JP2023171414A - Toxic substance reduction device - Google Patents

Toxic substance reduction device Download PDF

Info

Publication number
JP2023171414A
JP2023171414A JP2023161732A JP2023161732A JP2023171414A JP 2023171414 A JP2023171414 A JP 2023171414A JP 2023161732 A JP2023161732 A JP 2023161732A JP 2023161732 A JP2023161732 A JP 2023161732A JP 2023171414 A JP2023171414 A JP 2023171414A
Authority
JP
Japan
Prior art keywords
toxic
fluid
reduction device
suction
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023161732A
Other languages
Japanese (ja)
Inventor
裕 道脇
Yutaka Michiwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next Innovation GK
Original Assignee
Next Innovation GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next Innovation GK filed Critical Next Innovation GK
Priority to JP2023161732A priority Critical patent/JP2023171414A/en
Publication of JP2023171414A publication Critical patent/JP2023171414A/en
Pending legal-status Critical Current

Links

Abstract

To provide means of gradually and reliably reducing a toxic substance without dispersing it by discharging fluid after reducing the toxic substance to the outside in a decelerating manner, while reliably decomposing, inactivating and/or killing a toxic substance or the like contained in the fluid, to reduce an amount of the toxic substance while suctioning the fluid, with a simple structure.SOLUTION: A toxic substance reduction device comprises: a suction unit that suctions fluid; a discharge unit that discharges the fluid; reduction means of emitting waves that decompose and/or inactivate and/or sterilize a toxic substance contained in the fluid; and a flow path that communicates the suction unit and the discharge unit. The suction unit is disposed above the flow path, and the discharge unit is disposed below the suction unit.SELECTED DRAWING: Figure 1

Description

本発明は、毒性対象減消装置に関するものである。 TECHNICAL FIELD The present invention relates to a toxic target reduction device.

従来、室内の空気を浄化する空気清浄機が知られており、このような空気清浄機によれば空気と共に臭気物質、塵埃、花粉、菌、ウイルス及びVOC(揮発性有機化合物)等の汚染物質を吸込口から吸引し、フィルタ等で集塵している(例えば、特許文献1参照)。
また、フィルタと静電霧化装置とを具える空気清浄機が提案されている。この空気清浄機は、室内に浮遊する塵埃・煙・花粉・細菌・かび・アレルゲン・ウイルス等を吸気口から空気清浄機内に取り込むと共に、静電霧化装置からはナノコロイドを粒子として含有した帯電水滴を放出し、送風ファンにより清浄空気と一緒に排気口から放出している。帯電水滴は、吸気口近傍に放出されて塵埃・煙・花粉・細菌・かび・アレルゲン・ウイルス等を帯電、粗大化させ、フィルタで捕集し易くしている(例えば、特許文献2参照)。
Conventionally, air purifiers that purify indoor air are known, and these air purifiers remove pollutants such as odor substances, dust, pollen, bacteria, viruses, and VOCs (volatile organic compounds) along with the air. is sucked through a suction port and collected using a filter or the like (for example, see Patent Document 1).
Also, an air purifier including a filter and an electrostatic atomizer has been proposed. This air purifier takes dust, smoke, pollen, bacteria, mold, allergens, viruses, etc. floating in the room into the air purifier from the intake port, and also collects electrostatic charges containing nanocolloid particles from the electrostatic atomizer. Water droplets are released and released from the exhaust port along with clean air by a blower fan. The charged water droplets are emitted near the intake port, and charge and coarsen dust, smoke, pollen, bacteria, mold, allergens, viruses, etc., making them easier to collect with a filter (see, for example, Patent Document 2).

特開2018-175113号公報Japanese Patent Application Publication No. 2018-175113 特開2011-226744号公報Japanese Patent Application Publication No. 2011-226744

上述した特許文献1に記載された空気清浄機は、吸引した空気を上方に吹き出してこれによって還流してくる空気中の汚染物質の濃度を検知しているため、噴き出した空気によって室内の空気を攪拌してしまう。即ち、所定の領域内で汚染物質が滞留していた場合、空気清浄機の動作によって汚染物質を室内空間に散乱、攪拌、拡散させてしまう。また、汚染物質の内、ウイルスは、花粉や菌と比べてその大きさが極めて小さいため、フィルタの性能によっては全く捕集することができないということがある。そのような場合、空気清浄機によって噴き出した空気の還流に乗って捕集できなかったウイルスを室内で循環させ、却って室内空間でウイルスを散乱、攪拌、拡散させてしまい、病気の感染等を拡大させてしまうという問題がある。
また、特許文献2に記載された空気清浄機においても、排気口から放出している清浄空気で室内の空気を攪拌しているため、室内で滞留しているウイルスを散乱、攪拌、拡散させてしまい、病気の感染等を拡大させてしまうという問題がある。
The air purifier described in the above-mentioned Patent Document 1 blows the sucked air upward and detects the concentration of pollutants in the returned air. I end up stirring it. That is, when pollutants remain in a predetermined area, the operation of the air purifier scatters, stirs, and diffuses the pollutants into the indoor space. Furthermore, among pollutants, viruses are extremely small in size compared to pollen and bacteria, so depending on the performance of the filter, it may not be possible to collect them at all. In such cases, the viruses that could not be captured are circulated indoors by the recirculation of air ejected by the air purifier, which can actually scatter, agitate, and spread the viruses in the indoor space, increasing the spread of disease. There is a problem with letting it happen.
Also, in the air purifier described in Patent Document 2, the indoor air is agitated with the clean air released from the exhaust port, which scatters, stirs, and spreads the virus staying indoors. There is a problem in that this can lead to the spread of disease infection.

本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、簡易な構造によって、流体を吸い込みながら、流体に含まれている毒性対象等を確実に分解又は不活化及び/又は死滅させて減消させつつ、空間内で毒性対象を拡散させること無く徐々に且つ確実に毒性対象を減消させる手段を提供することを目的とする。 The present invention was achieved through intensive research by the inventor in view of the above problems, and uses a simple structure to reliably decompose or inactivate toxic substances contained in the fluid while sucking the fluid. It is an object of the present invention to provide a means for gradually and reliably reducing toxic substances by killing and/or eliminating them, without causing the toxic substances to spread within a space.

本発明の毒性対象減消装置は、流体を吸い込む吸込部と、上記流体を排出する排出部と、上記流体に含まれる毒性対象を分解及び/又は不活化及び/又は滅菌させる波動を放出する減消手段と、上記吸込部及び上記排出部を連通させる流路と、を具え、上記吸込部は、上記流路の上方に配設され、上記排出部は、上記吸込部よりも下方に配設されることを特徴とする。 The toxic object reduction device of the present invention includes a suction part that sucks in a fluid, a discharge part that discharges the fluid, and a reducer that emits waves that decompose and/or inactivate and/or sterilize the toxic object contained in the fluid. and a channel for communicating the suction section and the discharge section, the suction section being disposed above the flow channel, and the discharging section being disposed below the suction section. It is characterized by being

また、本発明の毒性対象減消装置は、前記排出部における流体の排出口の総開口面積が、前記吸込部における流体の吸込口の開口面積よりも大きく、前記吸込部から吸込む流体の流速と比較し、前記排出部から排出する流体の流速を低下させることを特徴とする。 Further, in the toxicity target reduction device of the present invention, the total opening area of the fluid outlet in the discharge part is larger than the opening area of the fluid suction port in the suction part, and the flow rate of the fluid sucked from the suction part is In comparison, the present invention is characterized in that the flow rate of the fluid discharged from the discharge section is reduced.

また、本発明の毒性対象減消装置は、前記吸込部が、筐体の端面に配されることを特徴とする。 Furthermore, the toxicity target reduction device of the present invention is characterized in that the suction section is disposed on an end surface of the casing.

また、本発明の毒性対象減消装置は、前記排出口が、前記筐体の周面に配されることを特徴とする。 Further, the toxicity target reduction device of the present invention is characterized in that the discharge port is disposed on the circumferential surface of the casing.

また、本発明の毒性対象減消装置は、前記排出口が、前記筐体の周方向に沿って複数配され、各前記排出口の開口面積の総和としての総開口面積が前記吸込口の開口面積よりも大きいことを特徴とする。 Further, in the toxic target reduction device of the present invention, a plurality of the discharge ports are arranged along the circumferential direction of the casing, and the total opening area as the sum of the opening areas of the respective discharge ports is equal to the opening of the suction port. It is characterized by being larger than its area.

また、本発明の毒性対象減消装置は、前記排出部が、前記吸込部が流体を吸込可能な領域以外の領域に流体を排出することを特徴とする。 Further, the toxicity target reduction device of the present invention is characterized in that the discharge section discharges the fluid to a region other than the region in which the suction section can suck the fluid.

また、本発明の毒性対象減消装置は、前記減消手段が、前記流路に紫外線を放射して毒性対象を減消させる紫外線光源を有することを特徴とする。 Further, the toxic target reduction device of the present invention is characterized in that the reducing means includes an ultraviolet light source that radiates ultraviolet rays into the flow path to reduce the toxic target.

また、本発明の毒性対象減消装置は、前記紫外線光源が、略管形状を有し、前記流路内に配されることを特徴とする。 Further, the toxic target reduction device of the present invention is characterized in that the ultraviolet light source has a substantially tubular shape and is disposed within the flow path.

また、本発明の毒性対象減消装置は、前記毒性対象が、菌、ウイルス及び/又は有害分子であることを特徴とする。 Furthermore, the toxic object reduction device of the present invention is characterized in that the toxic object is a bacteria, a virus, and/or a harmful molecule.

また、本発明の毒性対象減消装置は、前記吸込部及び/又は前記排出部と、前記流路との間に異物が付着し得るフィルタを配することを特徴とする。 Further, the toxic target reduction device of the present invention is characterized in that a filter to which foreign matter can adhere is disposed between the suction section and/or the discharge section and the flow path.

また、本発明の毒性対象減消装置は、前記流路内で前記減消手段から放出された波動を繰り返し反射させる反射面を有することを特徴とする。 Further, the toxicity target reduction device of the present invention is characterized in that it has a reflecting surface that repeatedly reflects the waves emitted from the reduction means within the flow path.

また、本発明の毒性対象減消装置は、前記反射面が、前記流路を形成する内周面の一部又は全域に配されることを特徴とする。 Further, the toxicity target reduction device of the present invention is characterized in that the reflective surface is disposed on a part or the entire area of the inner circumferential surface forming the flow path.

また、本発明の毒性対象減消装置は、前記流路が、両端部に流体が通過し得る開口部と、端部間を連通させる内部空間とを有する筒形部によって形成されることを特徴とする。 Further, the toxicity target reduction device of the present invention is characterized in that the flow path is formed by a cylindrical part having openings at both ends through which a fluid can pass, and an internal space that communicates between the ends. shall be.

本発明によれば、簡易な構造によって、流体を吸い込みながら、流体に含まれている毒性対象等を確実に分解又は不活化及び/又は死滅させて減消させつつ、空間内で毒性対象を拡散させること無く徐々に且つ確実に毒性対象を減消させることができる。 According to the present invention, with a simple structure, while sucking fluid, toxic substances contained in the fluid are reliably decomposed or inactivated and/or killed and reduced, and the toxic substances are diffused in space. It is possible to gradually and reliably reduce the toxic target without causing any damage.

本発明の毒性対象減消装置を示す斜視図である。FIG. 1 is a perspective view showing a toxic target reduction device of the present invention. 本発明の毒性対象減消装置を示す断面図である。FIG. 1 is a cross-sectional view showing the toxic target reduction device of the present invention. 筐体を除いた装置内部を示す斜視図である。FIG. 3 is a perspective view showing the inside of the device excluding the casing. 紫外線抑制部を示す図である。It is a figure showing an ultraviolet rays suppression part. 毒性対象減消装置内部での空気の流れを示す図である。FIG. 3 is a diagram showing the flow of air inside the toxic target reduction device. 室内での空気の流れを示す図である。It is a figure showing the flow of air in a room. 案内板を示す図である。It is a figure showing a guide board. 案内板を示す図である。It is a figure showing a guide board. 外面にヒートシンクを設けた筒形部を示す図である。It is a figure which shows the cylindrical part which provided the heat sink on the outer surface. 毒性対象減消装置の他の例を示す断面図である。FIG. 7 is a sectional view showing another example of the toxic target reduction device. 気流誘発部を示す斜視図である。FIG. 3 is a perspective view showing an airflow inducing section.

以下に、本発明の毒性対象減消装置の実施形態について説明する。毒性対象減消装置は、流体を吸い込む吸込部と、上記流体を排出する排出部と、上記流体に含まれる毒性対象を分解及び/又は不活化及び/又は滅菌させる波動(紫外線)を放出する減消手段と、上記吸込部及び上記排出部を連通させる流路を形成し、内周面に上記波動を繰り返し高次に反射させる反射面を有する筒形部と、を具えるものである。また、上記吸込部から流体を吸込んだときの流速と比して、排出部から排出する流体の流速が抑制されるように、排出部の開口を設定する。 Embodiments of the toxic target reduction device of the present invention will be described below. The toxic substance reduction device includes a suction part that sucks in fluid, a discharge part that discharges the fluid, and a reduction part that emits waves (ultraviolet rays) that decompose and/or inactivate and/or sterilize the toxic substances contained in the fluid. The cylindrical part is provided with an extinguishing means, and a cylindrical part that forms a flow path that communicates the suction part and the discharge part, and has a reflecting surface on its inner circumferential surface that repeatedly reflects the wave motion at a high level. Moreover, the opening of the discharge part is set so that the flow velocity of the fluid discharged from the discharge part is suppressed compared to the flow velocity when the fluid is sucked in from the suction part.

なお、ここで流体とは、気体、液体、粉体を含む概念であり、毒性対象とは、菌やウイルス等の病原微生物の他、有害分子を含んだホルムアルデヒドや亜硫酸ガス、亜硝酸ガス、臭気成分等を含むものであって少なくとも人体に対して毒性を有し、流体と共に移動する対象物である。 Note that fluid here is a concept that includes gas, liquid, and powder, and toxic objects include pathogenic microorganisms such as bacteria and viruses, as well as formaldehyde, sulfur dioxide gas, nitrite gas, and odors that contain harmful molecules. It is an object that contains components, etc., is toxic to at least the human body, and moves with the fluid.

図1は本発明の毒性対象減消装置1を示す斜視図、図2は本発明の毒性対象減消装置1を示す断面図である。毒性対象減消装置1は、立設される略筒形状の筐体2を具える。筐体2の上端面には、外部の空気を吸い込むための吸込部4が形成され、筐体2の周面には、外部へ空気を排出するための排出部6が形成される。 FIG. 1 is a perspective view showing a toxic target reducing device 1 of the present invention, and FIG. 2 is a sectional view showing the toxic target reducing device 1 of the present invention. The toxic target reduction device 1 includes a substantially cylindrical casing 2 that stands upright. A suction section 4 for sucking in external air is formed on the upper end surface of the casing 2, and a discharge section 6 for discharging air to the outside is formed on the circumferential surface of the casing 2.

また、筐体2の内部には、略筒形であって内周面が円周形状を成す筒形部8、毒性対象を減消させる減消手段としての紫外線放射部10、空気を流動させるための送風部12(流動発生部)等を配設している。吸込部4は、筐体2上部を開口させた吸込口を有し、吸込口を介して外部の空気が装置内部に流入する。
吸込部4近傍には、不図示のフィルタが配設され、フィルタとしては、例えば、主に50μm以上の粒子を捕集する粗塵用フィルタ、主に25μm以上の粒子を捕集する中高性能フィルタ(MEPAフィルタ)、0.3μmの粒子を捕集するHEPAフィルタ、0.15μmの粒子を捕集するULPAフィルタ等があり得る。勿論、フィルタは適宜位置、数で配することができ、例えば排出口6近傍等にも配することができる。
Further, inside the housing 2, there is a cylindrical part 8 having a substantially cylindrical shape and an inner circumferential surface having a circumferential shape, an ultraviolet ray emitting part 10 as a means for reducing toxic substances, and a part 10 for causing air to flow. A blower section 12 (flow generating section) and the like are provided for this purpose. The suction unit 4 has a suction port that opens at the top of the housing 2, and external air flows into the inside of the device through the suction port.
A filter (not shown) is disposed near the suction part 4, and examples of the filter include a coarse dust filter that mainly collects particles of 50 μm or more, and a medium-high performance filter that mainly collects particles of 25 μm or more. (MEPA filter), HEPA filter that collects particles of 0.3 μm, ULPA filter that collects particles of 0.15 μm, and the like. Of course, the filters can be arranged in appropriate positions and numbers, for example, in the vicinity of the discharge port 6.

排出部6は、筐体2の略中途部分に形成され、複数の排出口を筐体2の周面に沿って設けている。例えば、筐体2が略矩形断面の筒形状である場合、矩形を成す各面に排出口を形成している。また、排出口の総開口面積は、吸込口の開口面積と比して十分に大きくなるように例えば2倍以上に設定される。また、筐体2を矩形断面の筒形状とした場合、各面において排出口の開口面積を吸込口の開口面積の1/4を超え、好ましくは等倍を超える大きさとして総開口面積を2倍以上に設定することが望ましい。 The discharge section 6 is formed approximately in the middle of the housing 2 and has a plurality of discharge ports provided along the circumferential surface of the housing 2. For example, when the housing 2 has a cylindrical shape with a substantially rectangular cross section, a discharge port is formed on each rectangular surface. Further, the total opening area of the discharge port is set to be twice or more, for example, sufficiently larger than the opening area of the suction port. In addition, when the housing 2 has a cylindrical shape with a rectangular cross section, the opening area of the discharge port on each side is set to exceed 1/4 of the opening area of the suction port, and preferably exceeds the same size, so that the total opening area is 2. It is desirable to set it to at least twice as much.

筐体2は、その内部に略筒形状の筒形部8、紫外線放射部10(減消手段)及び空気を流動させるための送風部12等を配する。筒形部8は、両端部に空気が通過し得る開口部と、端部間を連通させる内部空間(空洞)を有する。なお筒形部8の空洞は、空気の流動を案内し得る流路として機能する。従って、吸込部4を介して流入した空気は、筒形部8の一端部(上端部)から他端部(下端部)に向けて筒形部8内を通過する。また筒形部8は、内周面の横断面形状が略無端形状を有する。ここでは略円周形状の内周面を有するものとするが、勿論筒形部8の内周面は、横断面形状が多角形状(三角形状、四角形状、五角形状等)、楕円形状、長円形状、定幅図形(ルーローの多角形)等であってもよい。 The housing 2 has a substantially cylindrical cylindrical part 8, an ultraviolet ray emitting part 10 (reducing means), a blowing part 12 for causing air to flow, and the like arranged therein. The cylindrical portion 8 has openings at both ends through which air can pass, and an internal space (cavity) that communicates between the ends. Note that the cavity of the cylindrical portion 8 functions as a flow path that can guide the flow of air. Therefore, the air flowing in through the suction part 4 passes through the cylindrical part 8 from one end (upper end) of the cylindrical part 8 to the other end (lower end). Further, the cylindrical portion 8 has a substantially endless cross-sectional shape on its inner circumferential surface. Here, it is assumed that the inner circumferential surface of the cylindrical portion 8 has a substantially circumferential shape, but of course, the inner circumferential surface of the cylindrical portion 8 may have a cross-sectional shape of a polygon (triangular, quadrangular, pentagonal, etc.), an elliptical shape, an elongated shape, etc. It may be a circular shape, a constant width figure (Reuleaux polygon), or the like.

図3は筐体2を除いた装置内部を示す斜視図であり、筒形部8は、下端部を毒性対象減消装置1の基部1aに対して間隙を有するように固定されている。従って、基部1aと筒形部8との間には、通気口8aが形成される。また筒形部8は、筐体2に対して径方向に流路となる間隙を有する。即ち、筒形部8の外径は、筐体2の内径よりも小さく設定される。これにより、筐体2と筒形部8との間隙が、排出部6が連通する。 FIG. 3 is a perspective view showing the inside of the device excluding the casing 2, and the lower end of the cylindrical portion 8 is fixed to the base 1a of the toxic target reduction device 1 with a gap therebetween. Therefore, a vent hole 8a is formed between the base portion 1a and the cylindrical portion 8. Further, the cylindrical portion 8 has a gap that serves as a flow path in the radial direction with respect to the housing 2 . That is, the outer diameter of the cylindrical portion 8 is set smaller than the inner diameter of the housing 2. Thereby, the gap between the housing 2 and the cylindrical portion 8 communicates with the discharge portion 6.

毒性対象減消装置1内部では、吸込部4、筒形部8内側の空間、通気口8a、筒形部8と筐体2との間隙及び排出部6が流動可能に連通した流路が形成される。なお、流路内で空気の流動を妨げないように、筒形部8の空洞の横断面積は、吸込部4の開口面積以上とする。また、通気口8aの大きさ(開口面積)は、筒形部8の空洞の横断面積以上とし、筒形部8と筐体2との間隙の横断面積は、通気口8aの大きさ以上とする。 Inside the toxic target reduction device 1, a flow path is formed in which the suction part 4, the space inside the cylindrical part 8, the vent 8a, the gap between the cylindrical part 8 and the housing 2, and the discharge part 6 are fluidly connected. be done. Note that the cross-sectional area of the cavity of the cylindrical portion 8 is set to be greater than or equal to the opening area of the suction portion 4 so as not to impede the flow of air within the flow path. Further, the size (opening area) of the vent 8a is equal to or larger than the cross-sectional area of the cavity of the cylindrical portion 8, and the cross-sectional area of the gap between the cylindrical portion 8 and the housing 2 is equal to or larger than the size of the vent 8a. do.

筒形部8は、内周全域に反射面9を有する。反射面9は、紫外線を高次に繰り返し反射させ得る紫外線反射性材料によって成る。紫外線反射性材料は、拡散透過率が1%/1mm以上20%/1mm以下であり、且つ紫外線領域における全反射率が60%/1mm以上99.9%/1mm以下であって、拡散透過率と紫外線領域における全反射率との和は90%/1mm以上であることが好ましい。このような紫外線反射性材料としては、銀材、アルミニウム材、ポリテトラフルオロエチレン(polytetrafluoroethylene PTFE)、シリコン樹脂、内部に0.05μm以上10μm以下の気泡を含む石英ガラス、内部に0.05μm以上10μm以下の結晶粒を含む部分結晶化石英ガラス、0.05μm以上10μm以下の結晶粒状のアルミナ焼結体、及び0.05μm以上10μm以下の結晶粒状のムライト焼結体、炭酸マグネシウムやバリウム等のうちの少なくともいずれか一つを含むもの等があり得る。
反射面9は、金属(銀、アルミニウム、ニッケル、銅等)の薄膜を筒形部8の内面に設けることによっても構成し得る。また、適宜の母材表面に蒸着やスパッタリング等によって紫外線反射性材料を付着させて形成することも出来る。
The cylindrical portion 8 has a reflective surface 9 over the entire inner circumference. The reflecting surface 9 is made of an ultraviolet reflective material that can repeatedly reflect ultraviolet rays at a high level. The ultraviolet reflective material has a diffuse transmittance of 1%/1 mm or more and 20%/1 mm or less, and a total reflectance in the ultraviolet region of 60%/1 mm or more and 99.9%/1 mm or less, and has a diffuse transmittance. The sum of total reflectance in the ultraviolet region is preferably 90%/1 mm or more. Examples of such ultraviolet reflective materials include silver materials, aluminum materials, polytetrafluoroethylene PTFE, silicone resin, quartz glass containing air bubbles of 0.05 μm to 10 μm inside, and quartz glass containing bubbles of 0.05 μm to 10 μm inside. Partially crystallized quartz glass containing the following crystal grains, alumina sintered bodies with crystal grains of 0.05 μm or more and 10 μm or less, mullite sintered bodies with crystal grains of 0.05 μm or more and 10 μm or less, magnesium carbonate, barium, etc. There may be one that includes at least one of the following.
The reflective surface 9 may also be constructed by providing a thin film of metal (silver, aluminum, nickel, copper, etc.) on the inner surface of the cylindrical portion 8. Further, it can also be formed by attaching an ultraviolet reflective material to the surface of an appropriate base material by vapor deposition, sputtering, or the like.

また、反射面9に銀材、アルミニウム材を用いる場合、表面の酸化を防止する為、コーティングとして機能する保護膜を表面に施してもよい。この場合の保護膜は、反射面9による反射率を低下させない素材、例えばアクリル樹脂、石英ガラス、PTFE等を用いることが出来る。尚、PTFEで保護膜を形成する方法には、蒸着やスパッタリング等が有り得る。 Further, when a silver material or an aluminum material is used for the reflective surface 9, a protective film functioning as a coating may be applied to the surface in order to prevent surface oxidation. The protective film in this case can be made of a material that does not reduce the reflectance of the reflective surface 9, such as acrylic resin, quartz glass, PTFE, or the like. Note that methods for forming the protective film using PTFE include vapor deposition, sputtering, and the like.

また、反射面9は、筒形部8の表面上に薄膜を多層化させて形成するようにしてもよい。例えば、金属の薄膜、金属等を主成分とする合金の薄膜、酸化物(酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム等)の膜等を重ねて多層化させることで反射面9を形成してもよい。なお一層当たりの膜の厚みは、例えば、紫外線の波長の1/4の整数倍(即ち、波長の1/4の奇数倍又は偶数倍)等に設定する。具体的に反射させる主な紫外線の波長を253.7(nm)と設定した場合、1層の厚みを63.4(nm)や、126.8(nm)、190.3(nm)等とすることができる。勿論、一層当たりの膜厚は、適宜設定可能であり、厚みが数10μm程度の所謂厚膜であってもよく、数μm程度の所謂薄膜であってもよく、数nm以下の所謂超薄膜であってもよい。また、多層膜を形成するに当たっては、母材表面を予め鏡面状態としつつ、屈折率及び/又は誘電率の異なる層を交互に形成するものであってもよい。 Further, the reflective surface 9 may be formed by forming multiple layers of thin films on the surface of the cylindrical portion 8. For example, the reflective surface 9 can be formed by stacking a thin film of metal, a thin film of an alloy whose main component is metal, a film of oxide (aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, etc.) to form a multilayer structure. It's okay. The thickness of the film per layer is set, for example, to an integral multiple of 1/4 of the wavelength of ultraviolet rays (that is, an odd or even multiple of 1/4 of the wavelength). Specifically, if the wavelength of the main ultraviolet rays to be reflected is set to 253.7 (nm), the thickness of one layer may be 63.4 (nm), 126.8 (nm), 190.3 (nm), etc. can do. Of course, the film thickness per layer can be set as appropriate, and may be a so-called thick film with a thickness of several tens of micrometers, a so-called thin film with a thickness of several micrometers, or a so-called ultra-thin film with a thickness of several nanometers or less. There may be. Further, when forming a multilayer film, layers having different refractive indexes and/or dielectric constants may be formed alternately while the base material surface is previously made into a mirror-like state.

また、筒形部8の内周面に、光触媒活性物質による膜を設けた領域を形成してもよい。即ち、紫外線の照射によって活性表面を生じさせることで、殺菌、抗ウイルス、消臭、有機塩素化合物・ホルムアルデヒド等を分解による空気の浄化等、毒性対象の減消を行ってもよい。なお、光触媒活性物質としては、酸化チタン、酸化タングステン等がある。 Further, a region may be formed on the inner circumferential surface of the cylindrical portion 8 in which a film of a photocatalytically active material is provided. That is, by creating an active surface by irradiation with ultraviolet rays, it is possible to perform sterilization, antivirus, deodorization, purify the air by decomposing organic chlorine compounds, formaldehyde, etc., and reduce toxic targets. Note that examples of photocatalytically active substances include titanium oxide and tungsten oxide.

紫外線放射部10は、毒性対象の分解、不活化、消毒、除菌、殺菌、滅菌等の減消行う紫外線を放射し、例えば、水銀ランプ、キセノンランプ、エキシマランプ、メタルハライドランプ、ネオン灯及び/又はLED等が有り得る。
紫外線放射部10は、長尺の管形状を有して筒形部8の内側、即ち空気の流路内に配置される。また紫外線放射部10は、その長手方向が筒形部8の軸方向に平行で、筒形部8の中心軸と略重畳するように配される。従って、紫外線放射部10は、反射面9に囲繞される。結果、紫外線放射部10から放射された紫外線は、反射面9で反射する。
The ultraviolet radiation unit 10 emits ultraviolet radiation for decomposing, inactivating, disinfecting, sterilizing, sterilizing, etc. a toxic target, and for example, a mercury lamp, a xenon lamp, an excimer lamp, a metal halide lamp, a neon lamp, and/or Alternatively, an LED or the like may be used.
The ultraviolet radiation section 10 has a long tube shape and is arranged inside the cylindrical section 8, that is, within the air flow path. Moreover, the ultraviolet radiation part 10 is arranged so that its longitudinal direction is parallel to the axial direction of the cylindrical part 8 and substantially overlaps with the central axis of the cylindrical part 8. Therefore, the ultraviolet radiation section 10 is surrounded by the reflective surface 9. As a result, the ultraviolet rays emitted from the ultraviolet ray emitter 10 are reflected by the reflective surface 9.

紫外線放射部10から放射される紫外線は、波長が200~300nm程度であることが好ましく、250~270nm近傍に設定することがより望ましい。勿論、紫外線は、少なくとも毒性対象を減消させ得るものであれば波長が260nm未満の近紫外線(UV-C)、遠紫外線(波長10~200nm)、極端紫外線(波長10~121nm)等であってもよい。また、波長が300nmを超える近紫外線(UV-A、UV-B)であってもよい。 The wavelength of the ultraviolet light emitted from the ultraviolet radiation section 10 is preferably about 200 to 300 nm, and more preferably set to around 250 to 270 nm. Of course, ultraviolet rays include near ultraviolet rays (UV-C) with wavelengths less than 260 nm, far ultraviolet rays (wavelengths 10 to 200 nm), extreme ultraviolet rays (wavelengths 10 to 121 nm), etc., as long as they can at least reduce the toxicity. It's okay. Further, near ultraviolet light (UV-A, UV-B) having a wavelength exceeding 300 nm may be used.

また、紫外線放射部10には、紫外線LED(Light Emitting Diode)を適用してもよい。このような紫外線LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたもの等がある。紫外線LEDは、例えば、略直線状に複数配設、又は面内に縦及び/又は横に整列して複数配設して紫外線放射部を構成することができる。 Moreover, an ultraviolet LED (Light Emitting Diode) may be applied to the ultraviolet ray emitting section 10. Examples of such ultraviolet LEDs include those using aluminum gallium nitride (AlGaN). For example, a plurality of ultraviolet LEDs may be arranged substantially linearly, or a plurality of ultraviolet LEDs may be arranged vertically and/or horizontally in a plane to constitute the ultraviolet ray emitting section.

なお、紫外線放射部10は、複数配してもよいことは言うまでもない。紫外線放射部10を複数配すればその分紫外線量が増加するので、毒性対象の減消効率を向上させることができる。 It goes without saying that a plurality of ultraviolet radiation units 10 may be arranged. If a plurality of ultraviolet radiation units 10 are arranged, the amount of ultraviolet rays increases accordingly, so that the efficiency of reducing the toxic target can be improved.

また、筐体2には、紫外線放射部10から放射された紫外線が吸込部4を介して漏出しないように、紫外線抑制部14が配設される。紫外線抑制部14は、図4に示すように、屈折(屈曲)させた形状の板状部材を所定間隔で複数並列させることで成る。この場合の板状部材は、適宜形状を有し、例えば軸方向に対して傾斜した傾斜面14aを含み、軸方向視で該傾斜面14a同士を一部重畳させて並列させて紫外線放射部10から紫外線が外部に漏れるのを防止する。 Furthermore, an ultraviolet suppressing section 14 is provided in the housing 2 so that the ultraviolet rays emitted from the ultraviolet ray emitting section 10 do not leak through the suction section 4 . As shown in FIG. 4, the ultraviolet suppressing section 14 is formed by arranging a plurality of bent (bent) plate-like members in parallel at predetermined intervals. The plate-like member in this case has an appropriate shape, and includes, for example, an inclined surface 14a that is inclined with respect to the axial direction. Prevents ultraviolet rays from leaking to the outside.

送風部12は、所謂プロペラ様の部材であり、筒形部8の軸心周りに回転する回転体、回転体の外周面に形成された複数の羽根、回転体を回転させるモータ等を具えて構成される。また、送風部12の種類、形状等は、特に限定されるものではなく、例えば、軸流ファン(プロペラファン)、斜流ファン、遠心ファン(多翼ファン、シロッコファン、ラジアルファン、プレートファン、ターボファン、リミットロードファン、エアフォイルファン等)、遠心軸流ファン、渦流ファン、横断流ファン(クロスフローファン等)等が有り得る。勿論、送風部12を複数設置してもよい。例えば、筒形部8の軸方向の両端部や、吸込部4の近傍等に送風部12を配設することも可能であり、複数の送風部12によって流動を発生させることも可能である。 The blower section 12 is a so-called propeller-like member, and includes a rotating body that rotates around the axis of the cylindrical section 8, a plurality of blades formed on the outer peripheral surface of the rotating body, a motor that rotates the rotating body, and the like. configured. Further, the type, shape, etc. of the blowing section 12 are not particularly limited, and examples thereof include an axial fan (propeller fan), a mixed flow fan, a centrifugal fan (multi-blade fan, sirocco fan, radial fan, plate fan, etc.). Examples include turbo fans, limit load fans, airfoil fans, etc.), centrifugal axial fans, vortex fans, and cross-flow fans (crossflow fans, etc.). Of course, a plurality of blowers 12 may be installed. For example, it is possible to arrange the air blowing parts 12 at both ends of the axial direction of the cylindrical part 8 or in the vicinity of the suction part 4, and it is also possible to generate a flow using a plurality of air blowing parts 12.

毒性対象減消装置1は、送風部12によって空気を流動させると共に、紫外線放射部10によって筒形部8内部で紫外線を放射する。具体的には、送風部12を駆動させることにより、吸込部4を介して外部から空気を吸込みつつ、該空気を装置内部で流動させて排出部6から排出する。
ここで、図5は毒性対象減消装置1内部での空気の流れを示す図であり、図5に示すように吸込部4から流入した空気は、筒形部8内で上部から下部へと流動し、また通気口8aを介して筒形部8と筐体2との間隙に沿って上昇するように流動し、排出部6を介して外部へ排出される。
The toxic target reducing device 1 causes air to flow through the blower section 12 and emits ultraviolet rays inside the cylindrical section 8 through the ultraviolet ray emitting section 10 . Specifically, by driving the blower section 12, air is sucked in from the outside through the suction section 4, and the air is made to flow inside the device and is discharged from the discharge section 6.
Here, FIG. 5 is a diagram showing the flow of air inside the toxic target reduction device 1. As shown in FIG. The liquid flows upward through the vent hole 8a along the gap between the cylindrical portion 8 and the housing 2, and is discharged to the outside through the discharge portion 6.

また、筒形部8内部は、高密度、高線量の紫外線領域が作出される。即ち、筒形部8の内側で紫外線放射部10が紫外線を放射することにより、当該紫外線は、反射面9によって繰り返し反射するので、紫外線の線量が上昇する。従って、筒形部8内を上部から下部へと流下している空気中の毒性対象は、紫外線領域を通過して高線量の紫外線に晒されて減消する。 Furthermore, a high-density, high-dose ultraviolet region is created inside the cylindrical portion 8. That is, when the ultraviolet radiation part 10 emits ultraviolet rays inside the cylindrical part 8, the ultraviolet rays are repeatedly reflected by the reflective surface 9, so that the dose of ultraviolet rays increases. Therefore, the toxic substances in the air flowing down inside the cylindrical part 8 from the upper part to the lower part pass through the ultraviolet region and are exposed to a high dose of ultraviolet rays, thereby being attenuated.

また、毒性対象を減消させた後の空気は、排出部6を介して外部へ排出され、このとき排出部6が周方向の略全域に存しており、流動してきた空気が複数の方向で排出される。また、上記の通り排出部6の開口面積を吸込部4の開口面積よりも広げて吹き出し速度を低下させている。これにより塵埃の巻き上げを防止すると共に、室内に存する虞の有り得る未処理の空気(毒性対象)等の拡散を防止する。 In addition, the air after reducing the toxic target is discharged to the outside via the discharge part 6, and at this time, the discharge part 6 exists in almost the entire circumferential area, and the flowing air can flow in multiple directions. is discharged. Furthermore, as described above, the opening area of the discharge section 6 is made wider than the opening area of the suction section 4 to reduce the blowing speed. This prevents dust from being stirred up and also prevents the spread of untreated air (toxic material) that may exist indoors.

毒性対象減消装置1は、室内に設置して使用することができる。例えば、図6に示すように室内の中央部に毒性対象減消装置1を設置したとき、吸込部4は、上向きに開口しているので、優先的に装置上の空気(及び毒性対象)を吸い込む。このような吸込部4は、人の呼気又は呼気を含んだ空気が滞留している高さに相当する位置或いは、人の呼気又は呼気を含んだ空気が滞留している高さ以下の位置(例えば、地面から70~90cmの位置等)に配設することが好ましい。一例として人の呼気や排気が溜まり易い、口腔や鼻腔等の呼吸器の在る高さ位置の近傍に吸込部4を配することができる。なお、吸込部4の位置は、地面から70cm未満の高さや、90cm以上の高さに配してもよいことは言うまでもない。 The toxic target reduction device 1 can be installed and used indoors. For example, when the toxic substance reduction device 1 is installed in the center of the room as shown in Fig. 6, the suction part 4 opens upward, so the air above the device (and the toxic substances) is preferentially removed. Inhale. Such a suction part 4 is located at a position corresponding to the height at which human exhalation or air containing exhaled breath remains, or at a position below the height at which human exhalation or air containing exhaled breath remains ( For example, it is preferable to arrange it at a position of 70 to 90 cm from the ground. For example, the suction section 4 can be placed near the height of respiratory organs such as the oral cavity and nasal cavity where human exhalation and exhaust gas tend to accumulate. It goes without saying that the suction portion 4 may be located at a height of less than 70 cm or at a height of 90 cm or more from the ground.

排出部6は、吸込部4よりも上方の領域と異なる領域、即ち、吸込部4よりも下方で且つ周囲(四方)に略均等に空気を排出する。また排出部6からは各方向に微弱な風速(吹き出し速度)で空気を排出する為、排出した空気によって室内の空気が対流することが殆ど無い。従って、人の呼気に含まれる毒性対象等が、排出された空気によって拡散するのを防ぐことができる。
但し、排出部6の位置が吸込部4の位置に近い程、排出部6から排出された空気が吸込部4で吸い込まれ易くなってしまうため、吸込部4に対して排出部6を離間させることが望ましく、また排出部6からの空気は、特に限定されるものではないものの、水平に或いは下方に向けることが望ましい。
The discharge part 6 discharges air substantially uniformly in a region different from the region above the suction part 4, that is, below the suction part 4 and around (on all sides). Furthermore, since air is discharged from the discharge section 6 in each direction at a weak wind speed (blow speed), there is almost no convection of indoor air due to the discharged air. Therefore, it is possible to prevent toxic substances contained in a person's exhaled breath from being spread by the expelled air.
However, the closer the position of the discharge part 6 is to the position of the suction part 4, the more easily the air discharged from the discharge part 6 is sucked in by the suction part 4. Therefore, the discharge part 6 is spaced apart from the suction part 4. It is desirable that the air from the discharge section 6 is directed horizontally or downward, although this is not particularly limited.

また、排出部6は、吸込部4に対し十分に低い位置に配置することが好ましく、このような配置によれば、口腔や鼻腔よりも低い位置から空気を排出でき、人の呼気や排気が溜りやすい領域での気流(吸込部4に向かう空気の流れ)を乱すことを抑制することができる。 Further, it is preferable that the discharge part 6 is arranged at a position sufficiently lower than the suction part 4. According to this arrangement, air can be discharged from a position lower than the oral cavity and nasal cavity, and human exhalation and exhaust air can be prevented. Disturbance of the airflow (flow of air toward the suction part 4) in a region where it is likely to accumulate can be suppressed.

上述したように、本発明の毒性対象減消装置1は、空気の流路である筒形部8内に高線量の紫外線領域を作出するので、空気と共に流下してくる毒性対象を筒形部8内で減消することができる。また吸込部4と比較して排出部6の開口の総面積を拡げているため、吸込部4で吸い込む空気の吸込み速度よりも遅い吹き出し速度で空気を排出する。これにより、排気によって強制的に起こる室内の空気の流れを抑え、空間中に漂う毒性対象を拡散させてしまうのを抑制することができる。換言すれば、毒性対象の存在可能性の高い領域の空気を吸い込ませながら、吸い込んだ空気に含まれている毒性対象を確実に減消させつつ、毒性対象減消後の空気を吸込領域と異なる領域であって、毒性対象の存在可能性の低い領域の空間に向けて排出することで、空間内の空気を殆ど攪拌することなく徐々に且つ確実に空間内に存在する毒性対象を減消させることができる。
このように、毒性対象減消装置1は、空気を吸い込みながら、マイクロ飛沫やエアロゾル等に付着した菌類やウイルス類等を紫外線によって十分に不活化及び/又は死滅させたり、有毒分子を紫外線によって確実に分解させたりする等、毒性対象を減消させる為、空間内に滞留している毒性対象を拡散させること無く徐々に且つ確実に減消させることができる。
As described above, the toxic target reducing device 1 of the present invention creates a high-dose ultraviolet region in the cylindrical part 8, which is an air flow path, so that the toxic target flowing down with the air is removed from the cylindrical part. It can be reduced within 8. Furthermore, since the total area of the openings of the discharge section 6 is expanded compared to the suction section 4, the air is discharged at a blowing speed that is slower than the suction speed of the air sucked in by the suction section 4. As a result, it is possible to suppress the flow of air in the room that is forced by the exhaust gas, and to suppress the spread of toxic substances floating in the space. In other words, while inhaling air from an area where there is a high possibility of the existence of toxic substances, while ensuring that the toxic substances contained in the inhaled air are reduced, the air after the toxic substances have been reduced is different from the inhalation area. By discharging air into a space in a region where the possibility of a toxic object existing is low, the toxic object existing in the space is gradually and surely reduced without stirring the air in the space. be able to.
In this way, the toxicity target reduction device 1 inhales air and sufficiently inactivates and/or kills fungi and viruses attached to micro droplets and aerosols using ultraviolet rays, and securely removes toxic molecules using ultraviolet rays. In order to reduce the toxic target by decomposing it into , etc., the toxic target staying in the space can be gradually and reliably reduced without being diffused.

また、略全周面に設けた排出部6の穴から空気を排出するので、結果、毒性対象減消装置1を中心に放射状に空気を分散させて排出する。これによっても周囲で強制的に発生する空気の流れを抑制でき、空間内で滞留している毒性対象を周囲に拡散させることを抑制できる。更に毒性対象を周囲に拡散させないようにすることで、装置の利用者にウイルス感染等に対する不安を感じさせることが無く、安心感を与えることができる。 Moreover, since air is discharged from the holes of the discharge part 6 provided on substantially the entire circumference, the air is dispersed and discharged radially around the toxic target reduction device 1 . This also makes it possible to suppress the flow of air that is forcibly generated in the surrounding area, and it is possible to suppress the spread of toxic substances stagnant in the space to the surrounding area. Furthermore, by preventing the toxic object from spreading to the surrounding area, the user of the device is not made to feel anxious about virus infection, etc., and can be given a sense of security.

なお、毒性対象減消装置1に配設するフィルタは、吸込部近傍に限定するものではなく、適宜位置に設置することができる。またフィルタの設置数等も限定するものではなく、例えば、筒形部8内や、排出部6近傍等に配してもよい。また、フィルタの配設数による圧力損失の影響を利用して排出する空気の吹き出し速度を抑制してもよい。 Note that the filter disposed in the toxicity target reduction device 1 is not limited to the vicinity of the suction part, and can be disposed at an appropriate position. Further, the number of filters to be installed is not limited, and for example, they may be placed inside the cylindrical portion 8 or near the discharge portion 6. Further, the blowing speed of the air to be discharged may be suppressed by utilizing the effect of pressure loss due to the number of filters disposed.

なお、紫外線放射部10は、紫外線を放射し続けることで徐々に温度が上昇し得るため、放射時間によって温度の影響を大きく受けてしまう。即ち、放射時間によって徐々に出力が低下してしまうため、紫外線放射部10の排熱(放熱)を促進させる構造を具えることが望ましい。例えば、熱伝導率の高い材料で筒形部8を形成し、熱の対流を利用して排熱を促進させることができる。 Note that the temperature of the ultraviolet radiation section 10 may gradually rise as it continues to emit ultraviolet light, and thus is greatly affected by temperature depending on the radiation time. That is, since the output gradually decreases depending on the radiation time, it is desirable to provide a structure that promotes heat exhaustion (heat radiation) from the ultraviolet radiation part 10. For example, the cylindrical portion 8 can be formed of a material with high thermal conductivity, and heat convection can be used to promote heat exhaustion.

また、筒形部8内部に空気の流動を案内するための案内板(案内部)を配してもよい。このような案内板によって紫外線放射部10を中心に空気を旋回させるように流動させれば、排熱効率を向上させることができる。また、筒形部8内部で空気を旋回させることで、毒性対象の紫外線放射部10に対する姿勢が変化し得、毒性対象に対して様々な向きで紫外線を放射することができる。即ち、埃や塵の陰に存している毒性対象に紫外線を放射し易くなって確実に毒性対象を減消することができる。 Further, a guide plate (guide portion) for guiding the flow of air may be arranged inside the cylindrical portion 8. If such a guide plate causes the air to swirl around the ultraviolet radiation part 10, heat exhaust efficiency can be improved. Furthermore, by swirling the air inside the cylindrical portion 8, the attitude of the toxic target relative to the ultraviolet ray emitting unit 10 can be changed, and ultraviolet rays can be radiated to the toxic target in various directions. That is, it becomes easier to radiate ultraviolet rays to toxic objects that exist behind dust and dust, and the toxic objects can be reliably reduced.

また、案内板は、筒形部8と同様に、熱伝導率の高い材料で形成することができ、更に紫外線放射部10の排熱を促進させることができる。ここで図7に示すように案内板20は、長手方向の一端から他端にかけて略90°位相をずらすように徐々に湾曲した形状等が有り得る。勿論、案内板20の形状は、適宜設定し得、長手方向に沿ってずれる位相の角度が90°を超えている形状であってもよいことは言うまでもない。 Further, like the cylindrical part 8, the guide plate can be made of a material with high thermal conductivity, and can further promote exhaust heat from the ultraviolet ray emitting part 10. Here, as shown in FIG. 7, the guide plate 20 may have a shape that is gradually curved so as to shift the phase by approximately 90 degrees from one end in the longitudinal direction to the other end. Of course, the shape of the guide plate 20 can be set as appropriate, and it goes without saying that the shape of the guide plate 20 may be such that the angle of phase shift along the longitudinal direction exceeds 90°.

また、筒形部8は、外面(外周面)にヒートシンクを設け、更に紫外線放射部10の排熱を促進させてもよい。即ち、図9に示すように筒形部8の外面に凹凸(凹部と凸部を交互)を設けることで、筒形部8全体の排熱効率を向上させてもよい。なお凹凸の形状や延在する方向、配列方向等は、図9に示すように筒形部8の軸方向に沿って延在し且つ周方向に沿って複数並設させるものに限定するものではないことは言うまでもない。
凹凸は、例えば、筒形部8の周方向に沿って周回状を成し、且つ軸方向に複数形成させてよい。また、凹凸を軸方向に対して斜め向きに複数形成してもよく、凹凸を列状に複数形成してもよく、略ローレット状(四角目、あや目状等)に凹凸を形成してもよい。なお、筒形部8の内面においても、同様の凹凸を形成してもよいことは言うまでもない。
Further, the cylindrical portion 8 may be provided with a heat sink on its outer surface (outer peripheral surface) to further promote exhaust heat from the ultraviolet ray emitting portion 10. That is, as shown in FIG. 9, the heat exhaust efficiency of the entire cylindrical portion 8 may be improved by providing unevenness (concave portions and convex portions alternately) on the outer surface of the cylindrical portion 8. Note that the shape of the unevenness, the direction in which it extends, the direction in which it is arranged, etc. are not limited to those that extend along the axial direction of the cylindrical portion 8 and are arranged in parallel along the circumferential direction, as shown in FIG. Needless to say, there is no such thing.
For example, the unevenness may have a circumferential shape along the circumferential direction of the cylindrical portion 8, and a plurality of unevenness may be formed in the axial direction. Further, a plurality of unevenness may be formed diagonally with respect to the axial direction, a plurality of unevenness may be formed in a row, or an unevenness may be formed in a substantially knurling shape (square, cross-shaped, etc.). good. It goes without saying that similar unevenness may be formed on the inner surface of the cylindrical portion 8 as well.

また、案内板20は、筒形部8と同様に紫外線反射性材料によって形成することで、高線量の紫外線領域を作出させてもよいが、紫外線を透過させる紫外線透過性部材によって形成してもよい。そのようにしても、紫外線放射部10から放射されて案内板20を透過した紫外線は、反射面8で反射して再度案内板20を透過し得、毒性対象の減消を殆ど妨げることがない。なお、紫外線透過性材料は、例えば、ガラス、石英(SiO)、サファイア(Al)、PTFE等の非晶質のフッ素系樹脂、アクリル樹脂等が有り得る。 Further, the guide plate 20 may be formed of an ultraviolet reflective material similarly to the cylindrical portion 8 to create a high-dose ultraviolet region, but it may also be formed of an ultraviolet transmissive member that transmits ultraviolet rays. good. Even in this case, the ultraviolet rays emitted from the ultraviolet ray emitting unit 10 and transmitted through the guide plate 20 can be reflected by the reflective surface 8 and transmitted through the guide plate 20 again, so that the reduction of toxic substances is hardly hindered. . Note that the ultraviolet-transparent material may be, for example, glass, quartz (SiO 2 ), sapphire (Al 2 O 3 ), amorphous fluororesin such as PTFE, acrylic resin, or the like.

また、案内板20を一巻き以上の螺旋形状とした場合、空気との接触面積が増加し、排熱効率を向上させることができる一方、圧力損失が大きく成り得るが、この圧力損失を利用して排出部からの吹き出し速度を調整するようにしてもよい。 Furthermore, when the guide plate 20 has a spiral shape with one turn or more, the contact area with air increases and the heat exhaust efficiency can be improved, but the pressure loss may become large. The blowing speed from the discharge section may be adjusted.

また、案内板20の枚数は二枚に限定するものではなく、例えば、図8に示すように四枚の案内板20を配する等、三枚以上の案内板20を配することも可能である。勿論、案内板20の枚数を増やす程、筒形部8内部を通過する空気と全案内板20との総接触面積が増加するので、排熱効率が向上し得る。
案内板20は、筒形部8の軸方向に沿った領域の略全域に亘って延在するように形成し得るが、勿論、これに限定されるものではなく、筒形部8の一端部又は他端部から軸方向の中途部分まで延在していてもよく、また筒形部8の一端部及び他端部を除いた中途部分にのみ存していてもよい。また、案内板20は、筒形部8の一端部と、中途部分とに配設される等、筒形部8内で軸方向に沿って断続的に配設されていてもよい。
Furthermore, the number of guide boards 20 is not limited to two; for example, it is also possible to arrange three or more guide boards 20, such as four guide boards 20 as shown in FIG. be. Of course, as the number of guide plates 20 increases, the total contact area between the air passing through the inside of the cylindrical portion 8 and all the guide plates 20 increases, so that the heat exhaust efficiency can be improved.
The guide plate 20 may be formed to extend over substantially the entire region along the axial direction of the cylindrical portion 8, but is not limited to this, of course. Alternatively, it may extend from the other end to a midway part in the axial direction, or it may exist only in the midway part of the cylindrical part 8 excluding one end and the other end. Further, the guide plate 20 may be disposed intermittently along the axial direction within the cylindrical portion 8, such as at one end of the cylindrical portion 8 and at a midway portion.

また、案内板20以外の部材によって筒形部8内部で旋回気流を発生させてもよい。ここで、図10は毒性対象減消装置1の他の例を示す断面図であり、筒形部8と送風部12との間で旋回気流を誘発する案内部としての気流誘発部30を設けることができる。 Further, the swirling airflow may be generated inside the cylindrical portion 8 by a member other than the guide plate 20. Here, FIG. 10 is a sectional view showing another example of the toxic object reduction device 1, in which an airflow inducing section 30 is provided as a guide section for inducing a swirling airflow between the cylindrical section 8 and the blowing section 12. be able to.

図11は気流誘発部30を示す斜視図であり、気流誘発部30は、円筒形状の外枠部30aの一端側内周面に、周方向に沿って所定の間隔で案内部としての羽根32を複数具える。羽根32は、通過する空気が螺旋状に旋回するように、軸方向に対して傾斜させた向きで配列される。
羽根32は、送風部12よりも流動向きの上流に位置する為、羽根32の下流側に配される。従って送風部12によって発生する気流は、気流誘導部30によって強制的に旋回し得、当該気流誘導部30よりも上流側の筒形部8内でも徐々に旋回気流が発生し得る。
FIG. 11 is a perspective view showing the airflow inducing section 30. The airflow inducing section 30 includes blades 32 as guide sections arranged at predetermined intervals along the circumferential direction on the inner peripheral surface of one end side of the cylindrical outer frame section 30a. Equipped with multiple. The vanes 32 are arranged at an angle with respect to the axial direction so that the air passing through them spirals.
The blades 32 are located upstream of the blowing section 12 in the flow direction, and therefore are arranged downstream of the blades 32. Therefore, the airflow generated by the blower section 12 can be forcibly swirled by the airflow guide section 30, and a swirling airflow can also be gradually generated within the cylindrical section 8 upstream of the airflow guide section 30.

なお、気流誘発部30の配置は、筒形部8と送風部12との間に限定するものではなく、適宜位置に設定し得る。従って、気流誘発部30を筒形部8内に配してもよく、また吸込部4と筒形部8との間に配してもよい。また気流誘発部30を複数設けてもよいことは言うまでもない。なお、気流誘発部30の羽根32の内側表面、即ち、筒形部8の軸方向における中央側を向く面には、紫外線を反射させ得る高反射層を設けて筒形部8の外側に向かう紫外線を内部に向けて反射させるようにしてもよい。 Note that the arrangement of the airflow inducing section 30 is not limited to between the cylindrical section 8 and the blowing section 12, and may be set at an appropriate position. Therefore, the airflow inducing part 30 may be arranged within the cylindrical part 8 or between the suction part 4 and the cylindrical part 8. It goes without saying that a plurality of airflow inducing sections 30 may be provided. Note that a high reflective layer capable of reflecting ultraviolet rays is provided on the inner surface of the blade 32 of the airflow inducing section 30, that is, the surface facing the center in the axial direction of the cylindrical section 8, so as to reflect ultraviolet rays toward the outside of the cylindrical section 8. The ultraviolet rays may be reflected inward.

また、上述した実施形態において、筐体2を断面矩形形状としたが、これに限定するものではない。即ち、少なくとも筒形部8を囲繞可能であれば、筐体2は、円筒形状、円柱形状、直方体形状、多角柱形状等の適宜形状があり得る。また筐体2の頂部に吸込部4を形成する場合、頂部を平坦な形状としてもよいが、錐形状等のように筐体2の頂部に物が載置されるのを防止する形状とすることが好ましい。このようにすれば、筐体2上に物を載置し難くなり、吸込部4の一部又は全部が塞がることを防止し、吸気量の低下を防止することができる。 Furthermore, in the embodiments described above, the housing 2 has a rectangular cross-section, but is not limited to this. That is, as long as the housing 2 can surround at least the cylindrical portion 8, the housing 2 may have an appropriate shape such as a cylindrical shape, a cylindrical shape, a rectangular parallelepiped shape, a polygonal prism shape, or the like. In addition, when forming the suction part 4 on the top of the housing 2, the top may have a flat shape, but it should have a shape such as a conical shape that prevents objects from being placed on the top of the housing 2. It is preferable. In this way, it becomes difficult to place objects on the housing 2, it is possible to prevent part or all of the suction section 4 from being blocked, and it is possible to prevent a decrease in the amount of intake air.

また、筐体2における吸込部4及び排出部6の配置は特に限定するものではない。少なくとも吸込部4は、該室内を漂って滞留している毒性対象を効率良く吸い込み得る位置に設定する。また排出部6は、滞留している毒性対象を室内で拡散させないように、空気を排出する位置に設定する。 Further, the arrangement of the suction section 4 and the discharge section 6 in the housing 2 is not particularly limited. At least the suction part 4 is set at a position where it can efficiently suck in the toxic substances floating and staying in the room. Further, the discharge section 6 is set at a position to discharge air so as not to diffuse the accumulated toxic substances indoors.

なお、吸込部4の吸込口の開口及び排出部6の排出口の開口は、例えば、吸込部4を介した空気の吸気量を250L/s以上で、且つ排出部6からの吹き出す空気の速度が1~2m/s以下となるように、各々の大きさを設定してもよい。
なお、吸気量は、装置の設置環境等によって適宜設定されるものである。例えば、人の集まる部屋や空間等に設置する場合、部屋の店員又は当該装置の周囲に存する人の総排気量に相当するように給気量を設定してもよい。一人の一分間当たりの排気量が5~8リットルであることから、十人分の呼気を略全て吸込み得る吸気量を設定する場合、吸気量が80L/m以上となるように、送風部12の回転数や羽根の大きさ等を設定する。
Note that the opening of the suction port of the suction part 4 and the opening of the discharge port of the discharge part 6 are such that, for example, the intake amount of air through the suction part 4 is 250 L/s or more, and the speed of the air blown out from the discharge part 6 is Each size may be set so that the speed is 1 to 2 m/s or less.
Note that the intake air amount is appropriately set depending on the installation environment of the device and the like. For example, when installing the device in a room or space where people gather, the air supply amount may be set to correspond to the total exhaust amount of the staff in the room or the people around the device. Since the exhaust volume per minute per person is 5 to 8 liters, when setting the intake air volume that can inhale almost all of the exhaled air for 10 people, the ventilation unit 12 should be set so that the intake air volume is 80 L/m or more. Set the rotation speed, blade size, etc.

なお、筐体2の向きは、図1に示すような縦置きに限定されるものではなく、横置き即ち軸方向が水平となるように配してもよい。その場合、毒性対象の存在可能性の高い領域の空気を吸い込み、且つ毒性対象の存在可能性の高い領域を避けて空気を排出し得るように、吸込部と排出部とを配する。例えば、横置きにしたときの筐体の天面の一部に吸込部を設け、当該天面を除いた筐体の周面や軸方向における端面等に排出部を配することが望ましい。 Note that the orientation of the housing 2 is not limited to vertical placement as shown in FIG. 1, but may be placed horizontally, that is, arranged so that the axial direction is horizontal. In that case, the suction part and the discharge part are arranged so that air in a region where there is a high probability of the existence of a toxic object can be sucked in and air can be discharged while avoiding a region where there is a high possibility of the existence of a toxic object. For example, it is desirable to provide a suction portion on a part of the top surface of the casing when the casing is placed horizontally, and to provide a discharge portion on the peripheral surface of the casing excluding the top surface, the end surface in the axial direction, or the like.

また、内部の流路は、流動方向に沿った下流側に向かって徐々に横断面積を大きくなるように設定してもよい。このようにすれば、流下する空気の流速が徐々に遅くなって排出部6における空気の吹き出し速度が低下してより周囲の気流を乱すことを抑制することができる。 Further, the internal flow path may be set so that the cross-sectional area gradually increases toward the downstream side along the flow direction. In this way, it is possible to suppress the flow rate of the flowing air from gradually slowing down and the blowing speed of the air at the discharge part 6 from decreasing and further disturbing the surrounding airflow.

なお、本発明の毒性対象減消装置は、周囲の空気を取り込んで空気中の病原微生物の不活化、滅菌等を目的として利用する場合には、例えば、オフィス、会議室、飲食店、ショールーム、図書館、学校、幼稚園、保育園、商店、娯楽施設(カラオケボックス、水族館、プラネタリウム、映画館、美術館、博物館、ボウリング場等)、乗り物(車、飛行機、船、電車)等の人の集まる空間或いは人が密集し易い空間に設置することができる。 In addition, when the toxicity target reduction device of the present invention is used for the purpose of inactivating and sterilizing pathogenic microorganisms in the air by taking in the surrounding air, for example, offices, conference rooms, restaurants, showrooms, Spaces where people gather, such as libraries, schools, kindergartens, nursery schools, shops, entertainment facilities (karaoke boxes, aquariums, planetariums, movie theaters, art museums, museums, bowling alleys, etc.), vehicles (cars, airplanes, ships, trains), etc., or spaces where people gather. It can be installed in spaces where people tend to be crowded.

また、毒性対象の減消を紫外線の照射により行ったが、更に毒性対象を減消し得る程度に流路内を加熱する加熱手段や、局所的にミクロな放電現象を発生させたり、対向配置した一対の正負電極によって電極に毒性対象(特に病原微生物)を吸着させたりする電場を流路内に作出し、毒性対象を減消し得る電場作出手段を設けてもよい。勿論、紫外線光源に代えて、加熱手段及び/又は電場作出手段を配して毒性対象の減消を行うようにしてもよい。 In addition, although the toxic substances were reduced by irradiation with ultraviolet rays, we also used heating means to heat the inside of the flow path to the extent that the toxic substances could be further reduced, or by generating a localized micro-discharge phenomenon, or by arranging them facing each other. An electric field generating means may be provided in which an electric field is created in the flow path by a pair of positive and negative electrodes to cause toxic objects (particularly pathogenic microorganisms) to be adsorbed to the electrodes, thereby reducing the toxic objects. Of course, instead of the ultraviolet light source, a heating means and/or an electric field generating means may be provided to reduce the toxic target.

また、毒性対象減消装置は、温度センサ、湿度センサ、人感センサ、汚れセンサの中の少なくともひとつのセンサを具え、センサによる検出に基づいて、流動発生手段による流動を制御してもよい。例えば、センサによって周囲に人の存在を検知しているときに、流動発生手段の動作を行うようにしてもよい。また、流動発生手段の停止は、センサが人を検知しなくなったとき、流動発生手段が動作を行ってから所定時間を経過したとき等とすることができる。 Further, the toxic object reduction device may include at least one sensor among a temperature sensor, a humidity sensor, a human sensor, and a dirt sensor, and may control the flow by the flow generating means based on detection by the sensor. For example, the flow generating means may be operated when the sensor detects the presence of a person in the surrounding area. Further, the flow generating means may be stopped when the sensor no longer detects a person, when a predetermined time has elapsed since the flow generating means started operating, or the like.

また、減消手段として、紫外線放射部10を例に説明したが、毒性対象を減消させることができれば、音波、電波、マイクロ波、赤外線、可視光線、紫外線、X線及び/又はγ線等の波動を放射する放射部を用いてもよい。 In addition, although the explanation has been given using the ultraviolet ray emitting unit 10 as an example of reducing means, if it is possible to reduce the toxic target, it is possible to use sound waves, radio waves, microwaves, infrared rays, visible light, ultraviolet rays, X-rays, and/or γ-rays, etc. A radiation section that emits waves may also be used.

また、温度センサ、湿度センサ、人感センサ、汚れセンサ、パーティクルカウンタ等のセンサを設け、当該センサによる検出に基づいて、送風部12による流動及び紫外線放射部10による紫外線放射を制御してもよい。例えば、人感センサによって人を感知したときに動作を開始するように制御してもよく、また、人を感知しなくなったとき、或いは感知しなくなってから所定時間経過したとき動作を停止するように制御してもよい。
或いは、パーティクルカウンタによる微粒子のカウント数が一定以下となったら、運転を停止するように構成してもよい。
Further, a sensor such as a temperature sensor, humidity sensor, human sensor, dirt sensor, particle counter, etc. may be provided, and the flow by the air blower 12 and the ultraviolet radiation by the ultraviolet radiation unit 10 may be controlled based on the detection by the sensor. . For example, it may be controlled to start operating when a human sensor detects a person, or it may be controlled to stop operating when it no longer senses a person or when a predetermined period of time has elapsed since it no longer senses a person. may be controlled.
Alternatively, the operation may be configured to be stopped when the number of particles counted by the particle counter becomes less than a certain value.

1…毒性対象減消装置、2…筐体、4…吸込部、6…排出部、8…筒形部、9…反射面、10…紫外線放射部、12…送風部、14…紫外線抑制部、20…案内板、30…気流誘発部。 DESCRIPTION OF SYMBOLS 1... Toxicity target reduction device, 2... Housing, 4... Suction part, 6... Discharge part, 8... Cylindrical part, 9... Reflective surface, 10... Ultraviolet radiation part, 12... Ventilation part, 14... Ultraviolet ray suppression part , 20... Guide plate, 30... Airflow inducing section.

Claims (13)

流体を吸い込む吸込部と、
上記流体を排出する排出部と、
上記流体に含まれる毒性対象を分解及び/又は不活化及び/又は滅菌させる波動を放出する減消手段と、
上記吸込部及び上記排出部を連通させる流路と、を具え、
上記吸込部は、上記流路の上方に配設され、
上記排出部は、上記吸込部よりも下方に配設されることを特徴とする毒性対象減消装置。
a suction unit that sucks fluid;
a discharge section that discharges the fluid;
A reduction means for emitting waves that decompose and/or inactivate and/or sterilize toxic substances contained in the fluid;
a flow path that communicates the suction part and the discharge part,
The suction section is arranged above the flow path,
The said discharge part is arrange|positioned below the said suction part, The toxicity object reduction device characterized by the above-mentioned.
前記排出部における流体の排出口の総開口面積は、前記吸込部における流体の吸込口の開口面積よりも大きく、
前記吸込部から吸込む流体の流速と比較し、前記排出部から排出する流体の流速を低下させることを特徴とする請求項1記載の毒性対象減消装置。
The total opening area of the fluid outlet in the discharge part is larger than the opening area of the fluid inlet in the suction part,
The toxic target reduction device according to claim 1, characterized in that the flow rate of the fluid discharged from the discharge part is lowered compared to the flow velocity of the fluid sucked in from the suction part.
前記吸込部は、筐体の端面に配されることを特徴とする請求項1又は2記載の毒性対象減消装置。 3. The toxic target reduction device according to claim 1, wherein the suction section is arranged on an end surface of the casing. 前記排出口は、前記筐体の周面に配されることを特徴とする請求項2記載の毒性対象減消装置。 3. The toxic target reduction device according to claim 2, wherein the discharge port is arranged on a peripheral surface of the casing. 前記排出口は、前記筐体の周方向に沿って複数配され、
各前記排出口の開口面積の総和としての総開口面積が前記吸込口の開口面積よりも大きいことを特徴とする請求項4記載の毒性対象減消装置。
A plurality of the discharge ports are arranged along the circumferential direction of the housing,
5. The toxicity target reduction device according to claim 4, wherein a total opening area as a sum of opening areas of each of the discharge ports is larger than an opening area of the suction port.
前記排出部は、前記吸込部が流体を吸込可能な領域以外の領域に流体を排出することを特徴とする請求項1乃至5の何れかに記載の毒性対象減消装置。 6. The toxic target reduction device according to claim 1, wherein the discharge section discharges the fluid to a region other than the region in which the suction section can suck the fluid. 前記減消手段は、前記流路に紫外線を放射して毒性対象を減消させる紫外線光源を有することを特徴とする請求項1乃至6の何れかに記載の毒性対象装置。 7. The device according to claim 1, wherein the attenuation means includes an ultraviolet light source that radiates ultraviolet rays into the flow path to attenuate the toxic object. 前記紫外線光源は、略管形状を有し、前記流路内に配されることを特徴とする請求項7記載の毒性対象減消装置。 8. The toxic target reduction device according to claim 7, wherein the ultraviolet light source has a substantially tubular shape and is disposed within the flow path. 前記毒性対象は、菌、ウイルス及び/又は有害分子であることを特徴とする請求項1乃至8の何れかに記載の毒性対象減消装置。 9. The toxic target reducing device according to claim 1, wherein the toxic target is a bacteria, a virus, and/or a harmful molecule. 前記吸込部及び/又は前記排出部と、前記流路との間に異物が付着し得るフィルタを配することを特徴とする請求項1乃至9の何れかに記載の毒性対象減消装置。 10. The toxic target reduction device according to claim 1, further comprising a filter to which foreign matter can adhere, which is disposed between the suction section and/or the discharge section and the flow path. 前記流路内で前記減消手段から放出された波動を繰り返し反射させる反射面を有することを特徴とする請求項1乃至10の何れかに記載の毒性対象減消装置。 11. The toxicity target reduction device according to claim 1, further comprising a reflecting surface that repeatedly reflects the waves emitted from the reduction means within the flow path. 前記反射面は、前記流路を形成する内周面の一部又は全域に配されることを特徴とする請求項11記載の毒性対象減消装置。 12. The toxicity target reduction device according to claim 11, wherein the reflective surface is arranged on a part or the entire area of an inner circumferential surface forming the flow path. 前記流路は、両端部に流体が通過し得る開口部と、端部間を連通させる内部空間とを有する筒形部によって形成されることを特徴とする請求項1乃至12の何れかに記載の毒性対象減消装置。 13. The flow path is formed by a cylindrical part having openings at both ends through which fluid can pass, and an internal space communicating between the ends. Toxic target reduction device.
JP2023161732A 2021-10-12 2023-09-25 Toxic substance reduction device Pending JP2023171414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023161732A JP2023171414A (en) 2021-10-12 2023-09-25 Toxic substance reduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021167209A JP2023057632A (en) 2021-10-12 2021-10-12 Toxic target extinguishing device
JP2023161732A JP2023171414A (en) 2021-10-12 2023-09-25 Toxic substance reduction device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021167209A Division JP2023057632A (en) 2021-10-12 2021-10-12 Toxic target extinguishing device

Publications (1)

Publication Number Publication Date
JP2023171414A true JP2023171414A (en) 2023-12-01

Family

ID=86054701

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021167209A Pending JP2023057632A (en) 2021-10-12 2021-10-12 Toxic target extinguishing device
JP2023161732A Pending JP2023171414A (en) 2021-10-12 2023-09-25 Toxic substance reduction device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021167209A Pending JP2023057632A (en) 2021-10-12 2021-10-12 Toxic target extinguishing device

Country Status (1)

Country Link
JP (2) JP2023057632A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104537U (en) * 1980-01-10 1981-08-15
JPS6010649U (en) * 1983-07-01 1985-01-24 東芝機器株式会社 air cleaner
JPS6297421U (en) * 1985-12-11 1987-06-22
JPS63130046U (en) * 1987-02-20 1988-08-25
JPS646957U (en) * 1987-07-02 1989-01-17
JPH0361982U (en) * 1989-06-29 1991-06-18
JP2004313705A (en) * 2003-04-18 2004-11-11 Patetsuku:Kk Air purifier having effects of sterilization by ultraviolet ray irradiation, photocatalytic deodorant with inner cylinder having vertical, horizontal or slant partition
JP2015006220A (en) * 2013-06-25 2015-01-15 成田株式会社 Air cleaner
JP2020175258A (en) * 2020-05-19 2020-10-29 裕 道脇 Reducing apparatus of toxic object

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104537U (en) * 1980-01-10 1981-08-15
JPS6010649U (en) * 1983-07-01 1985-01-24 東芝機器株式会社 air cleaner
JPS6297421U (en) * 1985-12-11 1987-06-22
JPS63130046U (en) * 1987-02-20 1988-08-25
JPS646957U (en) * 1987-07-02 1989-01-17
JPH0361982U (en) * 1989-06-29 1991-06-18
JP2004313705A (en) * 2003-04-18 2004-11-11 Patetsuku:Kk Air purifier having effects of sterilization by ultraviolet ray irradiation, photocatalytic deodorant with inner cylinder having vertical, horizontal or slant partition
JP2015006220A (en) * 2013-06-25 2015-01-15 成田株式会社 Air cleaner
JP2020175258A (en) * 2020-05-19 2020-10-29 裕 道脇 Reducing apparatus of toxic object

Also Published As

Publication number Publication date
JP2023057632A (en) 2023-04-24

Similar Documents

Publication Publication Date Title
JP5651604B2 (en) Air sterilization and cleaning device, and breath gas sterilization and cleaning device, indoor air sterilization and cleaning device, and simple isolation device using the same
JP2020175258A (en) Reducing apparatus of toxic object
CN104703631B (en) Air treatment system
KR102171915B1 (en) Ultraviolet Air Purifier
GB2515842A (en) Apparatus for purifying air
CN115297901A (en) Air purification and sterilization unit
US20210372637A1 (en) Methods and Systems for Air Management to Reduce or Block Exposure to Airborne Pathogens
JP4406673B1 (en) Ion generator and air purifier
US20230270897A1 (en) Toxic subject decreasing/eliminating device
JP2023171414A (en) Toxic substance reduction device
US20230181787A1 (en) Ultraviolet Air Sterilizer
WO2022014523A1 (en) Air sterilization and virus inactivation device
KR20230114761A (en) UV air sterilizer
JP2022007897A (en) Reducing apparatus of toxic object
WO2023204160A1 (en) Unit-insertable/removable toxic object reducing/eliminating device
JP7444467B2 (en) Collecting pipe type inlet structure and sterilization device and exhaust device using the same
KR102521268B1 (en) Complex air purifying apparatus having microbicidal function
JP7471635B2 (en) Air sterilizer
US11826499B2 (en) System for treating air
RU202897U1 (en) AIR DISINFECTION DEVICE WITH SPIRAL DIFFUSER
KR102538582B1 (en) table with a function to block air transmission of infectious diseases
WO2023204194A1 (en) Electromagnetic wave blocking filter
US20220034531A1 (en) Air sanitizer with boundlessly-extended sanitizing chamber and method of using same
KR102585172B1 (en) Air sterilization device using ultraviolet scattered reflection
WO2023228681A1 (en) Circulating air sterilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240402