子とを遠心分離器で分離する遠心分離工程を含むことを特徴とする請求項1又は請求項2に記載の汚染土壌の分級工法。   The centrifugal separation process of separating the fine particles and the fine particles with a centrifugal separator between the primary classification process and the secondary classification process, according to claim 1 or 2. Classification method for contaminated soil. 前記細粒子に許容される放射性物質の残留濃度に応じて、前記第2の分級粒径が任意に設定可能なことを特徴とする請求項1乃至請求項3の1項に記載の汚染土壌の分級工法。   4. The contaminated soil according to claim 1, wherein the second classified particle size can be arbitrarily set in accordance with a residual concentration of a radioactive substance allowed in the fine particles. 5. Classification method. 前記泥水が、前記粗粒子分級タンク内で10wt%以下の濃度に加水調整されていることを特徴とする請求項1乃至請求項4の1項に記載の汚染土壌の分級工法。   5. The method for classifying contaminated soil according to claim 1, wherein the muddy water is hydrated to a concentration of 10 wt% or less in the coarse particle classification tank.
JP2012162885A 2012-07-23 2012-07-23 Classification method of contaminated soil Active JP5155487B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162885A JP5155487B1 (en) 2012-07-23 2012-07-23 Classification method of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162885A JP5155487B1 (en) 2012-07-23 2012-07-23 Classification method of contaminated soil

Publications (2)

Publication Number Publication Date
JP5155487B1 JP5155487B1 (en) 2013-03-06
JP2014021062A true JP2014021062A (en) 2014-02-03

Family

ID=48013508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162885A Active JP5155487B1 (en) 2012-07-23 2012-07-23 Classification method of contaminated soil

Country Status (1)

Country Link
JP (1) JP5155487B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227853A (en) * 2014-06-03 2015-12-17 あおみ建設株式会社 Classification device, contamination water treatment system, and classification method
JP2016043332A (en) * 2014-08-26 2016-04-04 株式会社安藤・間 Contaminated soil cleaning method and system
JP2016128798A (en) * 2015-01-05 2016-07-14 三菱重工環境・化学エンジニアリング株式会社 Liquid waste processor and radioactive matter processing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027921B2 (en) * 2013-03-18 2016-11-16 鹿島建設株式会社 Treatment method of contaminated soil
JP6312016B2 (en) * 2013-07-05 2018-04-18 三菱重工環境・化学エンジニアリング株式会社 Contaminated soil treatment equipment
JP6199154B2 (en) * 2013-10-28 2017-09-20 株式会社本間組 Radioactive substance removal equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227853A (en) * 2014-06-03 2015-12-17 あおみ建設株式会社 Classification device, contamination water treatment system, and classification method
JP2016043332A (en) * 2014-08-26 2016-04-04 株式会社安藤・間 Contaminated soil cleaning method and system
JP2016128798A (en) * 2015-01-05 2016-07-14 三菱重工環境・化学エンジニアリング株式会社 Liquid waste processor and radioactive matter processing system

Also Published As

Publication number Publication date
JP5155487B1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5155487B1 (en) Classification method of contaminated soil
JP2006116397A (en) Washing method and washing apparatus of contaminated soil
JP2019103989A (en) Cleaning classification processing method of contaminated soil
JP5769082B2 (en) Cleaning treatment method for radioactive material contaminated soil
JP6027921B2 (en) Treatment method of contaminated soil
JP2005081247A (en) Apparatus for cleaning contaminated soil
JP2012115838A (en) Wet sorting apparatus
US20140339173A1 (en) Mining apparatus with water reclamation system
WO2009084068A1 (en) Process for separating and recovering the suspending fluids contained in exhausted slurries from the machining of silicon
JP5818096B2 (en) Cleaning treatment method for cesium contaminated soil
JP3816200B2 (en) Method and apparatus for processing liquid containing fine particles
JP5818095B2 (en) Cleaning treatment method for cesium contaminated soil
US20220001391A1 (en) System and method for recovering desired materials using a ball mill or rod mill
JP5292482B2 (en) Wet sorting device
KR20200019315A (en) Method of treating fluorine contaminated soil using soil washing
JP2651559B2 (en) Waste water treatment equipment for water jet processing equipment
JP5143070B2 (en) Powder processing system and powder processing method
JP2005262076A (en) Method for cleaning soil contaminated with oil
JP2005095810A (en) Method for separating granular mixture
JP6618039B2 (en) Decontamination soil treatment apparatus and method
JP7541444B2 (en) Contaminated soil cleaning and classification treatment system and contaminated soil cleaning and classification treatment method
JP7500003B2 (en) Contaminated soil cleaning and classification treatment system and contaminated soil cleaning and classification treatment method
JP2009208010A (en) Wet sorting apparatus
TWI826319B (en) Deep cleaning technology for highly concentrated contaminated soil
JP7455446B1 (en) sand cleaning equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250