JP6199154B2 - Radioactive substance removal equipment - Google Patents
Radioactive substance removal equipment Download PDFInfo
- Publication number
- JP6199154B2 JP6199154B2 JP2013223707A JP2013223707A JP6199154B2 JP 6199154 B2 JP6199154 B2 JP 6199154B2 JP 2013223707 A JP2013223707 A JP 2013223707A JP 2013223707 A JP2013223707 A JP 2013223707A JP 6199154 B2 JP6199154 B2 JP 6199154B2
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- contaminated soil
- soil
- end side
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000941 radioactive substance Substances 0.000 title claims description 29
- 239000002689 soil Substances 0.000 claims description 130
- 239000000203 mixture Substances 0.000 claims description 62
- 238000003756 stirring Methods 0.000 claims description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- 239000011362 coarse particle Substances 0.000 claims description 34
- 239000010419 fine particle Substances 0.000 claims description 33
- 239000004094 surface-active agent Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 16
- 230000002285 radioactive Effects 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N Cesium Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 53
- 229910052792 caesium Inorganic materials 0.000 description 53
- 239000002245 particle Substances 0.000 description 37
- 239000004576 sand Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 238000004140 cleaning Methods 0.000 description 15
- 239000002585 base Substances 0.000 description 14
- 239000003344 environmental pollutant Substances 0.000 description 13
- 231100000719 pollutant Toxicity 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 230000004931 aggregating Effects 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 239000000356 contaminant Substances 0.000 description 9
- 239000004927 clay Substances 0.000 description 8
- 229910052570 clay Inorganic materials 0.000 description 8
- 239000003093 cationic surfactant Substances 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000875 corresponding Effects 0.000 description 5
- 238000002791 soaking Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- -1 gravel Substances 0.000 description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 4
- 238000005201 scrubbing Methods 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 238000005296 abrasive Methods 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000012459 cleaning agent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N Trimethylglycine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000011068 load Methods 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N 2-Imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 240000001439 Opuntia Species 0.000 description 1
- 206010037844 Rash Diseases 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L Sulphite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 206010042602 Supraventricular extrasystoles Diseases 0.000 description 1
- 230000002378 acidificating Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000001112 coagulant Effects 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative Effects 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004503 fine granule Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001264 neutralization Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000001376 precipitating Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000003578 releasing Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Description
本発明は、土壌中からセシウムなどの放射性物質を除去する放射性物質の除去装置に関する。 The present invention relates to a dividing removed by devices of radioactive material to remove radioactive substances such as cesium from soil.
従来、土壌中から汚染物質を除去する方法として、汚染土壌と洗浄液とを攪拌混合する工程、汚染土壌と洗浄液との混合物から粗粒分を分級する工程、粗粒分を洗浄液によりさらに洗浄し分級装置により汚染物質を洗浄液とともに分離する工程、粗粒分を分級した残余の細粒分を沈降装置において沈降せしめて固液分離する工程、洗浄液を回収して汚染物質を分離し処理あるいは処分する工程とを有する汚染土壌の洗浄方法(例えば特許文献1)や、非揮発性汚染物質が混入した土壌に水を混合して土壌を洗浄し、得られた泥水中の土壌粒子を分級して、汚染物質が少ない粗粒子を分離し、汚染物質を高濃度に含有する泥水を固液分離し、汚染物質を多く含む土壌微粒子を分離し、非揮発性汚染物質が混入した土壌と水との混合物を、洗浄槽にて曝気、機械攪拌および/またはポンプ循環により解膠する土壌中の非揮発性汚染物質の除去方法(例えば特許文献2)や、汚染土壌は浄化剤やリターン水の供給を受けながら解泥されて選別洗浄工程に送られ、ここでもリターン水や補給水の供給を受けながら土壌の選別が行われ、選別された土壌の一部は洗浄土壌として再利用され、残りの土壌はリターン水の供給を受けながら分級されて洗浄土壌と汚土や汚染物質とに分けられ、汚土の凝集や汚染物質の分級が行われる汚染土壌洗浄浄化システム(例えば特許文献3)や、重金属により汚染された土地から汚染土壌を掘削する掘削工程、前記掘削工程より得られた汚染土壌を、攪拌機能を有する密閉容器を備えた搬送手段により、上記汚染土壌を水で磨研しながら、該土地より離れた分級プラントに搬送する搬送工程、上記搬送工程によって搬送された汚染土壌から、湿式分級する分級プラントにより微細粒土壌を分取する分級工程、及び、上記分級工程において微細粒土壌を分取された土壌を建設用資材として再利用する再利用工程を含むことを特徴とする汚染土壌の処理方法(例えば特許文献4)などが提案されている。 Conventionally, as a method for removing pollutants from the soil, a step of stirring and mixing the contaminated soil and the cleaning liquid, a step of classifying the coarse particles from the mixture of the contaminated soil and the cleaning liquid, and further cleaning and classifying the coarse particles with the cleaning liquid The process of separating contaminants together with the cleaning liquid using a device, the process of precipitating the remaining fine particles obtained by classifying coarse particles in a sedimentation device, the process of solid-liquid separation, the process of recovering the cleaning liquid and separating or treating or disposing of the contaminants Contaminated soil cleaning methods (for example, Patent Document 1), soil mixed with non-volatile contaminants is mixed with water to clean the soil, and the soil particles obtained are classified to contaminate the soil. Separating coarse particles with few substances, solid-liquid separation of muddy water containing a high concentration of pollutants, separating soil fine particles containing a large amount of pollutants, and mixing a mixture of soil and water contaminated with non-volatile pollutants , Washing tank A method for removing non-volatile pollutants in soil that is peptized by aeration, mechanical agitation, and / or pump circulation (for example, Patent Document 2), and contaminated soil is thawed while being supplied with a cleaning agent and return water. The soil is sorted while receiving return water and makeup water, and a part of the sorted soil is reused as washing soil, and the rest of the soil is supplied with return water. From the contaminated soil cleaning and purification system (for example, Patent Document 3) in which the soil is classified into washed soil and soil and pollutants, and the soil is agglomerated and pollutants are classified. The excavation step for excavating the contaminated soil, the contaminated soil obtained from the excavation step was separated from the soil while polishing the contaminated soil with water by means of a conveying means equipped with an airtight container having a stirring function. A transporting process for transporting to a class plant, a classifying process for sorting fine-grained soil from a contaminated soil transported by the transporting process by a classifying plant for wet classification, and a soil from which fine-grained soil is sorted in the classifying process A method for treating contaminated soil (for example, Patent Document 4), which includes a reuse step of reusing as a construction material, has been proposed.
上記特許文献1では、汚染土壌と洗浄液とを攪拌混合し、その混合物から粗粒分を分級し、この粗粒分を洗浄液によりさらに洗浄して汚染物質を洗浄液とともに分離するが、汚染物質がセシウムなどの放射性物質の場合、洗浄液との撹拌混合しただけでは、汚染物質を有効に除去することができないという問題がある。 In Patent Document 1, the contaminated soil and the cleaning liquid are stirred and mixed, and the coarse particles are classified from the mixture. The coarse particles are further washed with the cleaning liquid to separate the contaminants together with the cleaning liquid. In the case of a radioactive substance such as the above, there is a problem that contaminants cannot be effectively removed only by stirring and mixing with a cleaning liquid.
また、特許文献2では、非揮発性汚染物質が混入した土壌と水との混合物を、洗浄槽にて曝気、機械攪拌および/またはポンプ循環により解膠するが、汚染物質がセシウムなどの放射性物質の場合、単に土壌と水の混合物を曝気、機械撹拌しただけでは、汚染物質を有効に除去することができないという問題がある。 Further, in Patent Document 2, a mixture of soil and water mixed with non-volatile pollutants is peptized by aeration, mechanical stirring and / or pump circulation in a washing tank, but the pollutants are radioactive substances such as cesium. In this case, there is a problem that the pollutants cannot be effectively removed simply by aeration and mechanical stirring of a mixture of soil and water.
また、特許文献3では、汚染土壌に浄化剤やリターン水を供給して選別洗浄するが、汚染物質がセシウムなどの放射性物質の場合、浄化剤やリターン水を供給しただけでは、汚染物質を有効に除去することができないという問題がある。 In Patent Document 3, a cleaning agent and return water are supplied to the contaminated soil for selective cleaning. However, when the contaminant is a radioactive substance such as cesium, the contaminant is effective only by supplying the cleaning agent and the return water. There is a problem that it cannot be removed.
また、特許文献4では、搬送時間を有効に利用し、汚染土壌中の粗粒に固着した重金属を多く含む微細粒土壌を磨研処理することができるが、汚染物質がセシウムなどの放射性物質の場合、水と撹拌することにより磨研処理しただけでは、汚染物質を有効に除去することができないという問題がある。 Further, in Patent Document 4, it is possible to polish the fine-grained soil containing a lot of heavy metals fixed to the coarse grains in the contaminated soil by effectively using the transport time, but the pollutant is a radioactive substance such as cesium. In this case, there is a problem that contaminants cannot be effectively removed only by polishing with water.
そこで、本発明は上記した問題点に鑑み、土壌中の放射性物質を効率よく除去することができる放射性物質の除去方法と除去装置を提供することを目的とする。 Therefore, in view of the above-described problems, an object of the present invention is to provide a radioactive substance removal method and a removal apparatus that can efficiently remove radioactive substances in soil.
請求項1に係る発明は、放射性物質を含む汚染土壌を放射性物質と処理土壌とに分別する放射性物質の除去装置において、前記汚染土壌を取り除く除去装置と、除去した汚染土壌に洗浄水と界面活性剤を混合した混合物に圧縮空気を供給しながら撹拌する撹拌装置と、撹拌後の汚染土壌混合物を粗粒分と細粒分に分級する分級装置とを備え、前記撹拌装置は、先端側を基端側より上にして斜設したスクリューコンベア本体を備え、前記スクリューコンベア本体は、胴本体と、前記胴本体内に設けられ、回転駆動して前記胴本体内の前記混合物を基端側から先端側に圧送するスクリューと、前記胴本体の基端側に設けられた前記混合物の投入口と、前記胴本体の先端側に設けられた前記混合物の排出口と、前記胴本体内の前記混合物に前記圧縮空気を供給する空気ノズルと、前記胴本体内の前記混合物に振動を与える振動手段とを備えることを特徴とする。 The invention according to claim 1 is an apparatus for removing a radioactive substance that separates contaminated soil containing a radioactive substance into a radioactive substance and treated soil, the removing apparatus that removes the contaminated soil, and cleaning water and surface activity on the removed contaminated soil. A stirring device that stirs while supplying compressed air to the mixture in which the agent is mixed, and a classification device that classifies the contaminated soil mixture after stirring into coarse and fine particles , and the stirring device is based on the tip side. A screw conveyor main body obliquely arranged above the end side, the screw conveyor main body being provided in the body main body and the body main body, and rotating to drive the mixture in the body main body from the base end side A screw that is pumped to the side, an inlet for the mixture provided on the base end side of the trunk body, an outlet for the mixture provided on the distal end side of the trunk body, and the mixture in the trunk body Compression An air nozzle for supplying a gas, characterized in that it comprises a vibrating means for vibrating said mixture in said cylinder body.
また、請求項2に係る発明は、前記胴本体の外周に前記振動手段を設けたことを特徴とする。 The invention according to claim 2 is characterized in that the vibration means is provided on an outer periphery of the trunk body .
また、請求項3に係る発明は、前記胴本体内に水を供給する液体供給口を備えることを特徴とする。 According to a third aspect of the present invention , there is provided a liquid supply port for supplying water into the trunk body .
また、請求項4に係る発明は、前記胴本体の基端側を基台に揺動可能に連結し、前記スクリューコンベア本体の傾斜角度を調整する角度調整手段を備えることを特徴とする。 According to a fourth aspect of the present invention, the base end side of the trunk body is slidably connected to a base, and angle adjusting means for adjusting an inclination angle of the screw conveyor body is provided .
また、請求項5に係る発明は、前記角度調整手段が、端部を前記胴本体と前記基台に枢着した伸縮駆動手段であることを特徴とする。 The invention according to claim 5 is characterized in that the angle adjusting means is expansion / contraction driving means having end portions pivoted to the trunk body and the base .
請求項1の構成によれば、界面活性剤による分離作用と、圧縮空気を供給しながらの撹拌による分離作用とにより、粗粒分からセシウムが分離すると共に、セシウムの付着している細粒分を粗粒分から分離することができ、この分離したセシウムが細粒分に移動する。この後、粗粒分と細粒分とを分離し、前記セシウム濃度の低い粗粒分が得られる。 According to the configuration of claim 1, cesium is separated from the coarse particles by the separation action by the surfactant and the separation action by stirring while supplying compressed air, and the fine particles to which cesium is attached are separated. The coarse particles can be separated, and the separated cesium moves to the fine particles. Thereafter, the coarse particles and fine particles are separated to obtain the coarse particles having a low cesium concentration.
また、請求項1の構成によれば、圧縮空気を供給しながらの撹拌に、更に振動を与えることにより、セシウムの分離作用が向上する。 Moreover, according to the structure of Claim 1 , the separation effect | action of a cesium improves by giving a vibration further to the stirring which supplies compressed air.
また、請求項1の構成によれば、スクリューにより混合物を撹拌しながら搬送するから、混合物の連続処理が可能となる。 Moreover, according to the structure of Claim 1, since a mixture is conveyed with stirring with a screw, the continuous process of a mixture is attained.
また、請求項2の構成によれば、胴本体の外周に設けた振動手段より、胴本体内の混合物に振動を与えることができる。 Moreover, according to the structure of Claim 2, a vibration in the outer periphery of a trunk | drum main body can give a vibration to the mixture in a trunk | drum main body.
また、請求項3の構成によれば、胴本体内の混合物に水を供給することができる。 Moreover, according to the structure of Claim 3 , water can be supplied to the mixture in a trunk | drum main body.
また、請求項4及び5の構成によれば、胴本体は角度が調整可能であるから、回転速度が一定の場合、角度が大きくなれば、スクリューにより混合物に加わる撹拌力を大きくすることができる。 Moreover, according to the structure of Claim 4 and 5 , since the angle | corner of a trunk | drum main body can be adjusted, when a rotational speed is constant, if an angle becomes large, the stirring force added to a mixture with a screw can be enlarged. .
本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる放射性物質の除去方法と除去装置を採用することにより、従来にない放射性物質の除去方法と除去装置が得られ、その放射性物質の除去方法と除去装置を夫々記述する。 Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, by adopting a radioactive substance removal method and removal apparatus different from the conventional ones, an unprecedented radioactive substance removal method and removal apparatus are obtained, and the radioactive substance removal method and removal apparatus are respectively described. To do.
以下、本発明の放射性物質の除去方法と除去装置を添付図面を参照して説明する。図1〜図12は、本発明の実施例1を示し、同図に示すように、放射性物質を含む汚染土壌の除染作業において、まず、汚染物質である汚染土壌1を取り除く除去工程S1を行う。この除去工程S1は、表土の剥ぎ取りや、河川や海の浚渫などにより行われ、また、法面、側溝、屋根外壁、農耕地などから汚染物質の除去や、それらの際、発生する汚染水スラッジも含まれる。尚、図1においては、汚染土壌1を取り除く除去装置として浚渫船2を例示している。また、表土の剥ぎ取り除去装置としては、バックホーなどが例示される。 Hereinafter, a method and apparatus for removing a radioactive substance according to the present invention will be described with reference to the accompanying drawings. FIGS. 1-12 shows Example 1 of this invention, and as shown in the figure, in the decontamination operation | work of the contaminated soil containing a radioactive substance, first, removal process S1 which removes the contaminated soil 1 which is a pollutant is performed. Do. This removal step S1 is performed by stripping topsoil, rivers, sea dredging, etc., and removing pollutants from slopes, gutters, roof outer walls, agricultural land, etc. Sludge is also included. In addition, in FIG. 1, the dredger 2 is illustrated as a removal apparatus which removes the contaminated soil 1. FIG. Moreover, a backhoe etc. are illustrated as an apparatus for removing and removing topsoil.
以下、セシウムなどの放射性物質を含む汚染土壌1の処理について説明する。 Hereinafter, the process of the contaminated soil 1 containing radioactive substances, such as cesium, is demonstrated.
前記除去工程S1において除去した汚染土壌1が、浚渫などにより得られた比較的含水率の高い場合は、そのまま調泥槽4に移送し、比較的含水比が低い場合は、流動化槽3に移送し、水を加えて流動化した後、調泥槽4に移送する。 When the contaminated soil 1 removed in the removal step S1 has a relatively high water content obtained by dredging or the like, it is transferred to the mud tank 4 as it is, and when the water content ratio is relatively low, it is transferred to the fluidizing tank 3. It is transferred, fluidized by adding water, and then transferred to the mud tank 4.
次の撹拌工程S3の前に行われる前処理工程S2において、汚染土壌1に水と界面活性剤を加えて含水比を100〜500%、例えば300%程度に調整し、所定期間2〜12時間、好ましくは12時間以上の間、漬け置きする。尚、この漬け置き期間はほぼ含水比を略一定の範囲(100〜500%)に保つ。また、含水比は、水分の重量を固形分の重量で割り、100を掛けた値で単位は%である。 In the pretreatment step S2 performed before the next agitation step S3, water and a surfactant are added to the contaminated soil 1 to adjust the water content ratio to 100 to 500%, for example, about 300%, and for a predetermined period of 2 to 12 hours. , Preferably soaked for more than 12 hours. During the soaking period, the water content ratio is maintained in a substantially constant range (100 to 500%). The water content ratio is a value obtained by dividing the weight of moisture by the weight of solid content and multiplying by 100, and the unit is%.
このように汚染土壌1と水と界面活性剤を混合して所定の含水比の汚染土壌混合物を形成し、界面活性剤に漬け置きした後、撹拌工程S3に移行する。撹拌工程S3で用いる撹拌処理装置5は、汚染土壌混合物に圧縮空気を供給しながら撹拌することにより撹拌処理を行う。この際、汚染土壌混合物に振動を付与してもよい。 In this way, the contaminated soil 1, water and a surfactant are mixed to form a contaminated soil mixture having a predetermined water content ratio, soaked in the surfactant, and then the process proceeds to the stirring step S3. The agitation processing device 5 used in the agitation step S3 performs the agitation process by agitating while supplying compressed air to the contaminated soil mixture. At this time, vibration may be applied to the contaminated soil mixture.
尚、前処理工程S2で混合物の含水比を、撹拌処理時含水比500〜1500%より低くし、撹拌処理装置5において水を加えることにより、撹拌工程S3において含水比を所定の値である500〜1500%としてもよい。 In addition, the water content ratio of the mixture in the pretreatment step S2 is lower than the water content ratio of 500 to 1500% at the time of the agitation treatment, and water is added in the agitation treatment device 5, whereby the water content ratio in the agitation step S3 is a predetermined value 500 It may be ˜1500%.
このように撹拌工程S3において、界面活性剤により電気的分離作用と、撹拌及び圧縮空気の吹き込みによる機械的分離作用により、汚染土壌の粗粒分からセシウムを分離し、或いは粗粒分に付着したセシウムの付着する細粒分を分離し、この分離したセシウム或いはセシウムの付着した細粒分を粒子の小さいシルト質・粘土質や所定粒径未満の砂(細砂)などの細粒分に移動させることができる。言い換えれば、汚染土壌に含まれる異物や礫・所定粒径未満以上の砂(粗砂)などの粗粒分から、セシウム或いは粗粒分に付着したセシウムの付着する細粒を分離し、この分離したセシウム或いはセシウムの付着した細粒分を細粒分に移動・凝集することにより粗粒分のセシウムの減容化が可能となる。尚、細粒分は粗粒分より粒子が小さい。 As described above, in the stirring step S3, cesium is separated from the coarse particles of the contaminated soil by the electrical separation action by the surfactant and the mechanical separation action by the stirring and blowing of compressed air, or the cesium adhered to the coarse grains. The separated fine particles are separated, and the separated fine particles containing cesium or cesium are transferred to fine particles such as small silty / clayy particles and sand (fine sand) with a particle size of less than a predetermined size. be able to. In other words, cesium or fine particles adhering to the cesium adhering to the coarse particles are separated from the foreign particles, gravel, and coarse particles such as sand (coarse sand) having a particle size smaller than a predetermined particle size, and the separated particles are separated. By moving and agglomerating cesium or fine particles to which cesium is adhered to fine particles, the volume of cesium in the coarse particles can be reduced. Note that the fine particles have smaller particles than the coarse particles.
次に、汚染土壌混合物の粗粒分と細粒分とを分級する分級工程S4において、分級装置6により汚染土壌混合物から粗粒分である異物・礫・砂などを分離し、残った細粒分及び水分は撹拌槽7に移送する。 Next, in the classification step S4 for classifying the coarse and fine particles of the contaminated soil mixture, the classification device 6 separates foreign matters, gravel, sand and the like from the contaminated soil mixture, and the remaining fine particles Minutes and moisture are transferred to the agitation tank 7.
分級装置6としては、篩に振動を与えることにより分級する振動篩や、サイクロンなどが例示される。 Examples of the classification device 6 include a vibration sieve that classifies by applying vibration to the sieve, a cyclone, and the like.
そして、粗粒分から異物を取り除いた礫・粗砂などの粗粒分1Aは土木材料などとして再利用する。一方、撹拌槽7においては、細粒分及び水分に凝集剤を添加して撹拌し、細粒分を沈殿させ、且つ細粒分にセシウムを固定する。この沈殿した細粒分の上澄み水を回収し、この上澄み水は放流又は再利用することができる。前記撹拌槽7内には、縦方向の回転軸8を設け、この回転軸8に複数の撹拌翼9を設け、回転軸8を回転駆動することにより、複数の撹拌翼9が細粒分及び水分を撹拌する。 The coarse particle 1A such as gravel or coarse sand obtained by removing foreign matters from the coarse particle is reused as a civil engineering material. On the other hand, in the agitation tank 7, a flocculant is added to the fine particles and moisture and stirred to precipitate the fine particles, and cesium is fixed to the fine particles. The precipitated fine water is recovered and the supernatant water can be discharged or reused. A vertical rotating shaft 8 is provided in the stirring tank 7, a plurality of stirring blades 9 are provided on the rotating shaft 8, and the rotating shaft 8 is driven to rotate, whereby the plurality of stirring blades 9 are separated into fine particles and Stir moisture.
このように上澄み水を回収することにより含水比を下げた細粒分を、脱水手段10により脱水して脱水余水11と処理土壌たる脱水土分12とが得られる。その脱水余水11は放流又は再利用することができる。一方、脱水土分12には、汚染土壌のセシウムが濃縮された状態で含まれ、且つ土壌は減容化されたものになっている。 By collecting the supernatant water in this manner, the fine granule having a reduced water content is dehydrated by the dehydrating means 10 to obtain dewatered residual water 11 and dehydrated soil 12 as treated soil. The dewatered sewage 11 can be discharged or reused. On the other hand, the dehydrated soil 12 contains cesium in the contaminated soil in a concentrated state, and the volume of the soil is reduced.
前記脱水手段10には、プレス処理手段たるフィルタープレス13を用いることができる。図1の概略図に示すように、フィルタープレス13は、固定フレーム21と締込板22の間に、複数枚の濾布を張設した濾板23を複数枚配置すると共に、これら濾板23間に濾室を形成する。そして、前記締込板22を油圧シリンダ24により移動することにより、前記濾室内の泥土をプレスして濾過脱水するものなどある。 As the dehydrating means 10, a filter press 13 as a press processing means can be used. As shown in the schematic diagram of FIG. 1, the filter press 13 includes a plurality of filter plates 23 each having a plurality of filter cloths arranged between a fixed frame 21 and a fastening plate 22, and these filter plates 23. A filter chamber is formed between them. Then, there is a type in which the clamping plate 22 is moved by a hydraulic cylinder 24 to press the mud in the filter chamber for filtration and dewatering.
また、前記界面活性剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤又は非イオン性界面活性剤のいずれを使用しても良く、特に、陽イオン性界面活性剤が好適である。また、陽イオン性界面活性剤と陰イオン性界面活性剤を混合する以外は、2種類以上の界面活性剤を混合して使用しても良い。 前記陽イオン性界面活性剤としては、第四級アンモニウム塩型又はアミン塩型が挙げられ、特に、第四級アンモニウム塩型が好適である。さらに、第四級アンモニウム塩型の中でも、特に、ベンジルトリメチルアンモニウムクロライドが好適である。 Further, as the surfactant, any of a cationic surfactant, an anionic surfactant, an amphoteric surfactant or a nonionic surfactant may be used, and in particular, a cationic surfactant. Agents are preferred. Moreover, you may mix and use 2 or more types of surfactant except mixing a cationic surfactant and an anionic surfactant. Examples of the cationic surfactant include a quaternary ammonium salt type and an amine salt type, and a quaternary ammonium salt type is particularly preferable. Furthermore, among quaternary ammonium salt types, benzyltrimethylammonium chloride is particularly suitable.
前記陰イオン性界面活性剤としては、スルホン酸塩型、硫酸エステル塩型、リン酸エステル塩型又はカルボン酸塩型が挙げられる。 Examples of the anionic surfactant include a sulfonate type, a sulfate ester type, a phosphate ester salt type, and a carboxylate type.
前記両性界面活性剤としては、ベタイン型、イミダゾリン型又はアミノ酸型が挙げられる。 Examples of the amphoteric surfactant include betaine type, imidazoline type and amino acid type.
前記非イオン性界面活性剤としては、エーテル型、エステル型、脂肪酸エステル型、アルキルアミン型又は高級アルコール型が挙げられる。 Examples of the nonionic surfactant include ether type, ester type, fatty acid ester type, alkylamine type and higher alcohol type.
また、前記界面活性剤は、必要に応じて、水で希釈して使用しても良い。界面活性剤の濃度は、例えば、0.1〜15質量%であることが好ましい。 The surfactant may be diluted with water as necessary. The concentration of the surfactant is preferably 0.1 to 15% by mass, for example.
さらに、凝集剤は、その原材料に天然素材である火山灰を用いた無機質凝集剤であり、特にその火山灰としては、南九州を広く覆う火山噴出物である「シラス」を用いることが好ましい。そして、主原料であるシラスの粒子を焼成炉において焼成することによって一般の凝集剤に比べて非常に多くの正電荷を帯電するものとなる。 Further, the flocculant is an inorganic flocculant using volcanic ash, which is a natural material, as its raw material. In particular, as the volcanic ash, it is preferable to use “Shirasu” which is a volcanic eruption covering the southern Kyushu. Then, by burning the shirasu particles as the main raw material in a baking furnace, a much larger amount of positive charge is charged compared to a general flocculant.
前記凝集剤をコロイド粒子を含んだ溶液中に入れると、コロイド粒子の負電荷と凝集剤の正電荷がイオン結合して、コロイド粒子が凝結する。前記凝集剤は一般の凝集剤に比べて多くの正電荷に帯電しているため、コロイド粒子中の複数の負電荷とイオン結合することから、凝結力が大きく、フロックが壊れにくい。 When the aggregating agent is put in a solution containing colloidal particles, the negative charge of the colloidal particles and the positive charge of the aggregating agent are ionically bonded, and the colloidal particles are condensed. Since the aggregating agent is charged with a larger number of positive charges than a general aggregating agent, it has an ionic bond with a plurality of negative charges in the colloidal particles.
また、凝結するコロイド粒子も多くなることから、大きなフロックが形成される。さらに、イオン結合に寄与していない正電荷がまだ多く残っているため、コロイド粒子に帯電している負電荷が凝集剤に引き寄せられ電荷の偏りが生じ、反対側は正電荷に帯電することとなり、電気的双極子が形成される。電気的双極子となったコロイド粒子と別のコロイド粒子が凝集剤を介せずにイオン−双極子間結合を行うことから、フロックはさらに大きくなる。 Moreover, since the colloidal particles which condense also increase, a big floc is formed. Furthermore, since there are still many positive charges that do not contribute to ionic bonding, the negative charges charged in the colloidal particles are attracted to the aggregating agent, causing a bias in the charge, and the opposite side is charged with a positive charge. An electrical dipole is formed. Since the colloidal particles that have become electric dipoles and other colloidal particles perform ion-dipole bonding without interposing an aggregating agent, the floc is further increased.
以上のように、前記凝集剤は一般の凝集剤と比べて少ない添加量で高い凝集効果を発揮するとともに、高分子凝集剤との併用は不要であり、一剤で凝結・凝集を行うことができる。なお、負電荷に帯電していない中性のコロイド粒子であっても、前記凝集剤が持つ強い正電荷により、電気的双極子を形成することから凝結は可能となる。 As described above, the aggregating agent exhibits a high aggregating effect with a small addition amount compared to a general aggregating agent, and does not need to be used in combination with a polymer aggregating agent. it can. Even neutral colloidal particles that are not negatively charged can be condensed because they form an electric dipole due to the strong positive charge of the aggregating agent.
その他にも、前記凝集剤は、原材料が天然素材なので、人体や自然界への影響は一切ない。また、従来の凝集剤のように高分子凝集剤との併用は不要となる。さらに、圧倒的な凝集スピード(10〜20秒)を誇るため、反応撹拌槽・沈殿槽等の施設規模を従来の約1/5以下に小型化が可能である。しかも、凝集スラッジの粘性が極めて低いため、脱水処理が容易である。 In addition, since the raw material of the flocculant is a natural material, there is no influence on the human body or the natural world. Moreover, the combined use with the polymer flocculant like the conventional flocculant becomes unnecessary. Furthermore, since it boasts an overwhelming agglomeration speed (10 to 20 seconds), the scale of facilities such as reaction stirrers and sedimentation tanks can be reduced to about 1/5 or less of the conventional scale. Moreover, since the viscosity of the aggregated sludge is extremely low, the dehydration process is easy.
また、前記凝集剤は、適用pH範囲が広く、多くの場合は、pH=5〜10でも適用可能。pH≦4(強酸性)やpH≧11(強アルカリ)の廃水でも適用可能な凝集剤をオーダーメイドにより調合可能である。また、前記凝集剤は凝集反応に伴いアルカリ度をほとんど消費しないため、アルカリ助剤の添加が不要である。これに対して、硫酸バンド、PAC等の従来の凝集剤では、反応の進行に伴い酸性化するため、高分子凝集剤の他にアルカリ助剤の添加も必要とする。 The flocculant has a wide application pH range, and in many cases, it can be applied even at pH = 5 to 10. A flocculant that can be applied to wastewater with pH ≦ 4 (strongly acidic) or pH ≧ 11 (strongly alkaline) can be prepared by order. Moreover, since the coagulant consumes little alkalinity with the coagulation reaction, it is not necessary to add an alkali assistant. On the other hand, conventional flocculants such as sulfuric acid bands and PACs are acidified as the reaction progresses, so that it is necessary to add an alkali aid in addition to the polymer flocculant.
予備実験
図4及び図5は予備実験に係る図面であり、図4に示すように、撹拌処理装置5にポット型のミキサー25を用い、このミキサー25は、回転中心が斜設された回転胴26を備え、この回転胴26の上部に開口部27を有する。また、予備実験で使用した汚染土壌採取時の空間線量は、1.5μSv/hであった。
Preliminary Experiments FIGS. 4 and 5 are drawings relating to a preliminary experiment. As shown in FIG. 4, a pot-type mixer 25 is used for the agitation processing apparatus 5, and this mixer 25 has a rotating drum whose rotation center is inclined. 26 and has an opening 27 at the top of the rotating drum 26. In addition, the air dose at the time of collecting the contaminated soil used in the preliminary experiment was 1.5 μSv / h.
試料28は、実験例2では、セシウムを含む汚染土壌2kgと水20リットルとこれらに対して界面活性剤0.5重量%を混合した汚染土壌混合物を用いた。前記試料28を回転胴26に投入し、回転胴26を回転すると共に、圧縮ノズル29の先端と振動棒30の先端を試料28内に挿入し、圧縮ノズル29の先端から試料28内に圧縮空気を噴出し、また、振動棒30を振動駆動する。尚、振動棒30の先端は回転胴26の内面に接触しないように保持する。このように試料28に圧縮空気の供給と振動を与えた状態で、撹拌処理を2時間行った。 Sample 28 used in Example 2 was a contaminated soil mixture in which 2 kg of contaminated soil containing cesium, 20 liters of water, and 0.5% by weight of a surfactant were mixed. The sample 28 is put into the rotating cylinder 26, the rotating cylinder 26 is rotated, the tip of the compression nozzle 29 and the tip of the vibrating bar 30 are inserted into the sample 28, and the compressed air is introduced into the sample 28 from the tip of the compression nozzle 29. And the vibration rod 30 is driven to vibrate. The tip of the vibrating bar 30 is held so as not to contact the inner surface of the rotary drum 26. In this manner, with the supply of compressed air and vibration to the sample 28, the stirring treatment was performed for 2 hours.
このように実験例2では、回転胴26の回転による「撹拌」、「界面活性剤」の混合、「圧縮空気」の供給、振動棒30による「振動」の付与の条件より撹拌処理を行った。 As described above, in Experimental Example 2, the stirring process was performed under the conditions of “stirring” by rotation of the rotating drum 26, mixing of “surfactant”, supplying “compressed air”, and applying “vibration” by the vibrating rod 30. .
また、上記表1に示すように、実験例7では、実験例2の「振動」の付与を行わずに撹拌処理を行った。実験例3では「撹拌」のみ、実験例4では、「撹拌」、「圧縮空気」の供給、実験例5では、「撹拌」、「界面活性剤」の混合、実験例6では、「撹拌」、「振動」の条件でそれぞれ行われた。 Further, as shown in Table 1 above, in Experimental Example 7, the stirring treatment was performed without applying the “vibration” of Experimental Example 2. In Experimental Example 3, only “stirring”, in Experimental Example 4, “stirring”, supply of “compressed air”, in Experimental Example 5, “stirring”, mixing of “surfactant”, in Experimental Example 6, “stirring” And “vibration” conditions.
尚、実験例1は、セシウムを含む汚染土壌2kgと水20リットルからなる原試料であり、撹拌処理を行っていない。また、本予備実験及び後述する本実験に用いた界面活性剤は、陽イオン性界面活性剤としては、第四級アンモニウム塩型を用い、凝集剤には、上述したように、原料にシラス(火山灰)を適用し、この特性を利用した特殊な焼成技術により製造したものを用いた。 In addition, Experimental Example 1 is an original sample composed of 2 kg of contaminated soil containing cesium and 20 liters of water, and is not subjected to stirring treatment. The surfactant used in this preliminary experiment and in this experiment described later uses a quaternary ammonium salt type as the cationic surfactant, and as described above, the flocculant contains shirasu ( Volcanic ash) was applied, and a product manufactured by a special firing technique using this property was used.
実験例1を除いて撹拌処理後、試料を分級した。実験例1はそのまま分級を行った。この場合、篩により粒径2mm以上、75μm〜2mm、75μm未満に分級した。尚、粒径2mm以上は、篩の目が2mmのものを通過しないもの(礫)、粒径75μm〜2mmは、篩の目が2mmのものを通過し、且つ篩の目が75μmのものを通過しないもの(砂)、75μm未満は、篩の目が75μmのものを通過するものである。また、75μm未満に分級した後、分級した試料に凝集剤を添加して静置することにより、固形分が凝集沈殿し、上水を除去してシルト及び粘土を主体とする固形分(シルト粘土)を分離する。 The sample was classified after stirring treatment except for Experimental Example 1. In Experimental Example 1, classification was performed as it was. In this case, the particle size was classified into 2 mm or more, 75 μm to 2 mm, and less than 75 μm with a sieve. In addition, when the particle diameter is 2 mm or more, the sieve mesh does not pass 2 mm (pebbles), and the particle size of 75 μm to 2 mm is when the sieve mesh passes 2 mm and the sieve mesh is 75 μm. Those that do not pass (sand) and less than 75 μm pass through those having a sieve mesh of 75 μm. Moreover, after classifying to less than 75 μm, adding a flocculant to the classified sample and allowing to stand, the solid content is agglomerated and precipitated, and the solid content (silt clay) mainly composed of silt and clay is removed by removing the water. ).
上記表2は、分級した礫、砂、シルト粘土のセシウム量を測定した結果を示している。ここでCs比率とは、測定したセシウム量をセシウム全体の量で序した値であり、粒径2mm以上の礫と、粒径75μm〜2mmの砂は、撹拌処理によりセシウム量が減少し、粒径75μm未満のシルト粘土ではセシウム量が上昇した。尚、表2の棒グラフは、実験例1を左側とし、その右側に実験例2、3、4、5、6、7の順に並び、実験例7は右側に位置する。 Table 2 above shows the results of measuring the amount of cesium of classified gravel, sand, and silt clay. Here, the Cs ratio is a value obtained by ordering the measured amount of cesium by the total amount of cesium. Gravel having a particle size of 2 mm or more and sand having a particle size of 75 μm to 2 mm are reduced in the amount of cesium by stirring treatment. The amount of cesium increased in silt clay with a diameter of less than 75 μm. In the bar graph in Table 2, Experimental Example 1 is on the left side, and Experimental Examples 2, 3, 4, 5, 6, and 7 are arranged on the right side in that order, and Experimental Example 7 is located on the right side.
また、実験例2と実験例7との比較から、「振動」を付与することにより、セシウム除去が向上することが分かる。さらに、実験例4及び実験例5から、「撹拌」に「圧縮空気」と「界面活性剤」の一方を組み合わせた場合に効果が認められず、界面活性剤によるセシウムの遊離は、圧縮空気の注入により発生する乱流により助長されていると考えられる。 Further, from comparison between Experimental Example 2 and Experimental Example 7, it can be seen that the removal of cesium is improved by applying “vibration”. Further, from Experimental Example 4 and Experimental Example 5, no effect was observed when one of “compressed air” and “surfactant” was combined with “stirring”, and the release of cesium by the surfactant is It is thought that it is promoted by the turbulent flow generated by the injection.
下記の表3〜表5に、3つに分級したもののそれぞれのCs比率などを示す。 Tables 3 to 5 below show Cs ratios and the like of those classified into three.
上記表3〜表5では、実験例1、3、7、2について、Cs比率、原資料に対するCs除去率、低下率、Cs濃度を示す。 Tables 3 to 5 show the Cs ratio, the Cs removal rate relative to the original material, the reduction rate, and the Cs concentration for Experimental Examples 1, 3, 7, and 2.
尚、原資料に対するCs除去率は、下記の式で表される。 The Cs removal rate for the original material is expressed by the following equation.
原資料に対するCs除去率=(1−(処理後のCs比率/原試料のCs比率))×100 Cs removal rate relative to the original material = (1- (Cs ratio after processing / Cs ratio of original sample)) × 100
また、低下値は、原試料に対するCs除去率において、下段の値から上段の値を引いたものであり、例えば、表3では、実験例7の値75%から実験例3の値68%を引いて低下値が7%となる。 Further, the decrease value is obtained by subtracting the upper value from the lower value in the Cs removal rate for the original sample. For example, in Table 3, the value of Experimental Example 7 is changed from the value of Experimental Example 7 to 75%. By subtracting, the drop value becomes 7%.
上記のように、「撹拌」のみの実験例3では、2mm以上の粒子では、原試料に対するCs除去率が68%であるが、75μm〜2mmの粒子では、同Cs除去率が28%であり、十分な効果が得られず、界面活性剤を用いた実験例2及び7において、高いセシウム除去率が得られた。 As described above, in Experimental Example 3 with only “stirring”, the Cs removal rate with respect to the original sample is 68% for particles of 2 mm or more, but the Cs removal rate is 28% for particles of 75 μm to 2 mm. A sufficient effect was not obtained, and in Examples 2 and 7 using a surfactant, a high cesium removal rate was obtained.
また、表5において、原試料に対するCs増加率の上昇は、75μm以上の粒子から、遊離Csが75μm未満の粒子へ移行したことを示唆するものである。 In Table 5, the increase in the Cs increase rate relative to the original sample suggests that the particles having a size of 75 μm or more have been transferred to particles having a free Cs of less than 75 μm.
これらのことから、「撹拌」「界面活性剤」「圧縮空気」を条件とする実験例7がCs除去効果に優れ、さらに、「撹拌」「界面活性剤」「圧縮空気」「振動」を条件とする実験例2がそれよりもCs除去効果に優れることが分かった。 From these facts, Experimental Example 7 under the conditions of “stirring”, “surfactant” and “compressed air” is excellent in Cs removal effect, and further, “stirring”, “surfactant”, “compressed air” and “vibration” are the conditions. It was found that Experimental Example 2 in which Cs removal effect is more excellent than that.
本実験
図6は本実験に係るフローを示し、本実験では前記予備実験と同様に、撹拌処理装置にポット型のミキサー25を用い、圧縮ノズル29に圧縮空気の供給を行い、振動は与えずに、回転胴26の回転による撹拌処理を2時間行った。また、本実験で使用した汚染土壌A採取時の区間染量は1.5μSv/h、同汚染土壌B採取時の空間線量は1.9μSv/hであった。
FIG. 6 shows a flow related to this experiment. In this experiment, as in the preliminary experiment, a pot-type mixer 25 is used as the agitation processing apparatus, compressed air is supplied to the compression nozzle 29, and no vibration is applied. In addition, a stirring process by rotating the rotary drum 26 was performed for 2 hours. In addition, the interval dyeing amount at the time of collecting the contaminated soil A used in this experiment was 1.5 μSv / h, and the air dose at the time of collecting the contaminated soil B was 1.9 μSv / h.
撹拌処理を行う前に、先ず、回転胴26に汚染土壌2kgを投入し、さらに、研磨剤として複数のボルト(図示せず)を回転胴26内の汚染土壌に混入し、予備実験と同じ回転速度で、擦洗いを2時間行った。擦洗い後、研磨剤を回収した。 Before performing the agitation process, first, 2 kg of contaminated soil is put into the rotating drum 26, and a plurality of bolts (not shown) are mixed in the contaminated soil in the rotating drum 26 as an abrasive, and the same rotation as in the preliminary experiment. Rubbing was carried out for 2 hours at a speed. After the scrubbing, the abrasive was recovered.
この後、汚染土壌に水20リットルを加え、これら汚染土壌と水に対して界面活性剤0.5重量%(110g)を混合して汚染土壌混合物を構成し、混合後、回転胴を停止した状体で15時間静置する漬け置きを行った。そして、擦洗いと漬け置きが前処理である。 Thereafter, 20 liters of water was added to the contaminated soil, and 0.5 wt% (110 g) of a surfactant was mixed with the contaminated soil and water to form a contaminated soil mixture. After mixing, the rotating drum was stopped. The soaking was carried out for 15 hours in the form. Rubbing and soaking are pretreatments.
15時間静置した後、上記実施例7と同じ条件で撹拌処理を行った。即ち、「撹拌」「界面活性剤」「圧縮空気」を用いて撹拌処理を行った。 After leaving still for 15 hours, the stirring process was performed on the same conditions as the said Example 7. That is, the stirring process was performed using “stirring”, “surfactant”, and “compressed air”.
土壌Aと土壌Bにつき、それぞれ実験を行った結果を、図7及び図8に示す。同図は、上段が原土(処理前の汚染土壌)、中段が前処理なしの撹拌処理済の処理土、下段が前処理ありの撹拌処理済の処理土に対応し、ぞれぞれの粒度範囲の分布を示している。例えば、図7の上段では、左側から粒径2mm以上の礫が16.9%、粒径425μm以上〜2mm未満の粗砂が58.8%、粒径75μm以上〜425μm未満の細砂が9.0%、残りのシルト粘土が15.3%である。 The results of experiments for soil A and soil B are shown in FIGS. In the figure, the upper part corresponds to the soil (contaminated soil before treatment), the middle part corresponds to the treated soil without pretreatment, and the lower part corresponds to the treated soil with pretreatment. The distribution of the particle size range is shown. For example, in the upper part of FIG. 7, from the left side, 16.9% of gravel with a particle size of 2 mm or more, 58.8% of coarse sand with a particle size of 425 μm to less than 2 mm, and 9 of fine sand with a particle size of 75 μm to less than 425 μm. 0.0% and the remaining silt clay is 15.3%.
尚、本実験では、細粒分と粗粒分の境目(分岐点)を425μm以上、即ち篩の目が425μmを通過するものを細粒分としたが、前記境目は425μm未満でもよく、例えば予備実験のように境目を75μm以上としてもよい(425μm>境目>=75μm)。 In this experiment, the boundary between fine particles and coarse particles (branch point) is 425 μm or more, that is, the fine particles are those that pass through 425 μm, but the boundary may be less than 425 μm, for example, As in the preliminary experiment, the boundary may be 75 μm or more (425 μm> boundary> = 75 μm).
同図から明らかなように、撹拌処理における擦洗いにより汚染土壌の細砂及びシルト粘土の組成が大きくなる傾向にある。さらに、前処理を行うことにより、細砂及びシルト粘土の組成が大きくなる傾向が顕著になる。 As is apparent from the figure, the composition of fine sand and silt clay in the contaminated soil tends to increase due to scrubbing in the stirring treatment. Furthermore, the tendency for the composition of fine sand and silt clay to become large becomes remarkable by performing pre-processing.
図9及び図10に前記汚染土壌A及び汚染土壌Bのセシウム濃度の変化を示す。図9は、図7の上段、中段、下段の帯グラフを左側、中央、右側に並べ、帯グラフの下に対応するグラフを記載したものであり、下のグラフは縦軸にセシウム濃度、横軸に重量割合を採っている。 9 and 10 show changes in cesium concentration in the contaminated soil A and the contaminated soil B. FIG. FIG. 9 shows the upper, middle, and lower band graphs of FIG. 7 on the left side, center, and right side, and the corresponding graph is shown below the band graph. The weight ratio is taken on the shaft.
図9に示す汚染土壌Aでは、撹拌処理前の土壌は各粒径共にCs濃度が3000Bq/kgを越え、粗砂とシルト粘土の汚染濃度が比較的高い状況であった。撹拌処理後は、礫、粗砂のCs濃度はそれぞれ2100Bq/kg、1920Bq/kgまで低下し、さらに、前処理を施すことにより、Cs濃度の低下が見られた。尚、本願では、再利用可能なCs濃度の基準を3000Bq/kg以下としている。 In the contaminated soil A shown in FIG. 9, the soil before stirring treatment had a Cs concentration exceeding 3000 Bq / kg for each particle size, and the contamination concentrations of coarse sand and silt clay were relatively high. After the stirring treatment, the Cs concentrations of gravel and coarse sand decreased to 2100 Bq / kg and 1920 Bq / kg, respectively, and further, the Cs concentration was lowered by pretreatment. In the present application, the reusable Cs concentration criterion is 3000 Bq / kg or less.
汚染土壌Bは汚染土壌AよりCs全体量が多く、図10に示すように、汚染土壌Bでは、撹拌処理前は各粒径共にCs濃度が30000Bq/kgを越えていた。撹拌処理後は前処理を施すことにより、汚染レベルは礫分が1070Bq/kg、粗砂分が2360Bq/kgまでCs濃度の低下が見られた。 Contaminated soil B has a larger amount of Cs than contaminated soil A. As shown in FIG. 10, in contaminated soil B, the Cs concentration exceeded 30000 Bq / kg for each particle size before the stirring treatment. By performing pretreatment after the stirring treatment, the Cs concentration was reduced to a contamination level of 1070 Bq / kg for gravel and 2360 Bq / kg for coarse sand.
以上の本実験から下記のことが分かった。
(1)汚染土壌Aの撹拌処理効果について
セシウム濃度が13000Bq/kgの汚染土壌Aを洗浄・分級することにより、54.4wt%の土粒子(レキ、粗砂)をセシウム濃度3000Bq/kg以下にすることができる。また、前処理することにより汚染濃度は低下し、おおよそ65%の土粒子(レキ、粗砂、細砂)をセシウム濃度3000Bq/kg以下にすることができ(下記の表6参照)、再生資材としての活用することが出来る。
The following was found from the above experiment.
(1) Effect of agitation treatment on contaminated soil A By washing and classifying contaminated soil A with a cesium concentration of 13000 Bq / kg, 54.4 wt% of soil particles (reki, coarse sand) is reduced to a cesium concentration of 3000 Bq / kg or less. be able to. In addition, the pretreatment reduces the contamination concentration, and approximately 65% of the soil particles (reki, coarse sand, fine sand) can be reduced to a cesium concentration of 3000 Bq / kg or less (see Table 6 below). Can be used as
(2)汚染土壌Bの撹拌処理効果について
セシウム濃度が34000Bq/kgの汚染土壌Bを前処理を施した後に洗浄・分級することにより、汚染濃度は低下し、およそ18%の土粒子(レキ、粗砂)を3000Bq/kg以下にすることができ(下記の表7参照)、再生資材としての活用が見込まれる。
(3)前処理の有効性について
前処理により、Cs濃度の低下が見られるが、一方でレキ、粗砂分の体積が小さくなることから、洗浄土のセシウム濃度と体積のバランスを加味して前処理の実施を検討する必要がある。
(2) Contamination effect of contaminated soil B Contaminated soil B with a cesium concentration of 34000Bq / kg is pretreated and then washed and classified to reduce the contaminated concentration. Coarse sand) can be reduced to 3000 Bq / kg or less (see Table 7 below), and it is expected to be used as recycled material.
(3) Efficacy of pretreatment Although the Cs concentration is reduced by pretreatment, the volume of reki and coarse sand is reduced, so the balance between the cesium concentration and the volume of the washed soil is taken into account. It is necessary to consider the implementation of pretreatment.
ここで、図11を用いて撹拌による擦洗いの効果を説明する。同図に示すように、撹拌中における土粒子と土粒子の接触により、粗粒分に付着する細粒分を分離させ、この付着していた細粒分には粗粒分よりセシウムが多く吸着しているから、細粒分と共にセシウムを分離することができる。 Here, the effect of rubbing by stirring will be described with reference to FIG. As shown in the figure, the fine particles adhering to the coarse particles are separated by the contact between the soil particles and the particles during the stirring, and the adhering fine particles adsorb more cesium than the coarse particles. Therefore, cesium can be separated together with fine particles.
また、図12に示すように、界面活性剤により、セシウムの周囲を−(マイナス)に帯電させ、プラスのセシウムを遊離させ、遊離したセシウムが細粒分に吸着される。 In addition, as shown in FIG. 12, the surface of the cesium is charged negatively (-) by the surfactant, and positive cesium is liberated, and the liberated cesium is adsorbed on the fine particles.
これらの場合、圧縮空気により気泡が発生し、この気泡により発生する乱流により、擦洗いおよびCs遊離効果が促進される。 In these cases, bubbles are generated by the compressed air, and the turbulent flow generated by the bubbles promotes the scrubbing and Cs releasing effect.
このように本実施例では、放射性物質を含む汚染土壌1を放射性物質と処理土壌とに分別する放射性物質の除去方法において、汚染土壌1を取り除く除去工程S1と、除去した汚染土壌1に洗浄水と界面活性剤を混合し、この混合物に圧縮空気を供給しながら撹拌する撹拌工程S3と、撹拌後の汚染土壌混合物を粗粒分と細粒分に分級する分級工程S4とを備え、処理土壌として粗粒分を得るから、界面活性剤による分離作用と、圧縮空気を供給しながらの撹拌による分離作用とにより、粗粒分からセシウムが分離すると共に、セシウムの付着している細粒分を粗粒分から分離することができ、この分離したセシウムが細粒分に移動する。この後、粗粒分と細粒分とを分離し、前記セシウム濃度の低い粗粒分が得られる。 Thus, in this embodiment, in the method of removing radioactive materials fractionating contaminated soil 1 containing radioactive material and radioactive materials and processing soil, and removing process S1 to remove the contaminated soil 1, the contaminated soil 1 has been removed Mixing washing water and surfactant, stirring step S3 for stirring while supplying compressed air to the mixture, and classification step S4 for classifying the contaminated soil mixture after stirring into coarse and fine particles, Since coarse particles are obtained as treated soil, cesium is separated from the coarse particles by the separation action by the surfactant and the separation action by stirring while supplying compressed air, and the fine particles to which cesium is adhered. Can be separated from the coarse particles, and the separated cesium moves to the fine particles. Thereafter, the coarse particles and fine particles are separated to obtain the coarse particles having a low cesium concentration.
また、このように本実施例では、撹拌工程S3において、汚染土壌混合物に振動を与えるから、圧縮空気を供給しながらの撹拌に、更に振動を与えることにより、セシウムの分離作用が向上する。 Also, in this way this embodiment, in 撹拌step S3, because applying vibration to the contaminated soil mixture, the agitation while supplying compressed air, by further applying vibration isolation effect of cesium is improved.
また、このように本実施例では、撹拌工程S3の前に、汚染土壌1に界面活性剤を混合して漬け置きするから、撹拌処理S3の前に汚染土壌1に界面活性財による漬け置きを行うことにより、界面活性剤による分離作用が向上する。 Further, in this embodiment Thus, prior to the 撹拌step S3, because for soaking by mixing a surfactant contaminated soil 1, by soaking with a surfactant goods to contaminated soil 1 prior to stirring treatment S3 By performing this, the separation action by the surfactant is improved.
また、このように本実施例では、粗粒分を再利用するから、セシウム濃度の低い粗粒分を土木材料などに再利用できる。 Further, in this embodiment, since the coarse particles are reused , the coarse particles having a low cesium concentration can be reused as civil engineering materials.
また、このように本実施例では、放射性物質を含む汚染土壌1を放射性物質と処理土壌とに分別する放射性物質の除去装置において、汚染土壌を取り除く除去装置たる浚渫船2と、除去した汚染土壌1に洗浄水と界面活性剤を混合した混合物に圧縮空気を供給しながら撹拌する撹拌装置たる撹拌処理装置5と、撹拌後の汚染土壌混合物を粗粒分と細粒分に分級する分級装置6とを備えるから、上記請求項1と同様の作用・効果を奏する。 Further, in this embodiment Thus, in the apparatus for removing radioactive material to separate contaminated soil 1 containing radioactive material and processing soil and radioactive substances, the removal device in the form dredger 2 to remove the contaminated soil to remove contaminants An agitation treatment device 5 as an agitation device for agitation while supplying compressed air to a mixture of washing water and a surfactant mixed in the soil 1, and a classification device for classifying the contaminated soil mixture after agitation into coarse and fine particles 6 has the same functions and effects as those of the first aspect.
また、このように本実施例では、混合物に振動を与える振動手段を備えるから、上記請求項2と同様の作用・効果を奏する。 Further, in the present embodiment in this manner, because provided with vibrating means for vibrating the mixed compound, the same operation and effect as the second aspect.
また、実施例上の効果として、汚染土壌1が浚渫して得られたものであり、比較的含水率が高いから、流動化が容易又は不要となる。また、撹拌処理S2の前に研磨剤を混合した撹拌により擦り洗する前撹拌工程を行うから、粗粒分からセシウムを含んだ細粒分が機械的に擦り降ろされる。尚、前撹拌手段では、加水せず、撹拌工程S2より含水比が低い状態で擦り洗い擦るから、擦り降ろし効果が高い。 Moreover, as an effect on the examples, the contaminated soil 1 is obtained by dripping and has a relatively high water content, so that fluidization is easy or unnecessary. In addition, since a pre-stirring step of scrubbing with agitation mixed with an abrasive is performed before the stirring treatment S2, fine particles containing cesium are mechanically scraped from the coarse particles. The pre-stirring means does not add water, and scrubs and rubs in a state where the water content ratio is lower than that in the stirring step S2, so that the effect of scraping off is high.
図13は本発明の請求項に対応する除去装置を示す。同図では、撹拌処理装置5の変形例を示し、この例の撹拌処理装置5は、基台31にスクリューコンベア本体32を斜設し、このスクリューコンベア本体32は、円筒状の胴本体33の基端を、枢着部34により基台31に揺動可能に連結し、胴本体33の先端側を伸縮駆動手段35により基台31に連結する。また、伸縮駆動手段35の端部は基台31と胴本体33に枢着し、角度調整手段たる伸縮駆動手段35を伸縮駆動することにより、スクリューコンベア本体32の傾斜角度を調整することができる。尚、伸縮駆動手段35としては、油圧シリンダなどの流体圧駆動シリンダなどを用いることができる。 13 shows the removal device corresponding to the claims of the invention. In the figure, a modification of the agitation processing apparatus 5 is shown. In the agitation processing apparatus 5 of this example, a screw conveyor main body 32 is obliquely installed on a base 31, and the screw conveyor main body 32 is formed of a cylindrical body 33. The base end is connected to the base 31 by a pivot 34 so as to be swingable, and the distal end side of the trunk body 33 is connected to the base 31 by a telescopic drive means 35. Also, the tilt angle of the screw conveyor main body 32 can be adjusted by pivoting the end of the expansion / contraction driving means 35 to the base 31 and the trunk body 33 and driving the expansion / contraction driving means 35 as angle adjusting means to extend and contract. . As the expansion / contraction driving means 35, a fluid pressure driving cylinder such as a hydraulic cylinder can be used.
前記胴本体33内には回転駆動軸36を設け、この回転駆動軸36にスクリュー37を設け、回転駆動軸36の両端を軸受38,38により胴本体33に回動可能に設ける。また、回転駆動軸36の基端側に従動輪39を設け、この従動輪39を回転駆動することにより、スクリュー37が回転し、胴本体33内の混合物が基端側から先端側に圧送される。 A rotation drive shaft 36 is provided in the body main body 33, a screw 37 is provided on the rotation drive shaft 36, and both ends of the rotation drive shaft 36 are rotatably provided on the body main body 33 by bearings 38 and 38. Further, a driven wheel 39 is provided on the proximal end side of the rotation drive shaft 36, and the driven wheel 39 is rotationally driven, whereby the screw 37 is rotated and the mixture in the trunk body 33 is pumped from the proximal end side to the distal end side. The
前記胴本体33の基端側上部には投入口41が設けられ、胴本体33の先端側下部に排出口42を設け、前記投入口41に混合物を投入する投入装置43が設けられている。また、胴本体33の先端側上部に液体供給口44を設け、胴本体33の基端側下部に圧縮空気の空気ノズル45が設けられている。尚、混合物に振動を与える場合は、胴本体33の外周下部に振動手段46を設け、この振動手段46により胴本体33内の混合物を振動するようにすればよい。 A loading port 41 is provided at the upper part on the base end side of the trunk body 33, a discharge port 42 is provided at the lower end on the distal end side of the trunk body 33, and a feeding device 43 for feeding the mixture into the loading port 41 is provided. Further, a liquid supply port 44 is provided at the upper end on the distal end side of the trunk body 33, and an air nozzle 45 for compressed air is provided at the lower end on the proximal end side of the trunk body 33. In the case where vibration is applied to the mixture, vibration means 46 may be provided in the lower part of the outer periphery of the trunk body 33, and the mixture in the trunk body 33 may be vibrated by the vibration means 46 .
そして、前記調泥槽4の汚染土壌混合物を投入装置43に供給する。尚、液体供給口44から水を胴本体33に供給するから、所定含水比より低い状態の汚染土壌混合物を投入装置43に供給するようにする。 Then, the contaminated soil mixture in the mud tank 4 is supplied to the charging device 43. Since water is supplied from the liquid supply port 44 to the trunk main body 33, a contaminated soil mixture having a lower water content is supplied to the charging device 43.
投入装置43から一定量の汚染土壌混合物が投入口41に投入され、空気ノズル45から胴本体33内に圧縮空気が供給された状態で、混合物はスクリュー37により撹拌されながら排出口42側に移送され、撹拌処理される。この場合、投入装置43の混合物の投入量に対応して液体供給口44から水が供給され、胴本体33内の混合物が設定含水比になるように制御される。 A fixed amount of contaminated soil mixture is introduced into the inlet 41 from the charging device 43, and the mixture is transferred to the outlet 42 while being stirred by the screw 37 while being supplied with compressed air from the air nozzle 45 into the trunk body 33. And stirred. In this case, water is supplied from the liquid supply port 44 in accordance with the amount of the mixture charged in the charging device 43, and the mixture in the trunk body 33 is controlled to have a set water content ratio.
このように本実施例では、請求項1に対応して、放射性物質を含む汚染土壌1を放射性物質と処理土壌とに分別する放射性物質の除去装置において、汚染土壌を取り除く除去装置たる浚渫船2と、除去した汚染土壌1に洗浄水と界面活性剤を混合した混合物に圧縮空気を供給しながら撹拌する撹拌装置たる撹拌処理装置5と、撹拌後の汚染土壌混合物を粗粒分と細粒分に分級する分級装置6とを備え、撹拌処理装置5は、先端側を基端側より上にして斜設したスクリューコンベア本体32を備え、スクリューコンベア本体32は、胴本体33と、胴本体33内に設けられ、回転駆動して胴本体33内の前記混合物を基端側から先端側に圧送するスクリュー37と、胴本体33の基端側に設けられた前記混合物の投入口41と、胴本体33の先端側に設けられた前記混合物の排出口42と、胴本体33内の前記混合物に圧縮空気を供給する空気ノズル45と、胴本体33内の前記混合物に振動を与える振動手段46とを備えるから、スクリュー37により混合物を撹拌しながら搬送するから、混合物の連続処理が可能となる。 Thus, in the present embodiment , corresponding to claim 1, in the radioactive substance removing apparatus for separating the contaminated soil 1 containing the radioactive substance into the radioactive substance and the treated soil, the dredger 2 as a removing apparatus for removing the contaminated soil; , The stirrer 5 as a stirrer that stirs while supplying compressed air to the mixture of washed water and surfactant in the contaminated soil 1 that has been removed, and the contaminated soil mixture after the stirrer into coarse and fine particles A classifying device 6 for classifying, and the agitation processing device 5 includes a screw conveyor main body 32 that is obliquely arranged with the front end side being higher than the base end side. The screw conveyor main body 32 includes a body main body 33 and a body main body 33. A screw 37 that is rotationally driven to pressure-feed the mixture in the trunk body 33 from the proximal end side to the distal end side, an inlet 41 for the mixture provided on the proximal end side of the trunk body 33, and a trunk body 33. The mixing provided on the tip side of 33 A discharge port 42, an air nozzle 45 for supplying compressed air to the mixture in the trunk body 33, and a vibration means 46 for vibrating the mixture in the trunk body 33, so that the mixture is stirred by a screw 37. Therefore, the mixture can be continuously processed.
このように本実施例では、請求項2に対応して、胴本体33の外周に振動手段46を設けたから、胴本体33の外周に設けた振動手段46より、胴本体33内の混合物に振動を与えることができる。 Thus, in this embodiment, since the vibration means 46 is provided on the outer periphery of the trunk body 33 in accordance with the second aspect, the mixture in the trunk body 33 is vibrated by the vibration means 46 provided on the outer periphery of the trunk body 33. Can be given.
このように本実施例では、請求項3に対応して、胴本体33内に水を供給する液体供給口44を備えるから、胴本体33内の混合物に水を供給することができる。 Thus, in the present embodiment, corresponding to the third aspect, the liquid supply port 44 for supplying water into the trunk body 33 is provided, so that water can be supplied to the mixture in the trunk body 33.
このように本実施例では、請求項4に対応して、胴本体33の基端側を基台31に揺動可能に連結し、スクリューコンベア本体32の傾斜角度を調整する角度調整手段たる伸縮駆動手段35を備え、また、このように本実施例では、請求項5に対応して、角度調整手段が、端部を胴本体33と基台31に枢着した伸縮駆動手段35であるから、胴本体33は角度が調整可能であるから、回転速度が一定の場合、角度が大きくなれば、スクリュー37により混合物に加わる撹拌力を大きくすることができる。 Thus, in the present embodiment, corresponding to claim 4, the base end side of the trunk body 33 is connected to the base 31 so as to be swingable, and the expansion and contraction is an angle adjusting means for adjusting the inclination angle of the screw conveyor body 32. The driving means 35 is provided, and in this embodiment, the angle adjusting means is the expansion / contraction driving means 35 pivotally attached to the trunk body 33 and the base 31 in correspondence with the fifth aspect. The angle of the body 33 can be adjusted. Therefore, when the rotational speed is constant, the stirring force applied to the mixture by the screw 37 can be increased as the angle increases.
また、混合物に振動を与える振動手段46を備えるから、圧縮空気を供給しながらの撹拌に、更に振動を与えることにより、セシウムの分離作用が向上する。 Also, since provided with vibrating means 46 for vibrating the mixed compound, the agitation while supplying compressed air, by further applying vibration isolation effect of cesium is improved.
尚、本発明は、本実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、実施例では、除去した汚染土壌から異物を分離した後、撹拌処理を行っても良い。また、放射性物質はセシウムに限らず各種の放射性物質の除去に用いることができる。 The present invention is not limited to this embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, in the embodiment, the agitation treatment may be performed after the foreign matter is separated from the removed contaminated soil. Moreover, radioactive materials may be used to remove a variety of radioactive substances is not limited to cesium.
1 汚染土壌
1A 粗粒分
2 浚渫船(除去装置)
5 撹拌処理装置(撹拌装置)
6 分級装置(分離装置)
12 脱水土壌(処理土壌)
29 圧縮ノズル
30 振動棒
31 基台
32 スクリューコンベア本体
33 胴本体
35 伸縮駆動手段(角度調整手段)
37 スクリュー
41 投入口
42 排出口
44 液体供給口
45 空気ノズル
46 振動手段
1 Contaminated soil 1A Coarse grain 2 Dredger (removal device)
5 Stir processing device (stirring device)
6 Classification device (separation device)
12 Dehydrated soil (treated soil)
29 Compression nozzle
30 Vibrating bar
31 base
32 Screw conveyor body
33 trunk
35 Telescopic drive means (angle adjustment means)
37 screw
41 slot
42 outlet
44 Liquid supply port
45 Air nozzle
46 Vibration means
Claims (5)
前記撹拌装置は、先端側を基端側より上にして斜設したスクリューコンベア本体を備え、
前記スクリューコンベア本体は、
胴本体と、
前記胴本体内に設けられ、回転駆動して前記胴本体内の前記混合物を基端側から先端側に圧送するスクリューと、
前記胴本体の基端側に設けられた前記混合物の投入口と、
前記胴本体の先端側に設けられた前記混合物の排出口と、
前記胴本体内の前記混合物に前記圧縮空気を供給する空気ノズルと、
前記胴本体内の前記混合物に振動を与える振動手段とを備えることを特徴とする放射性物質の除去装置。 In a radioactive substance removal apparatus for separating contaminated soil containing radioactive substances into radioactive substance and treated soil, the removal apparatus for removing the contaminated soil, and a mixture of washing water and a surfactant mixed in the removed contaminated soil, compressed air A stirring device that stirs while supplying water, and a classification device that classifies the contaminated soil mixture after stirring into coarse and fine particles ,
The stirring device includes a screw conveyor body that is obliquely arranged with the distal end side being higher than the proximal end side,
The screw conveyor body is
The trunk body,
A screw provided in the barrel main body, and rotationally driven to pump the mixture in the barrel main body from the proximal end side to the distal end side;
An inlet for the mixture provided on the base end side of the trunk body;
A discharge port of the mixture provided on the front end side of the trunk body;
An air nozzle for supplying the compressed air to the mixture in the trunk body;
An apparatus for removing a radioactive substance, comprising: vibration means for applying vibration to the mixture in the trunk body .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013223707A JP6199154B2 (en) | 2013-10-28 | 2013-10-28 | Radioactive substance removal equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013223707A JP6199154B2 (en) | 2013-10-28 | 2013-10-28 | Radioactive substance removal equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015087130A JP2015087130A (en) | 2015-05-07 |
JP6199154B2 true JP6199154B2 (en) | 2017-09-20 |
Family
ID=53050084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013223707A Active JP6199154B2 (en) | 2013-10-28 | 2013-10-28 | Radioactive substance removal equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6199154B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6770821B2 (en) * | 2016-04-01 | 2020-10-21 | 株式会社オメガ | How to purify contaminated soil |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03123298U (en) * | 1990-03-28 | 1991-12-16 | ||
US5128068A (en) * | 1990-05-25 | 1992-07-07 | Westinghouse Electric Corp. | Method and apparatus for cleaning contaminated particulate material |
US5436384A (en) * | 1993-10-18 | 1995-07-25 | Westinghouse Elec. Corp. | Process for the remediation of contaminated particulate material |
JP4636738B2 (en) * | 2000-08-24 | 2011-02-23 | 株式会社前川製作所 | Contaminated soil purification method and apparatus |
JP3783940B2 (en) * | 2002-04-10 | 2006-06-07 | 鹿島建設株式会社 | Purification method and apparatus for oil-contaminated soil |
JP2005169176A (en) * | 2003-12-08 | 2005-06-30 | Hitachi Constr Mach Co Ltd | Method, apparatus and system for treating contaminated soil |
JP2006026454A (en) * | 2004-07-12 | 2006-02-02 | Hitachi Constr Mach Co Ltd | Apparatus, system and method for treating contaminated soil |
JP2006116397A (en) * | 2004-10-20 | 2006-05-11 | Shimizu Corp | Washing method and washing apparatus of contaminated soil |
JP5753760B2 (en) * | 2011-10-20 | 2015-07-22 | 三井住友建設株式会社 | Purification method of radioactive material contaminated soil |
WO2013065744A1 (en) * | 2011-10-31 | 2013-05-10 | 株式会社カネカ | Decontamination agent and decontamination method using same |
JP5155487B1 (en) * | 2012-07-23 | 2013-03-06 | あおみ建設株式会社 | Classification method of contaminated soil |
JP5249474B1 (en) * | 2013-01-18 | 2013-07-31 | 株式会社カイジョー | Ultrasonic cleaning apparatus and ultrasonic cleaning method |
-
2013
- 2013-10-28 JP JP2013223707A patent/JP6199154B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015087130A (en) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5771343B1 (en) | Contaminated soil purification equipment | |
KR100460629B1 (en) | Soil Washing Apparatus and Soil Washing Device Using It | |
KR100988047B1 (en) | Pollutants in the soil washing method and system | |
KR101782615B1 (en) | Contaminated soil remediation system and remediation method having the same | |
US6582610B2 (en) | Concrete grindings reclamation system | |
CN204220613U (en) | A kind of Soil leaching equipment | |
US20200222953A1 (en) | Solid waste treatment system and method | |
CN104843955A (en) | Oil and gas field drilling mud waste while-drilling processing system and processing method thereof | |
JP2005081247A (en) | Apparatus for cleaning contaminated soil | |
JP4364889B2 (en) | Method and apparatus for treating dredged soil | |
US20210178294A1 (en) | System for processing solid and liquid construction waste | |
JP2006167583A (en) | Sludge treatment method, sludge treating system, and flocculant addition apparatus for sludge | |
CN104829070A (en) | Oil and gas field drilling fluid waste treatment-while-drilling system | |
JP6199154B2 (en) | Radioactive substance removal equipment | |
JP7177677B2 (en) | DREDGED SOIL TREATMENT METHOD AND DREDGED SOIL TREATMENT DEVICE | |
JP4697719B2 (en) | Method for purifying contaminated soil and separation apparatus used therefor | |
KR100475431B1 (en) | great measure soil washing apparatus | |
JP2010089016A (en) | Method and apparatus for treating dredged soil | |
RU2571112C2 (en) | Loose material mobile cleaner plant | |
JP6410349B2 (en) | Method and apparatus for desalination of mixed ash and raw material for cement | |
CN110937770A (en) | Reduction treatment process for oily sludge | |
JP6199223B2 (en) | Stirring device used for removing radioactive substance, removing device therefor, and removing method | |
JP2005262076A (en) | Method for cleaning soil contaminated with oil | |
JP4599766B2 (en) | Soil cleaning method and apparatus | |
JP2006061865A (en) | Method and apparatus for treating muddy soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160210 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6199154 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |