JP2023172587A - Method for obtaining chlorine leachate from platinum group element-containing solution - Google Patents

Method for obtaining chlorine leachate from platinum group element-containing solution Download PDF

Info

Publication number
JP2023172587A
JP2023172587A JP2022084500A JP2022084500A JP2023172587A JP 2023172587 A JP2023172587 A JP 2023172587A JP 2022084500 A JP2022084500 A JP 2022084500A JP 2022084500 A JP2022084500 A JP 2022084500A JP 2023172587 A JP2023172587 A JP 2023172587A
Authority
JP
Japan
Prior art keywords
gold
reducing agent
slurry
platinum group
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022084500A
Other languages
Japanese (ja)
Inventor
秀昌 永井
Hidemasa Nagai
広大 栗本
Kodai Kurimoto
隆行 中井
Takayuki Nakai
正寛 新宮
Masahiro Shingu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022084500A priority Critical patent/JP2023172587A/en
Publication of JP2023172587A publication Critical patent/JP2023172587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for effectively reducing gold contained in a leachate obtained by chlorine leaching a platinum group element-containing material containing gold as an impunity element, for example, capable of preventing operation efficiency deterioration in a solvent extraction treatment in a post-step.SOLUTION: A method for chlorine-leaching a platinum group element-containing material containing gold as an impurity element and thereafter obtaining a chlorine leachate by solid-liquid separation treatment, includes: a gold reduction step to reduce gold contained in slurry by adding a reducing agent to the slurry with gold concentration of 2.0 g/L or more in a liquid phase, obtained by the chlorine-leaching before the solid-liquid separation treatment; and a solid-liquid separation step to separate the chlorine leachate and a leach residue containing reduced gold precipitates from the liquid after the reduction. The gold reduction step is to control continuously measuring the gold concentration in the liquid phase which is changed by reduction of the gold contained in the slurry, continuing addition of the reducing agent when the gold concentration is 1.8 g/L or more, and stopping the addition of the reducing agent when the gold concentration is less than 1.8 g/L.SELECTED DRAWING: Figure 1

Description

本発明は、金を不純物元素として含む白金族元素含有物を塩素浸出に供し、その後固液分離処理によって塩素浸出液を得る方法に関するものであり、より詳しくは、金の含有量を効果的に低減させた塩素浸出液を得る方法に関する。 The present invention relates to a method for subjecting a platinum group element-containing material containing gold as an impurity element to chlorine leaching, and then obtaining a chlorine leaching solution through solid-liquid separation treatment. More specifically, the present invention relates to a method for effectively reducing the gold content. The present invention relates to a method for obtaining a chlorinated leachate.

従来、銅電解スライムから貴金属元素を回収する方法として、銅電解スライムを湿式法により脱銅した後、乾式法によりセレン、アンチモン、鉛、錫、ビスマス、テルル等を分離し、最後に金、銀、白金族の合金を得て、この合金を電解操作することを中心とした方法が行われていた。しかしながら、このような従来法では、貴金属を回収するまでの期間が長いために、系内滞留期間中の金利負担が大きくなるという問題のほか、エネルギーの消費量が大きいという問題、工程毎に固形物の運搬をするため自動化が困難であるという問題、排ガスによる作業環境の汚染があるという問題、スライムの組成及び化合物の形態への対応力が低い等の問題があった。 Conventionally, as a method for recovering precious metal elements from copper electrolytic slime, the copper electrolytic slime is decoppered using a wet process, selenium, antimony, lead, tin, bismuth, tellurium, etc. are separated using a dry process, and finally gold and silver are recovered. , a method centered on obtaining a platinum group alloy and electrolytically manipulating this alloy has been carried out. However, with this conventional method, the period until precious metals are recovered is long, which increases the interest burden during the retention period in the system, as well as problems such as high energy consumption and There were problems such as difficulty in automating the transport of materials, contamination of the working environment by exhaust gas, and poor adaptability to the composition of slime and the form of compounds.

これに対し、例えば特許文献1では、銅電解スライムから簡単な湿式操作のみによって、金、白金族元素、セレン、テルルを選択的に且つ高収率で回収する方法が提案されている。特許文献1に開示の方法によれば、従来法の問題を有効に解決することができる。 On the other hand, for example, Patent Document 1 proposes a method for selectively recovering gold, platinum group elements, selenium, and tellurium from copper electrolytic slime only by simple wet operations in a high yield. According to the method disclosed in Patent Document 1, the problems of the conventional method can be effectively solved.

また、特許文献1に開示の方法を改良する方法として、特許文献2では、大部分の金を回収した後に、イオン交換樹脂により白金族元素を濃縮する工程を付加し、白金族元素濃縮物(以下、「PGM濃縮物」ともいう。PGM:Platinum Group Metals)を得て、白金族元素を優先的に回収する方法が提案されている。 In addition, as a method for improving the method disclosed in Patent Document 1, Patent Document 2 adds a step of concentrating platinum group elements using an ion exchange resin after recovering most of the gold, resulting in a platinum group element concentrate ( A method has been proposed in which PGM (Platinum Group Metals) (hereinafter also referred to as "PGM concentrate") is obtained and platinum group elements are preferentially recovered.

具体的には、PGM濃縮物を出発原料として、白金族元素が浸出しやすい条件で塩素浸出を行い、固液分離工程にてPGM浸出液(以下、「塩素浸出液」ともいう)と残渣(浸出残渣)とを得る方法が行われている。得られたPGM浸出液は、塩素浸出によって白金族元素が優先的に浸出されているため、更に後工程で処理することによって白金族元素を効果的に回収することができる。 Specifically, using a PGM concentrate as a starting material, chlorine leaching is performed under conditions that facilitate the leaching of platinum group elements, and a PGM leaching solution (hereinafter also referred to as "chlorine leaching solution") and a residue (leaching residue) are separated in a solid-liquid separation process. ) and how to obtain it has been done. Since platinum group elements are preferentially leached out of the obtained PGM leachate by chlorine leaching, the platinum group elements can be effectively recovered by further processing in a post-process.

特開2001-207223号公報JP2001-207223A 特開2013-104064号公報Japanese Patent Application Publication No. 2013-104064

さて、上述した特許文献2に開示の方法において、塩素浸出により得られたPGM浸出液には、例えば0.2g/L以下程度のわずかな金が含まれていることが知られている。これは、金の大部分を出発原料であるPGM濃縮物に回収していることから、PGM濃縮物に対する浸出処理で得られるPGM浸出液には不可避的に金が残留してしまうことによる。そのため、従来から、後工程において溶媒抽出法を利用した処理(Au・Sb-SX)を行うことによって、金を抽出している。抽出した金は、有機溶媒から還元逆抽出することで還元金粉として回収され、前工程である銅電解スライム浸出工程に繰り返して処理される。 Now, in the method disclosed in Patent Document 2 mentioned above, it is known that the PGM leachate obtained by chlorine leaching contains a small amount of gold, for example, about 0.2 g/L or less. This is because most of the gold is recovered in the PGM concentrate, which is the starting material, so gold inevitably remains in the PGM leachate obtained by leaching the PGM concentrate. Therefore, conventionally, gold has been extracted by performing a treatment (Au/Sb-SX) using a solvent extraction method in a post-process. The extracted gold is recovered as reduced gold powder by back-extracting it from the organic solvent, and is repeatedly processed in the copper electrolytic slime leaching step, which is the previous step.

ところが、原料事情によっては、PGM濃縮物中の金が従来よりも多く含まれる場合があり、従来通りの操業では、PGM浸出液中に例えば2~4g/L程度(従来比で10倍以上)の金が残留することがある。すると、後工程での溶媒抽出を利用した処理の負荷が大きくなり、操業効率が低下することがある。例えば単純には、単位時間あたり処理液量が10分の1程度となることもあり、溶媒抽出の条件を調整して解決できる範囲ではなく、溶媒抽出装置を増加させる必要も生じて操業コストを増大させてしまう。 However, depending on the raw material situation, the PGM concentrate may contain more gold than before, and under conventional operations, the PGM leachate contains, for example, about 2 to 4 g/L (more than 10 times the conventional ratio). Money may remain. This may increase the load of processing using solvent extraction in the subsequent process, and may reduce operational efficiency. For example, simply speaking, the amount of liquid processed per unit time may be about 1/10th, which is not a problem that can be solved by adjusting the solvent extraction conditions, and it will also be necessary to increase the number of solvent extraction equipment, which will reduce operating costs. It will increase it.

本発明は、このような実情に鑑みて提案されたものであり、少なくとも金を不純物元素として含む白金族元素含有物を塩素浸出して得られる浸出液中に含まれることになる金を効果的に低減し、例えば後工程での溶媒抽出処理の操業効率低下を防ぐことができる方法を提供することを目的とする。 The present invention was proposed in view of the above circumstances, and effectively removes gold contained in a leachate obtained by chlorine leaching a platinum group element-containing material containing at least gold as an impurity element. It is an object of the present invention to provide a method that can reduce the amount of water and prevent, for example, a decrease in operational efficiency of solvent extraction treatment in a subsequent process.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、金を含む白金族元素含有物に対して塩素浸出を施した後、固液分離処理するに先立ち、得られたスラリーに対して還元剤を添加して金を還元することで、還元金として効率的に沈澱除去して浸出液中の金の含有量を有効に低減できることを見出した。また、その金の還元処理において、スラリーの液相中の金濃度に基づき還元剤の添加継続の有無を制御することで、塩素浸出液中の白金族元素の沈澱物化を抑えてその白金族元素の実収率低下を防ぐことができることを見出した。すなわち、本発明は以下の通りである。 The present inventors have made extensive studies to solve the above-mentioned problems. As a result, after applying chlorine leaching to platinum group element-containing materials containing gold, and prior to solid-liquid separation treatment, a reducing agent was added to the resulting slurry to reduce the gold. It has been found that gold can be effectively precipitated and removed to effectively reduce the gold content in the leachate. In addition, in the gold reduction process, by controlling whether or not to continue adding a reducing agent based on the gold concentration in the liquid phase of the slurry, it is possible to suppress the precipitation of platinum group elements in the chlorine leachate and reduce the amount of platinum group elements. It has been found that it is possible to prevent a decrease in actual yield. That is, the present invention is as follows.

(1)本発明の第1の発明は、金を不純物元素として含む白金族元素含有物を塩素浸出に供し、その後固液分離処理によって塩素浸出液を得る方法であって、前記塩素浸出により得られた、液相中の金濃度が2.0g/L以上であるスラリー対して、前記固液分離処理の前に、還元剤を添加して該スラリーに含まれる金を還元する金還元工程と、還元後液から、前記塩素浸出液と、還元金の沈澱物を含む浸出残渣とを分離する固液分離工程と、を含み、前記金還元工程では、前記スラリーに含まれる金の還元により変動する前記液相中の金濃度を連続的に測定し、該金濃度が1.8g/L以上の場合には前記還元剤の添加を継続し、該金濃度が1.8g/L未満の場合には前記還元剤の添加を停止する、方法である。 (1) A first aspect of the present invention is a method for subjecting a platinum group element-containing material containing gold as an impurity element to chlorine leaching, and then obtaining a chlorine leached solution by solid-liquid separation treatment, the method comprising: Further, a gold reduction step of adding a reducing agent to the slurry having a gold concentration in the liquid phase of 2.0 g/L or more before the solid-liquid separation treatment to reduce the gold contained in the slurry; a solid-liquid separation step of separating the chlorine leachate and a leaching residue containing precipitates of reduced gold from the reduced solution, and in the gold reduction step, the Continuously measure the gold concentration in the liquid phase, if the gold concentration is 1.8 g/L or more, continue adding the reducing agent, and if the gold concentration is less than 1.8 g/L. This is a method of stopping the addition of the reducing agent.

(2)本発明の第2の発明は、第1の発明において、前記還元剤は、亜硫酸ナトリウムを含む、方法である。 (2) A second invention of the present invention is the method according to the first invention, wherein the reducing agent contains sodium sulfite.

(3)本発明の第3の発明は、第2の発明において、前記スラリーの酸化還元電位に基づいて、前記亜硫酸ナトリウムの添加量を制御する、方法である。 (3) A third aspect of the present invention is a method according to the second aspect, in which the amount of sodium sulfite added is controlled based on the oxidation-reduction potential of the slurry.

(4)本発明の第4の発明は、第1の発明において、前記還元剤は、ヒドラジンを含む、方法である。 (4) A fourth invention of the present invention is the method according to the first invention, wherein the reducing agent contains hydrazine.

本発明によれば、得られる浸出液中の金の含有量を効果的に低減することができる。これにより、後工程における溶媒抽出処理の操業効率低下を防ぐことができる。また、塩素浸出液中の白金族元素の沈澱物化を抑えて、その白金族元素の実収率低下を防ぐことができる。 According to the present invention, the gold content in the obtained leachate can be effectively reduced. Thereby, it is possible to prevent a decrease in the operational efficiency of the solvent extraction treatment in the post-process. Furthermore, it is possible to suppress the precipitation of platinum group elements in the chlorine leachate, thereby preventing a decrease in the actual yield of the platinum group elements.

本実施の形態に係る方法の流れの一例を示す工程図であるFIG. 2 is a process diagram showing an example of the flow of the method according to the present embodiment.

以下、本発明の具体的な実施形態(以下、「本実施の形態」ともいう)について詳細に説明する。なお、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。 Hereinafter, a specific embodiment of the present invention (hereinafter also referred to as "this embodiment") will be described in detail. Note that the present invention is not limited to the following embodiments at all, and can be implemented with appropriate changes within the scope of not changing the gist of the present invention.

本実施の形態に係る方法は、金を不純物元素として含む白金族元素含有物を塩素浸出に供し、その後固液分離処理によって塩素浸出液を得る方法である。 The method according to the present embodiment is a method in which a platinum group element-containing material containing gold as an impurity element is subjected to chlorine leaching, and then a chlorine leaching solution is obtained by solid-liquid separation treatment.

白金族元素含有物は、特に限定されず、銅、ニッケル、コバルト等の非鉄金属製錬からの副産物、自動車排ガス処理触媒等の各種の使用済み廃触媒等から得られる種々の不純物元素を含む白金族元素の濃縮物(以下、「PGM濃縮物」という)等を用いることができる。この方法に用いるPGM濃縮物には、不純物元素として少なくとも金が含まれている。その他の不純物元素としては、主金属である銅、ニッケル、コバルト、鉄等、他の構成元素である銀、鉛、スズ、セレン、テルル、ヒ素、アンチモン、ビスマス等が挙げられる。このような、少なくとも金を不純物元素として白金族元素含有物としては、例えば、アノードスライムを処理して貴金属を濃縮したもの(PGMconc)等が挙げられる。 Platinum group element-containing substances are not particularly limited, and include platinum containing various impurity elements obtained from by-products from smelting non-ferrous metals such as copper, nickel, and cobalt, and various used waste catalysts such as automobile exhaust gas treatment catalysts. Concentrates of group elements (hereinafter referred to as "PGM concentrates"), etc. can be used. The PGM concentrate used in this method contains at least gold as an impurity element. Examples of other impurity elements include main metals such as copper, nickel, cobalt, and iron, and other constituent elements such as silver, lead, tin, selenium, tellurium, arsenic, antimony, and bismuth. Examples of such materials containing platinum group elements with at least gold as an impurity element include those obtained by processing anode slime to concentrate noble metals (PGMconc).

例えば、特許文献2に開示されているように、白金族元素の分離回収においては、PGM濃縮物を塩素浸出に供して、白金族元素を浸出させた浸出液(PGM浸出液、塩素浸出液)を得る処理が行われる。 For example, as disclosed in Patent Document 2, in the separation and recovery of platinum group elements, PGM concentrate is subjected to chlorine leaching to obtain a leachate (PGM leachate, chlorine leachate) from which platinum group elements have been leached. will be held.

このようなPGM濃縮物を出発原料としてPGM浸出液を得る操業においては、例えば銅電解スライムの成分として金の含有量が多くなる場合や、PGM濃縮物に他工程から回収される白金族元素を含有する残渣や固形物等の雑原料が混合されている場合などでは、塩素浸出により得られるPGM浸出液中の金の含有量が多くなることがある。なお、銅電解スライムの成分として金の含有量が多くなるのは、事業上の要請として金を増産させる必要があって、銅製錬の原料である金鉱石中の金の含有量を増加させるような場合があるからである。また、同じく事業上の要請として、雑原料から白金族元素を回収する必要があり、その雑原料には金が高濃度で含まれる場合があるためである。 In operations where PGM leachate is obtained using such PGM concentrate as a starting material, for example, there may be cases where the copper electrolytic slime contains a large amount of gold as a component, or where the PGM concentrate contains platinum group elements recovered from other processes. In cases where miscellaneous raw materials such as residues and solids are mixed, the gold content in the PGM leachate obtained by chlorine leaching may increase. The reason why the content of gold as a component of copper electrolytic slime increases is that it is necessary to increase gold production as a business requirement, and it is necessary to increase the gold content in gold ore, which is the raw material for copper smelting. This is because there are cases where Furthermore, as a business requirement, it is necessary to recover platinum group elements from miscellaneous raw materials, and this is because these miscellaneous raw materials may contain gold at a high concentration.

従来、塩素浸出により得られるPGM浸出液中の金の濃度は0.2g/L程度であり、後工程の溶媒抽出処理によって金を分離回収していた。ところが、上述した実情からPGM浸出液中の金濃度が2.0~4.0g/L程度まで増加すると、溶媒抽出処理(Au・Sb-SX)で金を分離するための負荷が限界を超えて高くなる。言い換えると、金が多すぎて溶媒抽出では処理しきれなくなり、処理液量を減らす等の措置が必要となる。 Conventionally, the concentration of gold in the PGM leachate obtained by chlorine leaching was about 0.2 g/L, and the gold was separated and recovered in a subsequent solvent extraction process. However, due to the above-mentioned situation, when the gold concentration in the PGM leachate increases to about 2.0 to 4.0 g/L, the load for separating gold by solvent extraction treatment (Au/Sb-SX) exceeds the limit. It gets expensive. In other words, there is too much gold to be processed by solvent extraction, and measures such as reducing the amount of processing liquid are required.

このような問題に対して、PGM浸出液中の金の含有量を低下させればよいことは容易に想起されるが、上述した事業上の要請等からプロセスの上流側において原料中の金を減少させる方法の選択はできない。そのため、PGM濃縮物(雑原料との混合物を含む場合がある)を塩素浸出する以降の工程において、適切な手段を講じる必要がある。また、塩素浸出直後のスラリーの液相(上澄み液)の金濃度を低下させるために、PGM濃縮物の浸出程度を抑える方法も考えられるが、白金族元素の浸出率も低下してしまうため、その手段は選択できない。したがって、PGM濃縮物から白金族元素を優先的に最大限浸出できる条件のもと、得られるPGM浸出液から金を有効に低減することが必要となる。 It is easy to recall that reducing the gold content in the PGM leachate would be a good solution to this problem, but due to the business requirements mentioned above, it is necessary to reduce the gold content in the raw material at the upstream side of the process. You cannot choose how to do it. Therefore, it is necessary to take appropriate measures in the subsequent process of chlorine leaching the PGM concentrate (which may include a mixture with miscellaneous raw materials). In addition, in order to reduce the gold concentration in the liquid phase (supernatant liquid) of the slurry immediately after chlorine leaching, a method of suppressing the degree of leaching of the PGM concentrate may be considered, but this would also reduce the leaching rate of platinum group elements. That method is not an option. Therefore, it is necessary to effectively reduce gold from the resulting PGM leachate under conditions that can preferentially and maximally leach platinum group elements from the PGM concentrate.

そこで、本実施の形態に係る方法では、金を不純物元素として含む白金族元素含有物を塩素浸出に供し、その後固液分離処理によって塩素浸出液を得る方法において、塩素浸出により得られたスラリーに対して、還元剤を添加してそのスラリー(スラリー中の浸出液)に含まれる金を還元する。 Therefore, in the method according to the present embodiment, in a method in which a material containing a platinum group element containing gold as an impurity element is subjected to chlorine leaching, and then a chlorine leached solution is obtained by solid-liquid separation treatment, the slurry obtained by chlorine leaching is Then, a reducing agent is added to reduce the gold contained in the slurry (leaching solution in the slurry).

図1は、本実施の形態に係る方法の流れを示す工程図である。図1の工程図に示すように、塩素浸出処理(塩素浸出工程)の後、浸出処理により得られるスラリー(液相の浸出液と浸出残渣との含むスラリー)に対して、還元剤を添加して金を還元する処理を施す(金還元工程)。そしてその後、スラリーを濾過等により固液分離処理を施すことによって、塩素浸出液と、還元金の沈澱物を含む浸出残渣とを分離する(固液分離工程)。なお、「還元金」とは、スラリー中の金イオンを還元して生成する金(金粉末)をいう。 FIG. 1 is a process diagram showing the flow of the method according to this embodiment. As shown in the process diagram of Figure 1, after the chlorine leaching process (chlorine leaching process), a reducing agent is added to the slurry obtained by the leaching process (slurry containing liquid phase leachate and leaching residue). A process is performed to reduce gold (gold reduction process). Thereafter, the slurry is subjected to solid-liquid separation treatment by filtration or the like to separate the chlorine leachate from the leaching residue containing the reduced gold precipitate (solid-liquid separation step). Note that "reduced gold" refers to gold (gold powder) produced by reducing gold ions in the slurry.

このように、原料事情によって塩素浸出直後のスラリーの液相中の金濃度が例えば2.0g/L以上に高くなっても、そのスラリーに対して還元剤を添加して金を還元する処理(脱金処理、金還元処理)を施すことにより、得られるPGM浸出液中の金の含有量を効果的に低減することができる。これにより、後工程における溶媒抽出処理の操業効率低下を有効に防ぐことができる。 In this way, even if the gold concentration in the liquid phase of the slurry immediately after chlorine leaching becomes high, for example, 2.0 g/L or more due to raw material conditions, the process of adding a reducing agent to the slurry to reduce the gold ( By performing gold removal treatment, gold reduction treatment), the gold content in the obtained PGM leachate can be effectively reduced. Thereby, it is possible to effectively prevent a decrease in the operational efficiency of the solvent extraction treatment in the post-process.

ここで、PGM浸出液中の金の含有量を低減させるための金還元処理としては、塩素浸出により得られたスラリー(浸出スラリー)を固液分離し、浸出残渣から分離して回収された浸出液を処理対象とすることも考えられる。また、このような固液分離後の浸出液に還元剤を添加して処理する方法の場合、浸出スラリーに還元剤を添加して処理する場合に比べて、還元剤が液相に対してのみ作用するため、浸出残渣を含むスラリーに対して還元剤を添加したときのその浸出残渣への還元剤の消費分を節約できるメリットがある。 Here, as a gold reduction treatment to reduce the gold content in the PGM leachate, the slurry obtained by chlorine leaching (leaching slurry) is solid-liquid separated, and the leachate recovered by separating it from the leach residue is used. It is also possible to consider it as a processing target. In addition, in the case of such a method in which a reducing agent is added to the leachate after solid-liquid separation, the reducing agent acts only on the liquid phase, compared to the case in which the reducing agent is added to the leach slurry. Therefore, when a reducing agent is added to a slurry containing a leaching residue, there is an advantage that the amount of reducing agent consumed in the leaching residue can be saved.

しかしながら、固液分離処理の以降で、分離回収した浸出液に対して還元剤を添加して金還元処理を行うと、その還元反応により浸出液中において金を含む沈澱物が生成するため、改めてその浸出液を固液分離する必要(固液分離工程を別途備える必要)が生じる。このことは、還元剤の使用量が増加すること以上に処理コスト負荷が大きく、操業効率を著しく低下させる原因にもなる。 However, after the solid-liquid separation process, when a reducing agent is added to the separated and collected leachate to perform gold reduction treatment, a precipitate containing gold is generated in the leachate due to the reduction reaction, so the leachate is reused. It becomes necessary to separate solid-liquid (need to separately provide a solid-liquid separation step). This increases the processing cost burden more than the increase in the amount of reducing agent used, and also causes a significant decrease in operational efficiency.

このことから、本実施の形態に係る方法では、塩素浸出により得られたスラリー、すなわち固液分離する前のスラリーを処理対象として、そのスラリーに還元剤を添加して金を還元する。このような方法によれば、浸出液中の金の含有量を低減させたことに伴って生成する、還元金を主成分とする沈殿物を除去するための固液分離工程を新たに備える必要がなく、効率的な処理を行うことができる。 Therefore, in the method according to the present embodiment, the slurry obtained by chlorine leaching, that is, the slurry before solid-liquid separation, is treated, and a reducing agent is added to the slurry to reduce gold. According to such a method, it is necessary to newly prepare a solid-liquid separation step to remove the precipitate mainly composed of reduced gold that is generated due to the reduction of the gold content in the leachate. Therefore, efficient processing can be performed.

[金還元工程]
(金の還元処理について)
金還元工程では、上述したように、PGM濃縮物を塩素浸出して得られた、液相中の金濃度が2.0g/L以上であるスラリーに対して、固液分離処理の前に、還元剤を添加してそのスラリーに含まれる金を還元する。
[Gold reduction process]
(About gold refund processing)
In the gold reduction step, as described above, before the solid-liquid separation treatment, the slurry obtained by chlorine leaching the PGM concentrate and having a gold concentration of 2.0 g/L or more in the liquid phase, A reducing agent is added to reduce the gold contained in the slurry.

金の還元に用いる還元剤としては、特に限定されないが、亜硫酸ナトリウム、ヒドラジン等を用いることが好ましい。これらの還元剤は、特に安価であり入手が用意であるため、経済効率的な処理を実現しながら、効果的に金を還元することができる。 The reducing agent used to reduce gold is not particularly limited, but it is preferable to use sodium sulfite, hydrazine, or the like. These reducing agents are particularly inexpensive and readily available, allowing them to effectively reduce gold while providing an economically efficient process.

例えば、還元剤の亜硫酸ナトリウムは、上述したように安価で入手しやすい還元剤であるため容易に処理プロセスに適用できるだけでなく、反応性や応答性という点で優れた還元剤である。したがって、その亜硫酸ナトリウムの添加に伴って、スラリーの酸化還元電位(ORP)が適切に応答変化して短時間で安定する。 For example, the reducing agent sodium sulfite is a reducing agent that is inexpensive and easily available as described above, and therefore can be easily applied to the treatment process, and is also an excellent reducing agent in terms of reactivity and responsiveness. Therefore, with the addition of sodium sulfite, the oxidation-reduction potential (ORP) of the slurry changes appropriately and becomes stable in a short time.

このことから、亜硫酸ナトリウムを含む還元剤を用いた金還元処理では、スラリーのORPを監視し、そのORPの変化に基づいて亜硫酸ナトリウムの添加量を制御することが好ましい。 For this reason, in the gold reduction treatment using a reducing agent containing sodium sulfite, it is preferable to monitor the ORP of the slurry and control the amount of sodium sulfite added based on the change in ORP.

PGM濃縮物を塩素浸出して得られるPGM浸出液には、当然に、分離回収するための白金族元素が含まれている。そのため、還元剤の過剰な添加は、白金族元素の白金(Pt)やパラジウム(Pd)の還元をもたらし、これら白金族元素が浸出残渣(還元されて生成した沈澱物を含む浸出残渣)に分配されてロスとなり、白金族元素の実収率低下を招く原因にもなる。この点、亜硫酸ナトリウムを含む還元剤を用い、スラリーのORPの変化に基づいて還元剤添加量を制御するようにすることで、金を優先的に還元して沈澱物化できるとともに、還元剤の過剰な添加を防いで白金族元素のPtやPd等の還元を抑制することができる。また、ORPに基づいて還元剤の添加量を制御できるため、処理の自動化も可能となる。 The PGM leachate obtained by chlorine leaching the PGM concentrate naturally contains platinum group elements to be separated and recovered. Therefore, excessive addition of a reducing agent leads to reduction of platinum group elements such as platinum (Pt) and palladium (Pd), and these platinum group elements are distributed to the leaching residue (leaching residue containing the precipitate formed by reduction). This results in a loss and causes a decrease in the actual yield of platinum group elements. In this regard, by using a reducing agent containing sodium sulfite and controlling the amount of reducing agent added based on changes in the ORP of the slurry, it is possible to preferentially reduce gold and turn it into a precipitate. It is possible to suppress the reduction of platinum group elements such as Pt and Pd. Furthermore, since the amount of reducing agent added can be controlled based on ORP, automation of the process is also possible.

ただし一方で、亜硫酸ナトリウムは、ナトリウム塩であることから結晶化する性質があり、亜硫酸ナトリウムを含む還元剤の供給において、供給経路を構成する配管を閉塞する問題が生じる可能性があり、この点において注意することが好ましい。 However, on the other hand, since sodium sulfite is a sodium salt, it has the property of crystallizing, and when supplying a reducing agent containing sodium sulfite, there is a possibility that the pipes that make up the supply route may be blocked. It is preferable to pay attention to this.

また、例えば、還元剤のヒドラジンは、上述したように安価で入手しやすい還元剤であるだけでなく、処理温度の範囲において安定して液体状態にある還元剤である。この点において、ヒドラジンを含む還元剤を用いることで、スラリーが保持された処理槽への還元剤の供給において供給経路の閉塞等を生じさせることなく、安定的な処理を行うことが可能となる。 Further, for example, the reducing agent hydrazine is not only a cheap and easily available reducing agent as described above, but also a reducing agent that is stably in a liquid state within the processing temperature range. In this regard, by using a reducing agent containing hydrazine, it is possible to perform stable processing without causing blockage of the supply route when supplying the reducing agent to the processing tank holding the slurry. .

ただし一方で、ヒドラジンを含む還元剤を用いた処理では、ヒドラジンの添加に伴うスラリーのORPの変化が緩やかという性質を有する。そのため、スラリーのORPを監視しながら処理を行った場合には、必然的にヒドラジンの添加量が増加する傾向にある。ヒドラジンの過剰な添加は、上述したような、PGM浸出液に含まれる白金族元素のPtやPdの還元をもたらす可能性があり、白金族元素の実収率低下を招く原因にもなる。 However, in the treatment using a reducing agent containing hydrazine, the ORP of the slurry changes slowly due to the addition of hydrazine. Therefore, when processing is performed while monitoring the ORP of the slurry, the amount of hydrazine added inevitably tends to increase. Excessive addition of hydrazine may lead to the reduction of platinum group elements such as Pt and Pd contained in the PGM leachate, as described above, and may also cause a decrease in the actual yield of platinum group elements.

このことから、ヒドラジンを含む還元剤を用いた金還元処理では、スラリーのORPに基づく還元剤添加量の制御よりも、ヒドラジンを定量添加することの方が好ましい。具体的に、ヒドラジンの添加量としては、特に限定されないが、スラリーの液相(上澄み液)1000Lに対して、好ましくは0.1容量%~1.2容量%の範囲、より好ましくは0.2容量%~0.5容量%の範囲、となるように定量添加する。このような範囲で定量添加することで、スラリーに含まれる白金族元素の還元を抑えながら、効果的に処理することができる。ヒドラジンの添加量が0.1容量%未満であると、還元剤量の少なすぎて金を有効に還元できない可能性がある。一方で、ヒドラジンの添加量が1.2容量%を超えると、添加量が過剰となり、PtやPd等の白金族元素を還元してしまい、白金族元素の実収率低下を招く可能性がある。 For this reason, in the gold reduction treatment using a reducing agent containing hydrazine, it is preferable to add hydrazine in a fixed amount rather than controlling the amount of reducing agent added based on the ORP of the slurry. Specifically, the amount of hydrazine added is not particularly limited, but is preferably in the range of 0.1% to 1.2% by volume, more preferably 0.1% by volume to 1000L of the liquid phase (supernatant liquid) of the slurry. Add in a fixed amount in the range of 2% by volume to 0.5% by volume. By quantitatively adding in such a range, it is possible to effectively process the slurry while suppressing the reduction of the platinum group elements contained in the slurry. If the amount of hydrazine added is less than 0.1% by volume, the amount of reducing agent may be too small to effectively reduce gold. On the other hand, if the amount of hydrazine added exceeds 1.2% by volume, the amount added will be excessive and may reduce platinum group elements such as Pt and Pd, leading to a decrease in the actual yield of platinum group elements. .

なお、上述した亜硫酸ナトリウムやヒドラジン等の還元剤の添加に際しては、例えば、予めスラリー中の液相だけに添加する最適量を把握しておき、金の回収量(液からの金の除去量)を監視しながら、添加量を適宜調整するようにしてもよい。 When adding the above-mentioned reducing agents such as sodium sulfite and hydrazine, for example, the optimum amount to be added only to the liquid phase of the slurry should be determined in advance, and the amount of gold recovered (the amount of gold removed from the liquid) should be determined in advance. The amount added may be adjusted as appropriate while monitoring.

(液相中の金濃度の推移に基づく還元剤添加制御について)
ここで、本実施の形態に係る方法では、スラリーに含まれる金の還元により変動する液相中の金濃度を連続的に測定し、その金濃度に基づいて還元剤の添加継続の有無を制御することを特徴としている。具体的には、連続的な測定により得られる液相中の金濃度が1.8g/L以上の場合には還元剤の添加を継続する。一方で、その金濃度が1.8g/L未満の場合には還元剤の添加を停止する、すなわち、金還元処理を停止する。
(About reducing agent addition control based on changes in gold concentration in the liquid phase)
Here, in the method according to the present embodiment, the gold concentration in the liquid phase, which changes due to the reduction of gold contained in the slurry, is continuously measured, and based on the gold concentration, whether or not to continue adding the reducing agent is controlled. It is characterized by Specifically, if the gold concentration in the liquid phase obtained by continuous measurement is 1.8 g/L or more, the addition of the reducing agent is continued. On the other hand, if the gold concentration is less than 1.8 g/L, the addition of the reducing agent is stopped, that is, the gold reduction process is stopped.

このように、金還元処理により変動する液相中の金濃度を連続的にモニタリングし、その金濃度の推移に基づいて還元剤の添加を制御するようにすることで、還元剤の過剰な添加を抑制することができる。これにより、PGM浸出液中に含まれる、PtやPd等の白金族元素までもが還元されてしまうことを抑え、その白金族元素のロスによる実収率低下を効果的に防ぐことができる。 In this way, by continuously monitoring the gold concentration in the liquid phase, which fluctuates during the gold reduction process, and controlling the addition of reducing agent based on the change in gold concentration, excessive addition of reducing agent can be avoided. can be suppressed. Thereby, even platinum group elements such as Pt and Pd contained in the PGM leachate can be suppressed from being reduced, and a decrease in the actual yield due to loss of the platinum group elements can be effectively prevented.

なお、液相中の金濃度の測定は、ICP発光分光分析法等により行うことができ、このような方法で金濃度を連続的に測定してモニタリングすることで、金還元処理に伴う液相中の金濃度の推移を確認することができる。 The gold concentration in the liquid phase can be measured by ICP emission spectrometry, etc. By continuously measuring and monitoring the gold concentration using this method, it is possible to measure the concentration of gold in the liquid phase due to gold reduction treatment. You can check the changes in the gold concentration inside.

還元剤の添加制御における金濃度の基準値としては、上述したように、1.8g/Lとする。液相中の金濃度が1.8g/L以上であるか、1.8g/L未満であるかを基準として還元剤の添加を制御することで、液相中の金を十分に効果的に除去でき後工程の溶媒抽出等の処理負荷を低減できるとともに、白金族元素の実収率低下を防ぐことができる。 As mentioned above, the reference value of the gold concentration in controlling the addition of the reducing agent is 1.8 g/L. By controlling the addition of the reducing agent based on whether the gold concentration in the liquid phase is 1.8 g/L or more or less than 1.8 g/L, gold in the liquid phase can be effectively removed. This can reduce the processing load of subsequent steps such as solvent extraction, and also prevent a decrease in the actual yield of platinum group elements.

[固液分離工程]
固液分離工程では、金還元工程を経て得られた金還元処理後のスラリー(還元後スラリー)から、塩素浸出液(上澄み液、還元後液)と、還元金の沈澱物を含む浸出残渣と、を分離する。
[Solid-liquid separation process]
In the solid-liquid separation step, from the slurry after gold reduction treatment (post-reduction slurry) obtained through the gold reduction step, a chlorine leachate (supernatant liquid, post-reduction liquid) and a leaching residue containing precipitates of reduced gold, Separate.

還元後スラリーに対する固液分離処理の方法は、上澄み液を構成する塩素浸出液と浸出残渣とを効果的に分離できる方法であれば。特に限定されない。例えば、濾過等の処理により行うことができる。 The solid-liquid separation treatment for the post-reduction slurry may be any method that can effectively separate the chlorine leachate and the leach residue that constitute the supernatant liquid. Not particularly limited. For example, this can be carried out by a treatment such as filtration.

本実施の形態に係る方法では、上述したように、金還元処理を、塩素浸出により得られた浸出スラリーを対象として行っていることから、従来のように固液分離処理後に回収されたPGM浸出液を処理対象として金還元処理を行った場合と比較して、その還元金の沈澱物を分離するための別途の固液分離処理が不要となり、効率的な操業が可能となる。 In the method according to the present embodiment, as described above, since the gold reduction treatment is performed on the leached slurry obtained by chlorine leaching, PGM leachate recovered after solid-liquid separation treatment as in the conventional method Compared to the case where gold reduction treatment is performed using gold as the treatment target, a separate solid-liquid separation treatment for separating the reduced gold precipitate is not required, and efficient operation becomes possible.

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by showing examples, but the present invention is not limited to the following examples.

[共通条件]
操業中のPGM濃縮物を塩素浸出する現場から、塩素浸出処理を行った直後のスラリー(浸出スラリー)を採取し、スラリーの上澄み(液相のみ)を元液として処理試験を実施した。なお、スラリー採取時期は、PGM濃縮物中の金濃度が高い時期から3通りの時期を選び、下記表1に示す元液を用いた。表1には、塩素浸出した後の液相(残渣なし)の成分組成と性状として酸化還元電位(ORP)を示す。
[Common conditions]
Slurry (leaching slurry) immediately after chlorine leaching treatment was collected from a site where chlorine was leached from PGM concentrate during operation, and a treatment test was conducted using the supernatant (liquid phase only) of the slurry as the source liquid. Three times were selected for collecting the slurry based on the time when the gold concentration in the PGM concentrate was high, and the original solution shown in Table 1 below was used. Table 1 shows the component composition and properties of the liquid phase (no residue) after chlorine leaching, including the oxidation-reduction potential (ORP).

Figure 2023172587000002
Figure 2023172587000002

処理対象の元液として、脱ガス処理後の液1000Lを採取し、残渣無しの上澄みを使用してバッチ試験を実施した。脱ガス処理においては、元液に対して蒸気を吹き込んで酸性ガスを除去した。引き続き、蒸気を吹き込んで液温が60℃程度となるように元液を調整した。 As the source liquid to be treated, 1000 L of the liquid after degassing was collected, and a batch test was conducted using the supernatant without residue. In the degassing process, acid gas was removed by blowing steam into the original liquid. Subsequently, steam was blown into the base liquid to adjust the liquid temperature to about 60°C.

また、実施例1~実施例7における脱金処理においては、還元剤[1]及び還元剤[2]のいずれかを用い、下記する添加量で元液に添加した。
・還元剤[1]:
(種類)亜硫酸ナトリウム(粉体,無水亜硫酸ソーダ)(神州化学社製)
(添加量):ORPを監視して560mV以下となるまで添加。
・還元剤[2]:
(種類)ヒドラジン(液状,水加ヒドラジン60%)(エムジーシー大塚ケミカル社製)
(添加量)液相100mLに対して、0.2、0.4、0.6、0.8vol%(=それぞれ0.2、0.4、0.6、0.8mL)を添加。
Further, in the demetalization treatment in Examples 1 to 7, either reducing agent [1] or reducing agent [2] was used and added to the original solution in the following amounts.
・Reducing agent [1]:
(Type) Sodium sulfite (powder, anhydrous sodium sulfite) (manufactured by Shinshu Chemical Co., Ltd.)
(Amount added): Monitor ORP and add until it becomes 560 mV or less.
・Reducing agent [2]:
(Type) Hydrazine (liquid, hydrated hydrazine 60%) (manufactured by MGC Otsuka Chemical Co., Ltd.)
(Amount added) Add 0.2, 0.4, 0.6, 0.8 vol% (=0.2, 0.4, 0.6, 0.8 mL, respectively) to 100 mL of liquid phase.

浸出液中の金属成分分析は、ICP-AES法(測定装置:アジレント社製、型番5100)により行った。 Metal component analysis in the leachate was performed by ICP-AES method (measuring device: manufactured by Agilent, model number 5100).

≪金還元処理についての検証≫
[実施例1]
実施例1では、元液Aに対して、還元剤[1]の亜硫酸ナトリウムを用いた脱金処理(金還元処理)を行い、ORPを監視して560mVとなるまで還元剤を添加し、元液Aに含まれる金(Au)を還元して還元金の沈澱物を生成させ除去した。下記表2に、脱金処理後の液(脱金後液)の成分分析結果と除去率を示す。
≪Verification of gold return processing≫
[Example 1]
In Example 1, the original solution A was subjected to demetallization treatment (gold reduction treatment) using sodium sulfite as the reducing agent [1], and the ORP was monitored and the reducing agent was added until it reached 560 mV. Gold (Au) contained in Liquid A was reduced to produce a reduced gold precipitate, which was removed. Table 2 below shows the component analysis results and removal rates of the solution after the demetallization process (liquid after demetallization).

Figure 2023172587000003
Figure 2023172587000003

表2に示すように、脱金後液のAu濃度は0.2g/L未満となり(除去率96.7%)、効果的にAuを低減することができた。また、元液Aに含まれていた白金(Pt)、パラジウム(Pd)の除去率は1.5%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。 As shown in Table 2, the Au concentration of the solution after gold removal was less than 0.2 g/L (removal rate 96.7%), and it was possible to effectively reduce Au. Furthermore, the removal rate of platinum (Pt) and palladium (Pd) contained in the original solution A was at a low level of less than 1.5%, and there was almost no loss of platinum group elements due to the demetalization treatment.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[実施例2]
実施例2では、脱金処理において、ORPが540mVとなるまで還元剤を添加したこと以外は、実施例1と同様の処理を行った。下記表3に、脱金後液の成分分析結果と除去率を示す。
[Example 2]
In Example 2, the same process as in Example 1 was performed except that a reducing agent was added until the ORP reached 540 mV in the metal removal process. Table 3 below shows the component analysis results and removal rate of the solution after gold removal.

Figure 2023172587000004
Figure 2023172587000004

表3に示すように、脱金後液のAu濃度は0.2g/L未満となり(除去率99.9%)、効果的にAuを低減することができた。また、元液Aに含まれていたPt、Pdの除去率は1.7%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。 As shown in Table 3, the Au concentration of the solution after gold removal was less than 0.2 g/L (removal rate 99.9%), and it was possible to effectively reduce Au. Furthermore, the removal rate of Pt and Pd contained in the original solution A was at a low level of less than 1.7%, and there was almost no loss of platinum group elements due to the demetalization treatment.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[実施例3]
実施例3では、元液Bに対して、還元剤[2]のヒドラジンを用いた脱金処理を行い、元液Bの容量(1000L)に対して0.2容量%(2L)を添加し、元液Bに含まれるAuを還元して還元金の沈澱物を生成させ除去した。下記表4に、脱金後液の成分分析結果と除去率を示す。
[Example 3]
In Example 3, the original liquid B was subjected to demetalization treatment using hydrazine as a reducing agent [2], and 0.2% by volume (2 L) was added to the volume of the original liquid B (1000 L). , Au contained in the original solution B was reduced to generate a reduced gold precipitate and removed. Table 4 below shows the results of component analysis and removal rate of the solution after gold removal.

Figure 2023172587000005
Figure 2023172587000005

表4に示すように、脱金後液のAu濃度は0.2g/L未満となり(除去率98.8%)、効果的にAuを低減することができた。また、元液Bに含まれていたPt、Pdの除去率は3.5%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。 As shown in Table 4, the Au concentration of the solution after gold removal was less than 0.2 g/L (removal rate 98.8%), and it was possible to effectively reduce Au. Further, the removal rate of Pt and Pd contained in the original solution B was at a low level of less than 3.5%, and there was almost no loss of platinum group elements due to the demetalization treatment.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[実施例4]
実施例4では、元液Bの容量(1000L)に対して0.4容量%(4L)の還元剤を添加したこと以外は、実施例3と同様の処理を行った。下記表5に、脱金後液の成分分析結果と除去率を示す。
[Example 4]
In Example 4, the same treatment as in Example 3 was performed except that 0.4% by volume (4 L) of the reducing agent was added to the volume of original liquid B (1000 L). Table 5 below shows the component analysis results and removal rate of the solution after gold removal.

Figure 2023172587000006
Figure 2023172587000006

表5に示すように、脱金後液のAu濃度は0g/Lとなり(除去率100%)、効果的にAuを低減することができた。また、元液Bに含まれていたPt、Pdの除去率は3.5%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。なお、Auの除去率が100%であった結果からして、それ以上の還元剤添加は必要無いことがわかる。 As shown in Table 5, the Au concentration of the solution after gold removal was 0 g/L (removal rate 100%), and Au could be effectively reduced. Further, the removal rate of Pt and Pd contained in the original solution B was at a low level of less than 3.5%, and there was almost no loss of platinum group elements due to the demetalization treatment. In addition, from the result that the Au removal rate was 100%, it can be seen that there is no need to add any more reducing agent.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[実施例5]
実施例5では、元液Cを用い、その元液Cに対して実施例3と同様の処理を行った。下記表6に、脱金後液の成分分析結果と除去率を示す。
[Example 5]
In Example 5, the original liquid C was used, and the same treatment as in Example 3 was performed on the original liquid C. Table 6 below shows the component analysis results and removal rate of the solution after gold removal.

Figure 2023172587000007
Figure 2023172587000007

表6に示すように、脱金後液のAu濃度は0.2g/L未満となり(除去率99.7%)、効果的にAuを低減することができた。また、元液Cに含まれていたPt、Pdの除去率は3.0%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。 As shown in Table 6, the Au concentration of the solution after gold removal was less than 0.2 g/L (removal rate 99.7%), and Au could be effectively reduced. Furthermore, the removal rate of Pt and Pd contained in the original solution C was at a low level of less than 3.0%, and there was almost no loss of platinum group elements due to the demetalization treatment.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[実施例6]
実施例6では、元液Cの容量(1000L)に対して0.4容量%(4L)の還元剤を添加したこと以外は、実施例5と同様の処理を行った。下記表7に、脱金後液の成分分析結果と除去率を示す。
[Example 6]
In Example 6, the same treatment as in Example 5 was performed except that 0.4% by volume (4 L) of the reducing agent was added to the volume of the original liquid C (1000 L). Table 7 below shows the component analysis results and removal rate of the solution after gold removal.

Figure 2023172587000008
Figure 2023172587000008

表7に示すように、脱金後液のAu濃度は0g/Lとなり(除去率100%)、効果的にAuを低減することができた。また、元液Cに含まれていたPt、Pdの除去率は3.6%未満と低水準となり、脱金処理による白金族元素のロスはほとんど生じなかった。なお、Auの除去率が100%であった結果からして、それ以上の還元剤添加は必要無いことがわかる。 As shown in Table 7, the Au concentration of the solution after gold removal was 0 g/L (removal rate 100%), and Au could be effectively reduced. Furthermore, the removal rate of Pt and Pd contained in the original liquid C was at a low level of less than 3.6%, and there was almost no loss of platinum group elements due to the demetalization treatment. In addition, from the result that the Au removal rate was 100%, it can be seen that there is no need to add any more reducing agent.

また、その後の脱金後液に対する溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred during the subsequent solvent extraction treatment of the post-demetallization solution.

[比較例1]
比較例1では、脱金処理を行わず(脱金工程を設けず)に、元液Aに対して溶媒抽出処理を施した。その結果、元液Aに含まれるAuのためか、例えば実施例1、2での溶媒抽出処理に比べて5倍以上の時間が掛かるという問題が生じた。
[Comparative example 1]
In Comparative Example 1, the solvent extraction process was performed on the original liquid A without performing the metal removal process (no metal removal process was provided). As a result, perhaps because of the Au contained in the original solution A, a problem arose in that it took five times longer than the solvent extraction process in Examples 1 and 2, for example.

≪金還元処理における還元剤添加制御についての検証≫
[実施例7-1]
実施例7-1では、元液Dを用い、その元液Dの容量(1000L)に対して還元剤であるヒドラジンを少量ずつ0.66容量%まで添加したこと以外は、実施例6と同様の処理を行った。下記表7に、少量ずつ添加したヒドラジンの添加量ごとの、得られた脱金後液(脱金後液1~5)の成分分析結果と除去率を示す。
≪Verification of reducing agent addition control in gold reduction treatment≫
[Example 7-1]
Example 7-1 was the same as Example 6 except that the original liquid D was used and the reducing agent hydrazine was added little by little to 0.66% by volume with respect to the volume (1000 L) of the original liquid D. was processed. Table 7 below shows the component analysis results and removal rates of the obtained post-demetallization solutions (post-demetallization solutions 1 to 5) for each amount of hydrazine added little by little.

Figure 2023172587000009
Figure 2023172587000009

表8に示すように、ヒドラジンの添加量を増加させるに従って、脱金後液のAu濃度をより低減することができた。例えば特に、還元剤添加量が0.30容量%のときにAu濃度は0.1g/L未満となり(除去率98%)、一方でPtの除去率については6.5%に留めることができた。 As shown in Table 8, as the amount of hydrazine added was increased, the Au concentration of the post-demetallization solution could be further reduced. For example, in particular, when the amount of reducing agent added is 0.30% by volume, the Au concentration is less than 0.1 g/L (removal rate of 98%), while the removal rate of Pt can be kept at 6.5%. Ta.

また、いずれの添加量での処理により得られた脱金後液に対する、その後の溶媒抽出処理においても、処理負荷の増大を含めて問題は生じなかった。 In addition, no problems, including an increase in processing load, occurred in the subsequent solvent extraction treatment of the post-demetallization liquid obtained by the treatment with any amount added.

[実施例7-2]
上述した実施例7-1の試験において、還元剤添加量が0.00容量%の場合と、0.66容量%の場合とで、後工程の処理後液(脱金後液)中に含まれるAuと、白金族元素である白金(Pt)の濃度を測定した。なお、脱金後液中のAuは、後工程で回収できずロスになるAuである。また、脱金後液中のPtは、後工程で回収対象となるPtであり、脱金処理において還元剤によって還元されずに溶液中に残留したPtである。
[Example 7-2]
In the test of Example 7-1 described above, when the amount of reducing agent added was 0.00% by volume and when it was 0.66% by volume, the amount of the reducing agent contained in the post-processing solution (de-metal removal solution) was determined. The concentrations of Au and platinum (Pt), which is a platinum group element, were measured. Note that the Au in the solution after gold removal is Au that cannot be recovered in the subsequent process and becomes a loss. Further, Pt in the post-demetallization solution is Pt that is to be recovered in a subsequent process, and is Pt that remains in the solution without being reduced by the reducing agent during the demetallization process.

その結果、いずれの場合も、Auロスは無かった。 As a result, there was no Au loss in any case.

また、脱金後液中のPt濃度に関しては、実施例6の結果も踏まえると、液相中のAu濃度が1.71g/Lであった元液Dに対して還元剤添加量0.00容量%で添加(すなわち、還元剤添加を停止)した場合では、その後の処理によるPtの実収率が100%であった。つまり、白金族元素をロスすることなく、金を効果的に除去することができた。 Regarding the Pt concentration in the liquid after gold removal, considering the results of Example 6, the amount of reducing agent added was 0.00 for the original liquid D in which the Au concentration in the liquid phase was 1.71 g/L. When Pt was added at volume % (that is, the addition of the reducing agent was stopped), the actual yield of Pt in the subsequent treatment was 100%. In other words, gold could be effectively removed without loss of platinum group elements.

しかしながら、実施例7-1での試験に示したように、還元剤の添加を継続し、還元剤を0.66容量%まで添加した場合では、脱金処理において液相中のPtまでも還元されてしまい、その後の処理によるPtの実収率が92.3%(=Pt除去率:7.7%)となった。つまり、金を効果的に除去できたものの、白金族元素のロスが生じた。 However, as shown in the test in Example 7-1, when the reducing agent is continued to be added to 0.66% by volume, Pt in the liquid phase is also reduced during the demetalization process. The actual yield of Pt in the subsequent treatment was 92.3% (=Pt removal rate: 7.7%). In other words, although gold was effectively removed, platinum group elements were lost.

Figure 2023172587000010
Figure 2023172587000010

以上の結果から、脱金処理の対象となるスラリーの液相中のAu濃度を連続的に測定して監視し、所定の濃度値を基準として、液相中のAu濃度がその所定濃度値以上であれば還元剤の添加を継続し、一方で、Au濃度がその所定濃度値未満であれば、還元剤の添加を停止する、すなわち脱金処理を停止することで、白金族元素のロスを防ぎながら、効果的に金を除去して操業効率を向上できることがわかる。 From the above results, the Au concentration in the liquid phase of the slurry to be demetallized is continuously measured and monitored, and the Au concentration in the liquid phase is higher than the predetermined concentration value based on the predetermined concentration value. If so, continue adding the reducing agent, and on the other hand, if the Au concentration is less than the predetermined concentration value, stop adding the reducing agent, that is, stop the demetalization process, thereby reducing the loss of platinum group elements. It can be seen that it is possible to effectively remove gold and improve operational efficiency while preventing it.

なお、その所定の濃度値としては、上述した試験結果から、液相中のAu濃度:1.8g/L程度とすることが好ましいことがわかる。 Note that the above-mentioned test results show that the predetermined concentration value is preferably about 1.8 g/L of Au concentration in the liquid phase.

Claims (4)

金を不純物元素として含む白金族元素含有物を塩素浸出に供し、その後固液分離処理によって塩素浸出液を得る方法であって、
前記塩素浸出により得られた、液相中の金濃度が2.0g/L以上であるスラリー対して、前記固液分離処理の前に、還元剤を添加して該スラリーに含まれる金を還元する金還元工程と、
還元後液から、前記塩素浸出液と、還元金の沈澱物を含む浸出残渣とを分離する固液分離工程と、を含み、
前記金還元工程では、前記スラリーに含まれる金の還元により変動する前記液相中の金濃度を連続的に測定し、該金濃度が1.8g/L以上の場合には前記還元剤の添加を継続し、該金濃度が1.8g/L未満の場合には前記還元剤の添加を停止する、
方法。
A method of subjecting a platinum group element-containing material containing gold as an impurity element to chlorine leaching, and then obtaining a chlorine leaching solution by solid-liquid separation treatment, the method comprising:
Before the solid-liquid separation treatment, a reducing agent is added to the slurry obtained by the chlorine leaching and the gold concentration in the liquid phase is 2.0 g/L or more to reduce the gold contained in the slurry. The gold reduction process,
a solid-liquid separation step of separating the chlorine leaching solution and a leaching residue containing a reduced gold precipitate from the reduced solution;
In the gold reduction step, the gold concentration in the liquid phase, which changes due to the reduction of gold contained in the slurry, is continuously measured, and if the gold concentration is 1.8 g/L or more, the reducing agent is added. and stopping the addition of the reducing agent if the gold concentration is less than 1.8 g/L.
Method.
前記還元剤は、亜硫酸ナトリウムを含む、
請求項1に記載の方法。
The reducing agent includes sodium sulfite.
The method according to claim 1.
前記スラリーの酸化還元電位に基づいて、前記亜硫酸ナトリウムの添加量を制御する、
請求項2に記載の方法。
controlling the amount of sodium sulfite added based on the redox potential of the slurry;
The method according to claim 2.
前記還元剤は、ヒドラジンを含む、
請求項1に記載の方法。
The reducing agent includes hydrazine,
The method according to claim 1.
JP2022084500A 2022-05-24 2022-05-24 Method for obtaining chlorine leachate from platinum group element-containing solution Pending JP2023172587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022084500A JP2023172587A (en) 2022-05-24 2022-05-24 Method for obtaining chlorine leachate from platinum group element-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022084500A JP2023172587A (en) 2022-05-24 2022-05-24 Method for obtaining chlorine leachate from platinum group element-containing solution

Publications (1)

Publication Number Publication Date
JP2023172587A true JP2023172587A (en) 2023-12-06

Family

ID=89029137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022084500A Pending JP2023172587A (en) 2022-05-24 2022-05-24 Method for obtaining chlorine leachate from platinum group element-containing solution

Country Status (1)

Country Link
JP (1) JP2023172587A (en)

Similar Documents

Publication Publication Date Title
JP4999108B2 (en) Gold leaching method
JP3616314B2 (en) Method for treating copper electrolytic deposits
JP4715627B2 (en) Method for recovering platinum group element from ion exchange resin adsorbed platinum group element
EP3655557B1 (en) Method for precious metal recovery
EA005630B1 (en) System and process for recovering copper from a copper-containing material
AU2017281847B2 (en) Methods, materials and techniques for precious metal recovery
JP2001316736A (en) Method for recovering silver
CN112695200B (en) Method for recovering selenium, gold and silver from copper anode slime
CN106048233B (en) A kind of silver-colored leaching method
JP2012246198A (en) Method for purifying selenium by wet process
US20230080921A1 (en) Extraction of copper, gold and other elements from waste materials
JP2020158855A (en) Method for separating and recovering valuable metal
JP2007016259A (en) System for collecting gold while recycling iodine ion in gold-removing liquid
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2023172587A (en) Method for obtaining chlorine leachate from platinum group element-containing solution
JP2012246197A (en) Method for purifying selenium by wet process
WO2004050927A1 (en) Method for separating platinum group element
Topçu et al. Simple and selective copper recovery from valuable industrial waste by imidazolium based ionic liquids with BF4-anions
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JP2022085450A (en) Method for obtaining chlorine leachate from platinum group element
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JPH10265863A (en) Method for recovering noble metals from smelting residue
JP7006332B2 (en) How to make gold powder