JP2023173420A - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
JP2023173420A
JP2023173420A JP2022085668A JP2022085668A JP2023173420A JP 2023173420 A JP2023173420 A JP 2023173420A JP 2022085668 A JP2022085668 A JP 2022085668A JP 2022085668 A JP2022085668 A JP 2022085668A JP 2023173420 A JP2023173420 A JP 2023173420A
Authority
JP
Japan
Prior art keywords
region
type
silicon carbide
conductivity type
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022085668A
Other languages
English (en)
Inventor
保幸 星
Yasuyuki Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022085668A priority Critical patent/JP2023173420A/ja
Priority to US18/193,888 priority patent/US20230387193A1/en
Publication of JP2023173420A publication Critical patent/JP2023173420A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

【課題】簡易に形成可能でかつ所定耐圧を安定して確保可能な信頼性の高い炭化珪素半導体装置を提供すること。【解決手段】p型外周領域25は、活性領域1の外周部1bにおいて半導体基板40のおもて面側から順にp++型コンタクト延在部15a、p型ベース延在部13a、p+型延在部22aの上部24aおよび下部23aを配置してなり、活性領域1の中央部の周囲を囲む。p型外周領域25は、外側端部に深さ方向に半導体基板40のおもて面から離れるほど段階的に内側に凹んだ複数の段差を有する。耐圧構造30を構成する最も内側のp型領域31(JTE領域30a)は、p++型コンタクト延在部15aの外側端部に接する。p+型埋め込み領域26は、JTE領域30aの直下においてp+型延在部22aの下部23aと同じ深さ位置に、JTE領域30aおよびp型外周領域25と離れて選択的に設けられ、活性領域1の周囲を囲む。【選択図】図3

Description

この発明は、炭化珪素半導体装置に関する。
従来、パワー半導体装置の耐圧構造は、活性領域と半導体基板(半導体チップ)の端部との間のエッジ終端領域に配置されており、エッジ終端領域において半導体基板のおもて面に露出するn-型ドリフト領域の表面領域に選択的に設けられた複数のp型領域で構成される。パワー半導体装置の半導体材料が炭化珪素(SiC)である場合、耐圧構造として、空間変調接合終端拡張(JTE:Junction Termination Extension)構造を配置することが公知である。
JTE構造は、複数のp型領域(以下、JTE領域とする)を、内側(半導体基板の中央部(チップ中央)側)から外側(半導体基板の端部(チップ端部)側)へ離れるほど不純物濃度の低いJTE領域が配置されるように、活性領域の周囲を囲む同心状に隣接して配置した構造である。電界強度は活性領域から外側へ離れるにつれて小さくなる傾向にある。電界強度分布の傾向に合わせて、活性領域から外側へ離れた位置に配置されるほどJTE領域の不純物濃度を低くすることで、エッジ終端領域の所定耐圧が安定して確保される。
図7は、従来の炭化珪素半導体装置の構造を示す断面図である。図7に示す従来の炭化珪素半導体装置110は、炭化珪素からなる半導体基板(半導体チップ)140のエッジ終端領域102に、耐圧構造130を備えたトレンチゲート構造の縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲート(MOSゲート)を備えたMOS型電界効果トランジスタ)である。
半導体基板140は、炭化珪素からなるn+型出発基板141のおもて面上にn-型ドリフト領域112となるn-型炭化珪素層142をエピタキシャル成長させてなる。半導体基板140は、n-型炭化珪素層142側の主面をおもて面とし、n+型出発基板141側の主面を裏面とする。半導体基板140のおもて面は全域にわたって平坦面であり、活性領域101とエッジ終端領域102との間に段差は生じていない。半導体基板140のおもて面は、エッジ終端領域102の全域が絶縁層119で覆われている。
半導体基板140の裏面(n+型出発基板141の裏面)の全域に、ドレイン電極145が設けられている。n+型出発基板141は、n+型ドレイン領域111である。活性領域101は、半導体基板140の中央(チップ中央)に配置される。活性領域101と半導体基板140の端部(チップ端部)との間がエッジ終端領域102である。活性領域101の中央部(不図示)には、MOSFETの同一構造(トレンチゲート構造)の複数の単位セルが隣接して設けられている。
活性領域101の外周部101bにおいて半導体基板140のおもて面とn-型ドリフト領域112との間の全域に、半導体基板140のおもて面側から順に深さ方向に隣接して、p++型コンタクト延在部115a、p型ベース延在部113aおよびp+型延在部122aが設けられている。これらの領域で、活性領域101の外周部101bにおいて半導体基板140のおもて面とn-型ドリフト領域112との間の全域に1つのp型外周領域125が構成されている。
++型コンタクト延在部115a、p型ベース延在部113aおよびp+型延在部122aは、それぞれ活性領域101の同じ深さおよび同じ不純物濃度のp型領域と同時に形成された領域であり、活性領域101の中央部の周囲を囲む。p++型コンタクト延在部115a、p型ベース延在部113aおよびp+型延在部122aの外側の各端部は異なる位置で終端し、p型外周領域125の外側端部に、深さ方向に半導体基板140のおもて面から離れるほど段階的に内側に凹んだ複数の段差が形成されている。
エッジ終端領域102は、活性領域101の周囲を囲む。エッジ終端領域102には、耐圧構造130が設けられている。耐圧構造130は、例えばJTE構造の改良構造である空間変調JTE構造であり、半導体基板140のおもて面とn-型ドリフト領域112との間に選択的に設けられた複数のp型領域131および複数のp-型領域132で構成される。これらすべてのp型領域131およびp-型領域132は、半導体基板140のおもて面に露出され、半導体基板140のおもて面上の絶縁層119に接する。
複数のp型領域131は、活性領域101の周囲を囲む同心状に互いに離れて配置されている。最も内側のp型領域131は、p++型コンタクト延在部115aの外側に、p++型コンタクト延在部115aに隣接して配置されている。複数のp-型領域132は、活性領域101の周囲を囲む同心状に互いに離れて配置されている。最も内側のp-型領域132は、互いに隣り合うすべてのp型領域131間に設けられ、半導体基板140のおもて面の面内において内側から外側へ向かう半径方向に両側のp型領域131に隣接する。
最も内側のp-型領域132は、最も外側のp型領域131よりも内側へ延在している。すべてのp型領域131および最も内側のp-型領域132は、p++型コンタクト延在部115aを介してソース電極(不図示)の電位に固定される。最も内側のp-型領域132以外のp-型領域132は、p型領域131よりも外側に配置される。n-型ドリフト領域112は、互いに隣り合うすべてのp-型領域132間に設けられ、互いに隣り合うp-型領域132間において半導体基板140のおもて面に露出される。
従来の炭化珪素半導体装置として、耐圧構造を構成するp型領域を、底部(半導体基板の裏面側端部)が活性領域の主接合(pn接合)の最外周端(以下、主接合端とする)を形成するp型領域の底部と同じ深さ位置になるように、半導体基板のおもて面から離れた深さ位置に配置した装置が提案されている(例えば、下記特許文献1,2参照。)。下記特許文献1では、活性領域の主接合端を形成するp型領域の外側に底部同士の深さ位置を揃えて隣接するJTE構造のp型領域によって、活性領域の主接合端への電界集中を抑制している。
また、下記特許文献1では、活性領域とエッジ終端領域との間に段差を形成せずに半導体基板のおもて面を全域にわたって平坦面とした構造において、活性領域のp型領域とJTE構造を構成するp型領域とを半導体基板のおもて面から同じ深さ位置に形成することで、フォトリソグラフィによる位置合わせ精度を向上させている。下記特許文献2では、耐圧構造を構成するp型領域と活性領域のp型領域とを同じ深さに同時に形成することで、工程数を低減させている。
また、従来の別の炭化珪素半導体装置として、活性領域からエッジ終端領域に延在するp+型の電界緩和領域の外側端部と、エッジ終端領域においてJTE構造を構成するp型領域の外側端部と、を空間変調構造とした装置が提案されている(例えば、下記特許文献3参照。)。下記特許文献3では、p+型の電界緩和領域の外側端部と、JTE構造を構成するp型領域の外側端部と、を空間変調構造とし、かつ外側に向かうにしたがって深さが浅くなるように配置することで、深さ方向にも電界集中を緩和している。
特開2020-202404号公報 特開2021-048423号公報 特開2019-087646号公報
しかしながら、従来の炭化珪素半導体装置110(図7参照)では、工程簡略化のため、一般的に、耐圧構造130(図7では複数のp型領域131および複数のp-型領域132)は半導体基板140のおもて面から0.5μm程度の浅い深さd101で形成される。このため、活性領域101にトレンチゲート構造などの半導体基板140のおもて面から比較的深い位置に達する素子構造が形成されると、活性領域101の主接合端を形成するp型外周領域125の底部(半導体基板140の裏面側端部)の深さ位置に対して、耐圧構造130の底部の深さ位置が半導体基板140のおもて面から浅くなってしまう。
耐圧構造130を構成するp型領域(p型領域131およびp-型領域132)の底部の深さ位置が浅いことで、活性領域101の主接合端を形成するp型外周領域125のうち、最も外側まで延在するp++型コンタクト延在部115aの底部の外側コーナー部115bがn-型ドリフト領域112に囲まれた構造となる。このため、当該部分115bに電界が集中して当該部分115bでアバランシェ降伏しやすく、エッジ終端領域102の耐圧が活性領域101の耐圧よりも低くなる。エッジ終端領域102の耐圧で炭化珪素半導体装置110の全体の耐圧が決まってしまうため、信頼性が低下する。
一般的な耐圧構造では、耐圧構造を構成するp型領域を、活性領域における同じ不純物濃度および同じ深さのp型領域と同時に形成することによって工程数を低減させている。しかしながら、上記特許文献1のように活性領域のp型領域の不純物濃度と耐圧構造を構成するp型領域の不純物濃度とが異なる場合、活性領域のp型領域と、耐圧構造を構成するp型領域と、をそれぞれ異なる条件(段数やドーズ量)でのイオン注入によって形成して不純物濃度差を調整する。このため、耐圧構造を構成するp型領域の底部と、活性領域の最も外側のp型領域の底部と、を同じ深さ位置に合わせることが困難である。
この発明は、上述した従来技術による課題を解消するため、簡易に形成可能でかつ所定耐圧を安定して確保可能な信頼性の高い炭化珪素半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。半導体基板は、炭化珪素からなり、全面にわたって平坦な第1主面を有する。前記半導体基板に、活性領域および終端領域が設けられている。前記終端領域は、前記活性領域の周囲を囲む。前記活性領域から前記終端領域にわたって前記半導体基板の内部に、第1導電型の第1半導体領域が設けられている。前記活性領域において前記第1主面と前記第1半導体領域との間に、第2導電型の第2半導体領域が設けられている。前記第1半導体領域と前記第2半導体領域とのpn接合を含み、前記pn接合を通過する電流が流れる素子構造が設けられている。
前記素子構造と前記終端領域との間において前記第1主面と前記第1半導体領域との間に、第2導電型外周領域が設けられている。前記第2導電型外周領域は、前記活性領域の周囲を囲む。前記終端領域において前記第1主面と前記第1半導体領域との間に、前記活性領域の周囲を囲む同心状に互いに離れて、複数の第2導電型耐圧領域が設けられている。耐圧構造は、複数の前記第2導電型耐圧領域で構成されている。第1電極は、前記第1主面に設けられ、前記第2半導体領域および前記第2導電型外周領域に電気的に接続されている。第2電極は、前記半導体基板の第2主面に設けられ、前記第1半導体領域に電気的に接続されている。
前記第2導電型外周領域は、外側端部に深さ方向に前記第1主面から離れるほど段階的に内側に凹んだ複数段の段差を有し、当該段差に応じて半径方向に外側に延在して前記第1主面に近いほど外側で終端する複数の延在部で構成されている。前記耐圧構造は、複数の前記延在部のうちの最も前記第1主面側の第1延在部の外側端部に接する。前記終端領域において、複数の前記延在部のうちの最も前記第2主面側の第2延在部と同じ深さ位置に、前記耐圧構造および前記第2導電型外周領域と離れて設けられ、前記活性領域の周囲を囲む第2導電型埋め込み領域を有する。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型埋め込み領域は、複数の前記第2導電型耐圧領域のうちの最も内側の第1の第2導電型耐圧領域に深さ方向に対向することを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型埋め込み領域は、前記第1の第2導電型耐圧領域の外側端部よりも内側に位置することを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型埋め込み領域の不純物濃度は、前記第2延在部の不純物濃度と等しいことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型埋め込み領域の不純物濃度は、前記第2導電型耐圧領域の不純物濃度よりも高いことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記素子構造は、第1導電型の第3半導体領域と、トレンチと、ゲート電極と、第2導電型高濃度領域と、を備える。前記第3半導体領域は、前記第1主面と前記第2半導体領域との間に選択的に設けられ、前記第1電極に電気的に接続されている。前記トレンチは、前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達する。前記ゲート電極は、前記トレンチの内部にゲート絶縁膜を介して設けられている。前記第2導電型高濃度領域は、前記第1半導体領域と前記第2半導体領域との間において、前記トレンチの底面よりも前記第2主面側に選択的に設けられている。前記第2導電型高濃度領域は、前記第2半導体領域よりも不純物濃度が高い。
前記第2導電型外周領域は、前記第1延在部と、前記第2延在部と、第3延在部と、第4延在部と、を有する。前記第3延在部は、前記第2半導体領域の前記素子構造よりも外側に配置された部分である。前記第1延在部は、前記第1主面と前記第3延在部との間に、前記第3延在部に接して設けられている。前記第1延在部は、前記第3延在部よりも不純物濃度が高い。前記第4延在部は、前記第2導電型高濃度領域の前記素子構造よりも外側に配置された部分のうちの前記第1主面側の部分であり、前記第3延在部の前記第2主面側に隣接する。前記第2延在部は、前記第2導電型高濃度領域の前記素子構造よりも外側に配置された部分のうちの残りの部分であり、前記第4延在部と前記第1半導体領域との間に、前記第4延在部および前記第1半導体領域に接して設けられている。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型耐圧領域の底部は、前記第1延在部の底部よりも前記第1主面側に浅い位置にあることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型耐圧領域の底部は、前記第1延在部の底部よりも前記第2主面側に深い位置で、かつ前記第4延在部の底部よりも前記第1主面側に浅い位置にあることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2導電型耐圧領域の前記第1主面からの深さは、1.0μm以上であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記耐圧構造は、前記第1延在部の底部の外側コーナー部を囲むことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記耐圧構造は、前記第3延在部の底部の外側コーナー部を囲むことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体領域の内部において前記耐圧構造よりも外側に、前記耐圧構造と離れて設けられた、深さ方向に互いに離れて対向する複数段の第1導電型チャネルストッパ領域を有することを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記耐圧構造は、全体の第2導電型不純物濃度を内側から外側へ向って緩やかに減少させた空間変調構造を有することを特徴とする。
上述した発明によれば、活性領域の外周部の第2導電型外周領域の外側端部に半導体基板のおもて面から離れるほど段階的に内側に凹んだ段差が形成されていることで、炭化珪素半導体装置のオフ時に第1延在部の底部の外側コーナー部が電界集中箇所となるが、当該部分での電界集中は第1延在部の外側に隣接する耐圧構造によって緩和される。また、炭化珪素半導体装置のオフ時に、終端領域の第2導電型埋め込み領域の底部に電界を集中させることができる。
したがって、活性領域の主接合端(第2導電型外周領域の底部の外側コーナー部)への局所的な電界集中を抑制することができ、活性領域の主接合端でのアバランシェ降伏耐量を向上させることができるため、終端領域の耐圧低下を抑制することができる。これによって、終端領域の耐圧を十分に確保することができ、終端領域の耐圧が活性領域の耐圧よりも低くなることを抑制することができる。このため、活性領域の耐圧で炭化珪素半導体装置の全体の耐圧を決めることができる。
また、上述した発明によれば、活性領域の外周部の第2導電型外周領域や終端領域の第2導電型埋め込み領域は、活性領域の素子構造の同じ不純物濃度および同じ深さ位置の各部と同時に、半導体基板の内部にイオン注入によって形成することができる。このため、活性領域の素子構造の各部を形成するためのイオン注入用マスクパターンを適宜変更することで、活性領域の素子構造の形成方法を変えることなく、第2導電型外周領域および第2導電型埋め込み領域を簡易に形成することができる。
本発明にかかる炭化珪素半導体装置によれば、簡易に形成可能でかつ所定耐圧を安定して確保可能な信頼性の高い炭化珪素半導体装置を提供することができるという効果を奏する。
実施の形態1にかかる炭化珪素半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。 図1の切断線A1-A2における断面構造を示す断面図である。 図1の切断線A2-A3における断面構造を示す断面図である。 実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。 従来例の耐圧特性をシミュレーションした結果を示す特性図である。 従来の炭化珪素半導体装置の構造を示す断面図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる炭化珪素半導体装置の構造について説明する。図1は、実施の形態1にかかる炭化珪素半導体装置を半導体基板のおもて面側から見たレイアウトを示す平面図である。図2,3は、それぞれ図1の切断線A1-A2および切断線A2-A3における断面構造を示す断面図である。図1~3に示す実施の形態1にかかる炭化珪素半導体装置10は、炭化珪素(SiC)からなる半導体基板(半導体チップ)40のエッジ終端領域2に、耐圧構造30を備えたトレンチゲート構造の縦型MOSFETである。
半導体基板40には、活性領域1の中央部1aに、MOSFETの同一構造(素子構造)の複数の単位セル(素子の機能単位)が隣接して配置されている。活性領域1は、MOSFETのオン時に主電流(ドリフト電流)が流れる領域である。活性領域1は、略矩形状の平面形状を有し、半導体基板40の略中央(チップ中央)に配置される。活性領域1は、後述するp++型コンタクト延在部15aの外側(半導体基板40の端部(チップ端部)側)の端部から内側(チップ中央側)の部分である。
エッジ終端領域2は、活性領域1とチップ端部との間の領域であり、活性領域1の周囲を略矩形状に囲む。エッジ終端領域2には、耐圧構造30が設けられている。耐圧構造30は、活性領域1とエッジ終端領域2との境界付近の電界を緩和して耐圧を保持する機能を有する。耐圧構造30の構成については後述する。耐圧とは、pn接合でアバランシェ降伏が起きたことでドレイン・ソース間電流が増加してもそれ以上ドレイン・ソース間電圧が増加しない限界の電圧である。
半導体基板40は、炭化珪素からなるn+型出発基板41のおもて面上にn-型ドリフト領域(第1半導体領域)12となるn型の炭化珪素層42をエピタキシャル成長させてなる。半導体基板40は、炭化珪素層42側の主面をおもて面(第1主面)とし、n+型出発基板41側の主面を裏面(第2主面)とする。半導体基板40のおもて面は全域にわたって略平坦面であり、活性領域1とエッジ終端領域2との間に段差は生じていない。略平坦とは、プロセスばらつきによる許容誤差を含む範囲で水平面であることを意味する。
+型出発基板41はn+型ドレイン領域11である。炭化珪素層42は、活性領域1の各部を形成する際に、n-型ドリフト領域12となるn-型炭化珪素層42(42a,42b,42c)を順に多段にエピタキシャル成長されてなる。n-型ドリフト領域12は、n-型炭化珪素層42の、イオン注入による拡散領域が形成されずにエピタキシャル成長時の不純物濃度のまま残る部分である。n-型ドリフト領域12は、n+型出発基板41に接し、活性領域1からチップ端部にわたって設けられている。
トレンチゲート構造は、p型ベース領域(第2半導体領域)13、n+型ソース領域(第3半導体領域)14、p++型コンタクト領域15、トレンチ16、ゲート絶縁膜17およびゲート電極18で構成される。p型ベース領域13、n+型ソース領域14およびp++型コンタクト領域15は、n-型炭化珪素層42cの内部にイオン注入により形成された拡散領域である。p型ベース領域13は、活性領域1の中央部1aにおいて半導体基板40のおもて面とn-型ドリフト領域12との間の全域に設けられ、外側へ延在して、活性領域1の外周部1b内で終端している。
+型ソース領域14およびp++型コンタクト領域15は、半導体基板40のおもて面とp型ベース領域13との間にそれぞれ選択的に設けられ、底部(下面:半導体基板40の裏面側端部)でp型ベース領域13に接する。n+型ソース領域14は、活性領域1の中央部1aにのみ、活性領域1の中央部1aのp++型コンタクト領域15d(15)に接して設けられている。n+型ソース領域14およびp++型コンタクト領域15dは、上面(半導体基板40のおもて面側端部)でオーミック電極43にオーミック接触する。
活性領域1の外周部1bのp++型コンタクト領域15c(15),15a(15)は、活性領域1の中央部1aの周囲を同心状に囲む。活性領域1の外周部1bの最も内側のp++型コンタクト領域15cは、上面でオーミック電極43にオーミック接触する。活性領域1の外周部1bの最も内側のp++型コンタクト領域15cは、深さ方向に後述するn型電流拡散領域20に対向する。活性領域1の外周部1bの最も内側のp++型コンタクト領域15cは、後述するp+型延在部22aの内側端部に対向してもよい。
活性領域1の外周部1bの最も外側のp++型コンタクト領域(以下、p++型コンタクト延在部とする)15aは、内側のp++型コンタクト領域15cと離れて設けられ、外側へ延在して活性領域1とエッジ終端領域2との境界で終端している。p++型コンタクト領域15c,15dは設けられていなくてもよい。この場合、p++型コンタクト領域15c,15dに代えて、p型ベース領域13が半導体基板40のおもて面まで達して、オーミック電極43に接する。
-型ドリフト領域12とp型ベース領域13との間において、トレンチ16の底面よりもn+型ドレイン領域11側(半導体基板40の裏面側)に深い位置に、n型電流拡散領域20およびp+型領域(第2導電型高濃度領域)21,22がそれぞれ選択的に設けられている。n型電流拡散領域20およびp+型領域21,22は、n-型炭化珪素層42a,42bの内部にイオン注入により形成された拡散領域である。n型電流拡散領域20は、p+型領域21,22よりもn+型ドレイン領域11側に深い位置に達することがよい。
n型電流拡散領域20は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(CSL:Current Spreading Layer)である。n型電流拡散領域20は、互いに隣り合うp+型領域21,22間においてこれらの領域に接し、かつ半導体基板40のおもて面に平行な方向に延在してトレンチ16まで達し、ゲート絶縁膜17に接する。n型電流拡散領域20は、上面でp型ベース領域13に接し、底部でn-型ドリフト領域12に接する。
n型電流拡散領域20は、活性領域1の中央部1aから外側へ延在して活性領域1の外周部1b内で終端する。n型電流拡散領域20は、後述するp+型延在部22aの内側端部を囲む。n型電流拡散領域20は設けられていなくてもよい。n型電流拡散領域20を設けない場合、n型電流拡散領域20に代えて、n-型ドリフト領域12がp型ベース領域13まで達してp型ベース領域13およびp+型領域21,22に接し、かつ半導体基板40のおもて面に平行な方向にトレンチ16まで達して、ゲート絶縁膜17に接する。
+型領域21,22は、後述するソース電極44の電位に固定されており、MOSFET(炭化珪素半導体装置10)のオフ時に空乏化して(もしくはn型電流拡散領域20を空乏化させて、またはその両方)、ゲート絶縁膜17にかかる電界を緩和させる機能を有する。p+型領域21は、p型ベース領域13と離れて設けられ、深さ方向にトレンチ16の底面に対向する。p+型領域21は、図示省略する部分でp+型領域22に部分的に連結されることで、ソース電極44に電気的に接続されている。
+型領域21は、トレンチ16の底面でゲート絶縁膜17に接してもよいし、トレンチ16の底面から離れていてもよい。p+型領域21の幅は、トレンチ16の幅と同じか、またはトレンチ16の幅よりも広い。p+型領域21の幅をトレンチ16の幅よりも広くすることで、p+型領域21は深さ方向にトレンチ16の底面コーナー部(側壁と底面との境界)にも対向する。これによって、p+型領域21によるトレンチ16の底面付近の電界緩和効果がさらに高くなる。
+型領域22は、互いに隣り合うトレンチ16間に、p+型領域21およびトレンチ16と離れて設けられている。p+型領域22は、上面でp型ベース領域13に接し、p型ベース領域13を介してソース電極44に電気的に接続されている。p+型領域22は、深さ方向に、n-型炭化珪素層42bの内部に形成される上部(n+型ソース領域14側の部分)24と、n-型炭化珪素層42aの内部に形成される下部(n+型ドレイン領域11側の部分)23と、が隣接してなる。
また、p+型領域22は、活性領域1の外周部1bに、トレンチ16と離れて設けられている。活性領域1の外周部1bのp+型領域22(以下、p+型延在部22aとする)は、活性領域1の中央部1aの周囲を囲む。p+型延在部22aには、活性領域1の中央部1aのすべてのp+型領域21,22が連結されている。p+型延在部22aは、深さ方向に、n-型炭化珪素層42bの内部に形成される上部(第4延在部)24aと、n-型炭化珪素層42aの内部に形成される下部(第2延在部)23aと、が隣接してなる。p+型延在部22aの外側端部は、p型ベース領域13よりも内側で終端している。
トレンチ16は、深さ方向にn+型ソース領域14およびp型ベース領域13を貫通してn型電流拡散領域20(n型電流拡散領域20を設けない場合はn-型ドリフト領域12)に達する。トレンチ16は、p+型領域21の内部で終端していてもよい。トレンチ16は、例えば、半導体基板40のおもて面に平行な方向にストライプ状に延在して、活性領域1の外周部1bに達する。トレンチ16の内部には、ゲート絶縁膜17を介してゲート電極18が設けられている。
活性領域1の外周部1bは、活性領域1の中央部1aの周囲を略矩形状に囲む。トレンチ16の長手方向において、活性領域1の外周部1bとは、n+型ソース領域14の最も外側の端部から、活性領域1とエッジ終端領域2との境界までの部分である。トレンチ16の短手方向において、活性領域1の外周部1bとは、最も外側のトレンチ16の外側の側壁から、活性領域1とエッジ終端領域2との境界までの部分である。活性領域1の外周部1bには、MOSFETの単位セルは設けられていない。
活性領域1の外周部1bには、半導体基板40のおもて面とn-型ドリフト領域12との間の全域に、半導体基板40のおもて面側から順に深さ方向に隣接して、p++型コンタクト延在部(第1延在部)15a、p型ベース延在部(第3延在部)13aおよびp+型延在部(延在部)22aが設けられている。これらの領域(複数の延在部)で、活性領域1の外周部1bにおいて半導体基板40のおもて面とn-型ドリフト領域12との間の全域に1つのp型外周領域(第2導電型外周領域)25が構成されている。
p型ベース延在部13aは、半導体基板40のおもて面とn-型ドリフト領域12との間に、n-型ドリフト領域12に接して設けられている。p++型コンタクト延在部15aは、半導体基板40のおもて面とp型ベース延在部13aとの間に、p型ベース延在部13aに接して設けられている。p++型コンタクト延在部15aは、半導体基板40のおもて面に露出され、半導体基板40のおもて面上の絶縁層(フィールド酸化膜51および層間絶縁膜19をこの順に積層した絶縁層)に接する。
+型延在部22aは、p型ベース延在部13aとn-型ドリフト領域12との間に、これらの領域に接して設けられている。p++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aは、それぞれ、活性領域1の中央部1aのp++型コンタクト領域15d、p型ベース領域13およびp+型領域22と同時に形成された領域であり、活性領域1の中央部1aの周囲を囲む。p型外周領域25は、活性領域1の外周部1bにおける半導体基板40のおもて面の面内での電界を均一にする機能を有する。
また、p型外周領域25は、MOSFET(炭化珪素半導体装置10)のオフ時にエッジ終端領域2のn-型ドリフト領域12で発生して活性領域1へ向かって流れるホール(正孔)電流をソース電極44へ引き抜くための領域であり、ソース電極44に電気的に接続されている。MOSFETのオフ時にエッジ終端領域2のn-型ドリフト領域12で発生したホール電流がp型外周領域25を介してソース電極44へ引き抜かれることで、エッジ終端領域2でのアバランシェ降伏時の正孔電流集中が抑制される。
++型コンタクト延在部15a、p型ベース延在部13a、p+型延在部22aの上部24aおよびp+型延在部22aの下部23aの外側の各端部は異なる位置で終端している。具体的には、p++型コンタクト延在部15aの外側端部は、活性領域1とエッジ終端領域2との境界に位置する。p型ベース延在部13aの外側端部は、p++型コンタクト延在部15aの外側端部よりも内側で終端している。p+型延在部22aの上部24aの外側端部は、p型ベース延在部13aの外側端部よりも内側で終端している。
+型延在部22aの下部23aの外側端部は、p+型延在部22aの上部24aの外側端部よりも内側で終端している。これによって、p型外周領域25の外側端部には、深さ方向に半導体基板40のおもて面から離れるほど段階的に内側に凹んだ複数の段差が形成されている。すなわち、p型外周領域25を構成するp++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aのうち、最も半導体基板40のおもて面側のp++型コンタクト延在部15aを最も外側まで延在させている。
これによって、MOSFETのオフ時にp++型コンタクト延在部15aの底部の外側コーナー部15bが電界集中箇所となるが、当該部分15bでの電界集中はp++型コンタクト延在部15aの外側に隣接する耐圧構造30によって緩和される。また、p型ベース延在部13a、p+型延在部22aの上部24aおよびp+型延在部22aの下部23aは、それぞれ直上(半導体基板40のおもて面側)に隣接するp型領域の外側端部よりも内側の終端しているため、底部の外側コーナー部への局所的な電界集中が抑制される。
層間絶縁膜19は、半導体基板40のおもて面の全面に設けられ、ゲート電極18およびゲートポリシリコン配線層52を覆う。活性領域1の外周部1bおよびエッジ終端領域2において半導体基板40のおもて面と層間絶縁膜19との間に、フィールド酸化膜51が設けられている。ゲートポリシリコン配線層52は、活性領域1の外周部1bにおいてフィールド酸化膜51と層間絶縁膜19との間に配置されている。ゲートポリシリコン配線層52は、活性領域1の中央部1aの周囲を囲む。
ゲートポリシリコン配線層52の上には、層間絶縁膜19のコンタクトホールを介してゲート金属配線層53が設けられている。ゲートポリシリコン配線層52およびゲート金属配線層53は、ゲートランナーを構成する。ゲートポリシリコン配線層52には、トレンチ16の長手方向の端部においてゲート電極18が連結されている。すべてのゲート電極18は、ゲートポリシリコン配線層52およびゲート金属配線層53を介してゲートパッド(電極パッド:不図示)に電気的に接続されている。
ゲートランナー直下(n+型ドレイン領域11側)は同一構造であることが好ましく、ゲートランナー直下において半導体基板40のおもて面とn-型ドリフト領域12との間には、p型外周領域25のみが配置されている。ゲートランナーの全面が、深さ方向にフィールド酸化膜51を介してp++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aに対向する。ゲートランナーは、エッジ終端領域2の耐圧構造30よりも内側に配置されている。
オーミック電極(第1電極)43は、半導体基板40のおもて面の、層間絶縁膜19のコンタクトホールに露出する部分上に設けられている。オーミック電極43は、層間絶縁膜19のコンタクトホールにおいて、半導体基板40のおもて面においてn+型ソース領域14およびp++型コンタクト領域15d,15c(p++型コンタクト領域15d,15cを設けない場合はp型ベース領域13)にオーミック接触する。オーミック電極43は、例えばニッケルシリサイド(NixSiy、x,yは任意の整数)膜である。
ソース電極(第1電極)44は、層間絶縁膜19のコンタクトホールを埋め込むように、層間絶縁膜19上に設けられている。ソース電極44は、活性領域1の中央部1aの略全域に設けられ、ゲート金属配線層53に達しない程度に活性領域1の外周部1bに延在している。ソース電極44は、オーミック電極43を介してn+型ソース領域14、p++型コンタクト領域15d,15c、p型ベース領域13、p+型領域21,22、p++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aに電気的に接続されている。
ソース電極44は、活性領域1の外周部1bにおいて層間絶縁膜19のコンタクトホールを介してp++型コンタクト領域15cにオーミック接触し、p++型コンタクト領域15c、p++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aに電気的に接続されている。ドレイン電極(第2電極)45は、半導体基板40の裏面(n+型出発基板41の裏面)全面に設けられて、n+型ドレイン領域11(n+型出発基板41)にオーミック接触し、n+型ドレイン領域11に電気的に接続されている。
エッジ終端領域2の耐圧構造30は、例えばJTE構造を空間変調構造とした空間変調JTE構造であり、半導体基板40のおもて面とn-型ドリフト領域12との間に選択的に設けられた複数のp型領域(第2導電型耐圧領域)31および複数のp-型領域(第2導電型耐圧領域)32で構成される。複数のp型領域31および複数のp-型領域32はn-型炭化珪素層42cの表面領域にイオン注入により形成された拡散領域であり、これらの深さd1はすべて略同じで半導体基板40のおもて面から0.5μm程度と浅い。
p型領域31およびp-型領域32の各底部の深さ位置は、半導体基板40のおもて面からp++型コンタクト延在部15aの底部よりも浅い深さ位置にある。このため、p++型コンタクト延在部15a、p型ベース延在部13a、p+型延在部22aの上部24aおよびp+型延在部22aの下部23aの各底部の外側コーナー部は、n-型ドリフト領域12に囲まれている。p型領域31およびp-型領域32は、半導体基板40のおもて面上の絶縁層(層間絶縁膜19およびフィールド酸化膜51)に接する。
複数のp型領域31は、活性領域1の周囲を囲む同心状に互いに離れて配置されている。外側に配置されたp型領域31ほど、幅(平面図(半導体基板40のおもて面の面内)において内側から外側へ向かう半径方向の幅)が狭く、かつ内側に隣り合うp型領域31との間隔が広い。最も内側のp型領域(第1の第2導電型耐圧領域)31は、p++型コンタクト延在部15aの外側に、p++型コンタクト延在部15aに隣接して配置されている。図2,3には、p型領域31およびp-型領域32にそれぞれ異なるハッチングを付している。
複数のp-型領域32は、活性領域1の周囲を囲む同心状に互いに離れて配置されている。外側に配置されたp-型領域32ほど、幅(半径方向の幅)が狭く、かつ内側に互いに隣り合うp-型領域32との間隔が広い。最も外側のp-型領域32の幅は、内側に隣り合うp-型領域32の幅よりも広くてもよい。最も内側のp-型領域32は、互いに隣り合うすべてのp型領域31間に配置され、半径方向に両側のp型領域31に隣接して、すべてのp型領域31の底部のコーナー部を囲む。
最も内側のp-型領域32の内側端部は、最も内側のp型領域31の外側端部と同じ位置か、または最も内側のp型領域31の外側端部よりも外側で終端している。いくつかのp-型領域32は、最も外側のp型領域31よりも内側に設けられる。いくつかの内側のp-型領域32以外のp-型領域32は、p型領域31よりも外側に配置される。n-型ドリフト領域12は、互いに隣り合うp-型領域32間に延在して半導体基板40のおもて面に達し、半径方向に両側のp-型領域32に隣接する。
すべてのp型領域31およびいくつかの内側のp-型領域32は、p++型コンタクト延在部15aを介してソース電極44の電位に固定される。最も内側のp型領域31(JTE領域30a)と、p-型領域32のうちの最も外側のp型領域31よりも外側部分(JTE領域)30cと、でダブルゾーンJTE構造が構成される。JTE領域30a以外のp型領域31と、いくつかの内側のp-型領域32と、でJTE領域30a,30c間の空間変調領域30bが構成される。JTE領域30cよりも外側のp-型領域32と、n-型ドリフト領域12と、でJTE領域30cの外側に隣接する空間変調領域30dが構成される。
空間変調領域30bは、自身の両側それぞれに隣接する領域(JTE領域30a,30c)と略同じ不純物濃度の2つの小領域(p型領域31およびp-型領域32)を所定パターンで交互に繰り返し隣接して配置してなる。空間変調領域30dは、自身の両側それぞれに隣接する領域(JTE領域30cおよびn-型ドリフト領域12)と略同じ不純物濃度の2つの小領域(p-型領域32およびn-型ドリフト領域12)を所定パターンで交互に繰り返し隣接して配置してなる。空間変調領域30b,30d全体の空間的な不純物濃度分布は2つの小領域の幅および不純物濃度比で決まる。
このように、耐圧構造30は、JTE領域30a,30cおよび空間変調領域30b,30dを備える。この場合、耐圧構造30は、互いに隣り合うJTE領域30a,30c間に、これら2つの領域の不純物濃度の中間の不純物濃度と空間的に等価な不純物濃度分布を有する空間変調領域30bを配置し、JTE領域30cとその外側のn-型ドリフト領域12との間に、これら2つの領域の不純物濃度の中間の不純物濃度と空間的に等価な不純物濃度分布を有する空間変調領域30dを配置して、全体のp型不純物濃度を内側から外側へ向って緩やかに減少させた空間変調JTE構造である。
耐圧構造30は、1つのJTE領域のみで構成されたシングルゾーンJTE構造であってもよい(不図示)。この場合、耐圧構造30は、1つのJTE領域とその外側のn-型ドリフト領域間に、これら2つの領域の不純物濃度の中間の不純物濃度と空間的に等価な不純物濃度分布を有する空間変調領域を配置して、全体のp型不純物濃度を内側から外側へ向って緩やかに減少させた空間変調JTE構造である。空間変調JTE構造は、空間変調領域を有していない一般的なJTE構造と比べて、エッジ終端領域2の所定耐圧をより安定して確保可能である。
最も内側のp型領域31(JTE領域30a)の直下においてn-型ドリフト領域12の内部に、深さ方向にJTE領域30aおよびn+型ドレイン領域11と離れて、p+型領域(以下、p+型埋め込み領域(第2導電型埋め込み領域)とする)26が選択的に設けられている。p+型埋め込み領域26は、p+型延在部22aの下部23aと略同じ深さ位置に、半径方向にp型外周領域25と離れて設けられ、活性領域1の周囲を囲む。p+型埋め込み領域26は、n-型炭化珪素層42aの内部にイオン注入により形成された拡散領域である。
+型埋め込み領域26は、p+型延在部22aの下部23aと略同じ不純物濃度および略同じ厚さであることがよい。その理由は、p+型埋め込み領域26をp+型延在部22aの下部23a(すなわちp+型領域22の下部23)と同時に形成することができることで、工程数を低減させることができるからである。略同じ不純物濃度、略同じ深さ位置および略同じ厚さとは、それぞれプロセスばらつきによる許容誤差を含む範囲で同じ不純物濃度、同じ深さ位置および同じ厚さであることを意味する。
+型埋め込み領域26を設けることで、p型外周領域25の底部の外側コーナー部25b(p+型延在部22aの下部23aの底部の外側コーナー部23b)への電界集中をさらに抑制することができる。p+型埋め込み領域26の全体がJTE領域30aの直下に位置していればよく、p+型埋め込み領域26の半径方向の幅は適宜設定可能である。p+型埋め込み領域26の内側端部は、活性領域1とエッジ終端領域2との境界に位置してもよい。p+型埋め込み領域26は、活性領域1の周囲を囲む同心状に互いに離れて複数設けられてもよい(不図示)。
また、半導体基板40のおもて面とn-型ドリフト領域12との間において、耐圧構造30よりも外側に、n+型チャネルストッパ領域33が選択的に設けられている。n+型チャネルストッパ領域33は、n-型炭化珪素層42cの表面領域にイオン注入により形成された拡散領域である。n+型チャネルストッパ領域33は、耐圧構造30よりも外側に、半径方向に耐圧構造30と離れて設けられ、耐圧構造30の周囲を囲む。n+型チャネルストッパ領域33は、半導体基板40のおもて面上の絶縁層に接する。
+型チャネルストッパ領域33は、チップ端部に露出されている。n+型チャネルストッパ領域33と耐圧構造30(最も外側のp-型領域32)との間はn-型ドリフト領域12である。n+型チャネルストッパ領域33は、フローティング(浮遊)電位を有する。エッジ終端領域2における半導体基板40のおもて面に、フィールドプレート(FP:Field Plate)やチャネルストッパ電極は設けられていない。n+型チャネルストッパ領域33に代えて、p+型チャネルストッパ領域が設けられてもよい。
実施の形態1にかかる炭化珪素半導体装置10の動作について説明する。ソース電極44に対して正の電圧(順方向電圧)がドレイン電極45に印加された状態で、ゲート電極18にゲート閾値電圧以上の電圧が印加されると、p型ベース領域13のトレンチ16に沿った部分にチャネル(n型の反転層)が形成される。それによって、n+型ドレイン領域11からn-型ドリフト領域12およびチャネルを通ってn+型ソース領域14へ向かう電流が流れ、MOSFET(炭化珪素半導体装置10)がオンする。
一方、ソース・ドレイン間に順方向電圧が印加された状態で、ゲート電極18にゲート閾値電圧未満の電圧が印加されると、p型ベース領域13、p+型領域21,22およびp+型延在部22aと、n型電流拡散領域20およびn-型ドリフト領域12と、のpn接合(活性領域1の主接合)が逆バイアスされ、MOSFETはオフ状態を維持する。このとき、当該pn接合からn-型ドリフト領域12内に空乏層が広がることで、トレンチ16の底面のゲート絶縁膜17にかかる電界が緩和される。
また、MOSFETのオフ時、空乏層がエッジ終端領域2のn-型ドリフト領域12内を外側(チップ端部側)へ向かって延びた分だけ、炭化珪素の絶縁破壊電界強度および空乏層幅(半径方向の幅)に基づく所定耐圧が確保される。また、MOSFETのオフ時、p+型埋め込み領域26の底部に電界が集中するため、活性領域1の主接合の最外周端(以下、主接合端とする)に局所的に電界が集中することを抑制することができる。活性領域1の主接合端とは、p型外周領域25の底部の外側コーナー部25bである。
次に、実施の形態1にかかる炭化珪素半導体装置10の製造方法について説明する。まず、n+型出発基板(n+型出発ウエハ)41のおもて面に、n-型ドリフト領域12となるn-型炭化珪素層42aをエピタキシャル成長させる。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層42aの表面領域に、p+型領域21と、p+型領域22の下部23と、p+型延在部22aの下部23aと、p+型埋め込み領域26と、を同時にそれぞれ選択的に形成する。
次に、n-型炭化珪素層42a上に、n-型ドリフト領域12となるn-型炭化珪素層42bをエピタキシャル成長させる。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層42bに、p+型領域22の上部24と、p+型延在部22aの上部24aと、を同時にそれぞれ選択的に形成する。このとき、深さ方向にp+型領域22の上部24と下部23とを連結させる。深さ方向にp+型延在部22aの上部24aと下部23aとを連結させる。
次に、n-型炭化珪素層42b上に、n-型ドリフト領域12となるn-型炭化珪素層42cをエピタキシャル成長させる。ここまでの工程で、n+型出発基板41上にn-型炭化珪素層42(42a~42c)を積層した所定厚さの半導体基板(半導体ウエハ)40が完成する。n型電流拡散領域20を形成する場合、n-型炭化珪素層42a,42bをエピタキシャル成長させるごとに、n-型炭化珪素層42a,42bにそれぞれn型電流拡散領域20の下部および上部を形成すればよい。
次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層42cの内部に、p型ベース領域13およびp型ベース延在部13aを同時に形成する。フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層42cの表面領域にn+型ソース領域14を選択的に形成する。フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層42cの表面領域に、p++型コンタクト領域15d,15cおよびp++型コンタクト延在部15aを同時にそれぞれ選択的に形成する。
フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層42cの表面領域に、複数のp型領域31と、複数のp-型領域32と、をそれぞれ選択的に形成する。p型領域31とp-型領域32とは異なるタイミングで形成される。p型領域31およびp-型領域32の各深さd1は、p++型コンタクト延在部15aの深さよりも浅くする。フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層42cの表面領域にn+型チャネルストッパ領域33を選択的に形成する。
深さ方向にp++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aが連結されることで、活性領域1の外周部1bにp型外周領域25が形成される。複数のp型領域31および複数のp-型領域32によってエッジ終端領域2に耐圧構造30が形成される。n-型炭化珪素層42cの内部に各拡散領域を形成する順序は適宜変更可能である。n+型チャネルストッパ領域33は、n+型ソース領域14と同時に形成されてもよい。
-型炭化珪素層42(42a~42c)のイオン注入されずにエピタキシャル成長時の不純物濃度のまま残る部分がn-型ドリフト領域12となる。次に、炭化珪素層42にイオン注入した不純物を活性化させるための熱処理を行う。この不純物活性化のための熱処理は、炭化珪素層42a~42cに不純物をイオン注入するごとに行ってもよい。次に、一般的な方法により、トレンチ16、ゲート絶縁膜17、ゲート電極18、フィールド酸化膜51およびゲートポリシリコン配線層52を形成する。
次に、半導体基板40のおもて面の全面に層間絶縁膜19を形成する。次に、一般的な方法により、ソース電極44、ゲートパッド(不図示)、ゲート金属配線層53、パッシベーション膜(表面保護膜:不図示)およびドレイン電極45を形成する。ソース電極44の、パッシベーション膜の開口部に露出する部分がソースパッドとなる。その後、半導体ウエハをダイシング(切断)して個々のチップ状に個片化することで、図1~3の炭化珪素半導体装置10が完成する。
以上、説明したように、実施の形態1によれば、活性領域の外周部のp型外周領域の外側端部に半導体基板のおもて面から離れるほど段階的に内側に凹んだ段差が形成されている。このため、MOSFETのオフ時にp++型コンタクト延在部の底部の外側コーナー部が電界集中箇所となるが、当該底部の外側コーナー部での電界集中はp++型コンタクト延在部の外側に隣接する耐圧構造によって緩和される。また、MOSFETのオフ時に、エッジ終端領域のp+型埋め込み領域の底部に電界を集中させることができる。
したがって、活性領域の主接合端(p型外周領域の底部の外側コーナー部)への局所的な電界集中を抑制することができ、活性領域の主接合端でのアバランシェ降伏耐量を向上させることができるため、エッジ終端領域の耐圧低下を抑制することができる。これによって、エッジ終端領域の耐圧を十分に確保することができ、エッジ終端領域の耐圧が活性領域の耐圧よりも低くなることを抑制することができる。このため、活性領域の耐圧で炭化珪素半導体装置の全体の耐圧を決めることができ、信頼性を向上させることができる。
また、実施の形態1によれば、n-型ドリフト領域となるn-型炭化珪素層を多段にエピタキシャル成長させるごとに適宜イオン注入を行って活性領域の素子構造を形成する。このとき、活性領域のp+型領域やp型ベース領域、p++型コンタクト領域を形成するためのイオン注入用マスクパターンを適宜変更することで、活性領域の素子構造の形成方法を変えることなく、活性領域の外周部のp型外周領域の外側端部の段差や、エッジ終端領域のp+型埋め込み領域を簡易に形成することができる。
また、耐圧構造として空間変調JTE構造を形成することで、耐圧構造を構成するp型領域の半径方向の位置や半径方向の幅を適宜調整することで、エッジ終端領域の所定耐圧を確保可能である。耐圧構造を構成するp型領域の半径方向の位置および半径方向の幅はイオン注入用マスクパターンを適宜設定することで容易に調整可能である。したがって、簡易に形成可能でかつ所定耐圧を安定して確保可能な信頼性の高い炭化珪素半導体装置を提供することができる。
(実施の形態2)
次に、実施の形態2にかかる炭化珪素半導体装置の構造について説明する。図4は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2にかかる炭化珪素半導体装置60を半導体基板40のおもて面側から見たレイアウトは実施の形態1(図1参照)と同様である。実施の形態2にかかる炭化珪素半導体装置60の活性領域1の構造は実施の形態1(図2参照)と同様である。図4には、図1の切断線A2-A3における断面構造を示す。
実施の形態2にかかる炭化珪素半導体装置60が実施の形態1にかかる炭化珪素半導体装置10(図3参照)と異なる点は、p+型埋め込み領域26に代えて、n型チャネルストッパ領域(第1導電型チャネルストッパ領域)を深さ方向に互いに離れて対向する複数段(図4では2段とし、n型チャネルストッパ領域61,62とする)に設けた点である。実施の形態2のn型チャネルストッパ領域61,62の不純物濃度は、実施の形態1のn+型チャネルストッパ領域33の不純物濃度よりも低くてもよい。
n型チャネルストッパ領域61,62は、耐圧構造(p型領域31およびp-型領域32)30よりも外側に、半径方向に耐圧構造30と離れて設けられ、耐圧構造30の周囲を囲む。n型チャネルストッパ領域61,62は、耐圧構造30と異なる導電型を有する。n型チャネルストッパ領域61,62と耐圧構造30(最も外側のp-型領域32)との間には、n-型ドリフト領域12が半導体基板40のおもて面まで達する。n型チャネルストッパ領域61,62は、チップ端部に露出されている。
n型チャネルストッパ領域61,62は、フローティング電位を有する。n型チャネルストッパ領域61,62は、n-型炭化珪素層42(例えばそれぞれn-型炭化珪素層42b,42c)にイオン注入により形成された拡散領域であり、略同じ幅(半径方向の幅)および略同じ厚さを有する。n型チャネルストッパ領域62は、半導体基板40のおもて面上の絶縁層に接する。n型チャネルストッパ領域61は、n型チャネルストッパ領域62の直下に、n型チャネルストッパ領域62と離れて設けられている。
n型チャネルストッパ領域61とn型チャネルストッパ領域62との間はn-型ドリフト領域12である。n型チャネルストッパ領域61とn+型ドレイン領域11との間はn-型ドリフト領域12である。n型チャネルストッパ領域を深さ方向に互いに離れて対向する3段以上に設ける場合には、半導体基板40のおもて面上の絶縁層に接する1段のn型チャネルストッパ領域と、その直下において深さ方向に互いに離れて対向する2段以上のn型チャネルストッパ領域と、を深さ方向に等間隔に設ければよい。
実施の形態2にかかる炭化珪素半導体装置60の製造方法は、実施の形態1にかかる炭化珪素半導体装置10の製造方法において、例えば、n-型炭化珪素層42(42a~42c)を多段にエピタキシャル成長させるごとに、当該エピタキシャル成長させた部分に各段のn型チャネルストッパ領域(図4ではn型チャネルストッパ領域61,62)を選択的に形成すればよい。
実施の形態2にかかる炭化珪素半導体装置60に実施の形態1を適用して、エッジ終端領域2に、p+型埋め込み領域26(図3参照)と、深さ方向に互いに離れて対向する複数段のn型チャネルストッパ領域(例えばn型チャネルストッパ領域61,62)と、の両方を設けてもよい。
以上、説明したように、実施の形態2によれば、p+型埋め込み領域に代えて、n型チャネルストッパ領域を深さ方向に互いに離れて対向する複数段に設けた場合においても、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、n-型ドリフト領域となるn-型炭化珪素層を多段にエピタキシャル成長させるごとに、各段のn型チャネルストッパ領域を形成することができるため、活性領域の素子構造の形成方法を変えることなく、複数段のn型チャネルストッパ領域を簡易に形成することができる。
また、n型チャネルストッパ領域は半導体基板のおもて面からの深さを深くするほど電界緩和効果が高くなるが、n型チャネルストッパ領域を半導体基板のおもて面から1段で深く形成することは難しい。実施の形態2によれば、n型チャネルストッパ領域を深さ方向に互いに離れて対向する複数段に設けることで、n型チャネルストッパ領域の不純物濃度を低くしたとしても、n型チャネルストッパ領域を半導体基板のおもて面から1段で深く形成した場合と同程度の電界緩和効果を得ることができる。
(実施の形態3)
次に、実施の形態3にかかる炭化珪素半導体装置の構造について説明する。図5は、実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態3にかかる炭化珪素半導体装置80を半導体基板40のおもて面側から見たレイアウトは実施の形態1(図1参照)と同様である。実施の形態3にかかる炭化珪素半導体装置80の活性領域1の構造は実施の形態1(図2参照)と同様である。図5には、図1の切断線A2-A3における断面構造を示す。
実施の形態3にかかる炭化珪素半導体装置80が実施の形態1にかかる炭化珪素半導体装置10(図3参照)と異なる点は、p+型埋め込み領域26に代えて、耐圧構造70を構成する複数のp型領域(第2導電型耐圧領域)71および複数のp-型領域(第2導電型耐圧領域)72の各底部の深さ位置を、p++型コンタクト延在部15aの底部の深さ位置よりも深く、かつp+型延在部22aの上部24aの底部の深さ位置よりも浅くした点である。複数のp型領域71および複数のp-型領域72の各深さd2はすべて略同じであり、半導体基板40のおもて面から例えば1.0μm以上程度である。
p型領域71およびp-型領域72は、n-型炭化珪素層42の表面領域にイオン注入により形成された拡散領域である。最も内側のp型領域(第1の第2導電型耐圧領域)71は、底部がp型外周領域25に接するように内側に延在する。最も内側のp型領域71は、p++型コンタクト延在部15aの底部の外側コーナー部15bを囲む。p++型コンタクト延在部15aの底部の外側コーナー部15bにかかる電界はその外側に隣接する最も内側のp型領域71から外側へ向かって耐圧構造70の全体に分散される。
p型領域71およびp-型領域72の各底部は、半導体基板40のおもて面からp型ベース延在部13aの底部よりも深い位置にあってもよい。この場合、p型領域71およびp-型領域72の各底部は、n-型炭化珪素層42bの内部に位置する。最も内側のp型領域71は、p++型コンタクト延在部15a、p型ベース延在部13aおよびp+型延在部22aの上部24aの外側に、これらの領域に隣接して配置される。このため、最も内側のp型領域71は、さらにp型ベース延在部13aの底部の外側コーナー部13bを囲む。
最も内側のp型領域71の内側端部は、p++型コンタクト延在部15aおよびp型ベース延在部13a(または、さらにp+型延在部22aの上部24a)に重なるように内側へ延在してもよい。p+型延在部22aの上部24aおよび下部23aの各底部の外側コーナー部は、n-型ドリフト領域12に囲まれている。耐圧構造70を構成するp型領域71およびp-型領域72の深さd2以外の構成は、実施の形態1の耐圧構造30を構成するp型領域31およびp-型領域32と同様である。
すなわち、耐圧構造70は、内側から外側へ向かって半径方向にJTE領域70a、空間変調領域70b、JTE領域70cおよび空間変調領域70dを順に配置して、全体のp型不純物濃度を内側から外側へ向って緩やかに減少させた空間変調JTE構造である。耐圧構造70のJTE領域70a,70cおよび空間変調領域70b,70dの深さd2以外の構成は、それぞれ実施の形態1の耐圧構造30のJTE領域30a,30cおよび空間変調領域30b,30dと同様である。
実施の形態3においては、p型領域71のキャリア濃度(活性化した不純物の濃度)を適宜調整することで、エッジ終端領域2の耐圧を活性領域1の耐圧よりも十分に高い耐圧で安定して確保することができる。p型領域71のキャリア濃度をp型ベース延在部13a(すなわちp型ベース領域13)のキャリア濃度よりも高くしたとしても、上述したように半導体基板40のおもて面から比較的深い深さd2でp型領域71およびp-型領域72を設けることで、エッジ終端領域2の耐圧を十分に確保することができる。
エッジ終端領域2の耐圧が安定しているとは、炭化珪素半導体装置80の長時間動作によってエッジ終端領域2における半導体基板40のおもて面上の絶縁層(フィールド酸化膜51および層間絶縁膜19)が正(プラス)または負(マイナス)に帯電した状態になったとしても、エッジ終端領域2の耐圧が変動せず、当該絶縁層にプラス電荷およびマイナス電荷のいずれも蓄積していない通常時(電荷ゼロ)のエッジ終端領域2の耐圧以上にエッジ終端領域2の耐圧が維持されることである。
実施の形態3にかかる炭化珪素半導体装置80の製造方法は、実施の形態1にかかる炭化珪素半導体装置10の製造方法において、耐圧構造70を構成するp型領域71およびp-型領域72を半導体基板40のおもて面から例えば1.0μm以上程度の深さd2で形成し、p型領域71およびp-型領域72の各底部の深さ位置を、p++型コンタクト延在部15aの底部の深さ位置よりも深く、かつp+型延在部22aの上部24aの底部の深さ位置よりも浅くすればよい。
例えば、耐圧構造70を構成するp型領域71およびp-型領域72は、最表面のn-型炭化珪素層42cをエピタキシャル成長させてn-型炭化珪素層42の厚さを最終的な厚さにした後に、p型不純物のイオン注入によりn-型炭化珪素層42cを貫通してn-型炭化珪素層42bの内部で終端する深さd2で形成すればよい。p型領域71およびp-型領域72を形成するためのp型不純物のイオン注入の加速エネルギーは、例えば900keV以上程度である。
実施の形態3にかかる炭化珪素半導体装置80に実施の形態1を適用して、エッジ終端領域2に、p+型埋め込み領域26(図3参照)を設けてもよい。実施の形態3にかかる炭化珪素半導体装置80に実施の形態2を適用して、エッジ終端領域2に、深さ方向に互いに離れて対向する複数段のn型チャネルストッパ領域(例えばn型チャネルストッパ領域61,62:図4参照)を設けてもよい。
また、実施の形態3にかかる炭化珪素半導体装置80のエッジ終端領域2に、実施の形態1のp+型埋め込み領域26と、実施の形態2の複数段のn型チャネルストッパ領域と、の両方を設けてもよい。実施の形態2の複数段のn型チャネルストッパ領域は、耐圧構造70(p型領域71およびp-型領域72)と導電型が異なるため、耐圧構造70の深さd2に依らず、半導体基板40のおもて面から深い位置に配置可能である。
以上、説明したように、実施の形態3によれば、耐圧構造を構成するp型領域およびp-型領域を半導体基板のおもて面から深く形成して、最も内側のp型領域によってp++型コンタクト延在部の底部の外側コーナー部(または、さらにp型ベース延在部の底部の外側コーナー部)を囲む。これによって、p++型コンタクト延在部の底部の外側コーナー部(さらにp型ベース延在部の底部の外側コーナー部)での電界集中をさらに緩和することができ、実施の形態1と同様の効果をより得ることができる。
また、実施の形態3によれば、耐圧構造を構成するp型領域の不純物濃度を適宜設定することで、炭化珪素半導体装置の長時間動作によってエッジ終端領域における半導体基板のおもて面上の絶縁層に電荷が蓄積されたとしても、当該電荷の悪影響を受けにくくすることができる。これによって、絶縁層に電荷が蓄積していない通常時(電荷ゼロ)のエッジ終端領域の耐圧以上にエッジ終端領域2の耐圧が維持され、エッジ終端領域の耐圧が活性領域の耐圧よりも低くなることをさらに抑制することができる。
(実施例)
上述した実施の形態3にかかる炭化珪素半導体装置80(図5参照)の耐圧特性について検証した。図6は、従来例の耐圧特性をシミュレーションした結果を示す特性図である。図6において、横軸は耐圧構造130のp型領域131を形成するためにイオン注入するアルミニウム(Al)のうち活性化したアルミニウムのドーズ量(以下、JTEドーズ量とする)であり、縦軸は従来例のエッジ終端領域102の耐圧である。
上述した実施の形態3にかかる炭化珪素半導体装置80(以下、実施例とする)の長時間動作におけるエッジ終端領域2の耐圧特性について、p型領域71の不純物濃度を種々変更してシミュレーションした(不図示)。上述したように、実施例には、耐圧構造70を構成するp型領域71およびp-型領域72が半導体基板40のおもて面から1.0μmの深さd2で形成されている。
比較として、従来の炭化珪素半導体装置110(以下、従来例とする:図7参照)の長時間動作におけるエッジ終端領域102の耐圧特性について、p型領域131の不純物濃度を種々変更してシミュレーションした結果を図6に示す。従来例が実施例と異なる点は、耐圧構造130を構成するp型領域131およびp-型領域132が半導体基板140のおもて面から0.5μmと浅い深さd101で形成される点である。
図6には、従来例の長時間動作によってエッジ終端領域102における半導体基板140のおもて面上の絶縁層119がプラスに帯電(プラス電荷が蓄積)した場合、MOSFETの長時間動作によって絶縁層119がマイナスに帯電(マイナス電荷が蓄積)した場合、および、絶縁層119が帯電していない通常時(電荷ゼロ)の3つの結果を示す。実施例および従来例ともに同じ条件でシミュレーションした。
図6に示す結果から、従来例では、活性領域101の外周部101bのp型外周領域125の外側端部に、深さ方向に半導体基板140のおもて面から離れるほど段階的に内側に凹んだ段差を形成したことで、エッジ終端領域102の耐圧低下が抑制されることが確認された。これによって、エッジ終端領域102の耐圧は、活性領域101の耐圧よりも若干高くなるものの、活性領域101の耐圧とほぼ同じであった。
具体的には、従来例では、耐圧構造130のp型領域131のJTEドーズ量が9×1012/cm2以上1.4×1013/cm2以下の範囲Bであるときに、エッジ終端領域102における半導体基板140のおもて面上の絶縁層119の帯電の有無によらず、エッジ終端領域102の耐圧が活性領域101の耐圧とほぼ同じ耐圧で安定することが確認された。活性領域101の耐圧は1600Vに設定している。
このように、従来例では、エッジ終端領域102の耐圧と活性領域101の耐圧との差が小さいため、エッジ終端領域102においてアバランシェ耐量低下や逆バイアス安全動作領域(RBSOA:Reverse Bias Safe Operating Area)を超えて動作する等によって、エッジ終端領域102の耐圧が活性領域101の耐圧よりも低くなり、エッジ終端領域102で破壊に至る虞がある。
一方、実施例においては、耐圧構造70を構成するp型領域71およびp-型領域72を半導体基板40のおもて面から1.0μmの深さd2で形成し、p++型コンタクト延在部15aの底部の外側コーナー部15bを囲んでいる。これによって、従来例と比べて、エッジ終端領域2の耐圧は、耐圧構造70のp型領域71のJTEドーズ量に対するばらつきが大きくなるが、活性領域1の耐圧よりも十分に高くすることができることが確認された(不図示)。
具体的には、耐圧構造70のp型領域71のJTEドーズ量が8.5×1012/cm2以上1.4×1013/cm2以下程度の範囲であるときに、エッジ終端領域2における半導体基板40のおもて面上の絶縁層(層間絶縁膜19およびフィールド酸化膜51)の帯電の有無によらず、エッジ終端領域2の耐圧が活性領域1の耐圧(=1600V)よりも十分に高い1600V台後半~1800V程度の耐圧で安定することが確認された。
したがって、耐圧構造70のp型領域71のJTEドーズ量のばらつきの許容範囲として、エッジ終端領域2の耐圧を活性領域1の耐圧よりも十分に高い耐圧で安定して確保することができるp型領域71のJTEドーズ量の範囲をシミュレーション等により予め取得する。そして、このp型領域71のJTEドーズ量のばらつきの許容範囲内で当該p型領域71を形成することで、十分な信頼性を見込めることが確認された。
以上において本発明は、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、図2に示す活性領域の構造は一例であり、トレンチゲート構造に代えて、例えばプレーナゲート構造としてもよい。すなわち、活性領域の外周部に、活性領域の中央部の周囲を囲むp型外周領域が形成され、当該p型外周領域の外側端部に深さ方向に半導体基板のおもて面から離れるほど段階的に内側に凹んだ複数の段差が形成されていればよく、活性領域の素子構造を適宜変更可能である。
また、空間変調JTE構造に代えて、活性領域の外周部のp型外周領域と、半導体基板のおもて面上の絶縁層と、に接して、一般的なJTE構造を設けてもよい。一般的なJTE構造とは、複数のp型領域(JTE領域)を、内側から外側へ離れるほど不純物濃度の低いJTE領域が配置されるように、活性領域の周囲を囲む同心状に隣接して配置した構造である。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
以上のように、本発明にかかる炭化珪素半導体装置は、電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 活性領域
1a 活性領域の中央部
1b 活性領域の外周部
2 エッジ終端領域
10,60,80 炭化珪素半導体装置
11 n+型ドレイン領域
12 n-型ドリフト領域
13 p型ベース領域
13a p型ベース延在部
13b p型ベース延在部の底部の外側コーナー部
14 n+型ソース領域
15,15c,15d p++型コンタクト領域
15a p++型コンタクト延在部
15b p++型コンタクト延在部の底部の外側コーナー部
16 トレンチ
17 ゲート絶縁膜
18 ゲート電極
19 層間絶縁膜
20 n型電流拡散領域
21 トレンチ下のp+型領域
22 互いに隣り合うトレンチ間のp+型領域
22a p+型延在部
23 互いに隣り合うトレンチ間のp+型領域の下部
23a p+型延在部の下部
23b p+型延在部の下部の底部の外側コーナー部
24 互いに隣り合うトレンチ間のp+型領域の上部
24a p+型延在部の上部
25 p型外周領域
25b p型外周領域の底部の外側コーナー部
26 p+型埋め込み領域
30,70 耐圧構造
30a,30c,70a,70c JTE領域
30b、30d,70b,70d 空間変調領域
31,71 耐圧構造のp型領域
32,72 耐圧構造のp-型領域
33 n+型チャネルストッパ領域
40 半導体基板
41 n+型出発基板
42,42a,42b,42c n-型炭化珪素層
43 オーミック電極
44 ソース電極
45 ドレイン電極
51 フィールド酸化膜
52 ゲートポリシリコン配線層
53 ゲート金属配線層
61,62 n型チャネルストッパ領域
d1,d2 耐圧構造(p型領域およびp-型領域)の深さ

Claims (13)

  1. 炭化珪素からなり、全面にわたって平坦な第1主面を有する半導体基板と、
    前記半導体基板に設けられた活性領域と、
    前記半導体基板に設けられ、前記活性領域の周囲を囲む終端領域と、
    前記活性領域から前記終端領域にわたって前記半導体基板の内部に設けられた第1導電型の第1半導体領域と、
    前記活性領域において前記第1主面と前記第1半導体領域との間に設けられた第2導電型の第2半導体領域と、
    前記第1半導体領域と前記第2半導体領域とのpn接合を含み、前記pn接合を通過する電流が流れる素子構造と、
    前記素子構造と前記終端領域との間において前記第1主面と前記第1半導体領域との間に設けられ、前記活性領域の周囲を囲む第2導電型外周領域と、
    前記終端領域において前記第1主面と前記第1半導体領域との間に、前記活性領域の周囲を囲む同心状に互いに離れて設けられた複数の第2導電型耐圧領域で構成された耐圧構造と、
    前記第1主面に設けられ、前記第2半導体領域および前記第2導電型外周領域に電気的に接続された第1電極と、
    前記半導体基板の第2主面に設けられ、前記第1半導体領域に電気的に接続された第2電極と、
    を備え、
    前記第2導電型外周領域は、外側端部に深さ方向に前記第1主面から離れるほど段階的に内側に凹んだ複数段の段差を有し、当該段差に応じて半径方向に外側に延在して前記第1主面に近いほど外側で終端する複数の延在部で構成され、
    前記耐圧構造は、複数の前記延在部のうちの最も前記第1主面側の第1延在部の外側端部に接し、
    前記終端領域において、複数の前記延在部のうちの最も前記第2主面側の第2延在部と同じ深さ位置に、前記耐圧構造および前記第2導電型外周領域と離れて設けられ、前記活性領域の周囲を囲む第2導電型埋め込み領域を有することを特徴とする炭化珪素半導体装置。
  2. 前記第2導電型埋め込み領域は、複数の前記第2導電型耐圧領域のうちの最も内側の第1の第2導電型耐圧領域に深さ方向に対向することを特徴とする請求項1に記載の炭化珪素半導体装置。
  3. 前記第2導電型埋め込み領域は、前記第1の第2導電型耐圧領域の外側端部よりも内側に位置することを特徴とする請求項2に記載の炭化珪素半導体装置。
  4. 前記第2導電型埋め込み領域の不純物濃度は、前記第2延在部の不純物濃度と等しいことを特徴とする請求項1に記載の炭化珪素半導体装置。
  5. 前記第2導電型埋め込み領域の不純物濃度は、前記第2導電型耐圧領域の不純物濃度よりも高いことを特徴とする請求項1に記載の炭化珪素半導体装置。
  6. 前記素子構造は、
    前記第1主面と前記第2半導体領域との間に選択的に設けられ、前記第1電極に電気的に接続された第1導電型の第3半導体領域と、
    前記第3半導体領域および前記第2半導体領域を貫通して前記第1半導体領域に達するトレンチと、
    前記トレンチの内部にゲート絶縁膜を介して設けられたゲート電極と、
    前記第1半導体領域と前記第2半導体領域との間において、前記トレンチの底面よりも前記第2主面側に選択的に設けられた、前記第2半導体領域よりも不純物濃度の高い第2導電型高濃度領域と、を備え、
    前記第2導電型外周領域は、
    前記第2半導体領域の前記素子構造よりも外側に配置された部分である第3延在部と、
    前記第1主面と前記第3延在部との間に、前記第3延在部に接して設けられた、前記第3延在部よりも不純物濃度の高い前記第1延在部と、
    前記第2導電型高濃度領域の前記素子構造よりも外側に配置された部分のうちの前記第1主面側の部分であり、前記第3延在部の前記第2主面側に隣接する第4延在部と、
    前記第2導電型高濃度領域の前記素子構造よりも外側に配置された部分のうちの残りの部分であり、前記第4延在部と前記第1半導体領域との間に、前記第4延在部および前記第1半導体領域に接して設けられた前記第2延在部と、を有することを特徴とする請求項1に記載の炭化珪素半導体装置。
  7. 前記第2導電型耐圧領域の底部は、前記第1延在部の底部よりも前記第1主面側に浅い位置にあることを特徴とする請求項6に記載の炭化珪素半導体装置。
  8. 前記第2導電型耐圧領域の底部は、前記第1延在部の底部よりも前記第2主面側に深い位置で、かつ前記第4延在部の底部よりも前記第1主面側に浅い位置にあることを特徴とする請求項6に記載の炭化珪素半導体装置。
  9. 前記第2導電型耐圧領域の前記第1主面からの深さは、1.0μm以上であることを特徴とする請求項8に記載の炭化珪素半導体装置。
  10. 前記耐圧構造は、前記第1延在部の底部の外側コーナー部を囲むことを特徴とする請求項8に記載の炭化珪素半導体装置。
  11. 前記耐圧構造は、前記第3延在部の底部の外側コーナー部を囲むことを特徴とする請求項10に記載の炭化珪素半導体装置。
  12. 前記第1半導体領域の内部において前記耐圧構造よりも外側に、前記耐圧構造と離れて設けられた、深さ方向に互いに離れて対向する複数段の第1導電型チャネルストッパ領域を有することを特徴とする請求項1に記載の炭化珪素半導体装置。
  13. 前記耐圧構造は、全体の第2導電型不純物濃度を内側から外側へ向って緩やかに減少させた空間変調構造を有することを特徴とする請求項1~12のいずれか一つに記載の炭化珪素半導体装置。
JP2022085668A 2022-05-26 2022-05-26 炭化珪素半導体装置 Pending JP2023173420A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022085668A JP2023173420A (ja) 2022-05-26 2022-05-26 炭化珪素半導体装置
US18/193,888 US20230387193A1 (en) 2022-05-26 2023-03-31 Silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022085668A JP2023173420A (ja) 2022-05-26 2022-05-26 炭化珪素半導体装置

Publications (1)

Publication Number Publication Date
JP2023173420A true JP2023173420A (ja) 2023-12-07

Family

ID=88876745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022085668A Pending JP2023173420A (ja) 2022-05-26 2022-05-26 炭化珪素半導体装置

Country Status (2)

Country Link
US (1) US20230387193A1 (ja)
JP (1) JP2023173420A (ja)

Also Published As

Publication number Publication date
US20230387193A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6477885B2 (ja) 半導体装置および半導体装置の製造方法
JP3506676B2 (ja) 半導体装置
JP2020074396A (ja) 半導体装置
WO2017006711A1 (ja) 半導体装置
JP6668798B2 (ja) 半導体装置
JP6561611B2 (ja) 半導体装置
JP2008294214A (ja) 半導体装置
JP2010056510A (ja) 半導体装置
WO2011108191A1 (ja) 半導体装置の製造方法および半導体装置
US20200119147A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US9711642B2 (en) Semiconductor device and manufacturing method thereof
US11101345B2 (en) Semiconductor device
US20230050319A1 (en) Silicon carbide semiconductor device
US11569376B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2019160901A (ja) 半導体装置
CN114388612A (zh) 半导体装置及半导体装置的制造方法
JP2023173420A (ja) 炭化珪素半導体装置
JP2023173412A (ja) 炭化珪素半導体装置
US20220102485A1 (en) Semiconductor device and manufacturing method of semiconductor device
WO2023112547A1 (ja) 半導体装置
US20240088212A1 (en) Semiconductor device and manufacturing method of semiconductor device
US20230299194A1 (en) Semiconductor device and method of manufacturing the same
US20230395710A1 (en) Semiconductor device and manufacturing method of semiconductor device
JP2023088816A (ja) 炭化珪素半導体装置
JP7006389B2 (ja) 半導体装置および半導体装置の製造方法