WO2023228681A1 - Circulating air sterilization device - Google Patents

Circulating air sterilization device Download PDF

Info

Publication number
WO2023228681A1
WO2023228681A1 PCT/JP2023/016882 JP2023016882W WO2023228681A1 WO 2023228681 A1 WO2023228681 A1 WO 2023228681A1 JP 2023016882 W JP2023016882 W JP 2023016882W WO 2023228681 A1 WO2023228681 A1 WO 2023228681A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sterilization chamber
light source
annular light
wall surface
Prior art date
Application number
PCT/JP2023/016882
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 高橋
Original Assignee
ホロニクス・インターナショナル株式会社
株式会社七椿
大日工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホロニクス・インターナショナル株式会社, 株式会社七椿, 大日工業株式会社 filed Critical ホロニクス・インターナショナル株式会社
Publication of WO2023228681A1 publication Critical patent/WO2023228681A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/158Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers

Definitions

  • the present invention relates to a circulation type air sterilization device that sterilizes the air taken in with UV-C ultraviolet rays and then releases the air.
  • Patent Document 1 discloses that an ultraviolet lamp is provided in the axial direction of the center of a duct through which air to be sterilized flows, and a plurality of baffle plates are arranged in parallel around the ultraviolet lamp.
  • An ultraviolet irradiation air sterilization device is disclosed having a structure in which air flows in a spiral around an ultraviolet lamp.
  • this air sterilization device uses a combination of multiple baffle plates and multiple partition plates to control the air flow, which not only makes the device configuration quite complex, but also requires a large number of parts. This results in an increase in the manufacturing cost of the device.
  • the air is controlled by contacting multiple baffle plates and multiple partition plates, it is difficult to increase the flow velocity of the emitted air flow, and furthermore, increasing the flow velocity increases wind noise. A problem arises in that the operating noise increases.
  • this type of air sterilization device has a major problem in that the ultraviolet rays emitted from the lamp are blocked by multiple air guide plates and multiple partition plates, which reduces the sterilization effect and makes the sterilization efficiency poor. have. Furthermore, there is also the problem that unsterilized viruses remain attached to portions of the baffle plate that are not exposed to ultraviolet rays.
  • an object of the present invention is to provide a circulating air sterilizer with extremely high sterilization effect and sterilization efficiency.
  • Another object of the present invention is to provide a circulating air sterilization device that has a simple device configuration and can be manufactured at low cost.
  • Still another object of the present invention is to provide a circulation type air sterilization device that is capable of discharging and circulating a high-velocity air flow to the outside and has low operating noise.
  • a circulating air sterilization device includes a sterilization chamber, an annular light source provided in the sterilization chamber and emitting UV-C ultraviolet rays, and an annular light source provided protruding from the inner wall surface of the sterilization chamber, and an annular light source provided in the sterilization chamber and provided with an annular light source that emits UV-C ultraviolet rays.
  • the sterilization chamber is provided with a protrusion that branches the airflow into a first airflow flowing out of the sterilization chamber and a second airflow flowing into the sterilization chamber.
  • the first air flow and the second air flow are configured to be directly irradiated with UV-C ultraviolet light emitted from the annular light source.
  • the flow of air flowing in from the outside of the sterilization chamber is divided into a first air flow flowing out to the outside of the sterilization chamber and a second air flow toward the inside of the sterilization chamber by a branch part provided protruding from the inner wall surface of the sterilization chamber. It is divided into two streams. UV-C ultraviolet radiation emitted from the annular light source is directly irradiated onto the first air stream and the second air stream. In this way, a branching part for branching the airflow is provided on the inner wall surface of the sterilization chamber, and no obstruction is provided in the space between the annular light source and the first airflow and the second airflow.
  • the UV-C radiation emitted from the annular light source is not blocked by branches and obstructions, it is directly and reliably transmitted to the first air stream and the second air stream flowing inside the sterilization chamber. irradiated. Furthermore, since there are no obstacles such as baffle plates, there is no problem of unsterilized viruses adhering to obstacles. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section in the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
  • At least a portion of the second airflow is configured to intersect and circulate around the annular light source. Because the airflow is configured to intersect and orbit around the annular light source, the intense UV-C radiation near the annular light source is irradiated into the airflow for a longer period of time. As a result, the effect of sterilizing and inactivating bacteria and viruses becomes stronger.
  • the flow velocity of the second air flow is slower than the flow velocity of the first air flow. Since a portion of the first air flow is discharged to the outside at that speed, by increasing the speed, the circulation effect in the room in which the air sterilization device is installed is improved.
  • the second air flow moving in the direction of the annular light source has a lower speed than the first air flow, so that it is irradiated with UV-C ultraviolet light for a long time, thereby improving the sterilization effect.
  • the circulating air sterilization device includes a sterilization chamber, an annular light source that is provided in the sterilization chamber and emits UV-C ultraviolet light including light in a wavelength band of 254 nm, and an air inlet.
  • a blower that forms a flow of air that flows into the sterilization chamber and flows out to the outside of the sterilization chamber through an air outlet;
  • a protrusion that branches the flow of incoming air into a first air flow that flows out to the outside of the sterilization chamber through an air outlet and a second air flow that heads inside the sterilization chamber, and an inner wall surface of the sterilization chamber.
  • a direction changing part is provided to protrude from the annular light source and changes the direction of the second air flow branched by the protruding part to the direction of the annular light source.
  • the first air flow and the second air flow are configured to be directly irradiated with UV-C ultraviolet light emitted from the annular light source.
  • the flow of air flowing in from the outside of the sterilization chamber through the air inlet is controlled by a branch part provided protruding from the inner wall surface of the sterilization chamber, and the first air flows out to the outside of the sterilization chamber through the air outlet.
  • air flow and a second air flow directed into the interior of the sterilization chamber.
  • the direction of the branched second air flow is changed in the direction of the annular light source by a direction changing part provided to protrude from the inner wall surface of the sterilization chamber.
  • the UV-C ultraviolet light emitted from the annular light source is directly irradiated onto the first air flow and the second air flow.
  • a branching part and a direction changing part for branching and changing the direction of the airflow are provided on the inner wall surface of the sterilization chamber, and the space between the annular light source and the first airflow and the second airflow is Since there are no obstacles provided in the sterilization chamber, the UV-C ultraviolet radiation emitted from the annular light source is not blocked by the branching and redirecting parts and the obstructions, and is directed to the first air stream and the first air stream flowing through the sterilization chamber. 2 airflow directly and reliably. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section and a direction changing section within the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
  • At least a portion of the second air flow is configured to intersect with and circulate around the annular light source. Because the airflow is configured to intersect and orbit around the annular light source, the intense UV-C radiation near the annular light source is irradiated into the airflow for a longer period of time. As a result, the effect of sterilizing and inactivating bacteria and viruses becomes stronger.
  • the flow velocity of the second air flow is slower than the flow velocity of the first air flow. Since a portion of the first air flow is discharged to the outside at that speed, by increasing the speed, the circulation effect in the room in which the air sterilization device is installed is improved.
  • the second air flow moving in the direction of the annular light source has a lower speed than the first air flow, so that it is irradiated with UV-C ultraviolet light for a long time, thereby improving the sterilization effect.
  • the air inlet is provided near the inner wall surface at a position upstream of the protrusion. As a result, the air flowing into the sterilization chamber from the air inlet travels along the inner wall surface, reaches the protrusion, and efficiently branches.
  • the protruding portion includes a first inclined surface that projects from the inner wall surface toward the top side, and a second inclined surface that recedes from the top side toward the inner wall surface.
  • the air flowing from the outside of the sterilization chamber through the air inlet flows at high speed along the first slope, curves sharply near the top, and a part of the air flows along the second slope.
  • the airflow is divided into a first airflow that is discharged to the outside at high speed through the air outlet and a second airflow that is rapidly decelerated and moves toward the interior of the sterilization chamber at a lower speed.
  • the protrusion is placed at a position facing the annular light source.
  • the first air flow and the second air flow are controlled in the optimum direction by performing the above-described sudden direction change and flow velocity change and branching at a position facing the annular light source.
  • the air outlet is provided near the inner wall surface at a downstream position of the protruding part and the direction changing part. Thereby, the air flow passes along the inner wall surface via the protrusion and the direction changing part and flows out from the air outlet to the outside at high speed.
  • the direction conversion unit is configured to change the direction of the second air flow toward the inner wall surface of the sterilization chamber.
  • the second air streams are redirected in the direction of the inner walls of the sterilization chamber, so that they flow along the inner walls in the vicinity of the annular light source.
  • the direction changing part includes an inclined surface that slopes smoothly from the top side toward the inner wall surface, and a guide surface that goes from the top side toward the air outlet.
  • the annular light source includes an annular arc tube and that the annular light source is installed so that a plane containing the tube axis of the arc tube is parallel to the inner wall surface. Since the airflow flowing along the inner wall surface flows near the optical axis of the annular light source, it is irradiated with stronger UV-C ultraviolet rays for a longer period of time, and the sterilization effect and sterilization efficiency become higher.
  • At least a part of the inner wall surface of the sterilization chamber is constituted by a mirror-like reflective surface that reflects the UV-C ultraviolet rays emitted from the annular light source.
  • a mirror-like reflective surface that reflects the UV-C ultraviolet rays emitted from the annular light source.
  • shielding members are provided on the outside of the air inlet and the outside of the air outlet of the sterilization chamber to block UV-C ultraviolet rays emitted from the annular light source and prevent them from being radiated to the outside. . Ultraviolet rays emitted to the outside of the sterilization chamber through the air inlet and air outlet are reliably blocked by these shielding members.
  • an air filter is provided outside the air inlet to filter air flowing in from the outside. As a result, air free of dirt and dust is drawn into the sterilization chamber.
  • the sterilization chamber is sealed except for the air inlet and air outlet. Since the sterilization chamber is sealed except for the air inlet and air outlet, the air sucked into the sterilization chamber is reliably sterilized before being discharged to the outside.
  • the light source is a rectangular annular electrodeless discharge lamp.
  • An electrodeless discharge lamp has a uniform radiation distribution in the cross-sectional direction of the tube axis, and since its shape is rectangular and annular, UV-C ultraviolet rays are emitted in all directions in an overlapping manner.
  • a deodorizing filter having an air deodorizing function is provided upstream of the air outlet of the sterilization chamber.
  • the UV-C ultraviolet radiation emitted from the annular light source is directly transmitted to the first air flow and the second air flow flowing inside the sterilization chamber without being blocked by branches and obstacles. Irradiation is ensured. Furthermore, since there are no obstacles such as baffle plates, there is no problem of unsterilized viruses adhering to obstacles. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section and a direction changing section within the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
  • FIG. 1 is a perspective view of the circulating air sterilizer according to an embodiment of the present invention, as seen from the side with the side cover removed.
  • FIG. 2 is a perspective view showing the circulating air sterilizer of the embodiment shown in FIG. 1 when viewed from the side with the side cover removed and at a different angle from that shown in FIG. 1;
  • FIG. 2 is a diagram showing specific dimensions of the sterilization chamber and its exterior of the circulating air sterilization apparatus of the embodiment of FIG. 1;
  • 2 is a perspective view showing an example of an annular light source in the annular air sterilizer of the embodiment shown in FIG. 1.
  • FIG. FIG. 2 is a perspective view illustrating the flow of air when the circulating air sterilizer of the embodiment of FIG. 1 is viewed from the side with the side cover removed.
  • FIG. 7 is a perspective view of a circulating air sterilizer according to another embodiment of the present invention, as viewed from the side with the side cover removed.
  • FIG. 1 shows a circulating air sterilizer according to an embodiment of the present invention as seen from the side with the side cover removed
  • Fig. 2 shows a circulating air sterilizer according to the present embodiment with the side cover removed and the side cover removed. It is shown as seen from the side at a different angle from that in FIG. 1, and FIG. 3 shows specific dimensions of the sterilization chamber and the outside of the circulating air sterilization apparatus of this embodiment.
  • the circulating air sterilizer of this embodiment includes a metal (for example, stainless steel) housing 10 having a rectangular tube shape (a square tube shape in this embodiment); An air intake plate including a plurality of casters 11 (four in this embodiment) provided on the outer bottom surface and an intake port cover 10a provided on the bottom surface of the casing 10 and having a large number of through holes formed, for example, by punching, on the entire surface. an air filter 13 provided inside the housing 10 for filtering air taken in through the intake port 12; A blower fan 14 (corresponding to the blower of the present invention) that energizes air to form an airflow, a sterilization chamber 15 that sterilizes the airflow sent by the blower fan 14, and air sent out from the sterilization chamber 15.
  • a metal for example, stainless steel
  • An air intake plate including a plurality of casters 11 (four in this embodiment) provided on the outer bottom surface and an intake port cover 10a provided on the bottom surface of the casing 10 and having a large number of through holes formed, for example, by punching,
  • the circulating air sterilizer is equipped with an exhaust port 16 (see FIG. 3) for discharging the air to the outside of the circulating air sterilizer.
  • An exhaust port cover 10b is provided on the upper surface of the casing 10, and an exhaust port cover 10b is provided with a large number of through holes formed, for example, by punching, on the entire surface, and an exhaust port 16 is provided below the exhaust port cover 10b.
  • the external dimensions of the casing 10 are, by way of example only, about 280 mm (in the horizontal direction) x about 210 mm (in the depth direction) x about 710 mm (in the height direction).
  • the "lateral direction" refers to the front-back direction in FIGS.
  • the left side is the front side of the circulating air sterilization apparatus of this embodiment.
  • an annular light source 17 that emits UV-C ultraviolet light including light in the wavelength band of 254 nm, and a flow of air that has flowed in from the outside of the sterilization chamber 15 through an air inlet 15a is provided inside the sterilization chamber 15.
  • a protrusion 18 that branches into a first air flow that flows out through the air outlet 15b to the outside and a second air flow that flows toward the inside of the sterilization chamber 15; and the second air that is branched by the protrusion 18.
  • a direction changing section 19 that changes the direction of the flow toward the annular light source 17 is provided.
  • the protruding part 18 and the direction changing part 19 are provided to protrude from the inner wall surface 15c of the sterilization chamber 15.
  • the protruding portion 18 and the direction changing portion 19 communicate with the inner wall surface 15c so as to constitute a part of the inner wall surface 15c, and the space within the sterilization chamber 15 is filled with light emitted from the annular light source 17.
  • No obstacles are provided to block UV-C ultraviolet rays. Therefore, the UV-C ultraviolet rays emitted from the annular light source 17 directly and reliably irradiate the first air flow and the second air flow flowing within the sterilization chamber 15. As a result, the sterilizing effect and sterilizing efficiency become very high. Furthermore, since there are no obstacles such as air guide plates in the space within the sterilization chamber 15, there is no problem of unsterilized viruses adhering to the obstacles. Furthermore, since the airflow is controlled by simply providing the branching section 18 and the direction changing section 19 in the sterilization chamber 15, the device configuration is simple and can be manufactured at low cost.
  • FIG. 4 shows an example of the annular light source 17 in the annular air sterilizer of this embodiment.
  • a rectangular annular square electrodeless discharge lamp is used as the annular light source 17.
  • This electrodeless discharge lamp (annular light source) 17 consists of a rectangular annular quartz glass tube 17a filled with a rare gas and a small amount of mercury in an amalgam state, and a ferrite wound around two places in the middle of the quartz glass tube 17a.
  • a core type excitation winding 17b is provided.
  • the diameter of the quartz glass tube 17a is approximately 45 to 60 mm.
  • UV-C ultraviolet light whose main component is light in the 254 nm wavelength band is emitted.
  • the annular light source 17 is an electrodeless discharge lamp, radiation is emitted with a uniform radiation distribution in the cross-sectional direction of the tube axis of the quartz glass tube 17a.
  • UV-C ultraviolet rays are emitted in all directions, overlapping with each other.
  • the annular light source 17 includes an annular arc tube (quartz glass tube 17a), and is installed so that the plane containing the tube axis of the arc tube is parallel to the inner wall surface 15 of the sterilization chamber 15. ing.
  • the airflow flowing along the inner wall surface 15c flows near the optical axis of the annular light source 17, so that the airflow is irradiated with stronger UV-C ultraviolet rays for a long time, increasing the sterilization effect and the sterilization effect. Higher efficiency.
  • the annular light source 17 used in this embodiment is a 120W square-type electrodeless discharge lamp (SVI-UVC-254) manufactured by Nanatsubaki Co., Ltd., but the annular light source of the present invention is limited to this. It is not something that will be done.
  • a square type electrodeless discharge lamp with other output power for example, a 250W square type electrodeless discharge lamp may also be used.
  • the annular light source is not limited to the square type, and other shapes of annular light sources may be used.
  • an electrodeless discharge lamp having a round shape (circle shape), an elliptical shape, a polygonal shape, a star shape, or other tube shapes may be used.
  • the protrusion 18 is provided to protrude rearward (leftward in FIGS. 1 to 3 and 5) from the inner wall surface 15c of the sterilization chamber 15.
  • This protrusion 18 has a first inclined surface 18b that protrudes linearly or smoothly from the inner wall surface 15c toward the top side 18a of the protrusion 18, and a first inclined surface 18b that protrudes linearly or smoothly from the top side 18a toward the inner wall surface 15c.
  • a second inclined surface 18c that smoothly retreats is provided.
  • the protrusion 18 has a first inclined surface 18b linearly inclined at 35 degrees with respect to the inner wall surface 15c, and a second inclined surface 18c linearly inclined at 35 degrees with respect to the inner wall surface 15c.
  • the air flowing from the outside of the sterilization chamber 15 through the air inlet 15a flows at high speed along the first inclined surface 18b, curves sharply near the top side 18a, and a part of the air flows along the second inclined surface 18b.
  • the protrusion 18 is arranged at a position facing the annular light source 17.
  • the air is branched at a position facing the annular light source 17, it is possible to control the first air flow and the second air flow in the optimum direction.
  • the inclination angle of the first inclined surface 18b, the inclination angle of the second inclined surface 18c, and the apex angle are merely examples, and are not limited to these. and the flow of the second airflow are appropriately selected and determined so as to be optimal.
  • the air inflow port 15a of the sterilization chamber 15 has a rectangular shape in an upstream position of the protrusion 18, with one side of the inner wall surface 15c provided with the protrusion 18.
  • the air inlet 15a near the inner wall surface 15c, the air flowing into the sterilization chamber 15 from the air inlet 15a travels along the inner wall surface 15c, reaches the protrusion 18, and branches efficiently.
  • the dimensions of this air inlet 15a are, by way of example only, about 48 mm (in the depth direction) x about 278 mm (in the lateral direction).
  • the direction changing section 19 is provided to protrude downward from the inner wall surface 15c of the sterilization chamber 15.
  • This direction changing part 19 has an inclined surface 19b that slopes linearly or smoothly from the top side 19a toward the inner wall surface 15c, and a guide that slopes linearly from the top side 19a toward the air outlet 15b of the sterilization chamber 15. and a surface 19c.
  • the direction changing part 19 has an inclined surface 19b that slopes linearly or smoothly from the top side 19a toward the inner wall surface 15c, and a slope surface 19b that extends from the top side 19a toward the air outlet 15b of the sterilization chamber 15. It has a right triangular cross-sectional shape consisting of a guide surface 19c.
  • the direction changing unit 19 changes the direction of the second airflow toward the inner wall surface 15c of the sterilization chamber 15, these airflows flow near the annular light source 17 along the inner wall surface 15c.
  • stronger UV-C ultraviolet rays are irradiated for a longer period of time, resulting in higher sterilization effects and sterilization efficiency.
  • the air outlet 15b of the sterilization chamber 15 has an inner wall surface 15c provided with the protrusion 18 at a downstream position of the protrusion 18 and the direction conversion part 19 as one side, and a guide surface 19c of the direction conversion part 19 as the opposite side. It has a rectangular shape.
  • the airflow advances along the inner wall surface 15c via the protruding portion 18 and the direction changing portion 19, and flows out from the air outlet 15b to the outside at high speed. do.
  • the dimensions of this air outlet 15b are, by way of example only, about 48 mm (in the depth direction) x about 278 mm (in the lateral direction).
  • the sterilization chamber 15 is sealed except for the air inlet 15a and the air outlet 15b. Due to the airtight sealing, the air sucked into the sterilization chamber 15 is reliably sterilized and discharged without leaking to the outside. Further, the sterilization chamber 15 has an inner wall surface 15a formed of a mirror-like (mirror-finished) stainless steel plate. Accordingly, in addition to the UV-C ultraviolet rays emitted from the annular light source 17, the UV-C ultraviolet rays reflected from the inner wall surface 15a are present, so that the sterilization effect and sterilization efficiency in the sterilization chamber are further increased.
  • the sterilization chamber 15 is formed to be a substantially rectangular parallelepiped-shaped space except for the protrusion 18 and the direction changing section 19. The internal dimensions of the sterilization chamber 15 are, by way of example only, about 278 mm (in the horizontal direction) x about 220 mm (in the depth direction) x about 319 mm (in the height direction).
  • the air filter 13 is for filtering air flowing in from the outside, and is removably provided between the air intake port 12 and the air filter 13. By providing the air filter 13, air that does not contain dust or the like is sucked into the sterilization chamber 15.
  • the outside of the air inlet 15a of the sterilization chamber 15 is provided to block UV-C ultraviolet light emitted from the annular light source 17 and prevent it from being emitted to the outside, and to control the direction of the air flow sent from the blower fan 14.
  • a first wind direction control board 20 (corresponding to the shielding member of the present invention) and a second wind direction control board 21 (corresponding to the shielding member of the present invention) are provided for controlling the wind direction.
  • the first wind direction control plate 20 and the second wind direction control plate 21 are made of stainless steel plates with roughened surfaces to prevent specular reflection, and are arranged alternately so that their surfaces face different directions. There is.
  • first wind direction control plate 20 and second wind direction control plate 21 the air flow taken in from the outside through the intake port 12, air filter 13, and blower fan 14 undergoes 90 degree direction changes three times.
  • the air flows into the sterilization chamber 15 from the air inlet 15a.
  • the ultraviolet rays emitted to the outside of the sterilization chamber 17 through the air inlet 15a are ensured. is blocked by.
  • a third wind direction control plate 22 (corresponding to the shielding member of the present invention) and a fourth wind direction control plate 23 (corresponding to the shielding member of the present invention) are provided for controlling the direction of the flow.
  • These third wind direction control plates 22 and fourth wind direction control plates 23 are made of stainless steel plates with a roughened surface to prevent specular reflection, and are arranged alternately in a comb-like shape.
  • third wind direction control plate 22 and fourth wind direction control plate 23 allow the airflow discharged through the air outlet 15b to change direction by 90 degrees four times and flow from the exhaust outlet 16 to the outside of the device at high speed. is discharged. Furthermore, by providing the third wind direction control plate 22 and the fourth wind direction control plate 23 which are treated to prevent specular reflection, ultraviolet rays leaking to the outside of the sterilization chamber 15 through the air outlet 15b can be ensured. Be cut off.
  • FIG. 5 shows the air flow in the circulating air sterilizer of this embodiment, and the air flow will be explained below using the same figure.
  • the air flow B flowing into the sterilization chamber 15 flows along the inner wall surface 15c and comes into contact with the first inclined surface 18b of the protrusion 18.
  • the air flow B flows at high speed along the first inclined surface 18b, curves sharply near the top edge 18a, and is branched, with about 35% of the flow becoming the high-speed first air flow C.
  • This first air flow C flows along the second inclined surface 18c, flows along the inner wall surface 15c, advances along the guide surface 19c of the direction changing part 19 and the inner wall surface 15c, and passes through the air outlet 15b. is discharged to the outside of the sterilization chamber 15 at high speed.
  • the air flow B is rapidly decelerated near the top side 18a of the protrusion 18, and about 65% of the air flow B is a low-velocity (for example, a flow velocity of 3 m/sec or less) that moves toward the inside of the sterilization chamber 15. It is branched off into a second air stream D.
  • This second air flow D comes into contact with the slope 19b of the direction changing portion 19, changes direction, flows along the slope 19b, and becomes an air flow E flowing along the inner wall surface 15c.
  • a portion of this airflow E becomes an airflow F that circulates around the annular light source 17 and an airflow G that passes inside the annular light source 17 so as to intersect with it.
  • the airflow circulating around the annular light source 17 and intersecting with the annular light source 17 finally merges with the first airflow C and is discharged to the outside of the sterilization chamber 15 .
  • the high-speed air flow H discharged to the outside of the sterilization chamber 15 at high speed through the air outlet 15b has its direction changed by the third wind direction control plate 22 and the fourth wind direction control plate 23. , is discharged to the outside of the circulating air sterilizer as a high-velocity air flow I through the exhaust port 16.
  • a part of the second air flow having a slow flow velocity is caused by the air flow F that circulates around the annular light source 17 so as to lick the lamp tube wall, and between the annular light source 17 and the lamp tube wall.
  • the air flow F that circulates around the annular light source 17 so as to lick the lamp tube wall, and between the annular light source 17 and the lamp tube wall.
  • the air flow is controlled by simply providing the branching section 18 and the direction changing section 19 in the sterilization chamber 15, which simplifies the device configuration and allows for inexpensive manufacturing. I can do it. Furthermore, by controlling the air flow using such branching portions 18 and direction changing portions 19, wind noise is reduced, so it is possible to reduce the operating noise of the device. Further, the first air flow C is high-speed and is discharged from the sterilization chamber 15 to the outside through the air outlet 15b, and further to the outside of the circulating air sterilizer through the discharge port 16 as the air flow I. Therefore, the circulation effect in the room where this circulating air sterilization device is installed is improved.
  • the position, shape and dimensions of the outlet 15b, the relative position and relative dimensions of the annular light source 17, the protrusion 18 and the direction changing part 19, etc. are not limited to the example of the embodiment described above, and various aspects can be applied. It goes without saying that it is possible.
  • the virus inactivation effect of the circulating air sterilizer of the present invention was confirmed through experiments.
  • a test was conducted in accordance with the air purifier airborne virus inactivation test method (JEM1467) specified by the Japan Electrical Manufacturers Association. This test was conducted by a specialized testing organization, and the circulating air sterilizer was installed in a closed space sprayed with influenza A virus (H3N2 type) as the test virus. The virus titer during operation was quantitatively measured. The size of the test chamber was 23 m3 . The test was conducted according to the testing laboratory's standard procedures. The average temperature inside the test chamber was 21.0°C, and the average humidity was 73%.
  • Virus infectivity was calculated from the test measurement results using the TCID 50 method. The calculation results are shown in Table 1.
  • the reduction value of influenza A virus is 98.55% after 20 minutes of spraying, and after 40 minutes of spraying, the reduction value is 99%, which is close to the detection limit. .68%. Since the size of the test chamber is 23 m 3 , it can be seen that the circulating air sterilizer of the present invention has a very high effect of inactivating influenza viruses in single-person rooms (6 tatami mats) in general nursing care facilities. Since the UV-C resistance of the new coronavirus is relatively lower than that of influenza A virus, according to the circulating air sterilizer of the present invention, the reduction value of the new coronavirus is 99.9 after 20 minutes of spraying. % or more.
  • FIG. 6 shows a circulating air sterilizer according to another embodiment of the present invention as viewed from the side with the side cover removed.
  • the circulating air sterilizer of this embodiment has a deodorizing filter 24 added to the sterilizing chamber 17 of the circulating air sterilizing device of the embodiment shown in FIGS. 1 to 5. Except for the above, the configuration and operation and effects of this embodiment are completely the same as those of the embodiment shown in FIGS. 1 to 5. Therefore, in this embodiment, a detailed explanation of the same parts is omitted, and the same reference numerals are used for the same components.
  • a deodorizing filter 24 is provided upstream of the air outlet 15b of the sterilization chamber 15.
  • the deodorizing filter 24 is installed between the top side 19a of the direction changing part 19 and the second inclined surface 18c of the protruding part 18. The airflow is configured to pass through this deodorizing filter 24.
  • the deodorizing filter 24 is configured to be irradiated with UV-C ultraviolet light from the annular light source 17.
  • the deodorizing filter 24 is a rectangular plate-shaped filter having an activated carbon honeycomb structure, and its porous structure absorbs odor-causing substances from the air passing through it. The absorbed odor-causing substances are sterilized by the irradiated UV-C ultraviolet light.
  • an activated carbon honeycomb coated with a photocatalyst such as TiO 2 may be used. If a photocatalyst is coated, the photocatalyst will be activated by UV-C ultraviolet rays, and the decomposition effect of odor-causing substances will be further improved.
  • a rectangular plate-shaped filter having a ceramic honeycomb structure may be used.
  • the honeycomb-structured deodorizing filter 24 By using the honeycomb-structured deodorizing filter 24, an aperture ratio of about 50% can be obtained, and as a result, the high-speed first airflow can pass through without significantly reducing the flow velocity. . Note that if the axial direction of the holes in the honeycomb structure is configured to be parallel to the direction of the air flow, the resistance to the air flow will be reduced, and the decrease in the flow velocity will be reduced. Further, by adjusting the aperture ratio of the honeycomb structure, it is possible to further reduce the flow velocity of the low-speed second air flow and further enhance the sterilization effect or inactivation effect.
  • the circulating air sterilizer of this embodiment has the same effects as those of the embodiment shown in FIGS. 1 to 5, and is further provided with a deodorizing filter 24 to sterilize bacteria and viruses Odor-causing substances remaining in the inactivated air are absorbed and sterilized by UV-C ultraviolet light, and if a photocatalyst is coated, the photocatalyst is activated by UV-C ultraviolet light to eliminate odor-causing substances. It also has the effect of promoting the decomposition of substances.

Abstract

This circulating air sterilization device comprises: a sterilization chamber; an annular light source that is provided in the sterilization chamber and that emits UV-C ultraviolet light including light having a wavelength band of 254 nm; a blower that forms a flow of air flowing into the sterilization chamber via an air inflow port and flowing to outside of the sterilization chamber via an air outflow port; a projection part that is provided so as to project from an inner wall surface of the sterilization chamber and that splits the flow of the air flowing in from outside of the sterilization chamber via the air inflow port into a first airflow flowing to outside of the sterilization chamber via the air outflow port and a second airflow heading toward the inside of the sterilization chamber; and a direction change part that is provided so as to project from an inner wall surface of the sterilization chamber and that changes the direction of the second airflow split by the projection part to the direction of the annular light source. The present invention is configured such that the first airflow and the second airflow are directly irradiated by the UV-C ultraviolet light emitted from the annular light source.

Description

循環型空気殺菌装置Circulating air sterilizer
 本発明は、取込んだ空気をUV-C紫外線により殺菌して放出する循環型の空気殺菌装置に関する。 The present invention relates to a circulation type air sterilization device that sterilizes the air taken in with UV-C ultraviolet rays and then releases the air.
 この種の空気殺菌装置として、特許文献1には、殺菌する空気が流れるダクトの中心部の軸方向に紫外線ランプを設け、紫外線ランプの周りに、平行に配置された複数の導風板の組を2組と、第1組の導風板と第2組の導風板との間を、空気の流出入口となる部分を残して、部分的に仕切る複数の仕切り板とを設けることにより、空気が紫外線ランプの周りを螺旋状に流れて行く構造を有する紫外線照射空気殺菌装置が開示されている。 As this type of air sterilization device, Patent Document 1 discloses that an ultraviolet lamp is provided in the axial direction of the center of a duct through which air to be sterilized flows, and a plurality of baffle plates are arranged in parallel around the ultraviolet lamp. By providing two sets of air guide plates and a plurality of partition plates that partially partition the space between the first set of air guide plates and the second set of air guide plates, leaving a portion that serves as an air inlet and outlet, An ultraviolet irradiation air sterilization device is disclosed having a structure in which air flows in a spiral around an ultraviolet lamp.
特許第6063424号公報Patent No. 6063424
 特許文献1に開示されている空気殺菌装置によれば、紫外線ランプの周りを空気が螺旋状に流れるように制御されるため、流れる空気をある程度殺菌することが可能である。 According to the air sterilization device disclosed in Patent Document 1, since the air is controlled to flow in a spiral around the ultraviolet lamp, it is possible to sterilize the flowing air to some extent.
 しかしながら、この空気殺菌装置は、複数の導風板と複数の仕切り板とを組み合わせて空気の流れを制御しているため、装置構成がかなり複雑となってしまうのみならず、多数の部品を使用しているので装置の製造コスト増大を招いてしまう。また、空気を複数の導風板や複数の仕切り板に当接させて制御しているため、放出される空気流の流速を高めることが難しく、さらに、流速を高めた場合は風切り音が高まって運転音が上昇するという問題が生じてしまう。特にこの種の空気殺菌装置は、ランプから放射される紫外線が、複数の導風板や複数の仕切り板によって遮蔽されてしまうので殺菌効果がその分低減し、殺菌の効率が悪いという大きな問題点を有している。さらにまた、導風板の紫外線の当たっていない部分に、殺菌されないウィルスが付着したままとなってしまう問題点をも有している。 However, this air sterilization device uses a combination of multiple baffle plates and multiple partition plates to control the air flow, which not only makes the device configuration quite complex, but also requires a large number of parts. This results in an increase in the manufacturing cost of the device. In addition, because the air is controlled by contacting multiple baffle plates and multiple partition plates, it is difficult to increase the flow velocity of the emitted air flow, and furthermore, increasing the flow velocity increases wind noise. A problem arises in that the operating noise increases. In particular, this type of air sterilization device has a major problem in that the ultraviolet rays emitted from the lamp are blocked by multiple air guide plates and multiple partition plates, which reduces the sterilization effect and makes the sterilization efficiency poor. have. Furthermore, there is also the problem that unsterilized viruses remain attached to portions of the baffle plate that are not exposed to ultraviolet rays.
 従って本発明の目的は、殺菌効果及び殺菌効率が非常に高い循環型空気殺菌装置を提供することにある。 Therefore, an object of the present invention is to provide a circulating air sterilizer with extremely high sterilization effect and sterilization efficiency.
 本発明の他の目的は、装置構成が簡単であり、安価に製造することができる循環型空気殺菌装置を提供することにある。 Another object of the present invention is to provide a circulating air sterilization device that has a simple device configuration and can be manufactured at low cost.
 本発明のさらに他の目的は、流速の高い空気流を外部へ放出して循環させることが可能であり、運転音も低い循環型空気殺菌装置を提供することにある。 Still another object of the present invention is to provide a circulation type air sterilization device that is capable of discharging and circulating a high-velocity air flow to the outside and has low operating noise.
 本発明によれば、循環型空気殺菌装置は、殺菌室と、殺菌室内に設けられUV-C紫外線を放射する環状光源と、殺菌室の内壁面から突出して設けられ、殺菌室の外部から流入する空気の流れを殺菌室の外部へ流出する第1の空気流と殺菌室の内部へ向かう第2の空気流とに分岐する突出部とを備えている。環状光源から放射されるUV-C紫外線が第1の空気流及び第2の空気流に直接照射されるように構成されている。 According to the present invention, a circulating air sterilization device includes a sterilization chamber, an annular light source provided in the sterilization chamber and emitting UV-C ultraviolet rays, and an annular light source provided protruding from the inner wall surface of the sterilization chamber, and an annular light source provided in the sterilization chamber and provided with an annular light source that emits UV-C ultraviolet rays. The sterilization chamber is provided with a protrusion that branches the airflow into a first airflow flowing out of the sterilization chamber and a second airflow flowing into the sterilization chamber. The first air flow and the second air flow are configured to be directly irradiated with UV-C ultraviolet light emitted from the annular light source.
 殺菌室の外部から流入した空気の流れは、殺菌室の内壁面から突出して設けられた分岐部によって、殺菌室の外部へ流出する第1の空気流と殺菌室の内部へ向かう第2の空気流とに分岐される。環状光源から放射されるUV-C紫外線は第1の空気流及び第2の空気流に直接照射される。このように、空気流の分岐を行う分岐部が殺菌室の内壁面に設けられており、環状光源と第1の空気流及び第2の空気流との間の空間には障害物が設けられていないので、環状光源から放射されるUV-C紫外線は、分岐部及び障害物によって遮蔽されることなく、殺菌室内を流れる第1の空気流及び第2の空気流に直接的にかつ確実に照射される。また、導風板等の障害物が存在しないため、障害物に殺菌されないウィルスが付着する問題は発生しない。その結果、殺菌効果及び殺菌効率が非常に高くなる。殺菌室内に分岐部を設けるのみで、空気流の制御を行っているため、装置構成が簡単となり、安価に製造することができる。また、流速の高い空気流を外部へ放出して循環させることが可能であり、運転音を低くすることが可能である。 The flow of air flowing in from the outside of the sterilization chamber is divided into a first air flow flowing out to the outside of the sterilization chamber and a second air flow toward the inside of the sterilization chamber by a branch part provided protruding from the inner wall surface of the sterilization chamber. It is divided into two streams. UV-C ultraviolet radiation emitted from the annular light source is directly irradiated onto the first air stream and the second air stream. In this way, a branching part for branching the airflow is provided on the inner wall surface of the sterilization chamber, and no obstruction is provided in the space between the annular light source and the first airflow and the second airflow. Since the UV-C radiation emitted from the annular light source is not blocked by branches and obstructions, it is directly and reliably transmitted to the first air stream and the second air stream flowing inside the sterilization chamber. irradiated. Furthermore, since there are no obstacles such as baffle plates, there is no problem of unsterilized viruses adhering to obstacles. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section in the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
 第2の空気流の少なくとも一部が、環状光源と交差してこの環状光源の回りを周回するように構成されていることが好ましい。空気流が環状光源と交差すると共にその回りを周回するように構成されているので、環状光源近傍の強力なUV-C紫外線が、より長時間にわたって空気流に照射される。その結果、細菌やウィルスの滅菌効果及び不活性化効果がより強力となる。 Preferably, at least a portion of the second airflow is configured to intersect and circulate around the annular light source. Because the airflow is configured to intersect and orbit around the annular light source, the intense UV-C radiation near the annular light source is irradiated into the airflow for a longer period of time. As a result, the effect of sterilizing and inactivating bacteria and viruses becomes stronger.
 第2の空気流の流速が第1の空気流の流速より遅い速度となるように構成されていることも好ましい。第1の空気流はその一部がその速度で外部へ排出されるので、速度を高速とすることにより空気殺菌装置が設置された室内の循環効果が向上する。これに対して、環状光源の方向に進む第2の空気流は、第1の空気流より遅い低速とすることにより長時間にわたってUV-C紫外線に照射されるので殺菌効果が向上する。 It is also preferable that the flow velocity of the second air flow is slower than the flow velocity of the first air flow. Since a portion of the first air flow is discharged to the outside at that speed, by increasing the speed, the circulation effect in the room in which the air sterilization device is installed is improved. On the other hand, the second air flow moving in the direction of the annular light source has a lower speed than the first air flow, so that it is irradiated with UV-C ultraviolet light for a long time, thereby improving the sterilization effect.
 また、本発明によれば、循環型空気殺菌装置は、殺菌室と、この殺菌室内に設けられ、254nmの波長帯の光を含むUV-C紫外線を放射する環状光源と、空気流入口を介して殺菌室内に流入し空気流出口を介して殺菌室の外部へ流出する空気の流れを形成する送風機と、殺菌室の内壁面から突出して設けられ、空気流入口を介して殺菌室の外部から流入した空気の流れを、空気流出口を介して殺菌室の外部へ流出する第1の空気流と殺菌室の内部へ向かう第2の空気流とに分岐する突出部と、殺菌室の内壁面から突出して設けられ、突出部によって分岐された第2の空気流の方向を環状光源の方向に方向変換する方向変換部とを備えている。環状光源から放射されるUV-C紫外線が第1の空気流及び第2の空気流に直接照射されるように構成されている。 Further, according to the present invention, the circulating air sterilization device includes a sterilization chamber, an annular light source that is provided in the sterilization chamber and emits UV-C ultraviolet light including light in a wavelength band of 254 nm, and an air inlet. a blower that forms a flow of air that flows into the sterilization chamber and flows out to the outside of the sterilization chamber through an air outlet; A protrusion that branches the flow of incoming air into a first air flow that flows out to the outside of the sterilization chamber through an air outlet and a second air flow that heads inside the sterilization chamber, and an inner wall surface of the sterilization chamber. A direction changing part is provided to protrude from the annular light source and changes the direction of the second air flow branched by the protruding part to the direction of the annular light source. The first air flow and the second air flow are configured to be directly irradiated with UV-C ultraviolet light emitted from the annular light source.
 殺菌室の外部から空気流入口を介して流入した空気の流れは、殺菌室の内壁面から突出して設けられた分岐部によって、殺菌室の外部へ空気流出口を介して流出する第1の空気流と殺菌室の内部へ向かう第2の空気流とに分岐される。分岐された第2の空気流の方向は、殺菌室の内壁面から突出して設けられた方向変換部によって環状光源の方向に方向変換される。また、環状光源から放射されるUV-C紫外線は第1の空気流及び第2の空気流に直接照射される。このように、空気流の分岐及び方向変換を行う分岐部及び方向変換部が殺菌室の内壁面に設けられており、環状光源と第1の空気流及び第2の空気流との間の空間には障害物が設けられていないので、環状光源から放射されるUV-C紫外線は、分岐部及び方向変換部並びに障害物によって遮蔽されることなく、殺菌室内を流れる第1の空気流及び第2の空気流に直接的にかつ確実に照射される。その結果、殺菌効果及び殺菌効率が非常に高くなる。殺菌室内に分岐部及び方向変換部を設けるのみで、空気流の制御を行っているため、装置構成が簡単となり、安価に製造することができる。また、流速の高い空気流を外部へ放出して循環させることが可能であり、運転音を低くすることが可能である。 The flow of air flowing in from the outside of the sterilization chamber through the air inlet is controlled by a branch part provided protruding from the inner wall surface of the sterilization chamber, and the first air flows out to the outside of the sterilization chamber through the air outlet. air flow and a second air flow directed into the interior of the sterilization chamber. The direction of the branched second air flow is changed in the direction of the annular light source by a direction changing part provided to protrude from the inner wall surface of the sterilization chamber. Further, the UV-C ultraviolet light emitted from the annular light source is directly irradiated onto the first air flow and the second air flow. In this way, a branching part and a direction changing part for branching and changing the direction of the airflow are provided on the inner wall surface of the sterilization chamber, and the space between the annular light source and the first airflow and the second airflow is Since there are no obstacles provided in the sterilization chamber, the UV-C ultraviolet radiation emitted from the annular light source is not blocked by the branching and redirecting parts and the obstructions, and is directed to the first air stream and the first air stream flowing through the sterilization chamber. 2 airflow directly and reliably. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section and a direction changing section within the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
 第2の空気流の少なくとも一部が、環状光源と交差して環状光源の回りを周回するように構成されていることが好ましい。空気流が環状光源と交差すると共にその回りを周回するように構成されているので、環状光源近傍の強力なUV-C紫外線が、より長時間にわたって空気流に照射される。その結果、細菌やウィルスの滅菌効果及び不活性化効果がより強力となる。 Preferably, at least a portion of the second air flow is configured to intersect with and circulate around the annular light source. Because the airflow is configured to intersect and orbit around the annular light source, the intense UV-C radiation near the annular light source is irradiated into the airflow for a longer period of time. As a result, the effect of sterilizing and inactivating bacteria and viruses becomes stronger.
 第2の空気流の流速が第1の空気流の流速より遅い速度となるように構成されていることも好ましい。第1の空気流はその一部がその速度で外部へ排出されるので、速度を高速とすることにより空気殺菌装置が設置された室内の循環効果が向上する。これに対して、環状光源の方向に進む第2の空気流は、第1の空気流より遅い低速とすることにより長時間にわたってUV-C紫外線に照射されるので殺菌効果が向上する。 It is also preferable that the flow velocity of the second air flow is slower than the flow velocity of the first air flow. Since a portion of the first air flow is discharged to the outside at that speed, by increasing the speed, the circulation effect in the room in which the air sterilization device is installed is improved. On the other hand, the second air flow moving in the direction of the annular light source has a lower speed than the first air flow, so that it is irradiated with UV-C ultraviolet light for a long time, thereby improving the sterilization effect.
 空気流入口が、突出部の上流位置における内壁面近傍に設けられていることも好ましい。これにより、空気流入口から殺菌室に流入した空気は内壁面に沿って進み、突出部に達して効率よく分岐する。 It is also preferable that the air inlet is provided near the inner wall surface at a position upstream of the protrusion. As a result, the air flowing into the sterilization chamber from the air inlet travels along the inner wall surface, reaches the protrusion, and efficiently branches.
 突出部が、内壁面から頂辺に向かって突出する第1の傾斜面と、頂辺から内壁面に向かって後退する第2の傾斜面とを備えていることも好ましい。殺菌室の外部から空気流入口を介して流入した空気の流れは、第1の傾斜面に沿って高速で流れ、頂辺近傍において急激に曲がり、その一部が第2の傾斜面に沿って流れ、空気流出口を介して高速で外部へ排出される第1の空気流と、急激な減速が行われて殺菌室の内部方向へ進む低速の第2の空気流とに分岐される。 It is also preferable that the protruding portion includes a first inclined surface that projects from the inner wall surface toward the top side, and a second inclined surface that recedes from the top side toward the inner wall surface. The air flowing from the outside of the sterilization chamber through the air inlet flows at high speed along the first slope, curves sharply near the top, and a part of the air flows along the second slope. The airflow is divided into a first airflow that is discharged to the outside at high speed through the air outlet and a second airflow that is rapidly decelerated and moves toward the interior of the sterilization chamber at a lower speed.
 この場合、突出部が環状光源に対向する位置に配置されていることがより好ましい。環状光源に対向する位置で上述した急激な方向変化及び流速変化が行われて分岐されることにより、第1の空気流及び第2の空気流が最適の方向に制御される。 In this case, it is more preferable that the protrusion is placed at a position facing the annular light source. The first air flow and the second air flow are controlled in the optimum direction by performing the above-described sudden direction change and flow velocity change and branching at a position facing the annular light source.
 空気流出口が、突出部及び方向変換部の下流位置における内壁面近傍に設けられていることも好ましい。これにより、空気流は突出部及び方向変換部を介して内壁面に沿って進み空気流出口から外部へ高速で流出する。 It is also preferable that the air outlet is provided near the inner wall surface at a downstream position of the protruding part and the direction changing part. Thereby, the air flow passes along the inner wall surface via the protrusion and the direction changing part and flows out from the air outlet to the outside at high speed.
 方向変換部が、第2の空気流の方向を殺菌室の内壁面の方向に変換するように構成されていることも好ましい。第2の空気流が殺菌室の内壁面の方向に方向変換されるため、これら空気流は内壁面に沿って環状光源の近傍を流れることとなる。その結果、より強いUV-C紫外線に長時間照射されるので、殺菌効果及び殺菌効率がより高くなる。 It is also preferable that the direction conversion unit is configured to change the direction of the second air flow toward the inner wall surface of the sterilization chamber. The second air streams are redirected in the direction of the inner walls of the sterilization chamber, so that they flow along the inner walls in the vicinity of the annular light source. As a result, stronger UV-C ultraviolet rays are irradiated for a longer period of time, resulting in higher sterilization effects and sterilization efficiency.
 方向変換部が、頂辺から内壁面に向かって滑らかに傾斜する傾斜面と、頂辺から空気流出口の方向に向かう案内面とを備えていることも好ましい。 It is also preferable that the direction changing part includes an inclined surface that slopes smoothly from the top side toward the inner wall surface, and a guide surface that goes from the top side toward the air outlet.
 環状光源が環状の発光管を備えており、発光管の管軸を含む平面が、内壁面と平行となるようにこの環状光源が設置されていることも好ましい。内壁面に沿って流れる空気流が環状光源の光軸の近傍を流れることとなるので、より強いUV-C紫外線に長時間照射され、殺菌効果及び殺菌効率がより高くなる。 It is also preferable that the annular light source includes an annular arc tube and that the annular light source is installed so that a plane containing the tube axis of the arc tube is parallel to the inner wall surface. Since the airflow flowing along the inner wall surface flows near the optical axis of the annular light source, it is irradiated with stronger UV-C ultraviolet rays for a longer period of time, and the sterilization effect and sterilization efficiency become higher.
 殺菌室の内壁面の少なくとも一部が、環状光源から放射されるUV-C紫外線を反射する鏡面状の反射面で構成されていることも好ましい。環状光源から放射されるUV-C紫外線に加えて内壁面から反射されるUV-C紫外線が存在するので、殺菌室内の殺菌効果及び殺菌効率がより高くなる。 It is also preferable that at least a part of the inner wall surface of the sterilization chamber is constituted by a mirror-like reflective surface that reflects the UV-C ultraviolet rays emitted from the annular light source. In addition to the UV-C ultraviolet rays emitted from the annular light source, there are UV-C ultraviolet rays reflected from the inner wall surface, so that the sterilization effect and sterilization efficiency in the sterilization chamber is increased.
 殺菌室の空気流入口の外部及び空気流出口の外部に、環状光源から放射されるUV-C紫外線を遮蔽して外部へ放射されることを抑止する遮蔽部材がそれぞれ設けられていることも好ましい。空気流入口及び空気流出口を介して殺菌室の外部へ放射される紫外線は、これら遮蔽部材によって確実に遮断される。 It is also preferable that shielding members are provided on the outside of the air inlet and the outside of the air outlet of the sterilization chamber to block UV-C ultraviolet rays emitted from the annular light source and prevent them from being radiated to the outside. . Ultraviolet rays emitted to the outside of the sterilization chamber through the air inlet and air outlet are reliably blocked by these shielding members.
 空気流入口の外部に、外部から流入する空気をろ過するエアフィルタが設けられていることも好ましい。これにより、塵やほこりなどを含まない空気が殺菌室内に吸入されることとなる。 It is also preferable that an air filter is provided outside the air inlet to filter air flowing in from the outside. As a result, air free of dirt and dust is drawn into the sterilization chamber.
 殺菌室が、空気流入口及び空気流出口を除いて密閉されていることも好ましい。殺菌室が空気流入口及び空気流出口を除いて密閉されているため、殺菌室内に吸入された空気は確実に殺菌されて外部に排出される。 It is also preferable that the sterilization chamber is sealed except for the air inlet and air outlet. Since the sterilization chamber is sealed except for the air inlet and air outlet, the air sucked into the sterilization chamber is reliably sterilized before being discharged to the outside.
 光源が、矩形環状の無電極放電ランプであることも好ましい。無電極放電ランプは、管軸の断面方向に均一な放射分布を有しており、しかも、その形状が矩形環状であることから、UV-C紫外線は互いに重複してあらゆる方向に放射される。 It is also preferable that the light source is a rectangular annular electrodeless discharge lamp. An electrodeless discharge lamp has a uniform radiation distribution in the cross-sectional direction of the tube axis, and since its shape is rectangular and annular, UV-C ultraviolet rays are emitted in all directions in an overlapping manner.
 殺菌室の空気流出口の上流に、空気の脱臭機能を有する脱臭用フィルタが設けられていることも好ましい。このような脱臭用フィルタを設けることにより、空気中に残存する臭い原因物質が効果的に吸収される。 It is also preferable that a deodorizing filter having an air deodorizing function is provided upstream of the air outlet of the sterilization chamber. By providing such a deodorizing filter, odor-causing substances remaining in the air are effectively absorbed.
 本発明によれば、環状光源から放射されるUV-C紫外線は、分岐部及び障害物によって遮蔽されることなく、殺菌室内を流れる第1の空気流及び第2の空気流に直接的にかつ確実に照射される。また、導風板等の障害物が存在しないため、障害物に殺菌されないウィルスが付着する問題は発生しない。その結果、殺菌効果及び殺菌効率が非常に高くなる。殺菌室内に分岐部及び方向変換部を設けるのみで、空気流の制御を行っているため、装置構成が簡単となり、安価に製造することができる。また、流速の高い空気流を外部へ放出して循環させることが可能であり、運転音を低くすることが可能である。 According to the invention, the UV-C ultraviolet radiation emitted from the annular light source is directly transmitted to the first air flow and the second air flow flowing inside the sterilization chamber without being blocked by branches and obstacles. Irradiation is ensured. Furthermore, since there are no obstacles such as baffle plates, there is no problem of unsterilized viruses adhering to obstacles. As a result, the sterilizing effect and sterilizing efficiency become very high. Since the air flow is controlled by simply providing a branch section and a direction changing section within the sterilization chamber, the device configuration is simple and can be manufactured at low cost. Furthermore, it is possible to release and circulate a high-velocity air flow to the outside, and it is possible to reduce operating noise.
本発明の一実施形態の循環型空気殺菌装置について側面カバーを外して側面方向から見た状態を示す斜視図である。FIG. 1 is a perspective view of the circulating air sterilizer according to an embodiment of the present invention, as seen from the side with the side cover removed. 図1の実施形態の循環型空気殺菌装置について側面カバーを外しかつ図1とは異なる角度で側面方向から見た状態を示す斜視図である。FIG. 2 is a perspective view showing the circulating air sterilizer of the embodiment shown in FIG. 1 when viewed from the side with the side cover removed and at a different angle from that shown in FIG. 1; 図1の実施形態の循環型空気殺菌装置の殺菌室及びその外部の具体的な寸法を示す図である。FIG. 2 is a diagram showing specific dimensions of the sterilization chamber and its exterior of the circulating air sterilization apparatus of the embodiment of FIG. 1; 図1の実施形態の環型空気殺菌装置における環状光源の一例を示す斜視図である。2 is a perspective view showing an example of an annular light source in the annular air sterilizer of the embodiment shown in FIG. 1. FIG. 図1の実施形態の循環型空気殺菌装置について側面カバーを外して側面方向から見た場合の空気流の流れを説明する斜視図である。FIG. 2 is a perspective view illustrating the flow of air when the circulating air sterilizer of the embodiment of FIG. 1 is viewed from the side with the side cover removed. 本発明の他の実施形態の循環型空気殺菌装置について側面カバーを外して側面方向から見た状態を示す斜視図である。FIG. 7 is a perspective view of a circulating air sterilizer according to another embodiment of the present invention, as viewed from the side with the side cover removed.
 図1は本発明の一実施形態の循環型空気殺菌装置について側面カバーを外して側面方向から見た状態を示しており、図2は本実施形態の循環型空気殺菌装置について側面カバーを外しかつ図1とは異なる角度で側面方向から見た状態で示しており、図3は本実施形態の循環型空気殺菌装置の殺菌室及びその外部の具体的な寸法を示している。 Fig. 1 shows a circulating air sterilizer according to an embodiment of the present invention as seen from the side with the side cover removed, and Fig. 2 shows a circulating air sterilizer according to the present embodiment with the side cover removed and the side cover removed. It is shown as seen from the side at a different angle from that in FIG. 1, and FIG. 3 shows specific dimensions of the sterilization chamber and the outside of the circulating air sterilization apparatus of this embodiment.
 これらの図に示すように、本実施形態の循環型空気殺菌装置は、角筒形状(本実施形態では四角筒形状)を有する金属製(例えばステンレス製)の筐体10と、筐体10の外側の底面に設けられた複数(本実施形態では4つ)のキャスタ11と、筐体10の底面に設けられ、全面に多数の貫通孔が例えばパンチングで形成された吸気口カバー10aを含む吸気口12と、筐体10の内部に設けられ、吸気口12を介して吸入される空気をろ過するためのエアフィルタ13と、筐体10の内部に設けられ、エアフィルタ13を介して吸入される空気を付勢して空気流を形成する送風ファン14(本発明の送風機に対応する)と、送風ファン14によって送り込まれた空気流を殺菌する殺菌室15と、殺菌室15から送り出される空気をこの循環型空気殺菌装置の外部へ排出する排気口16(図3参照)とを備えている。筐体10の上面には、全面に多数の貫通孔が例えばパンチングで形成された排気口カバー10bが設けられており、その下に排気口16が設けられている。筐体10の外形寸法は、単なる一例であるが、(横方向)約280mm×(奥行方向)約210mm×(高さ方向)約710mmである。なお、本明細書において、「横方向」とは図1~図3及び図5上で前後方向、「奥行方向」とは図1~図3及び図5上で左右方向、「高さ方向」とは図1~図3及び図5上で上下方向にそれぞれ対応する。因みに、図1~図3上で、左側が本実施形態の循環型空気殺菌装置の前側となる。 As shown in these figures, the circulating air sterilizer of this embodiment includes a metal (for example, stainless steel) housing 10 having a rectangular tube shape (a square tube shape in this embodiment); An air intake plate including a plurality of casters 11 (four in this embodiment) provided on the outer bottom surface and an intake port cover 10a provided on the bottom surface of the casing 10 and having a large number of through holes formed, for example, by punching, on the entire surface. an air filter 13 provided inside the housing 10 for filtering air taken in through the intake port 12; A blower fan 14 (corresponding to the blower of the present invention) that energizes air to form an airflow, a sterilization chamber 15 that sterilizes the airflow sent by the blower fan 14, and air sent out from the sterilization chamber 15. The circulating air sterilizer is equipped with an exhaust port 16 (see FIG. 3) for discharging the air to the outside of the circulating air sterilizer. An exhaust port cover 10b is provided on the upper surface of the casing 10, and an exhaust port cover 10b is provided with a large number of through holes formed, for example, by punching, on the entire surface, and an exhaust port 16 is provided below the exhaust port cover 10b. The external dimensions of the casing 10 are, by way of example only, about 280 mm (in the horizontal direction) x about 210 mm (in the depth direction) x about 710 mm (in the height direction). In this specification, the "lateral direction" refers to the front-back direction in FIGS. 1 to 3 and 5, and the "depth direction" refers to the left-right direction in FIGS. 1 to 3 and 5, and the "height direction" correspond to the vertical direction in FIGS. 1 to 3 and 5, respectively. Incidentally, in FIGS. 1 to 3, the left side is the front side of the circulating air sterilization apparatus of this embodiment.
 殺菌室15内には、254nmの波長帯の光を含むUV-C紫外線を放射する環状光源17と、殺菌室15の外部から空気流入口15aを介して流入した空気の流れを殺菌室15の外部へ空気流出口15bを介して流出する第1の空気流と、殺菌室15の内部へ向かう第2の空気流とに分岐する突出部18と、突出部18によって分岐された第2の空気流の方向を環状光源17の方向に方向変換する方向変換部19とが設けられている。本実施形態において、重要なポイントは、突出部18及び方向変換部19が殺菌室15の内壁面15cから突出して設けられている点にある。即ち、突出部18及び方向変換部19は、内壁面15cの一部を構成するように、この内壁面15cと連通しており、殺菌室15内の空間には、環状光源17から放射されるUV-C紫外線を遮蔽するような障害物は設けられていない。従って、環状光源17から放射されるUV-C紫外線は、殺菌室15内を流れる第1の空気流及び第2の空気流に直接的にかつ確実に照射される。その結果、殺菌効果及び殺菌効率が非常に高くなる。また、殺菌室15内の空間に導風板等の障害物が存在しないため、障害物に殺菌されないウィルスが付着する問題は発生しない。さらに、殺菌室15内に、分岐部18及び方向変換部19を設けるのみで、このような空気流の制御を行っているため、装置構成が簡単となり、安価に製造することができる。 Inside the sterilization chamber 15, there is an annular light source 17 that emits UV-C ultraviolet light including light in the wavelength band of 254 nm, and a flow of air that has flowed in from the outside of the sterilization chamber 15 through an air inlet 15a is provided inside the sterilization chamber 15. A protrusion 18 that branches into a first air flow that flows out through the air outlet 15b to the outside and a second air flow that flows toward the inside of the sterilization chamber 15; and the second air that is branched by the protrusion 18. A direction changing section 19 that changes the direction of the flow toward the annular light source 17 is provided. In this embodiment, an important point is that the protruding part 18 and the direction changing part 19 are provided to protrude from the inner wall surface 15c of the sterilization chamber 15. That is, the protruding portion 18 and the direction changing portion 19 communicate with the inner wall surface 15c so as to constitute a part of the inner wall surface 15c, and the space within the sterilization chamber 15 is filled with light emitted from the annular light source 17. No obstacles are provided to block UV-C ultraviolet rays. Therefore, the UV-C ultraviolet rays emitted from the annular light source 17 directly and reliably irradiate the first air flow and the second air flow flowing within the sterilization chamber 15. As a result, the sterilizing effect and sterilizing efficiency become very high. Furthermore, since there are no obstacles such as air guide plates in the space within the sterilization chamber 15, there is no problem of unsterilized viruses adhering to the obstacles. Furthermore, since the airflow is controlled by simply providing the branching section 18 and the direction changing section 19 in the sterilization chamber 15, the device configuration is simple and can be manufactured at low cost.
 図4は本実施形態の環型空気殺菌装置における環状光源17の一例を示している。同図から分かるように、本実施形態では、環状光源17として、矩形環状のスクウェア型無電極放電ランプを用いている。この無電極放電ランプ(環状光源)17は、希ガス及びアマルガム状態の微量の水銀が封入された矩形環状の石英ガラス管17aと、石英ガラス管17aの途中の2か所に巻回されたフェライトコア型励磁巻線17bとを備えている。石英ガラス管17aの径は45~60mm程度である。図示しない安定器からこれら励磁巻線17bに高周波電流(例えば140kHz)を流すことにより、石英ガラス管17a内に磁界・電界が発生し、放出された電子が石英ガラス管17a内のアマルガム粒子と融合することによって254nmの波長帯の光を主成分とするUV-C紫外線が放出される。環状光源17が無電極放電ランプであるため、石英ガラス管17aの管軸の断面方向に均一な放射分布で放射が行われる。また、矩形環状であるため、UV-C紫外線は互いに重複してあらゆる方向に放射される。なお、環状光源17が環状の発光管(石英ガラス管17a)を備えており、この発光管の管軸を含む平面が殺菌室15の内壁面15と平行となるようにこの環状光源が設置されている。これにより、内壁面15cに沿って流れる空気流が環状光源17の光軸の近傍を流れることとなるので、その空気流に対してより強いUV-C紫外線に長時間照射され、殺菌効果及び殺菌効率がより高くなる。 FIG. 4 shows an example of the annular light source 17 in the annular air sterilizer of this embodiment. As can be seen from the figure, in this embodiment, a rectangular annular square electrodeless discharge lamp is used as the annular light source 17. This electrodeless discharge lamp (annular light source) 17 consists of a rectangular annular quartz glass tube 17a filled with a rare gas and a small amount of mercury in an amalgam state, and a ferrite wound around two places in the middle of the quartz glass tube 17a. A core type excitation winding 17b is provided. The diameter of the quartz glass tube 17a is approximately 45 to 60 mm. By passing a high frequency current (for example, 140 kHz) through these excitation windings 17b from a ballast (not shown), magnetic and electric fields are generated within the quartz glass tube 17a, and the emitted electrons fuse with amalgam particles within the quartz glass tube 17a. As a result, UV-C ultraviolet light whose main component is light in the 254 nm wavelength band is emitted. Since the annular light source 17 is an electrodeless discharge lamp, radiation is emitted with a uniform radiation distribution in the cross-sectional direction of the tube axis of the quartz glass tube 17a. Moreover, since it is rectangular and annular, UV-C ultraviolet rays are emitted in all directions, overlapping with each other. Note that the annular light source 17 includes an annular arc tube (quartz glass tube 17a), and is installed so that the plane containing the tube axis of the arc tube is parallel to the inner wall surface 15 of the sterilization chamber 15. ing. As a result, the airflow flowing along the inner wall surface 15c flows near the optical axis of the annular light source 17, so that the airflow is irradiated with stronger UV-C ultraviolet rays for a long time, increasing the sterilization effect and the sterilization effect. Higher efficiency.
 本実施形態で用いた環状光源17は、具体的には、株式会社七椿製の120Wのスクウェア型無電極放電ランプ(SVI-UVC-254)であるが、本発明の環状光源はこれに限定されるものではない。その他の出力のスクウェア型無電極放電ランプ、例えば、250Wのスクウェア型無電極放電ランプを用いても良い。また、スクウェア型に限定されることなく、その他の形状の環状光源を用いても良い。例えば、丸型(サークル型)、楕円型、多角形型、星型、その他の管形状の無電極放電ランプを用いても良い。 Specifically, the annular light source 17 used in this embodiment is a 120W square-type electrodeless discharge lamp (SVI-UVC-254) manufactured by Nanatsubaki Co., Ltd., but the annular light source of the present invention is limited to this. It is not something that will be done. A square type electrodeless discharge lamp with other output power, for example, a 250W square type electrodeless discharge lamp may also be used. Furthermore, the annular light source is not limited to the square type, and other shapes of annular light sources may be used. For example, an electrodeless discharge lamp having a round shape (circle shape), an elliptical shape, a polygonal shape, a star shape, or other tube shapes may be used.
 突出部18は、前述したように、殺菌室15の内壁面15cから後方(図1~図3及び図5にて左方向)に突出して設けられている。この突出部18は、内壁面15cからこの突出部18の頂辺18aに向かって直線的に又は滑らかに突出する第1の傾斜面18bと、頂辺18aから内壁面15cに向かって直線的に又は滑らかに後退する第2の傾斜面18cとを備えている。本実施形態において、突出部18は、内壁面15cに対して直線的に35度傾斜した第1の傾斜面18bと、内壁面15cに対して直線的に35度傾斜した第2の傾斜面18cとからなる頂角110度の二等辺三角断面形状を有している。殺菌室15の外部から空気流入口15aを介して流入した空気の流れは、第1の傾斜面18bに沿って高速で流れ、頂辺18a近傍において急激に曲がり、その一部が第2の傾斜面18cに沿って流れ、空気流出口15bを介して高速で外部へ排出される第1の空気流と、急激な減速が行われて殺菌室15の内部方向へ進む低速の第2の空気流とに分岐される。また、突出部18は、環状光源17に対向する位置に配置されている。このように、環状光源17に対向する位置で分岐を行っているため、第1の空気流及び第2の空気流を最適の方向に制御することが可能となる。なお、第1の傾斜面18bの傾斜角度、第2の傾斜面18cの傾斜角度、及び頂角は単なる一例であり、これに限定されるものではなく、殺菌室15内の第1の空気流及び第2の空気流の流れが最適となるように適宜選択され、決定される。 As described above, the protrusion 18 is provided to protrude rearward (leftward in FIGS. 1 to 3 and 5) from the inner wall surface 15c of the sterilization chamber 15. This protrusion 18 has a first inclined surface 18b that protrudes linearly or smoothly from the inner wall surface 15c toward the top side 18a of the protrusion 18, and a first inclined surface 18b that protrudes linearly or smoothly from the top side 18a toward the inner wall surface 15c. Alternatively, a second inclined surface 18c that smoothly retreats is provided. In this embodiment, the protrusion 18 has a first inclined surface 18b linearly inclined at 35 degrees with respect to the inner wall surface 15c, and a second inclined surface 18c linearly inclined at 35 degrees with respect to the inner wall surface 15c. It has an isosceles triangular cross-sectional shape with an apex angle of 110 degrees. The air flowing from the outside of the sterilization chamber 15 through the air inlet 15a flows at high speed along the first inclined surface 18b, curves sharply near the top side 18a, and a part of the air flows along the second inclined surface 18b. A first air flow that flows along the surface 18c and is discharged to the outside at high speed through the air outlet 15b, and a low-speed second air flow that is rapidly decelerated and advances toward the inside of the sterilization chamber 15. It is branched into. Further, the protrusion 18 is arranged at a position facing the annular light source 17. In this way, since the air is branched at a position facing the annular light source 17, it is possible to control the first air flow and the second air flow in the optimum direction. Note that the inclination angle of the first inclined surface 18b, the inclination angle of the second inclined surface 18c, and the apex angle are merely examples, and are not limited to these. and the flow of the second airflow are appropriately selected and determined so as to be optimal.
 殺菌室15の空気流入口15aは、突出部18の上流位置において、突出部18が設けられた内壁面15cが一辺となる矩形形状を有している。空気流入口15aをこのような内壁面15cの近傍に設けることにより、空気流入口15aから殺菌室15に流入した空気は内壁面15cに沿って進んで突出部18に達して効率よく分岐する。この空気流入口15aの寸法は、単なる一例であるが、(奥行方向)約48mm×(横方向)約278mmである。 The air inflow port 15a of the sterilization chamber 15 has a rectangular shape in an upstream position of the protrusion 18, with one side of the inner wall surface 15c provided with the protrusion 18. By providing the air inlet 15a near the inner wall surface 15c, the air flowing into the sterilization chamber 15 from the air inlet 15a travels along the inner wall surface 15c, reaches the protrusion 18, and branches efficiently. The dimensions of this air inlet 15a are, by way of example only, about 48 mm (in the depth direction) x about 278 mm (in the lateral direction).
 方向変換部19は、殺菌室15の内壁面15cから下方に突出して設けられている。この方向変換部19は、頂辺19aから内壁面15cに向かって直線的に又は滑らかに傾斜する傾斜面19bと、頂辺19aから殺菌室15の空気流出口15bの方向に直線的に向かう案内面19cとを備えている。本実施形態において、方向変換部19は、頂辺19aから内壁面15cに向かって直線的に又は滑らかに傾斜する傾斜面19bと、頂辺19aから殺菌室15の空気流出口15bの方向に向かう案内面19cとからなる直角三角断面形状を有している。方向変換部19により、第2の空気流が殺菌室15の内壁面15cの方向に方向変換されるため、これら空気流は内壁面15cに沿って環状光源17の近傍を流れることとなる。その結果、より強いUV-C紫外線に長時間照射されるので、殺菌効果及び殺菌効率がより高くなる。 The direction changing section 19 is provided to protrude downward from the inner wall surface 15c of the sterilization chamber 15. This direction changing part 19 has an inclined surface 19b that slopes linearly or smoothly from the top side 19a toward the inner wall surface 15c, and a guide that slopes linearly from the top side 19a toward the air outlet 15b of the sterilization chamber 15. and a surface 19c. In this embodiment, the direction changing part 19 has an inclined surface 19b that slopes linearly or smoothly from the top side 19a toward the inner wall surface 15c, and a slope surface 19b that extends from the top side 19a toward the air outlet 15b of the sterilization chamber 15. It has a right triangular cross-sectional shape consisting of a guide surface 19c. Since the direction changing unit 19 changes the direction of the second airflow toward the inner wall surface 15c of the sterilization chamber 15, these airflows flow near the annular light source 17 along the inner wall surface 15c. As a result, stronger UV-C ultraviolet rays are irradiated for a longer period of time, resulting in higher sterilization effects and sterilization efficiency.
 殺菌室15の空気流出口15bは、突出部18及び方向変換部19の下流位置において、突出部18が設けられた内壁面15cが一辺となり、方向変換部19の案内面19cがその対向辺となる矩形形状を有している。空気流出口15bをこのような内壁面15cの近傍に設けることにより、空気流は突出部18及び方向変換部19を介して内壁面15cに沿って進み、空気流出口15bから外部へ高速で流出する。この空気流出口15bの寸法は、単なる一例であるが、(奥行方向)約48mm×(横方向)約278mmである。 The air outlet 15b of the sterilization chamber 15 has an inner wall surface 15c provided with the protrusion 18 at a downstream position of the protrusion 18 and the direction conversion part 19 as one side, and a guide surface 19c of the direction conversion part 19 as the opposite side. It has a rectangular shape. By providing the air outlet 15b near the inner wall surface 15c, the airflow advances along the inner wall surface 15c via the protruding portion 18 and the direction changing portion 19, and flows out from the air outlet 15b to the outside at high speed. do. The dimensions of this air outlet 15b are, by way of example only, about 48 mm (in the depth direction) x about 278 mm (in the lateral direction).
 殺菌室15は、空気流入口15a及び空気流出口15bを除いて密閉されている。密閉されていることにより、殺菌室15内に吸入された空気は外部に漏れることなく確実に殺菌されて排出される。また、殺菌室15は、その内壁面15aが鏡面状(鏡面仕上げ)のステンレス板で形成されている。これにより、環状光源17から放射されるUV-C紫外線に加えて内壁面15aから反射されるUV-C紫外線が存在するので、殺菌室内の殺菌効果及び殺菌効率がより高くなる。殺菌室15は、本実施形態では、突出部18及び方向変換部19を除いて略直方体形状の空間となるように形成されている。殺菌室15の内部寸法は、単なる一例であるが、(横方向)約278mm×(奥行方向)約220mm×(高さ方向)約319mmである。 The sterilization chamber 15 is sealed except for the air inlet 15a and the air outlet 15b. Due to the airtight sealing, the air sucked into the sterilization chamber 15 is reliably sterilized and discharged without leaking to the outside. Further, the sterilization chamber 15 has an inner wall surface 15a formed of a mirror-like (mirror-finished) stainless steel plate. Accordingly, in addition to the UV-C ultraviolet rays emitted from the annular light source 17, the UV-C ultraviolet rays reflected from the inner wall surface 15a are present, so that the sterilization effect and sterilization efficiency in the sterilization chamber are further increased. In this embodiment, the sterilization chamber 15 is formed to be a substantially rectangular parallelepiped-shaped space except for the protrusion 18 and the direction changing section 19. The internal dimensions of the sterilization chamber 15 are, by way of example only, about 278 mm (in the horizontal direction) x about 220 mm (in the depth direction) x about 319 mm (in the height direction).
 エアフィルタ13は、外部から流入する空気をろ過するためのものであり、吸気口12とエアフィルタ13との間に取り外し可能に設けられている。エアフィルタ13を設けることにより、塵やほこりなどを含まない空気が殺菌室15内に吸入される。 The air filter 13 is for filtering air flowing in from the outside, and is removably provided between the air intake port 12 and the air filter 13. By providing the air filter 13, air that does not contain dust or the like is sucked into the sterilization chamber 15.
 殺菌室15の空気流入口15aの外部には、環状光源17から放射されるUV-C紫外線を遮蔽して外部へ放射されることを抑止すると共に、送風ファン14から送り込まれた空気流の方向を制御するための第1の風向制御板20(本発明の遮蔽部材に対応する)及び第2の風向制御板21(本発明の遮蔽部材に対応する)が設けられている。これら第1の風向制御板20及び第2の風向制御板21は正反射防止のための粗面仕上げされたステンレス板で構成されており、その面が異なる方向を向くように互い違いに配置されている。これら第1の風向制御板20及び第2の風向制御板21により、吸気口12、エアフィルタ13及び送風ファン14を介して外部から吸気された空気流は、90度の方向変換を3回行って空気流入口15aから殺菌室15内に流入される。また、正反射防止処置が施されたこれら第1の風向制御板20及び第2の風向制御板21を設けることにより、空気流入口15aを介して殺菌室17の外部へ放射される紫外線は確実に遮断される。 The outside of the air inlet 15a of the sterilization chamber 15 is provided to block UV-C ultraviolet light emitted from the annular light source 17 and prevent it from being emitted to the outside, and to control the direction of the air flow sent from the blower fan 14. A first wind direction control board 20 (corresponding to the shielding member of the present invention) and a second wind direction control board 21 (corresponding to the shielding member of the present invention) are provided for controlling the wind direction. The first wind direction control plate 20 and the second wind direction control plate 21 are made of stainless steel plates with roughened surfaces to prevent specular reflection, and are arranged alternately so that their surfaces face different directions. There is. By these first wind direction control plate 20 and second wind direction control plate 21, the air flow taken in from the outside through the intake port 12, air filter 13, and blower fan 14 undergoes 90 degree direction changes three times. The air flows into the sterilization chamber 15 from the air inlet 15a. Furthermore, by providing the first wind direction control board 20 and the second wind direction control board 21 which are treated to prevent specular reflection, the ultraviolet rays emitted to the outside of the sterilization chamber 17 through the air inlet 15a are ensured. is blocked by.
 殺菌室15の空気流出口15bの外部には、環状光源17から放射されるUV-C紫外線を遮蔽して外部へ放射されることを抑止すると共に、空気流出口15bを介して排出される空気流の方向を制御するための第3の風向制御板22(本発明の遮蔽部材に対応する)及び第4の風向制御板23(本発明の遮蔽部材に対応する)が設けられている。これら第3の風向制御板22及び第4の風向制御板23は正反射防止のための粗面仕上げされたステンレス板で構成されており、櫛歯状に互い違いに配置されている。これら第3の風向制御板22及び第4の風向制御板23により、空気流出口15bを介して排出される空気流は、90度の方向変換を4回行って排気口16から装置外部へ高速で排出される。また、正反射防止処置が施されたこれら第3の風向制御板22及び第4の風向制御板23を設けることにより、空気流出口15bを介して殺菌室15の外部へ漏れ出る紫外線は確実に遮断される。 Outside the air outlet 15b of the sterilization chamber 15, air is provided to block the UV-C ultraviolet rays emitted from the annular light source 17 and prevent it from being emitted to the outside, and to discharge air through the air outlet 15b. A third wind direction control plate 22 (corresponding to the shielding member of the present invention) and a fourth wind direction control plate 23 (corresponding to the shielding member of the present invention) are provided for controlling the direction of the flow. These third wind direction control plates 22 and fourth wind direction control plates 23 are made of stainless steel plates with a roughened surface to prevent specular reflection, and are arranged alternately in a comb-like shape. These third wind direction control plate 22 and fourth wind direction control plate 23 allow the airflow discharged through the air outlet 15b to change direction by 90 degrees four times and flow from the exhaust outlet 16 to the outside of the device at high speed. is discharged. Furthermore, by providing the third wind direction control plate 22 and the fourth wind direction control plate 23 which are treated to prevent specular reflection, ultraviolet rays leaking to the outside of the sterilization chamber 15 through the air outlet 15b can be ensured. Be cut off.
 図5は本実施形態の循環型空気殺菌装置における空気流を示しており、以下同図を用いて、空気の流れを説明する。 FIG. 5 shows the air flow in the circulating air sterilizer of this embodiment, and the air flow will be explained below using the same figure.
 送風ファン14が作動することにより、筐体10の吸気口12及びエアフィルタ13を介して、外部の空気が取り込まれる。この取り込まれた空気の流れAは、第1の風向制御板20及び第2の風向制御板21によってその向きが変えられた後、空気流入口15aを介して殺菌室15内に流入する。 When the blower fan 14 operates, external air is taken in through the air intake port 12 of the housing 10 and the air filter 13. The direction of this taken-in air flow A is changed by the first wind direction control board 20 and the second wind direction control board 21, and then flows into the sterilization chamber 15 through the air inlet 15a.
 殺菌室15内に流入した空気の流れBは、内壁面15cに沿って流れ、突出部18の第1の傾斜面18bに当接する。これにより、空気の流れBは、この第1の傾斜面18bに沿って高速で流れ、頂辺18aの近傍において急激に曲がり、分岐されてその約35%が高速の第1の空気流Cとなる。この第1の空気流Cは、第2の傾斜面18cに沿って流れ、内壁面15cに沿って流れ、方向変換部19の案内面19c及び内壁面15cに沿って進み、空気流出口15bを介して高速で殺菌室15の外部へ排出される。また、空気の流れBは、突出部18の頂辺18aの近傍において急激な減速が行われ、その約65%が殺菌室15の内部方向へ進む低速(例えば、3m/秒以下の流速)の第2の空気流Dに分岐される。この第2の空気流Dは、方向変換部19の傾斜面19bに当接して、方向変換され、この傾斜面19bに沿って流れ、内壁面15cに沿って流れる空気流Eとなる。この空気流Eの一部は、環状光源17の回りを周回する空気流Fや環状光源17と交差するようにその内側を通過する空気流Gとなる。環状光源17の回りを周回し、また、環状光源17と交差した空気流は、最終的に第1の空気流Cと合流し殺菌室15の外部へ排出される。 The air flow B flowing into the sterilization chamber 15 flows along the inner wall surface 15c and comes into contact with the first inclined surface 18b of the protrusion 18. As a result, the air flow B flows at high speed along the first inclined surface 18b, curves sharply near the top edge 18a, and is branched, with about 35% of the flow becoming the high-speed first air flow C. Become. This first air flow C flows along the second inclined surface 18c, flows along the inner wall surface 15c, advances along the guide surface 19c of the direction changing part 19 and the inner wall surface 15c, and passes through the air outlet 15b. is discharged to the outside of the sterilization chamber 15 at high speed. Further, the air flow B is rapidly decelerated near the top side 18a of the protrusion 18, and about 65% of the air flow B is a low-velocity (for example, a flow velocity of 3 m/sec or less) that moves toward the inside of the sterilization chamber 15. It is branched off into a second air stream D. This second air flow D comes into contact with the slope 19b of the direction changing portion 19, changes direction, flows along the slope 19b, and becomes an air flow E flowing along the inner wall surface 15c. A portion of this airflow E becomes an airflow F that circulates around the annular light source 17 and an airflow G that passes inside the annular light source 17 so as to intersect with it. The airflow circulating around the annular light source 17 and intersecting with the annular light source 17 finally merges with the first airflow C and is discharged to the outside of the sterilization chamber 15 .
 一方、空気流出口15bを介して高速で殺菌室15の外部へ排出された高速の空気流Hは、第3の風向制御板22及び第4の風向制御板23によってその向きが変えられた後、排気口16を介して高速の空気流Iとして循環型空気殺菌装置の外部へ排出される。 On the other hand, the high-speed air flow H discharged to the outside of the sterilization chamber 15 at high speed through the air outlet 15b has its direction changed by the third wind direction control plate 22 and the fourth wind direction control plate 23. , is discharged to the outside of the circulating air sterilizer as a high-velocity air flow I through the exhaust port 16.
 このように、本実施形態によれば、流速の遅い第2の空気流の一部が、ランプ管壁をなめるように環状光源17の回りを周回する空気流Fや環状光源17とランプ管壁をなめるように交差してその内側を通過する空気流Gとなることにより、環状光源17の近傍の強力なUV-C紫外線がより長時間にわたって照射される。例えば、これら空気流は、1秒間あたり、平均で20mW/cm2の254nmのUV-C紫外線を受ける。その結果、細菌やウィルスの滅菌効果及び不活性化効果がより強力となり、ほぼ99.99%の不活化が可能となる。前にも述べたが、殺菌室15内に、分岐部18及び方向変換部19を設けるのみで、このような空気流の制御を行っているため、装置構成が簡単となり、安価に製造することができる。さらに、このような分岐部18及び方向変換部19によって空気流を制御することにより、風切り音が小さくなるので、装置の運転音を低くすることが可能である。また、第1の空気流Cは高速であり空気流出口15bを介して殺菌室15から外部へ、さらに、排出口16を介して循環型空気殺菌装置の外部へ空気流Iとして高速で排出されるため、この循環型空気殺菌装置が設置された室内の循環効果が向上する。 As described above, according to the present embodiment, a part of the second air flow having a slow flow velocity is caused by the air flow F that circulates around the annular light source 17 so as to lick the lamp tube wall, and between the annular light source 17 and the lamp tube wall. By forming an air flow G that intersects and passes inside the annular light source 17, strong UV-C ultraviolet rays near the annular light source 17 are irradiated for a longer period of time. For example, these air streams receive an average of 20 mW/cm 2 of 254 nm UV-C radiation per second. As a result, the sterilization effect and inactivation effect on bacteria and viruses becomes stronger, and approximately 99.99% inactivation becomes possible. As mentioned before, the air flow is controlled by simply providing the branching section 18 and the direction changing section 19 in the sterilization chamber 15, which simplifies the device configuration and allows for inexpensive manufacturing. I can do it. Furthermore, by controlling the air flow using such branching portions 18 and direction changing portions 19, wind noise is reduced, so it is possible to reduce the operating noise of the device. Further, the first air flow C is high-speed and is discharged from the sterilization chamber 15 to the outside through the air outlet 15b, and further to the outside of the circulating air sterilizer through the discharge port 16 as the air flow I. Therefore, the circulation effect in the room where this circulating air sterilization device is installed is improved.
 なお、本発明の循環型空気殺菌装置における、殺菌室15の形状及び大きさ、環状光源17の位置、形状及び寸法、突出部18の位置、形状及び寸法、突出部18の第1の傾斜面18b及び第2の傾斜面18cの角度及び傾斜形状、方向変換部19の位置、形状及び寸法、方向変換部19の傾斜面19b及び案内面19cの角度及び傾斜形状、空気流入口15a及び空気流出口15bの位置、形状及び寸法、環状光源17と突出部18及び方向変換部19との相対位置及び相対寸法等は、上述した実施形態の例に限定されるものではなく、種々の態様が適用可能であることは言うまでもない。 In the circulating air sterilizer of the present invention, the shape and size of the sterilization chamber 15, the position, shape and dimensions of the annular light source 17, the position, shape and dimensions of the protrusion 18, and the first slope of the protrusion 18. 18b and the second inclined surface 18c, the position, shape and dimensions of the direction changing section 19, the angle and inclined shape of the inclined surface 19b and the guide surface 19c of the direction changing section 19, the air inlet 15a and the air flow. The position, shape and dimensions of the outlet 15b, the relative position and relative dimensions of the annular light source 17, the protrusion 18 and the direction changing part 19, etc. are not limited to the example of the embodiment described above, and various aspects can be applied. It goes without saying that it is possible.
 本発明の循環型空気殺菌装置について、ウィルス不活性化効果を実験により確認した。 The virus inactivation effect of the circulating air sterilizer of the present invention was confirmed through experiments.
 即ち、図1の実施形態に示す循環型空気殺菌装置を用い、日本電機工業会の規定する空気清浄機の浮遊ウィルス不活性化試験方法(JEM1467)に準拠して試験を行った。この試験は、専門の試験機関により行われ、試験ウィルスとしてインフルエンザAウィルス(H3N2型)噴霧した閉鎖空間に本循環型空気殺菌装置を設置し、0分、20分、40分、及び60分それぞれ作動させた際のウィルス力価を定量的に測定した。試験チャンバのサイズは23m3であった。試験は、試験機関の標準的な手順に基づいて行われた。試験チャンバ内の温度平均値は21.0℃、湿度平均値は73%であった。 That is, using the circulating air sterilizer shown in the embodiment of FIG. 1, a test was conducted in accordance with the air purifier airborne virus inactivation test method (JEM1467) specified by the Japan Electrical Manufacturers Association. This test was conducted by a specialized testing organization, and the circulating air sterilizer was installed in a closed space sprayed with influenza A virus (H3N2 type) as the test virus. The virus titer during operation was quantitatively measured. The size of the test chamber was 23 m3 . The test was conducted according to the testing laboratory's standard procedures. The average temperature inside the test chamber was 21.0°C, and the average humidity was 73%.
 試験測定結果からTCID50法によりウィルス感染価を算出した。その算出結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Virus infectivity was calculated from the test measurement results using the TCID 50 method. The calculation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1より、インフルエンザAウィルス(H3N2型)に対する本発明の循環型空気殺菌装置の感染価減少値は、運転時間20分で、2.50-0.66(logTCID50/mL)=1.84(logTCID50/mL)となるため98.55%の減少値であり、運転時間40分で、2.50-0.00(logTCID50/mL)=2.54(logTCID50/mL)となるため99.68%の減少値であり、運転時間60分で、2.50-0.00(logTCID50/mL)=2.54(logTCID50/mL)となるため99.68%の減少値であった。 From Table 1, the infectious value reduction value of the circulating air sterilizer of the present invention against influenza A virus (H3N2 type) is 2.50 - 0.66 (logTCID 50 /mL) = 1.84 at 20 minutes of operation time. (logTCID 50 /mL), which is a decrease of 98.55%, and after 40 minutes of operation time, it becomes 2.50 - 0.00 (logTCID 50 /mL) = 2.54 (logTCID 50 /mL). Therefore, the reduction value is 99.68%, and after 60 minutes of operation time, 2.50 - 0.00 (logTCID 50 /mL) = 2.54 (logTCID 50 /mL), so the reduction value is 99.68%. Met.
 このように、本発明の循環型空気殺菌装置によれば、噴霧20分後には、インフルエンザAウィルスの減少値が98.55%となり、噴霧40分以降には、減少値が検出限界に近い99.68%となることが実証された。試験チャンバのサイズが23m3であるため、一般的な介護施設などの一人部屋(6畳間)における本発明の循環型空気殺菌装置によるインフルエンザウィルスの不活性化効果は非常に高いことが分かる。新型コロナウィルスのUV-C耐性がインフルエンザAウィルスのUV-C耐性より比較的低いため、本発明の循環型空気殺菌装置によれば、新型コロナウィルスの減少値が噴霧20分後には99.9%以上となるものと推測できる。 Thus, according to the circulating air sterilizer of the present invention, the reduction value of influenza A virus is 98.55% after 20 minutes of spraying, and after 40 minutes of spraying, the reduction value is 99%, which is close to the detection limit. .68%. Since the size of the test chamber is 23 m 3 , it can be seen that the circulating air sterilizer of the present invention has a very high effect of inactivating influenza viruses in single-person rooms (6 tatami mats) in general nursing care facilities. Since the UV-C resistance of the new coronavirus is relatively lower than that of influenza A virus, according to the circulating air sterilizer of the present invention, the reduction value of the new coronavirus is 99.9 after 20 minutes of spraying. % or more.
 図6は本発明の他の実施形態の循環型空気殺菌装置について側面カバーを外して側面方向から見た状態を示している。 FIG. 6 shows a circulating air sterilizer according to another embodiment of the present invention as viewed from the side with the side cover removed.
 本実施形態の循環型空気殺菌装置は、図1~図5に示した実施形態の循環型空気殺菌装置の殺菌室17内に脱臭用フィルタ24を追加したものであり、脱臭用フィルタ24を追加したことを除いて、本実施形態の構成及び作用効果は図1~図5に示した実施形態の場合と全く同様である。従って、本実施形態において、同一部分の詳細な説明は省略し、同一の構成要素については同一の参照番号を使用している。 The circulating air sterilizer of this embodiment has a deodorizing filter 24 added to the sterilizing chamber 17 of the circulating air sterilizing device of the embodiment shown in FIGS. 1 to 5. Except for the above, the configuration and operation and effects of this embodiment are completely the same as those of the embodiment shown in FIGS. 1 to 5. Therefore, in this embodiment, a detailed explanation of the same parts is omitted, and the same reference numerals are used for the same components.
 図6に示すように、本実施形態の循環型空気殺菌装置において、殺菌室15の空気流出口15bの上流には、脱臭用フィルタ24が設けられている。具体的には、本実施形態において、脱臭用フィルタ24は、方向変換部19の頂辺19aと、突出部18の第2の傾斜面18cとの間に架設されており、これによって第1の空気流がこの脱臭用フィルタ24を通過するように構成されている。さらに、環状光源17からのUV-C紫外線がこの脱臭用フィルタ24に照射されるように構成されている。 As shown in FIG. 6, in the circulating air sterilizer of this embodiment, a deodorizing filter 24 is provided upstream of the air outlet 15b of the sterilization chamber 15. Specifically, in this embodiment, the deodorizing filter 24 is installed between the top side 19a of the direction changing part 19 and the second inclined surface 18c of the protruding part 18. The airflow is configured to pass through this deodorizing filter 24. Further, the deodorizing filter 24 is configured to be irradiated with UV-C ultraviolet light from the annular light source 17.
 脱臭用フィルタ24は、活性炭ハニカム構造を有する矩形板状のフィルタであり、その多孔質構造により、通過する空気の臭い原因物質を吸収する。吸収した臭い原因物質は、照射されるUV-C紫外線によって殺菌される。脱臭用フィルタ24として、活性炭ハニカムに、例えばTiO2等の光触媒がコーティングされたものを用いても良い。光触媒がコーティングされていれば、UV-C紫外線によって光触媒が活性化され、臭い原因物質の分解効果がより向上する。活性炭ハニカムに代えて、セラミックハニカム構造を有する矩形板状のフィルタを用いても良い。即ち、活性炭ハニカム、光触媒付活性炭ハニカム、セラミックハニカム又は光触媒付セラミックハニカム等のハニカム構造を有する矩形板状のフィルタを用いても良い。ハニカム構造として、孔が板面に対して垂直な垂直孔ハニカムを用いても良いし、孔が板面に対して傾斜している傾斜孔ハニカムを用いても良い。 The deodorizing filter 24 is a rectangular plate-shaped filter having an activated carbon honeycomb structure, and its porous structure absorbs odor-causing substances from the air passing through it. The absorbed odor-causing substances are sterilized by the irradiated UV-C ultraviolet light. As the deodorizing filter 24, an activated carbon honeycomb coated with a photocatalyst such as TiO 2 may be used. If a photocatalyst is coated, the photocatalyst will be activated by UV-C ultraviolet rays, and the decomposition effect of odor-causing substances will be further improved. Instead of the activated carbon honeycomb, a rectangular plate-shaped filter having a ceramic honeycomb structure may be used. That is, a rectangular plate-shaped filter having a honeycomb structure such as an activated carbon honeycomb, an activated carbon honeycomb with a photocatalyst, a ceramic honeycomb, or a ceramic honeycomb with a photocatalyst may be used. As the honeycomb structure, a vertical hole honeycomb in which the holes are perpendicular to the plate surface may be used, or an inclined hole honeycomb in which the holes are inclined with respect to the plate surface may be used.
 ハニカム構造の脱臭用フィルタ24を用いることにより、約50%程度の開口率を得ることができ、その結果、高速の第1の空気流を、流速を大幅に低下させずに通過させることができる。なお、ハニカム構造の孔の軸方向が空気流の方向と平行となるように構成すれば、空気流に対する抵抗が小さくなり、流速の低下は小さくなる。また、ハニカム構造による開口率を調整することによって、低速の第2の空気流の流速をさらに遅くし、滅菌効果又は不活性化効果をより高めることが可能となる。 By using the honeycomb-structured deodorizing filter 24, an aperture ratio of about 50% can be obtained, and as a result, the high-speed first airflow can pass through without significantly reducing the flow velocity. . Note that if the axial direction of the holes in the honeycomb structure is configured to be parallel to the direction of the air flow, the resistance to the air flow will be reduced, and the decrease in the flow velocity will be reduced. Further, by adjusting the aperture ratio of the honeycomb structure, it is possible to further reduce the flow velocity of the low-speed second air flow and further enhance the sterilization effect or inactivation effect.
 上述したように、脱臭用フィルタ24はハニカム構造を有しており、このハニカム構造が環状光源17からのUV-C紫外線に効率良く照射される位置に設けられていることが望ましい。ハニカムに光触媒がコーティングされている場合には、その光触媒にUV-C紫外線に効率良く照射される位置及び角度で脱臭用フィルタ24が取付けられていることが望ましい。また、ハニカムの内面に光触媒がコーティングされている場合には、その内面にもUV-C紫外線が入り込むように構成すれば、殺菌効果が最大となる。 As mentioned above, the deodorizing filter 24 has a honeycomb structure, and it is desirable that this honeycomb structure be provided at a position where it can be efficiently irradiated with UV-C ultraviolet rays from the annular light source 17. When the honeycomb is coated with a photocatalyst, it is desirable that the deodorizing filter 24 is attached to the photocatalyst at a position and angle where it can be efficiently irradiated with UV-C ultraviolet rays. Furthermore, when the inner surface of the honeycomb is coated with a photocatalyst, the bactericidal effect can be maximized by configuring the honeycomb so that UV-C ultraviolet rays can penetrate into the inner surface as well.
 本実施形態の循環型空気殺菌装置は、図1~図5に示した実施形態の場合と同様の作用効果を有しており、さらに、脱臭用フィルタ24を備えることによって、細菌やウィルスが滅菌及び不活性化された空気中に残存する臭い原因物質が吸収され、UV-C紫外線によって殺菌され、光触媒がコーティングされている場合には、UV-C紫外線によってその光触媒が活性化されて臭い原因物質の分解が促進されるという効果をも有している。 The circulating air sterilizer of this embodiment has the same effects as those of the embodiment shown in FIGS. 1 to 5, and is further provided with a deodorizing filter 24 to sterilize bacteria and viruses Odor-causing substances remaining in the inactivated air are absorbed and sterilized by UV-C ultraviolet light, and if a photocatalyst is coated, the photocatalyst is activated by UV-C ultraviolet light to eliminate odor-causing substances. It also has the effect of promoting the decomposition of substances.
 以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。 All of the embodiments described above are illustrative of the present invention and are not intended to limit the present invention, and the present invention can be implemented in various other modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.
 10 筐体
 10a 吸気口カバー
 10b 排気口カバー
 11 キャスタ
 12 吸気口
 13 エアフィルタ
 14 送風ファン
 15 殺菌室
 15a 空気流入口
 15b 空気流出口
 15c 内壁面
 16 排気口
 17 環状光源
 17a 石英ガラス管
 17b 励磁巻線
 18 突出部
 18a、19a 頂辺
 18b 第1の傾斜面
 18c 第2の傾斜面
 19 方向変換部
 19b 傾斜面
 19c 案内面
 20 第1の風向制御板
 21 第2の風向制御板
 22 第3の風向制御板
 23 第4の風向制御板
 24 脱臭用フィルタ
10 Housing 10a Intake port cover 10b Exhaust port cover 11 Caster 12 Intake port 13 Air filter 14 Blow fan 15 Sterilization chamber 15a Air inlet 15b Air outlet 15c Inner wall surface 16 Exhaust port 17 Annular light source 17a Quartz glass tube 17b Excitation winding 18 Projection portions 18a, 19a Top side 18b First inclined surface 18c Second inclined surface 19 Direction changing portion 19b Inclined surface 19c Guide surface 20 First wind direction control plate 21 Second wind direction control plate 22 Third wind direction control Board 23 Fourth wind direction control board 24 Deodorizing filter

Claims (19)

  1.  殺菌室と、該殺菌室内に設けられUV-C紫外線を放射する環状光源と、前記殺菌室の内壁面から突出して設けられ、前記殺菌室の外部から流入する空気の流れを前記殺菌室の外部へ流出する第1の空気流と前記殺菌室の内部へ向かう第2の空気流とに分岐する突出部とを備えており、前記環状光源から放射されるUV-C紫外線が前記第1の空気流及び前記第2の空気流に直接照射されるように構成されていることを特徴とする循環型空気殺菌装置。 a sterilization chamber, an annular light source provided in the sterilization chamber and emitting UV-C ultraviolet rays, and provided protruding from an inner wall surface of the sterilization chamber to direct the flow of air flowing in from the outside of the sterilization chamber to the outside of the sterilization chamber. and a protrusion that branches into a first airflow flowing out to the sterilization chamber and a second airflow flowing into the sterilization chamber, the UV-C ultraviolet rays emitted from the annular light source flowing into the first airflow. A circulating air sterilization device configured to directly irradiate the air flow and the second air flow.
  2.  前記第2の空気流の少なくとも一部が、前記環状光源と交差して該環状光源の回りを周回するように構成されていることを特徴とする請求項1に記載の循環型空気殺菌装置。 The circulating air sterilization device according to claim 1, wherein at least a portion of the second air flow is configured to intersect and circulate around the annular light source.
  3.  前記第2の空気流の流速が前記第1の空気流の流速より遅い速度となるように構成されていることを特徴とする請求項1又は2に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 1 or 2, wherein the second air flow is configured to have a flow velocity slower than the first air flow.
  4.  殺菌室と、該殺菌室内に設けられ、254nmの波長帯の光を含むUV-C紫外線を放射する環状光源と、空気流入口を介して該殺菌室内に流入し空気流出口を介して該殺菌室の外部へ流出する空気の流れを形成する送風機と、前記殺菌室の内壁面から突出して設けられ、前記空気流入口を介して前記殺菌室の外部から流入した前記空気の流れを前記空気流出口を介して前記殺菌室の外部へ流出する第1の空気流と前記殺菌室の内部へ向かう第2の空気流とに分岐する突出部と、前記殺菌室の前記内壁面から突出して設けられ、前記突出部によって分岐された前記第2の空気流の方向を前記環状光源の方向に方向変換する方向変換部とを備えており、前記環状光源から放射されるUV-C紫外線が前記第1の空気流及び前記第2の空気流に直接照射されるように構成されていることを特徴とする循環型空気殺菌装置。 a sterilization chamber, an annular light source installed in the sterilization chamber and emitting UV-C ultraviolet light including light in a wavelength band of 254 nm; a blower that forms a flow of air flowing out to the outside of the chamber; and a blower that is provided to protrude from the inner wall surface of the sterilization chamber and that generates a flow of air that flows in from the outside of the sterilization chamber through the air inlet. a protrusion that branches into a first air flow flowing out of the sterilization chamber through an outlet and a second air flow flowing into the sterilization chamber; and a protrusion protruding from the inner wall surface of the sterilization chamber. , a direction changing section that changes the direction of the second air flow branched by the protrusion toward the annular light source, and the UV-C ultraviolet rays emitted from the annular light source are directed toward the first air flow. A circulating air sterilizer, characterized in that it is configured to directly irradiate the air stream and the second air stream.
  5.  前記第2の空気流の少なくとも一部が、前記環状光源と交差して該環状光源の回りを周回するように構成されていることを特徴とする請求項4に記載の循環型空気殺菌装置。 The circulating air sterilization device according to claim 4, wherein at least a portion of the second air flow is configured to intersect with and circulate around the annular light source.
  6.  前記第2の空気流の流速が前記第1の空気流の流速より遅い速度となるように構成されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein the second air flow is configured to have a flow velocity lower than that of the first air flow.
  7.  前記空気流入口が、前記突出部の上流位置における前記内壁面近傍に設けられていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein the air inlet is provided near the inner wall surface at an upstream position of the protrusion.
  8.  前記突出部が、前記内壁面から頂辺に向かって突出する第1の傾斜面と、前記頂辺から前記内壁面に向かって後退する第2の傾斜面とを備えていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The protruding portion is characterized in that it includes a first inclined surface that projects from the inner wall surface toward the top side, and a second inclined surface that recedes from the top side toward the inner wall surface. The circulating air sterilizer according to claim 4 or 5.
  9.  前記突出部が前記環状光源に対向する位置に配置されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilization device according to claim 4 or 5, wherein the protrusion is disposed at a position facing the annular light source.
  10.  前記空気流出口が、前記突出部及び前記方向変換部の下流位置における前記内壁面近傍に設けられていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilization device according to claim 4 or 5, wherein the air outlet is provided near the inner wall surface at a downstream position of the protruding portion and the direction changing portion.
  11.  前記方向変換部が、前記第2の空気流の方向を前記殺菌室の前記内壁面の方向に変換するように構成されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein the direction converter is configured to convert the direction of the second air flow to the direction of the inner wall surface of the sterilization chamber. Device.
  12.  前記方向変換部が、頂辺から前記内壁面に向かって滑らかに傾斜する傾斜面と、前記頂辺から前記空気流出口の方向に向かう案内面とを備えていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 4. The direction converting portion includes an inclined surface that slopes smoothly from the top side toward the inner wall surface, and a guide surface that extends from the top side toward the air outlet. Or the circulating air sterilizer according to 5.
  13.  前記環状光源が環状の発光管を備えており、前記発光管の管軸を含む平面が前記内壁面と平行となるように前記環状光源が設置されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 5. The annular light source includes an annular arc tube, and the annular light source is installed such that a plane including a tube axis of the arc tube is parallel to the inner wall surface. The circulating air sterilizer described in .
  14.  前記殺菌室の前記内壁面の少なくとも一部が、前記環状光源から放射されるUV-C紫外線を反射する鏡面状の反射面で構成されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 6. At least a part of the inner wall surface of the sterilization chamber is configured with a mirror-like reflective surface that reflects UV-C ultraviolet rays emitted from the annular light source. Circulating air sterilizer.
  15.  前記殺菌室の前記空気流入口の外部及び前記空気流出口の外部に、前記環状光源から放射されるUV-C紫外線を遮蔽して外部へ放射されることを抑止する遮蔽部材がそれぞれ設けられていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 A shielding member is provided outside the air inlet and outside the air outlet of the sterilization chamber to shield UV-C ultraviolet rays emitted from the annular light source and prevent them from being radiated to the outside. The circulating air sterilizer according to claim 4 or 5, characterized in that:
  16.  前記空気流入口の外部に、外部から流入する空気をろ過するエアフィルタが設けられていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein an air filter is provided outside the air inlet to filter air flowing in from the outside.
  17.  前記殺菌室が、前記空気流入口及び前記空気流出口を除いて密閉されていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein the sterilization chamber is sealed except for the air inlet and the air outlet.
  18.  前記光源が、矩形環状の無電極放電ランプであることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilizer according to claim 4 or 5, wherein the light source is a rectangular annular electrodeless discharge lamp.
  19.  前記殺菌室の前記空気流出口の上流に、空気の脱臭機能を有する脱臭用フィルタが設けられていることを特徴とする請求項4又は5に記載の循環型空気殺菌装置。 The circulating air sterilization device according to claim 4 or 5, wherein a deodorizing filter having an air deodorizing function is provided upstream of the air outlet of the sterilization chamber.
PCT/JP2023/016882 2022-05-24 2023-04-28 Circulating air sterilization device WO2023228681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084366 2022-05-24
JP2022084366A JP2023172512A (en) 2022-05-24 2022-05-24 Circulating air sterilizer

Publications (1)

Publication Number Publication Date
WO2023228681A1 true WO2023228681A1 (en) 2023-11-30

Family

ID=88918911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016882 WO2023228681A1 (en) 2022-05-24 2023-04-28 Circulating air sterilization device

Country Status (2)

Country Link
JP (1) JP2023172512A (en)
WO (1) WO2023228681A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262369A (en) * 2002-03-07 2003-09-19 Kyodo Kumiai Hanshin Seimitsu Kogyo Center Air cleaner
JP2009248031A (en) * 2008-04-09 2009-10-29 Daikin Ind Ltd Air cleaning machine
JP2011062639A (en) * 2009-09-17 2011-03-31 Moshi:Kk Ultraviolet irradiation apparatus and the method
JP2012042139A (en) * 2010-08-19 2012-03-01 Fujitsu General Ltd Air cleaner, and control method for the same
JP2012042160A (en) * 2010-08-20 2012-03-01 Fujitsu General Ltd Air cleaner
JP2022071316A (en) * 2020-10-28 2022-05-16 サティスボンバー株式会社 Air cleaning device and opening device
JP2022071336A (en) * 2020-10-28 2022-05-16 稔 浜田 Air cleaning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262369A (en) * 2002-03-07 2003-09-19 Kyodo Kumiai Hanshin Seimitsu Kogyo Center Air cleaner
JP2009248031A (en) * 2008-04-09 2009-10-29 Daikin Ind Ltd Air cleaning machine
JP2011062639A (en) * 2009-09-17 2011-03-31 Moshi:Kk Ultraviolet irradiation apparatus and the method
JP2012042139A (en) * 2010-08-19 2012-03-01 Fujitsu General Ltd Air cleaner, and control method for the same
JP2012042160A (en) * 2010-08-20 2012-03-01 Fujitsu General Ltd Air cleaner
JP2022071316A (en) * 2020-10-28 2022-05-16 サティスボンバー株式会社 Air cleaning device and opening device
JP2022071336A (en) * 2020-10-28 2022-05-16 稔 浜田 Air cleaning device

Also Published As

Publication number Publication date
JP2023172512A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR102215591B1 (en) Air purification sterilizer with ultraviolet reflector
US6328937B1 (en) Apparatus for killing microorganisms
KR102219356B1 (en) Air Cleaner Comprising Ultraviolet Air Sterilizer
KR101676817B1 (en) Radiation type space sterilizer
JP6915921B1 (en) Sterilizer
JP2011183126A (en) Air sterilizing device
KR20200135261A (en) Sterilization apparatus and home appliance including the same
KR101356268B1 (en) Air sterilizer by ultraviolet
JP2022027412A (en) Air sterilizing and virus inactivating apparatus
KR20200031423A (en) Sterilization apparatus and home appliance including the same
WO2023228681A1 (en) Circulating air sterilization device
JP2022134675A (en) Uv sterilizer, and room circulation type uv sterilizer
WO2022014523A1 (en) Air sterilization and virus inactivation device
JPH11104225A (en) Air cleaner
JP5382622B2 (en) Air cleaner
CN114322182A (en) High-efficiency air sterilizing device
KR20200029232A (en) Sterilization apparatus and home appliance including the same
JP3232435U (en) Air purifier
KR102585172B1 (en) Air sterilization device using ultraviolet scattered reflection
JP3245335U (en) Air conditioning disinfection sterilization equipment
US11554193B2 (en) Bioaerosol inactivator UVC antimicrobial reactor
JP7158768B1 (en) UV air sterilizer
JP2023136862A (en) Sterilization device
JP2023536179A (en) Lighting with ventilated germicidal ducts
JP2022160293A (en) Ultraviolet irradiation device, and indoor unit for air conditioner equipped with the ultraviolet irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811559

Country of ref document: EP

Kind code of ref document: A1