WO2023204194A1 - Electromagnetic wave blocking filter - Google Patents

Electromagnetic wave blocking filter Download PDF

Info

Publication number
WO2023204194A1
WO2023204194A1 PCT/JP2023/015392 JP2023015392W WO2023204194A1 WO 2023204194 A1 WO2023204194 A1 WO 2023204194A1 JP 2023015392 W JP2023015392 W JP 2023015392W WO 2023204194 A1 WO2023204194 A1 WO 2023204194A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical inner
ultraviolet
wall
ultraviolet rays
electromagnetic wave
Prior art date
Application number
PCT/JP2023/015392
Other languages
French (fr)
Japanese (ja)
Inventor
裕 道脇
Original Assignee
Next Innovation合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next Innovation合同会社 filed Critical Next Innovation合同会社
Publication of WO2023204194A1 publication Critical patent/WO2023204194A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Abstract

The present invention is characterized by including: a cylindrical inner-wall assembly comprising a plurality of cylindrical inner walls that are parallel and that divide a space on the inner side of a support body; and a low reflectance part that is disposed on the surface of the cylindrical inner walls and that has an electromagnetic wave reflectance of no more than a prescribed amount. The present invention is also characterized in that electromagnetic waves are blocked by the cylindrical inner-wall assembly.

Description

電磁波遮断フィルタElectromagnetic wave blocking filter
 本発明は、電磁波の漏出を防止する電磁波遮断フィルタに関するものである。 The present invention relates to an electromagnetic wave blocking filter that prevents leakage of electromagnetic waves.
 従来、紫外線を用いて空気の除菌(細菌やウイルスを取り除いてその数を減らすこと)を行う空気清浄機が知られており、筐体下部に設けられた吸気開口から吸引室内に取り込んだ空気を清浄化して筐体上面に備える排出開口から排出している(例えば、特許文献1参照)。特許文献1に記載の空気清浄機は、プレフィルタを介してウイルスや細菌、各種汚染物質を含む空気ないしは外気を吸引室内に吸引しており、吸引室内のHEPAフィルタによって各種汚染物質を捕集している。また、吸引室内には、紫外線ランプを配しておりHEPAフィルタを通過した汚染物質のエアロゾルや飛沫核に紫外線を照射して各種汚染物質を分解又は除去等をしている。 Conventionally, air purifiers are known that use ultraviolet light to sterilize the air (remove bacteria and viruses to reduce their number), and the air is taken into the suction chamber through the intake opening provided at the bottom of the housing. is cleaned and discharged from a discharge opening provided on the top surface of the housing (for example, see Patent Document 1). The air purifier described in Patent Document 1 sucks air containing viruses, bacteria, and various pollutants into a suction chamber through a pre-filter, and collects various pollutants using a HEPA filter in the suction chamber. ing. Furthermore, an ultraviolet lamp is installed in the suction chamber, and the aerosol and droplet nuclei of contaminants that have passed through the HEPA filter are irradiated with ultraviolet light to decompose or remove various contaminants.
特開2021-180826号公報Japanese Patent Application Publication No. 2021-180826
 上述した特許文献1に記載された空気清浄機に用いられている紫外線は、強力な殺菌能力を有しているが人体に害を及ぼすものである。そこで紫外線の漏れ対策を十分に行うために、紫外線ランプと排気開口との間に還流板を配置していた。この還流板は、紫外線ランプからの紫外線が排気開口を通過しないような大きさを有するものであるため、空気の流れを遮ってしまうという問題がある。空気の流れを遮ってしまうと、圧力損失が増大し、空気清浄機による各種汚染物質である毒性対象を含んだ空気の吸引及びその毒性対象を減消させた空気の排出を妨げてしまい、結果、毒性対象の減消効率が大幅に低下してしまうという問題がある。また、圧力損失相当分を補うべくファンモータ出力を増大させれば、エネルギ消費量が増大するだけでなく、騒音を発生させこの騒音の低減を図ろうとファン径を大きくすれば全体寸法も大きくなってしまうという不合理が生じるという問題があった。 The ultraviolet rays used in the air cleaner described in Patent Document 1 mentioned above have strong sterilizing ability, but are harmful to the human body. Therefore, in order to take sufficient measures against the leakage of ultraviolet rays, a reflux plate was placed between the ultraviolet lamp and the exhaust opening. This reflux plate has a size that prevents ultraviolet rays from the ultraviolet lamp from passing through the exhaust opening, so there is a problem in that it blocks the flow of air. If the flow of air is obstructed, the pressure loss will increase, which will prevent the air purifier from sucking in air containing toxic substances, which are various pollutants, and discharging air with the toxic substances reduced. However, there is a problem in that the efficiency of reducing toxic targets is significantly reduced. In addition, if the fan motor output is increased to compensate for the pressure loss, not only will energy consumption increase, but if the fan diameter is increased to reduce noise, the overall size will also increase. There was a problem in that an unreasonable situation would arise.
 本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、簡易な構造によって、空気の流動を妨げずまた空気の流速を殆ど低下させることなく、紫外線等の電磁波を遮断し外部に漏れるのを防止するための手段を提供することを目的とする。 The present invention was achieved through intensive research by the inventor in view of the above-mentioned problems, and has a simple structure that eliminates electromagnetic waves such as ultraviolet rays without impeding the flow of air or reducing the air flow velocity. The purpose is to provide a means for blocking and preventing leakage to the outside.
 本発明の電磁波遮断フィルタは、支持体の内側の空間を区分した並行する複数の筒状内壁からなる筒状内壁集合体と、上記筒状内壁の表面に設けられ、電磁波の反射率が所定以下である低反射部と、を有し、上記筒状内壁集合体によって電磁波を遮ることを特徴とする。 The electromagnetic wave blocking filter of the present invention includes a cylindrical inner wall assembly consisting of a plurality of parallel cylindrical inner walls that partition a space inside a support, and a cylindrical inner wall assembly provided on the surface of the cylindrical inner wall, so that the reflectance of electromagnetic waves is below a predetermined value. and a low reflection portion, which is characterized in that the cylindrical inner wall assembly blocks electromagnetic waves.
 また、本発明の電磁波遮断フィルタは、前記筒状内壁集合体が、前記筒状内壁の軸心が前記支持体の軸心に対して傾斜する向きに配されることを特徴とする。 Furthermore, the electromagnetic wave blocking filter of the present invention is characterized in that the cylindrical inner wall assembly is arranged in a direction in which the axial center of the cylindrical inner wall is inclined with respect to the axial center of the support body.
 また、本発明の電磁波遮断フィルタは、前記筒状内壁集合体が、前記支持体に嵌入可能に設けられ、且つ前記筒状内壁が前記支持体の周面に対して傾斜した姿勢で前記支持体に支持されることを特徴とする。 Further, in the electromagnetic wave blocking filter of the present invention, the cylindrical inner wall assembly is provided so as to be able to fit into the support, and the cylindrical inner wall is attached to the support in an inclined attitude with respect to the peripheral surface of the support. It is characterized by being supported by
 また、本発明の電磁波遮断フィルタは、前記支持体が、前記筒状内壁集合体を複数支持することを特徴とする。 Furthermore, the electromagnetic wave blocking filter of the present invention is characterized in that the support body supports a plurality of the cylindrical inner wall aggregates.
 また、本発明の電磁波遮断フィルタは、前記筒状内壁集合体が、複数の前記筒状内壁を軸方向に沿って多段に配することを特徴とする。 Furthermore, the electromagnetic wave blocking filter of the present invention is characterized in that the cylindrical inner wall assembly has a plurality of cylindrical inner walls arranged in multiple stages along the axial direction.
 また、本発明の電磁波遮断フィルタは、前記筒状内壁集合体が、段毎に異なる波長の電磁波を遮ることを特徴とする。 Furthermore, the electromagnetic wave blocking filter of the present invention is characterized in that the cylindrical inner wall aggregate blocks electromagnetic waves of different wavelengths for each stage.
 本発明によれば、空気の流動を妨げず、また空気の流速を殆ど低下させることなく、電磁波を遮断し外部に漏れるのを防止できるという効果を奏する。 According to the present invention, it is possible to block electromagnetic waves and prevent them from leaking to the outside without interfering with the flow of air or reducing the flow velocity of the air.
本発明のユニット挿脱型毒性対象減消装置を示すブロック図である。FIG. 2 is a block diagram showing a unit insertion/removal type toxicity target reduction device of the present invention. 本体及び挿脱ユニットが有する構成要素を示すブロック図である。FIG. 3 is a block diagram showing the constituent elements of the main body and the insertion/removal unit. ユニット挿脱型毒性対象減消装置を示す斜視図である。FIG. 2 is a perspective view showing a unit insertion/removal type toxicity target reduction device. 上端部を外した本体を示す斜視図である。FIG. 3 is a perspective view showing the main body with the upper end removed. 挿脱ユニットを示し、(a)は斜視図、(b)は側面図である。The insertion/removal unit is shown, with (a) being a perspective view and (b) being a side view. 挿脱ユニットを示すA-A断面図である。FIG. 3 is a sectional view taken along line AA showing the insertion/removal unit. 挿脱ユニットを示すB-B断面図である。It is a BB sectional view showing the insertion/removal unit. 挿脱ユニットの下端部材を示す斜視図である。FIG. 3 is a perspective view showing the lower end member of the insertion/removal unit. ユニット挿脱型毒性対象減消装置を示す断面図である。FIG. 2 is a sectional view showing a unit insertion/removal type toxicity target reduction device. 本体に収容される挿脱ユニットを示す図である。FIG. 3 is a diagram showing an insertion/removal unit housed in the main body. 挿脱ユニットの他の構成例を示す図である。It is a figure which shows the other structural example of an insertion/removal unit. 紫外線漏出抑制部の他の例を示す図である。It is a figure which shows another example of an ultraviolet-ray leakage suppression part. 筒状内壁を示す図である。It is a figure showing a cylindrical inner wall. 部分体を示す図である。It is a figure showing a partial body. 配設穴を有する支持体を示す図である。It is a figure which shows the support body which has an arrangement hole. 配設穴に部分体を嵌入させた上端部材を示す図である。It is a figure which shows the upper end member which made the partial body fit into the arrangement hole. 挿脱ユニットを示す斜視図である。It is a perspective view showing an insertion/removal unit. 傾斜させた姿勢で部分体を嵌入させた支持体の断面図である。FIG. 3 is a sectional view of a support into which a partial body is fitted in an inclined position. 筒状内壁への紫外線の入射を示す図である。It is a figure showing the incidence of ultraviolet rays on a cylindrical inner wall. 筒状内壁への紫外線の入射を示す図である。It is a figure showing the incidence of ultraviolet rays on a cylindrical inner wall. 拡大した部分体を示す断面図である。FIG. 3 is a cross-sectional view showing an enlarged partial body. 多段に並べた部分体を含む支持体の例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a support body including partial bodies arranged in multiple stages. 多層に形成した低反射部を示す断面図である。FIG. 3 is a cross-sectional view showing a low reflection section formed in multiple layers.
 以下に、本発明の電磁波遮断フィルタを具えるユニット挿脱型毒性対象減消装置の実施形態について図を参照して説明する。図1はユニット挿脱型毒性対象減消装置1の構成要素を示すブロック図である。ユニット挿脱型毒性対象減消装置1は、筐体を成す本体と、本体内部に挿脱可能に構成される挿脱ユニットとを具えて構成される。またユニット挿脱型毒性対象減消装置1は、流体を吸込み、流体に含まれる毒性対象を内部で減消(例えば、分解、破壊、不活化、滅菌(細菌やウイルスを完全に死滅させること)等)させて当該流体を排出する機能を有する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, embodiments of a removable unit type toxicity target reduction device including an electromagnetic wave blocking filter of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the components of a removable unit type toxicity target reduction device 1. As shown in FIG. The unit insertion/removal type toxicity target reduction device 1 includes a main body forming a casing and an insertion/removal unit configured to be insertable into and removed from the inside of the main body. In addition, the removable unit type toxic substance reduction device 1 sucks fluid and internally reduces the toxic substances contained in the fluid (for example, decomposes, destroys, inactivates, and sterilizes (completely kills bacteria and viruses) etc.) and discharges the fluid.
 具体的にユニット挿脱型毒性対象減消装置1は、本体20に着脱可能に収容される挿脱ユニット2の他、毒性対象を減消させる減消手段であって紫外線を照射する紫外線光源4、紫外線を反射させる紫外線反射部6、紫外線の漏出を抑制する紫外線漏出抑制部(電磁波遮断フィルタ)8、流体の流動を発生させる流動発生部10、流体中に含まれる異物を捕集する捕集部12、電源ユニット14、流体を流入させる際の吸入口22、流体を排出する際の吹出口24等の機能性構成要素を有して構成される。
 即ち、ユニット挿脱型毒性対象減消装置1は、上記各機能性構成要素を、挿脱ユニット2及び本体20の何れかに対して適宜配置し、総合的に必要な機能を有するように構成していればよい。
Specifically, the unit insertion/removal type toxic target reduction device 1 includes, in addition to an insertion/removal unit 2 detachably housed in a main body 20, an ultraviolet light source 4 that is a reduction means for reducing toxic targets and irradiates ultraviolet rays. , an ultraviolet reflection section 6 that reflects ultraviolet rays, an ultraviolet leakage suppression section (electromagnetic wave blocking filter) 8 that suppresses leakage of ultraviolet rays, a flow generation section 10 that generates fluid flow, and a collection section that collects foreign matter contained in the fluid. 12, a power supply unit 14, an inlet 22 for fluid inflow, an outlet 24 for fluid discharge, and other functional components.
That is, the unit insertion/removal type toxicity target reduction device 1 is configured such that each of the functional components described above is appropriately arranged in either the insertion/removal unit 2 or the main body 20, and has the necessary functions comprehensively. All you have to do is do it.
 ここで、機能性構成要素は、挿脱ユニット2に所属させるメリットが大きい交換性構成要素と、挿脱ユニット2に所属させるメリットが少ない非交換性構成要素とに分類し得る。交換性構成要素とは、挿脱ユニット2に所属させていることで、挿脱ユニット2の交換と共に交換されたとき作業効率の向上や作業時間の短縮等、メンテンナンス性の大きな向上が期待される部品(構成要素)のことを示す。非交換性構成要素は、挿脱ユニット2に所属させることが可能であるが、メンテナンス性の大きな向上が見込めない部品(構成要素)のことを示す。交換性構成要素は、紫外線光源4、紫外線反射部6、紫外線漏出抑制部8、捕集部12等があり得、非交換性構成要素は、流動発生部10、電源ユニット14、吸入口22、吹出口24等があり得る。例えば、電源ユニット14は、挿脱ユニット2に所属させ得るものの、本体側に交換可能に配置する構成にしてもよく、何れの場合でもメンテナンス性では殆ど優劣が無く、このような構成要素については非交換性構成要素に分類する。 Here, the functional components can be classified into replaceable components, which have a great advantage of belonging to the insertion/removal unit 2, and non-replaceable components, which have little merit of belonging to the insertion/removal unit 2. Replaceable components are assigned to the insertion/removal unit 2, and when replaced together with the insertion/removal unit 2, it is expected that maintenance efficiency will be greatly improved, such as improving work efficiency and shortening work time. Indicates a part (component). A non-replaceable component refers to a component (component) that can be attached to the insertion/removal unit 2 but is not expected to significantly improve maintainability. The replaceable components may include the ultraviolet light source 4, the ultraviolet reflection section 6, the ultraviolet leakage suppression section 8, the collection section 12, etc., and the non-exchangeable components include the flow generation section 10, the power supply unit 14, the inlet 22, There may be an air outlet 24 or the like. For example, the power supply unit 14 can be attached to the insertion/removal unit 2, but it can also be arranged in a replaceable manner on the main body side.In either case, there is almost no difference in maintainability, and such components are Classify as non-commutative components.
 ここで流体とは、気体、液体、ゲル状体、スラリー状体、粉体等を含む概念である。毒性対象とは、細菌やウイルス等の病原微生物の他、有害分子を含んだホルムアルデヒドや亜硫酸ガス、亜硝酸ガス、臭気成分、揮発性有機化合物(VOC:Volatile Organic Compounds)や全有機炭素(TOC:Total Organic Carbon)等を含むものであって少なくとも人体や環境に対して毒性を有し或いは有害とされ、流体と共に移動する対象物である。 Here, the term "fluid" is a concept that includes gas, liquid, gel-like material, slurry-like material, powder, and the like. Toxic targets include pathogenic microorganisms such as bacteria and viruses, formaldehyde, sulfur dioxide gas, nitrite gas, odor components, volatile organic compounds (VOC), and total organic carbon (TOC) that contain harmful molecules. It is an object that is considered to be toxic or harmful to at least the human body and the environment, and moves with the fluid.
 挿脱ユニット2は、上記の構成要素の内、少なくとも紫外線光源4を有して構成される。従って、挿脱ユニット2が紫外線光源4のみを有するとき、他の構成要素は、図2(a)に示すように、本体20側に配設される。即ち、本体20は、紫外線反射部6、紫外線漏出抑制部8、流動発生部10、捕集部12、電源ユニット14、吸入口22、吹出口24等が配されるように構成される。 The insertion/removal unit 2 is configured to include at least an ultraviolet light source 4 among the above components. Therefore, when the insertion/removal unit 2 has only the ultraviolet light source 4, the other components are arranged on the main body 20 side, as shown in FIG. 2(a). That is, the main body 20 is configured such that the ultraviolet reflecting section 6, the ultraviolet leakage suppressing section 8, the flow generating section 10, the collecting section 12, the power supply unit 14, the inlet 22, the outlet 24, etc. are arranged.
 また、挿脱ユニット2が紫外線光源4と紫外線反射部6とを有するとき、図2(b)に示すように、本体20は、紫外線漏出抑制部8、波動発生部10、捕集部12、電源ユニット14、吸入口22、吹出口24等を配するように構成される。 Moreover, when the insertion/removal unit 2 has the ultraviolet light source 4 and the ultraviolet reflection part 6, as shown in FIG. It is configured to include a power supply unit 14, an inlet 22, an outlet 24, and the like.
 また、挿脱ユニット2が紫外線光源4、紫外線反射部6、流動発生部10、電源ユニット14を有するとき、本体20は、図2(c)に示すように、紫外線漏出抑制部8、捕集部12、吸入口22、吹出口24等を配するように構成される。勿論、挿脱ユニット2は、上記の構成に限定されるものでは無く、適宜設定し得る。 Further, when the insertion/removal unit 2 includes the ultraviolet light source 4, the ultraviolet reflection section 6, the flow generation section 10, and the power supply unit 14, the main body 20 includes the ultraviolet leakage suppression section 8, the ultraviolet collection 12, an inlet 22, an outlet 24, and the like. Of course, the insertion/removal unit 2 is not limited to the above configuration, and may be configured as appropriate.
 紫外線光源4は、例えば、殺菌灯、紫外線ランプ、紫外線LED等であって、装置内における流体の流動経路に紫外線を照射し得るように配される。また紫外線光源4の形状は、例えば直管形状、U字管形状、螺旋形状、球形状、バルーン形状等、適宜設定し得る。また紫外線光源4は、複数配置してもよく、少なくとも、装置内に流入してきた毒性対象に紫外線を照射可能であれば、配置箇所や配置数は適宜設定し得る。 The ultraviolet light source 4 is, for example, a germicidal lamp, an ultraviolet lamp, an ultraviolet LED, or the like, and is arranged so as to irradiate the flow path of the fluid within the device with ultraviolet light. Further, the shape of the ultraviolet light source 4 can be appropriately set, for example, a straight tube shape, a U-shaped tube shape, a spiral shape, a spherical shape, a balloon shape, etc. Further, a plurality of ultraviolet light sources 4 may be arranged, and the location and number of the ultraviolet light sources 4 may be set as appropriate as long as they can irradiate at least the toxic object that has entered the apparatus with ultraviolet rays.
 紫外線光源4は、ターゲットである毒性対象の分解、不活化、消毒、除菌、殺菌、滅菌等の減消が可能な波長の紫外線を放射する。このような紫外線の波長は、200~300nmであることが好ましく、250~270nm近傍に設定することがより望ましい。勿論、紫外線は、少なくとも毒性対象を減消させ得るものであれば波長が250nm未満の近紫外線(UV-C)、遠紫外線(波長10~200nm)、極端紫外線(波長10~121nm)等であってもよい。また、波長が300nmを超える近紫外線(UV-A、UV-B)であってもよい。また、相異なる波長領域の紫外線光源4を組み合わせて使用するようにしてもよい。 The ultraviolet light source 4 emits ultraviolet rays with a wavelength capable of decomposing, inactivating, disinfecting, sterilizing, sterilizing, etc. the toxic substance that is the target. The wavelength of such ultraviolet rays is preferably set to 200 to 300 nm, and more preferably set to around 250 to 270 nm. Of course, ultraviolet rays include near ultraviolet rays (UV-C) with wavelengths less than 250 nm, far ultraviolet rays (wavelengths 10 to 200 nm), extreme ultraviolet rays (wavelengths 10 to 121 nm), etc., as long as they can at least reduce the toxicity. It's okay. Further, near ultraviolet light (UV-A, UV-B) having a wavelength exceeding 300 nm may be used. Further, ultraviolet light sources 4 having different wavelength ranges may be used in combination.
 紫外線反射部6は、紫外線光源4に対向するように配置される面状の部材であって、表面に紫外線反射層を有して構成される。紫外線反射層は、紫外線を高次に繰り返し反射させ得る紫外線反射性材料によって成る。紫外線反射性材料は、拡散透過率が1%/1mm以上20%/1mm以下であり、且つ紫外線領域における全反射率が60%/1mm以上99.9%/1mm以下であって、拡散透過率と紫外線領域における全反射率との和は90%/1mm以上であることが好ましい。このような紫外線反射性材料としては、銀材、アルミニウム材、ポリテトラフルオロエチレン(polytetrafluoroethylene PTFE)、シリコン樹脂、内部に0.05μm以上10μm以下の気泡を含む石英ガラス、内部に0.05μm以上10μm以下の結晶粒を含む部分結晶化石英ガラス、0.05μm以上10μm以下の結晶粒状のアルミナ焼結体、及び0.05μm以上10μm以下の結晶粒状のムライト焼結体、炭酸マグネシウムやバリウム等のうちの少なくともいずれか一つを含むもの等が有り得る。 The ultraviolet reflection section 6 is a planar member disposed to face the ultraviolet light source 4, and has an ultraviolet reflection layer on its surface. The ultraviolet reflective layer is made of an ultraviolet reflective material that can repeatedly reflect ultraviolet rays at a high level. The ultraviolet reflective material has a diffuse transmittance of 1%/1 mm or more and 20%/1 mm or less, and a total reflectance in the ultraviolet region of 60%/1 mm or more and 99.9%/1 mm or less, and has a diffuse transmittance. The sum of total reflectance in the ultraviolet region is preferably 90%/1 mm or more. Examples of such ultraviolet reflective materials include silver materials, aluminum materials, polytetrafluoroethylene PTFE, silicone resin, quartz glass containing air bubbles of 0.05 μm to 10 μm inside, and quartz glass containing bubbles of 0.05 μm to 10 μm inside. Partially crystallized quartz glass containing the following crystal grains, alumina sintered bodies with crystal grains of 0.05 μm or more and 10 μm or less, mullite sintered bodies with crystal grains of 0.05 μm or more and 10 μm or less, magnesium carbonate, barium, etc. There may be one containing at least one of the following.
 また、紫外線反射部6は、金属(銀、アルミニウム、ニッケル、銅等)等の適宜の母材表面に蒸着やスパッタリング等によって紫外線反射性材料を付着させて形成することができ、流体の流動経路上で紫外線光源4の紫外線を反射させるように配する。
 また、紫外線反射部6に銀材、アルミニウム材を用いる場合、表面の酸化や硫化を防止する為、コーティングとして機能する保護層を表面に施してもよい。この場合の保護層には、紫外線の反射率を極力低下させない素材、例えばアクリル樹脂、石英ガラス、PTFE等を用いることが出来る。尚、PTFEで保護層を形成する方法には、蒸着やスパッタリング等が有り得る。
Further, the ultraviolet reflecting part 6 can be formed by attaching an ultraviolet reflective material to the surface of an appropriate base material such as metal (silver, aluminum, nickel, copper, etc.) by vapor deposition, sputtering, etc., and includes a fluid flow path. It is arranged so that the ultraviolet rays from the ultraviolet light source 4 are reflected at the top.
Further, when a silver material or an aluminum material is used for the ultraviolet reflecting portion 6, a protective layer functioning as a coating may be applied to the surface in order to prevent surface oxidation and sulfidation. In this case, the protective layer can be made of a material that does not reduce the reflectance of ultraviolet rays as much as possible, such as acrylic resin, quartz glass, PTFE, or the like. Note that methods for forming the protective layer with PTFE include vapor deposition, sputtering, and the like.
 また、紫外線反射部6は、薄膜を多層化させて形成するようにしてもよい。例えば、金属の薄膜、金属等を主成分とする合金の薄膜、酸化物(例えば、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム等)の膜等を重ねて多層化させることで紫外線反射部11を形成することが出来る。なお一層当たりの膜の厚みは、例えば、紫外線の波長の1/4の整数倍(即ち、波長の1/4の奇数倍又は偶数倍)等に設定する。具体的に反射させる主な紫外線の波長を253.7(nm)と設定した場合、1層の厚みを63.4(nm)や、126.8(nm)、190.3(nm)等とすることができる。勿論、一層当たりの膜厚は、適宜設定可能であり、厚みが数10μm程度の所謂厚膜であってもよく、数μm程度の所謂薄膜であってもよく、数nm以下の所謂超薄膜であってもよい。また、多層膜を形成するに当たっては、母材表面を予め鏡面状態としつつ、屈折率及び/又は誘電率の異なる層を交互に形成するものであってもよい。 Furthermore, the ultraviolet reflecting section 6 may be formed by forming multiple layers of thin films. For example, by stacking a thin film of metal, a thin film of an alloy whose main component is metal, a film of oxide (for example, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, etc.) to form a multilayer structure, the ultraviolet reflecting portion 11 can be formed. The thickness of the film per layer is set, for example, to an integral multiple of 1/4 of the wavelength of ultraviolet rays (that is, an odd or even multiple of 1/4 of the wavelength). Specifically, if the wavelength of the main ultraviolet rays to be reflected is set to 253.7 (nm), the thickness of one layer may be 63.4 (nm), 126.8 (nm), 190.3 (nm), etc. can do. Of course, the film thickness per layer can be set as appropriate, and may be a so-called thick film with a thickness of several tens of micrometers, a so-called thin film with a thickness of several micrometers, or a so-called ultra-thin film with a thickness of several nanometers or less. There may be. Further, when forming a multilayer film, layers having different refractive indexes and/or dielectric constants may be formed alternately while the base material surface is previously made into a mirror-like state.
 紫外線漏出抑制部8は、流体が通過し得る隙間を確保しつつ、光の通過を抑制する構造を有する。例えば、紫外線の通過を制限するように、複数の羽板を並べて成るルーバや、ハニカムによって遮光する構造等によって構成することができる。紫外線漏出抑制部8の配置は、適宜設定し得、例えば本装置における流体の吸入口や吹出口等としてもよく、装置内部であってもよい。また紫外線漏出抑制部8は、複数配してもよいことは言うまでもない。 The ultraviolet leakage suppressing section 8 has a structure that suppresses the passage of light while ensuring a gap through which fluid can pass. For example, it can be constructed with a louver made of a plurality of blades arranged side by side, a honeycomb structure that blocks light, etc. so as to restrict the passage of ultraviolet rays. The arrangement of the ultraviolet leakage suppressing section 8 can be set as appropriate, and may be placed, for example, at a fluid inlet or outlet in the device, or inside the device. Further, it goes without saying that a plurality of ultraviolet leakage suppressing parts 8 may be arranged.
 流動発生部10は、一つ以上のファン及び一つ以上のモータ等を有して成る。流動発生部10のファンの種類、形状等は、特に限定されるものでは無く、例えば、軸流ファン(プロペラファン)、斜流ファン、遠心ファン(多翼ファン、シロッコファン、ラジアルファン、プレートファン、ターボファン、リミットロードファン、エアフォイルファン等)、遠心軸流ファン、渦流ファン、横断流ファン(クロスフローファン等)等が有り得る。 The flow generator 10 includes one or more fans, one or more motors, and the like. The type, shape, etc. of the fan of the flow generating section 10 are not particularly limited, and examples thereof include an axial fan (propeller fan), a mixed flow fan, a centrifugal fan (multi-blade fan, sirocco fan, radial fan, and plate fan). , turbo fan, limit load fan, airfoil fan, etc.), centrifugal axial fan, vortex fan, cross flow fan (cross flow fan, etc.), etc.
 捕集部12は、流体中の異物が装置内部に侵入するのを防止するために、装置における流体の吸入口やその近傍に配設される。また、捕集部12は、目詰まりしたときに交換し得るように取り外し可能に配する。 The collection unit 12 is disposed at or near the fluid intake port of the device in order to prevent foreign matter in the fluid from entering the device. Further, the collection section 12 is arranged to be removable so that it can be replaced when it becomes clogged.
 電源ユニット14は、単三型電池や単四型電池等の一次電池、リチウムイオン電池のような充電可能な二次電池等が有り得、また商用の電力系統からの外部電力を各部に供給するための回路基板等を含んでいてもよい。 The power supply unit 14 can be a primary battery such as an AA battery or a AAA battery, or a rechargeable secondary battery such as a lithium ion battery, and is used to supply external power from a commercial power system to each part. It may also include a circuit board, etc.
 本体20は、箱形状、多面体形状、錐形状、錐台形状、柱(円柱、角柱等)形状等の形状があり得、前面、背面、側面、天面及び/又は底面を開閉可能とし、挿脱ユニット2を挿脱可能に構成される。また、本体20には、流体が流入し得る吸入口22と、流体が排出し得る吹出口24を有する。
 また、本体20には、挿脱ユニット2、紫外線光源4、紫外線反射部6、紫外線漏出抑制部8、流動発生部10、捕集部12、電源ユニット14等を配するための内部空間が形成される。更に本体20の内部空間は、吸入口22と吹出口24との間で流体が通過する流動経路としても機能する。
The main body 20 can have a box shape, a polyhedral shape, a pyramid shape, a frustum shape, a columnar shape (cylindrical column, prismatic column, etc.), etc., and can be opened and closed on the front, back, side, top, and/or bottom, and can be inserted. The detachable unit 2 is configured to be insertable and detachable. The main body 20 also has an inlet 22 through which fluid can flow, and an outlet 24 through which fluid can be discharged.
The main body 20 also has an internal space in which the insertion/removal unit 2, ultraviolet light source 4, ultraviolet reflection section 6, ultraviolet leakage suppression section 8, flow generation section 10, collection section 12, power supply unit 14, etc. are arranged. be done. Furthermore, the internal space of the main body 20 also functions as a flow path through which fluid passes between the inlet 22 and the outlet 24.
 次に、室内に設置され、空気中の毒性対象を減消させる本発明のユニット挿脱型毒性対象減消装置の一例について、図3のユニット挿脱型毒性対象減消装置1を示す斜視図を参照して説明する。本体20は、略円筒形状を有し、一端の端面に吸入口22、他端部近傍の外周面に吹出口24を具える。
 なお、本体20の形状は、これに限定されるものではなく、また、吸入口22及び吹出口24の位置もこれに限定されるものではなく、吸入口22を下部に、吹出口24を上端面としてもよい等、適宜設定し得る。
Next, regarding an example of the unit removable type toxic target reducing device of the present invention which is installed indoors and reduces toxic targets in the air, a perspective view showing the unit insertable and removable type toxic target reducing device 1 of FIG. Explain with reference to. The main body 20 has a substantially cylindrical shape, and includes an inlet 22 on one end surface and an outlet 24 on the outer peripheral surface near the other end.
Note that the shape of the main body 20 is not limited to this, and the positions of the inlet 22 and outlet 24 are also not limited to this, with the inlet 22 at the bottom and the outlet 24 at the top. It can be set as appropriate, such as being an end face.
 本体20における吸入口22及び吹出口24の位置は、吸入口22を上方に向け、吹出口24が下部に位置するように設定する。また、本体20の上部は、上端部26が分離可能に設けられる。また吸入口22は上端部26に形成されているものとする。
 本体20は、図4に示すように上端部26を分離させたとき、挿脱ユニット2を収容するための内部空間28が露出する。また内部空間28を画定する本体20は、内周面に挿脱ユニット2の保持体40の嵌合部42(後述する)を嵌合させ、挿脱ユニット2の挿入を案内する被嵌合部30を配設する。被嵌合部30は、本体20の内周面を窪ませた断面凹形状であって軸方向に延びるように形成される。
The positions of the inlet 22 and the outlet 24 in the main body 20 are set so that the inlet 22 faces upward and the outlet 24 is located at the bottom. Moreover, the upper end portion 26 of the main body 20 is provided in a separable manner. Further, it is assumed that the suction port 22 is formed at the upper end portion 26.
When the upper end portion 26 of the main body 20 is separated as shown in FIG. 4, an internal space 28 for accommodating the insertion/removal unit 2 is exposed. Further, the main body 20 defining the internal space 28 has a fitting portion 42 (described later) of a holder 40 of the insertion/removal unit 2 fitted on the inner peripheral surface thereof, and a fitted portion that guides insertion of the insertion/removal unit 2. 30 will be installed. The fitted portion 30 has a concave cross section by recessing the inner peripheral surface of the main body 20, and is formed to extend in the axial direction.
 ここで、図5は挿脱ユニット2を示し、(a)は斜視図、(b)は側面図、図6は挿脱ユニット2を示すA-A断面図、図7は挿脱ユニット2を示すB-B断面図である。挿脱ユニット2は、紫外線光源4、紫外線反射部6、紫外線漏出抑制部8を具える。即ち、挿脱ユニット2は、直管形状の紫外線光源4を保持可能なフレーム構造を具えた保持体40を有する。 Here, FIG. 5 shows the insertion/removal unit 2, (a) is a perspective view, (b) is a side view, FIG. 6 is an AA sectional view showing the insertion/removal unit 2, and FIG. 7 is a perspective view of the insertion/removal unit 2. It is a BB sectional view shown. The insertion/removal unit 2 includes an ultraviolet light source 4, an ultraviolet reflection section 6, and an ultraviolet leakage suppressing section 8. That is, the insertion/removal unit 2 has a holder 40 having a frame structure capable of holding the ultraviolet light source 4 in the shape of a straight tube.
 保持体40は、両端を開口させた略円筒形状であって、上端部(一端部)に紫外線漏出抑制部8を形成した上端部材44が分離可能に固定される。なお上端部材44の表面には、把持部44aが形成される。把持部44aは、本体20から上端部26を分離させたとき把持可能に露出する。従って、保持体40は、把持部44aの把持により持ち上がり得、本体20から引き出すことができる。
 保持体40の下部(他端部)には、紫外線光源4を支持し得、且つ紫外線光源4と電源ユニット14とを通電可能に接続するための接点端子等を具えた下端部材46が形成される。
The holder 40 has a substantially cylindrical shape with both ends open, and an upper end member 44 having an ultraviolet leakage suppressing portion 8 formed at the upper end (one end) is separably fixed. Note that a grip portion 44a is formed on the surface of the upper end member 44. The grip portion 44a is exposed so that it can be gripped when the upper end portion 26 is separated from the main body 20. Therefore, the holding body 40 can be lifted up by gripping the gripping portion 44a and can be pulled out from the main body 20.
A lower end member 46 is formed at the lower part (the other end) of the holder 40 and is capable of supporting the ultraviolet light source 4 and is provided with a contact terminal and the like for connecting the ultraviolet light source 4 and the power supply unit 14 in a energized manner. Ru.
 保持体40は、内周面に紫外線反射部6が形成され、該紫外線反射部6によって内側に配される紫外線光源4を囲繞する。図7に示すように、保持体40は、軸直交方向断面の中央部に複数(四本)の紫外線光源4を並列させて配する。従って保持体40の内部空間では、紫外線光源4から略軸直交方向に照射された紫外線が紫外線反射部6によって高次に反射する。これにより保持体40の内部空間には、高線量の紫外線空間が形成される。
 保持体40の外周面には、径方向外側に突出して軸方向に延在する嵌合部42が配される。
The holder 40 has an ultraviolet reflecting section 6 formed on its inner peripheral surface, and the ultraviolet reflecting section 6 surrounds the ultraviolet light source 4 arranged inside. As shown in FIG. 7, the holder 40 has a plurality of (four) ultraviolet light sources 4 arranged in parallel at the center of the cross section in the axis orthogonal direction. Therefore, in the internal space of the holder 40, ultraviolet rays emitted from the ultraviolet light source 4 in a direction substantially perpendicular to the axis are reflected at a high level by the ultraviolet reflecting section 6. As a result, a space with a high dose of ultraviolet light is formed in the internal space of the holder 40.
A fitting portion 42 that protrudes radially outward and extends in the axial direction is disposed on the outer circumferential surface of the holding body 40 .
 上端部材44の一部である紫外線漏出抑制部8は、互いの羽根の向きを異ならせたルーバ8a、8bを保持体40の軸方向に重ねて配設する。ルーバ8a、8bは、一方のルーバ8aを通過可能な紫外線の向きと、他方のルーバ8bを通過可能な紫外線の向きとが異なるように互いの羽根の向きを異なるように配設される。これによってルーバ8a、8b間では、空気の流動が可能となる一方で紫外線の通過が抑制される。 The ultraviolet leakage suppressing part 8, which is a part of the upper end member 44, has louvers 8a and 8b with blades oriented in different directions, and is arranged in an overlapping manner in the axial direction of the holder 40. The louvers 8a and 8b are arranged so that the directions of their blades are different from each other so that the direction of ultraviolet light that can pass through one louver 8a is different from the direction of ultraviolet light that can pass through the other louver 8b. This allows air to flow between the louvers 8a and 8b, while suppressing the passage of ultraviolet rays.
 下端部材46は、図8に示すように、通気性を維持するように開口を有する。また下端部材46は、紫外線光源4を保持する接続用のランプソケット(不図示)、ランプソケットの端子に接続されている接点端子48等を有する。接点端子48は、本体20の下端部と対向する面に露出し、本体20に挿脱ユニット2を挿嵌させたとき後述する電源ユニット14に接続し得る。なお接点端子48は、適宜形状があり得、例えば板バネ形状とすることで、本体20側に配される端子を常時付勢するように接触させてもよい。なお、下端部材46の開口に紫外線漏出抑制部を設けてもよい。このようにすれば、保持体40の両端から紫外線が漏れることを抑制することができる。 As shown in FIG. 8, the lower end member 46 has an opening to maintain breathability. The lower end member 46 also includes a connection lamp socket (not shown) that holds the ultraviolet light source 4, a contact terminal 48 connected to a terminal of the lamp socket, and the like. The contact terminal 48 is exposed on the surface facing the lower end of the main body 20, and can be connected to the power supply unit 14, which will be described later, when the insertion/removal unit 2 is inserted into the main body 20. Note that the contact terminal 48 may have an appropriate shape, and may be in the shape of a leaf spring, for example, so that the contact terminal 48 is brought into contact with the terminal disposed on the main body 20 side so as to be constantly biased. Note that an ultraviolet leakage suppressing portion may be provided in the opening of the lower end member 46. In this way, leakage of ultraviolet rays from both ends of the holder 40 can be suppressed.
 図9は、ユニット挿脱型毒性対象減消装置1を示す断面図であり、本体20の内側であって挿脱ユニット2の下方には流動発生部10、電源ユニット14が配され、挿脱ユニット2の上方には捕集部12が配される。具体的に下端部材46の下方に流動発生部10のファンを配し、流動発生部10の更に下方に電源ユニット14が配される。 FIG. 9 is a cross-sectional view showing the unit insertion/removal type toxicity target reduction device 1. Inside the main body 20 and below the insertion/removal unit 2, a flow generating section 10 and a power supply unit 14 are arranged. A collection section 12 is arranged above the unit 2. Specifically, the fan of the flow generating section 10 is disposed below the lower end member 46, and the power supply unit 14 is disposed further below the flow generating section 10.
 なお、流動発生部10及び電源ユニット14の位置を挿脱ユニット2の上方としてもよいが、ユニット挿脱型毒性対象減消装置1が縦長形状で立設させる場合、流動発生部10及び/又は電源ユニット14を底部側に位置させて、重心の位置が装置下部となるように設定し、姿勢の安定性を向上させることが望ましい。 Note that the flow generation section 10 and the power supply unit 14 may be positioned above the insertion/removal unit 2, but if the unit insertion/removal type toxicity target reduction device 1 is installed vertically, the flow generation section 10 and/or It is desirable to locate the power supply unit 14 on the bottom side and set the center of gravity at the bottom of the device to improve the stability of the posture.
 捕集部12は、空気中の塵埃を捕集するので、例えば、主に50μm以上の粒子を捕集する粗塵用フィルタ、主に25μm以上の粒子を捕集する中高性能フィルタ(MEPAフィルタ)、0.3μmの粒子を捕集するHEPAフィルタ、0.15μmの粒子を捕集するULPAフィルタ等があり得る。 The collection unit 12 collects dust in the air, so for example, a coarse dust filter that mainly collects particles of 50 μm or more, a medium-high performance filter (MEPA filter) that mainly collects particles of 25 μm or more, etc. , a HEPA filter that collects particles of 0.3 μm, and a ULPA filter that collects particles of 0.15 μm.
 また、捕集部12は、上端部26の裏側に固定されるが、これに限定するものではなく、保持体40内に異物が侵入するのを防止し得る箇所に配置すればよく、例えば、上端部材44上に載置されるものであってもよい。 Furthermore, although the collecting portion 12 is fixed to the back side of the upper end portion 26, the present invention is not limited thereto, and it may be placed at a location where foreign matter can be prevented from entering the holding body 40, for example, It may be placed on the upper end member 44.
 ユニット挿脱型毒性対象減消装置1は、流動発生部30のファン30aが回転したとき、吸入口22を介して外気が挿脱ユニット2内部に流入し、吹出口24に向かって流下して排出されるように、流動経路に沿った流動が発生する。また、紫外線光源4から照射される紫外線が紫外線反射部6によって保持体40内で複数回反射(高次に反射)し、極めて高線量の紫外線領域を作出する。従って、挿脱ユニット2の内部を流下する空気中の毒性対象は、高線量の紫外線に曝されて減消する。 In the removable unit type toxicity target reduction device 1, when the fan 30a of the flow generator 30 rotates, outside air flows into the removable unit 2 through the suction port 22 and flows down toward the air outlet 24. Flow along the flow path occurs so that it can be discharged. Moreover, the ultraviolet rays irradiated from the ultraviolet light source 4 are reflected multiple times (high order reflection) within the holder 40 by the ultraviolet reflection section 6, creating an extremely high dose ultraviolet radiation region. Therefore, toxic substances in the air flowing down inside the insertion/removal unit 2 are exposed to high doses of ultraviolet rays and are reduced.
 ここで、図10は、本体20に収容される挿脱ユニット2を示す図である。ユニット挿脱型毒性対象減消装置1における挿脱ユニット2の挿着は、本体20の内部を開放した状態で行う。即ち、本体20の上端部26を取り外して挿脱ユニット2を収容可能に内側の収容空間が開放する。 Here, FIG. 10 is a diagram showing the insertion/removal unit 2 housed in the main body 20. The insertion/removal unit 2 in the unit insertion/removal type toxicity target reduction device 1 is performed with the interior of the main body 20 open. That is, by removing the upper end portion 26 of the main body 20, the inner accommodation space is opened so that the insertion/removal unit 2 can be accommodated.
 挿脱ユニット2は、本体20内に挿入される。即ち、挿脱ユニット2は、保持体40の嵌合部42が被嵌合部30に嵌合するように、本体20に対して位置合わせを行い、図8(a)に示す矢印に沿って上方から本体20内に挿入される。 The insertion/removal unit 2 is inserted into the main body 20. That is, the insertion/removal unit 2 is aligned with the main body 20 so that the fitting part 42 of the holder 40 fits into the fitted part 30, and is moved along the arrow shown in FIG. 8(a). It is inserted into the main body 20 from above.
 挿脱ユニット2は、嵌合部42を被嵌合部30に挿嵌させて本体20の最奥までスライド移動したとき、図10(b)に示すように本体20に収容される。挿脱ユニット2収容後、本体20に上端部26を取り付けて挿脱ユニット2の挿着が完了する。 The insertion/removal unit 2 is housed in the main body 20 as shown in FIG. 10(b) when the fitting part 42 is inserted into the fitted part 30 and slid to the innermost part of the main body 20. After the insertion/removal unit 2 is accommodated, the upper end portion 26 is attached to the main body 20 to complete the insertion/removal unit 2.
 また、挿脱ユニット2の取り外しは、上端部26を本体20から分離させる。これにより、挿脱ユニット2の上方が開放される。従って、挿脱ユニット2の把持部44aを掴んで持ち上げることで、挿脱ユニット2を本体20から抜脱させて、挿脱ユニット2の本体20からの取り外しが完了する。 Furthermore, when the insertion/removal unit 2 is removed, the upper end portion 26 is separated from the main body 20. As a result, the upper part of the insertion/removal unit 2 is opened. Therefore, by grasping and lifting the grip portion 44a of the insertion/removal unit 2, the insertion/removal unit 2 is removed from the main body 20, and the removal of the insertion/removal unit 2 from the main body 20 is completed.
 以上、説明したように、紫外線光源等を含んだ挿脱ユニット2を本体20に対して挿脱可能に構成したことで、紫外線光源等の保守・保全作業を行う場合に、既設の挿脱ユニットを取り外して新たな挿脱ユニットを挿着する等の処理で作業を完了させることができる。即ち、挿脱ユニットの交換である単純なメンテナンス作業で保守、保全作業が完了するので、作業時間の著しい短縮と、作業効率の飛躍的な向上を実現し、作業の容易性、安定性を著しく向上させることができる。 As explained above, by configuring the insertion/removal unit 2 including the ultraviolet light source etc. to be removable from the main body 20, it is possible to use the existing insertion/removal unit when performing maintenance work on the ultraviolet light source etc. The work can be completed by removing the unit and inserting a new insertion/removal unit. In other words, maintenance and maintenance work can be completed by simply replacing the insertion/removal unit, resulting in a significant reduction in work time and a dramatic improvement in work efficiency, significantly improving the ease and stability of work. can be improved.
 なお、吸入口22は、少なくとも本体20の上方及びその周辺の空気を吸込み可能であれば、その開口形状や形態が限定されるものではない。また、広域から空気を吸込み可能に開口を拡開させた吸入口を設けてもよい。また、単方位から空気を吸引するノズルを設けてもよく、ノズル形状や流動方向に沿って狭まるように吸入口22の形状を設定して吸込んだ空気を装置内部で噴流として流体の流動経路内で流下させてもよい。勿論、流体の流動方向に沿って流路の断面積が拡がるノズルや吸入口を設けて吸込んだ流体の流速を低下させるようにしてもよい。また吸入口22にその開口を開閉可能とするシャッタや蓋等の開閉体を設け、吸入口22を所望の開口量に調整可能に構成してもよい。
 また、吸入口22を介して流体を流入させる向きは、本体20の軸方向に沿った向き、軸方向に対して傾斜させた向き(軸直交方向も含む)等とすることが有り得る。
Note that the opening shape and form of the suction port 22 are not limited as long as they can suck in at least the air above and around the main body 20. Further, an inlet may be provided with an enlarged opening so that air can be sucked in from a wide area. Alternatively, a nozzle that sucks air from one direction may be provided, and the shape of the suction port 22 is set so that it narrows along the nozzle shape and the flow direction, and the sucked air is turned into a jet inside the device and placed in the fluid flow path. You can also let it flow down. Of course, a nozzle or suction port whose cross-sectional area of the flow path expands along the fluid flow direction may be provided to reduce the flow velocity of the sucked fluid. Further, the suction port 22 may be provided with an opening/closing body such as a shutter or a lid that can open and close the opening, so that the suction port 22 can be adjusted to a desired opening amount.
Further, the direction in which the fluid flows in through the suction port 22 may be along the axial direction of the main body 20, a direction inclined to the axial direction (including a direction perpendicular to the axis), or the like.
 また、吹出口24は、本体20に設けたスリット状の孔を、全周に亘って略所定間隔で複数配することで構成される。即ち、吹出口24は、ユニット挿脱型毒性対象減消装置1の周囲に向けて、複数の方向から空気を排出する。
 吹出口24の総開口面積(各孔の開口面積を足し合わせた総開口面積)を吸入口22の開口面積よりも大きく設定することも出来る。このような開口面積の設定によれば、吹出口24から排出される流体の流速が吸入口22で流入される流体の流速に比して低下させ得る。これにより、吸入口22を介して空気中に含まれる毒性対象を早期に素早く、力強く吸引することが可能となる一方で、吹出口24からはゆっくりと穏やかに空気を排出させることが可能となる。これにより浮遊ウイルス等の毒性対象を含む周辺の空気を殆どかき乱すことなく排気を行うことができる。
Further, the air outlet 24 is configured by arranging a plurality of slit-shaped holes provided in the main body 20 at approximately predetermined intervals over the entire circumference. That is, the air outlet 24 discharges air from a plurality of directions toward the periphery of the removable unit type toxic target reduction device 1.
The total opening area of the air outlet 24 (total opening area obtained by adding up the opening area of each hole) can also be set larger than the opening area of the suction port 22. By setting the opening area in this way, the flow rate of the fluid discharged from the blower outlet 24 can be lowered compared to the flow rate of the fluid flowing in through the suction port 22. This makes it possible to quickly and forcefully suction the toxic substance contained in the air through the inlet 22, while slowly and gently discharging the air from the outlet 24. . This makes it possible to exhaust the air without disturbing the surrounding air, which contains toxic objects such as floating viruses.
 また、ユニット挿脱型毒性対象減消装置1を室内に設置して使用した、吸入口22は優先的に装置上方周辺の空気(及び毒性対象)を吸い込むことができる。従って吸入口22は、人の呼気又は呼気を含んだ空気が滞留し易い高さに相当する位置或いは人の呼気又は呼気を含んだ空気が滞留している高さ以下の空間領域に位置させることが好ましい。一例として直立姿勢及び座位の人の呼気や排気が溜まり易い、口腔や鼻腔等の呼吸器の在る高さ位置(例えば、地面から70~180cm程度の位置等)の近傍に吸入口22を配することが好ましい。なお、吸入口22の位置は、地面から70cm未満の高さや、180cm以上の高さに配してもよいことは言うまでもない。 Furthermore, when the removable unit type toxic target reduction device 1 is installed and used indoors, the suction port 22 can preferentially suck in air (and toxic targets) from the upper and surrounding areas of the device. Therefore, the inlet 22 should be located at a position corresponding to a height where human exhalation or air containing exhaled air is likely to remain, or in a spatial area below the height where human exhalation or air containing exhaled air is likely to remain. is preferred. For example, the inlet port 22 is placed near the height of the respiratory organs such as the oral cavity and nasal cavity (e.g., a position approximately 70 to 180 cm from the ground) where exhaled air and exhaust gas from a person in an upright or sitting position tend to accumulate. It is preferable to do so. It goes without saying that the suction port 22 may be located at a height of less than 70 cm from the ground or at a height of 180 cm or more.
 また、捕集部12は、吸入口22の近傍以外の箇所に設けてもよく、また複数箇所に配してもよいことは言うまでもない。例えば、吸入口22近傍と吹出口24近傍とに捕集部12を設けることができる。
 捕集部12は、目詰まりしたときに容易に交換し得るように取り外し可能に配することが好ましい。例えば、捕集部12を挿脱ユニット2に対して着脱可能に設けてもよい。このようにすれば、挿脱ユニット2と共に捕集部12を外部に取り出すことができ、また挿脱ユニット2を装置1内に残したまま捕集部12のみを交換することもできる。
Further, it goes without saying that the collection section 12 may be provided at a location other than the vicinity of the suction port 22, or may be arranged at a plurality of locations. For example, the collection section 12 can be provided near the inlet 22 and near the outlet 24.
It is preferable that the collection part 12 is removably disposed so that it can be easily replaced when it becomes clogged. For example, the collection section 12 may be provided in a detachable manner with respect to the insertion/removal unit 2. In this way, the collection section 12 can be taken out together with the insertion/removal unit 2, or only the collection section 12 can be replaced while the insertion/removal unit 2 remains in the device 1.
 また、上述したように挿脱ユニット2を構成する構成要素を適宜設定し得るので、例えば挿脱ユニット2は、図11に示すように保持体40内において紫外線光源4の下方に流動発生部10及び電源ユニット14を配するように構成されていてもよい。 Further, as described above, the components constituting the insertion/removal unit 2 can be set appropriately, so that, for example, the insertion/removal unit 2 has a flow generating section 10 located below the ultraviolet light source 4 in the holder 40 as shown in FIG. and a power supply unit 14 may be arranged.
 ユニット挿脱型毒性対象減消装置1の機能並びに性能に大きく係る複数の部品(構成要素)の内、特に交換や洗浄等を必要とする頻度が高い部品類を挿脱ユニット2に組み込んで一纏めにすることで、現場でのメンテナンス作業を容易とすることができる。即ち、挿脱ユニット2の取り出し、交換に絞った作業でメンテナンスを完了させることが出来、作業の時間短縮且つ簡略化を図ることが出来る。
更に、紫外線光源の劣化、紫外線反射部の汚染や性能低下、紫外線漏出抑制部の損傷や異物による閉塞、捕集部の汚染・目詰まり、流動発生部の故障等のユニット挿脱型毒性対象減消装置1の機能若しくは性能低下、或いは機能不全の原因となる故障や欠陥が生じたとき、各構成要素を個々に取り外して清掃、修理、交換等の作業に比して、予備の挿脱ユニットへの交換のみで現場でメンテナンス作業を完了するため、ユニット挿脱型毒性対象減消装置1が運転しない時間を著しく縮めることができる。
Among the multiple parts (components) that greatly affect the function and performance of the unit-removable toxicity target reduction device 1, parts that require replacement or cleaning, etc. frequently are assembled into the removable-unit unit 2 by incorporating them. This makes on-site maintenance work easier. That is, maintenance can be completed with only the work of removing and replacing the insertion/removal unit 2, and the time required for the work can be shortened and simplified.
Furthermore, the effects of removable unit toxicity are reduced, such as deterioration of the ultraviolet light source, contamination or performance deterioration of the ultraviolet reflection part, damage to the ultraviolet leakage control part or blockage by foreign objects, contamination or clogging of the collection part, failure of the flow generation part, etc. When a malfunction or defect occurs that causes deterioration in the function or performance of the eraser device 1 or malfunction, it is easier to use a spare insertion/removal unit than to remove each component individually for cleaning, repair, or replacement. Since the maintenance work can be completed on-site simply by replacing the unit, the time during which the unit removable toxic target reduction device 1 is not in operation can be significantly shortened.
 なお、本発明のユニット挿脱型毒性対象減消装置は、周囲の空気を取り込んで空気中の病原微生物の不活化、滅菌等を目的として利用する場合には、例えば、病院、診療所、人間ドック、研究施設、オフィス、会議室、飲食店、ショールーム、図書館、学校、幼稚園、保育園、商店、娯楽施設(カラオケボックス、水族館、プラネタリウム、映画館、美術館、博物館、ボウリング場等)、乗り物(車、飛行機、船、電車)等の人の集まる空間或いは人が密集し易い空間に設置することができる。 In addition, when the detachable unit type toxicity target reduction device of the present invention is used for the purpose of inactivating and sterilizing pathogenic microorganisms in the air by taking in the surrounding air, it can be used, for example, at hospitals, clinics, medical checkups, etc. , research facilities, offices, conference rooms, restaurants, showrooms, libraries, schools, kindergartens, nursery schools, shops, entertainment facilities (karaoke boxes, aquariums, planetariums, movie theaters, art museums, museums, bowling alleys, etc.), vehicles (cars, It can be installed in spaces where people gather, such as airplanes, ships, trains, etc., or spaces where people tend to be crowded.
 また、本発明のユニット挿脱型毒性対象減消装置は、種々の装置や器具に搭載したり、埋め込んだり、組み込んだり、組み合わせたりして使用することが出来る。そのような装置や器具は、例えば、エアコン、扇風機、サーキュレータ、空気清浄機、加湿器、除湿器、換気扇、掃除機、循環ポンプ、ミストシャワー(散布機)、排気装置、プラント、浄化槽、ダクト、配管、配管同士を連結する連結部材等、流体を流動させる流路構造を有するもの全般に用いることができる。
 また、少なくとも、空気の流動を確保することができれば、例えば、乗り物のルーフや、シートの背もたれ、シートヘッドレスト、ダッシュボード、インパネ、コンパネ、テーブル、デスク、椅子、壁、天井、エレベータ等に埋め込んで使用することも可能である。特に、上記の人の集まる空間或いは人が密集し易い空間に設置され、又は存する構造体や、その構造体の一部を成す部材等に埋め込んで使用することができる。
Furthermore, the removable unit type toxicity target reduction device of the present invention can be used by being mounted on, embedded in, incorporated into, or combined with various devices and instruments. Such devices and appliances include, for example, air conditioners, electric fans, circulators, air purifiers, humidifiers, dehumidifiers, ventilation fans, vacuum cleaners, circulation pumps, mist showers (spreaders), exhaust equipment, plants, septic tanks, ducts, It can be used for all types of things having a flow path structure that allows fluid to flow, such as piping and connecting members that connect piping to each other.
In addition, if air flow can be ensured, for example, it can be embedded in the roof of a vehicle, the backrest of a seat, a seat headrest, a dashboard, an instrument panel, a control panel, a table, a desk, a chair, a wall, a ceiling, an elevator, etc. It is also possible to use In particular, it can be used by being embedded in a structure that is installed or existing in the above-mentioned space where people gather or where people tend to be crowded, or a member forming a part of the structure.
 また、毒性対象を紫外線によって減消させる場合を例に説明したが、これに限定されるものではなく、毒性対象を減消可能であれば、音波、電波、マイクロ波、赤外線、可視光線、X線及び/又はγ線等のような紫外線以外の波動を放出するものであってもよい。また、更に毒性対象を減消し得る程度に流路内を加熱する加熱手段や、局所的にミクロな放電現象を発生させたり、対向配置した一対の正負電極によって電極に毒性対象(特に病原微生物)を吸着させたりする電場を流路内に作出し、毒性対象を減消し得る電場作出手段を設けてもよい。勿論、紫外線光源に代えて、加熱手段及び/又は電場作出手段を配して毒性対象の減消を行うようにしてもよい。 In addition, although the explanation has been given using an example where a toxic target is reduced by ultraviolet rays, the present invention is not limited to this. It may also be one that emits waves other than ultraviolet rays, such as rays and/or γ rays. In addition, a heating means that heats the inside of the flow path to an extent that can further reduce toxic targets, a local micro-discharge phenomenon, and a pair of oppositely arranged positive and negative electrodes are used to attach toxic targets (particularly pathogenic microorganisms) to the electrodes. An electric field generating means may be provided that can create an electric field in the flow path to adsorb toxic substances and reduce or eliminate toxic substances. Of course, instead of the ultraviolet light source, a heating means and/or an electric field generating means may be provided to reduce the toxic target.
 なお、紫外線漏出抑制部8を複数の筒状内壁からなる筒状内壁集合体を有する構造、例えばハニカム構造とする場合は、図12に示すように略円形状の外形で内側に複数の略六角形状の筒状内壁60からなる紫外線漏出抑制部(筒状内壁集合体)8を設けることが出来る。各筒状内壁60のサイズは、適宜設定し得、図13に示す対向する所定の一対の面間の幅dを例えば、3.2mm、4.8mm、6.4mm、9.5mm、12.7mm、15.9mm、19.1mm、25.4mm等に設定し得る。勿論、幅dは、3.2mm未満や、25.4mmを超える長さ等であってもよい。また筒状内壁60の厚み(箔厚)tは、50μm、76μm等があり得、勿論、それ以外の厚みに設定してもよい。
 また、紫外線漏出抑制部8は、樹脂、金属、ゴム、セラミック又はこれらの複合材料等によって形成することができ、例えば耐紫外線の材料としてのステンレス鋼、チタニウム、アルミニウム或いはそれらの合金、その他のシリコーン樹脂やユリア樹脂等によって形成することが出来る。
In addition, when the ultraviolet leakage suppressing part 8 has a structure having a cylindrical inner wall assembly consisting of a plurality of cylindrical inner walls, for example, a honeycomb structure, as shown in FIG. An ultraviolet leakage suppressing section (cylindrical inner wall assembly) 8 can be provided, which is made of a cylindrical inner wall 60. The size of each cylindrical inner wall 60 can be set as appropriate. For example, the width d between a pair of opposing surfaces shown in FIG. 13 is 3.2 mm, 4.8 mm, 6.4 mm, 9.5 mm, 12. It can be set to 7 mm, 15.9 mm, 19.1 mm, 25.4 mm, etc. Of course, the width d may be less than 3.2 mm or longer than 25.4 mm. Further, the thickness (foil thickness) t of the cylindrical inner wall 60 may be 50 μm, 76 μm, etc., and of course may be set to other thicknesses.
Further, the ultraviolet leakage suppressing portion 8 can be formed of resin, metal, rubber, ceramic, or a composite material thereof, such as stainless steel, titanium, aluminum, or an alloy thereof as a UV-resistant material, or other silicone. It can be formed from resin, urea resin, or the like.
 紫外線漏出抑制部8は、図12に示すような単一の筒状内壁集合体によって成るものに限定するものではなく、複数の部分体を組み合わせて形成されるものであってもよい。例えば、図14に示す略弧形状を成す複数の筒状内壁を並べて成る部分体50を複数組合せて紫外線漏出抑制部8を形成してもよい。 The ultraviolet leakage suppressing section 8 is not limited to being formed by a single cylindrical inner wall assembly as shown in FIG. 12, but may be formed by combining a plurality of partial bodies. For example, the ultraviolet leakage suppressing portion 8 may be formed by combining a plurality of partial bodies 50 formed by arranging a plurality of substantially arc-shaped cylindrical inner walls shown in FIG.
 その場合には、図15に示すような配設穴54を内側に形成した支持体52を有する上端部材44等を用いる。配設穴54は、支持体52の内側において、周方向に沿って略等間隔に複数配することも出来る。また各配設穴54は、部分体50を嵌合させ得るように、その形状や大きさが設定される。 In that case, an upper end member 44 or the like having a support body 52 with an arrangement hole 54 formed inside as shown in FIG. 15 is used. A plurality of arrangement holes 54 can also be arranged at approximately equal intervals along the circumferential direction inside the support body 52. Moreover, the shape and size of each arrangement hole 54 are set so that the partial body 50 can be fitted therein.
 従って、図16に示すように支持体52の各配設穴54に部分体50を嵌入させることで、紫外線漏出抑制部8を具える上端部材44を成すことができる。これにより図17に示すような、上端部材44を有する保持体40を構成することもできる。 Therefore, as shown in FIG. 16, by fitting the partial bodies 50 into the respective installation holes 54 of the support body 52, the upper end member 44 including the ultraviolet leakage suppressing portion 8 can be formed. As a result, a holder 40 having an upper end member 44 as shown in FIG. 17 can be constructed.
 紫外線漏出抑制部8の筒状内壁に囲繞される孔の断面形状(孔が延びる方向に直交する孔の断面形状)は、略三角形、略四角形、略五角形、略七角形、略八角形等の多角形の他、略円形、略楕円形等、適宜形状やそれらの組合せによって構成可能である。
 また、複数の孔形状を成す筒状内壁を包含した紫外線漏出抑制部8を設けてることも可能である。例えば、支持体52に嵌合される複数の部分体50において、部分体50ごとにその筒状内壁の断面形状を異ならせてもよい
The cross-sectional shape of the hole surrounded by the cylindrical inner wall of the ultraviolet leakage suppressing portion 8 (the cross-sectional shape of the hole perpendicular to the direction in which the hole extends) is approximately triangular, approximately quadrangular, approximately pentagonal, approximately heptagonal, approximately octagonal, etc. In addition to polygons, it can be configured with any suitable shape such as a substantially circular shape, a substantially elliptical shape, or a combination thereof.
Further, it is also possible to provide an ultraviolet leakage suppressing portion 8 including a cylindrical inner wall having a plurality of hole shapes. For example, in a plurality of partial bodies 50 fitted to the support body 52, the cross-sectional shape of the cylindrical inner wall may be made different for each partial body 50.
 筒状内壁60の内側表面には、紫外線の反射率が所定以下である低反射部を設ける。低反射部は、紫外線の反射防止や紫外線吸収のための加工として、メッキ(溶融メッキ、真空メッキ、無電解メッキ、電解メッキ等)、陽極酸化処理、樹脂塗装(アクリル系塗料、ピュアアクリル系塗料、ウレタン系塗料、シリコン系塗料、フッ素系塗料、無機系塗料)の塗布等によって設けることが出来る。特に筒状内壁表面を微細な多数の凹凸構造や樹状突起構造を設けることで極低反射率表面を構成することが可能である。また、黒色表面処理を利用した場合は、筒状内壁60において紫外線を吸収して更に紫外線の反射防止効果を向上させることも出来る。 The inner surface of the cylindrical inner wall 60 is provided with a low reflection part whose reflectance of ultraviolet rays is below a predetermined value. Low-reflection areas can be treated with plating (hot-dip plating, vacuum plating, electroless plating, electrolytic plating, etc.), anodizing, or resin painting (acrylic paint, pure acrylic paint) to prevent UV reflection or absorb UV rays. , urethane paint, silicone paint, fluorine paint, inorganic paint), etc. In particular, by providing a cylindrical inner wall surface with a large number of fine uneven structures or dendrite structures, it is possible to construct an extremely low reflectance surface. In addition, when black surface treatment is used, the cylindrical inner wall 60 absorbs ultraviolet rays to further improve the antireflection effect of ultraviolet rays.
 メッキによって筒状内壁60を被覆する薄膜の金属としては、例えば、クロム、ニッケル、クロメート、スズ、亜鉛、アルミニウム、鉄、金、銀、銅、チタン或いはこれらの合金等があり、特に限定されるものではない。 Examples of the thin film metal that coats the cylindrical inner wall 60 by plating include chromium, nickel, chromate, tin, zinc, aluminum, iron, gold, silver, copper, titanium, and alloys thereof, and are not particularly limited. It's not a thing.
 また、黒色表面処理としては、アルカリ着色法を利用した黒染め、硫化物処理、黒色クロメート等の化成処理、アルマイト皮膜の染色等がある。また電解を用いた方法としては、黒色電解クロムメッキ、黒色電解ニッケルメッキ、黒色電解スズ合金メッキ、黒色電着塗装等がある。また無電解メッキ法を用いる黒色皮膜形成には、例えば黒色無電解ニッケルメッキがあって、無電解ニッケルメッキの状態で黒色皮膜が得られるものと酸化処理によって黒色皮膜を得るものがあり得る。
 無電解ニッケルメッキの状態で黒色皮膜を得る方法は、黒色無電解ニッケル-リン-亜鉛合金メッキ、ヒドラジンを還元剤として使用した黒色無電解純ニッケルメッキ、黒色無電解Ni-Snメッキ等がある。
 酸化処理によって黒色皮膜を得る方法は、無電解ニッケルメッキ後に硝酸、塩酸、硫酸、過硫酸、過酸化水素水やこれらの混合液に浸漬する方法、塩化第二鉄塩や塩化第二銅塩の酸性溶液に浸漬する方法、過マンガン酸溶液中で陽極電解する方法等がある。
Further, black surface treatments include black dyeing using an alkali coloring method, sulfide treatment, chemical conversion treatment such as black chromate, and dyeing of alumite film. Examples of methods using electrolysis include black electrolytic chrome plating, black electrolytic nickel plating, black electrolytic tin alloy plating, and black electrodeposition coating. Further, black film formation using an electroless plating method includes, for example, black electroless nickel plating, and there are two methods: one in which a black film is obtained in the state of electroless nickel plating, and the other in which a black film is obtained by oxidation treatment.
Methods for obtaining a black film in the state of electroless nickel plating include black electroless nickel-phosphorus-zinc alloy plating, black electroless pure nickel plating using hydrazine as a reducing agent, and black electroless Ni--Sn plating.
Methods for obtaining a black film through oxidation treatment include immersion in nitric acid, hydrochloric acid, sulfuric acid, persulfuric acid, hydrogen peroxide, or a mixture of these after electroless nickel plating, or immersion in ferric chloride or cupric chloride. There are methods such as immersion in an acidic solution and anodic electrolysis in a permanganate solution.
 黒色無電解ニッケルメッキのリンの含有量は、特に限定されるものではなく、例えば、1~13%程度の範囲で、耐食性、耐摩耗性、硬さ等に応じて適宜設定し得る、具体的にリンを低含有(1~4%)の無電解ニッケルメッキである程、耐摩耗性と硬さに優れ、耐食性が劣るものを得ることができる。一方で、リンを高含有(9~13%)の無電解ニッケルメッキである程、耐摩耗性と硬さが劣るが、耐食性に優れるものを得ることができる。 The phosphorus content of black electroless nickel plating is not particularly limited, and can be set as appropriate in the range of about 1 to 13%, for example, depending on corrosion resistance, abrasion resistance, hardness, etc. Electroless nickel plating with a lower phosphorus content (1 to 4%) can provide better wear resistance and hardness, but less corrosion resistance. On the other hand, electroless nickel plating with a higher phosphorus content (9 to 13%) has poorer wear resistance and hardness, but can provide better corrosion resistance.
 このような黒色表面処理により成る低反射部は、表面に微細な凹凸が生じて、その凹部分で紫外線を吸収して反射率が低減する。低反射部を黒色無電解ニッケルメッキによって形成した場合は、表面に複数の樹状突起を形成できる。ここで樹状とは、金属元素が粗く堆積し、樹状様に成長したような形状をさす。従って低反射部は、樹状突起によって表面が複雑な立体表面となり、入射してきた紫外線をその内部へ散乱反射させると共に、紫外線を吸収する。なお、上記黒色無電解ニッケルメッキによれば、膜厚が1~5μmで、紫外線の反射率が2%未満である低反射部を成すことができる。
 塗布によって筒状内壁60を被覆する樹脂塗料としては、紫外線に強い黒色顔料を含んで光を吸収するシリコン樹脂系塗料が好ましく、これを筒状内壁60に塗布したときに表面に微細な多数の凹凸構造となって反射を拡散するように形成されるとなお好ましい。
 なお、以上のシリコン樹脂系塗料によれば、膜厚が1~20μmで、紫外線領域(200~400nm)における反射率を0.3%以下である極低反射部を成すことができる。
The low-reflection portion formed by such black surface treatment has minute irregularities on its surface, and the recessed portions absorb ultraviolet rays, reducing reflectance. When the low reflection part is formed by black electroless nickel plating, a plurality of dendrites can be formed on the surface. Here, dendritic refers to a shape in which metal elements are coarsely deposited and grow in a tree-like manner. Therefore, the low-reflection portion has a complex three-dimensional surface due to the dendrites, and scatters and reflects incident ultraviolet rays into the interior thereof, as well as absorbs the ultraviolet rays. In addition, according to the black electroless nickel plating, it is possible to form a low reflection part with a film thickness of 1 to 5 μm and a reflectance of ultraviolet rays of less than 2%.
The resin paint used to coat the cylindrical inner wall 60 is preferably a silicone resin paint that contains a black pigment that is resistant to ultraviolet rays and absorbs light. It is more preferable that the surface is formed to have an uneven structure so as to diffuse reflection.
The silicone resin paint described above can form an ultra-low reflective area with a film thickness of 1 to 20 μm and a reflectance of 0.3% or less in the ultraviolet region (200 to 400 nm).
 また、筒状内壁の表面に、PET(ポリエチレンテレフタラート)、PP(ポリプロピレン)、PVC(ポリ塩化ビニル)のフィルム等を貼り付けて低反射部を設けてもよく、また上記フィルム等を低反射部に重ねて貼り付けるようにしてもよい。 Furthermore, a low-reflection area may be provided by pasting a PET (polyethylene terephthalate), PP (polypropylene), PVC (polyvinyl chloride) film, etc. on the surface of the cylindrical inner wall; It may be pasted over the other parts.
 また、保持体40に設ける紫外線漏出抑制部8の筒状内壁による孔が延びる方向は、紫外線漏出抑制部8の厚み方向或いは保持体40の軸方向に沿って平行な方向の他、当該軸方向に対して傾斜させた方向であってもよい。例えば、保持体40の内から外に向かって軸心側に傾くように筒状内壁が延びる方向を設定し、また保持体40の内から外に向かって反軸心側に傾くように筒状内壁が延びる方向を設定することができる。 Further, the direction in which the hole formed by the cylindrical inner wall of the ultraviolet leakage suppressing part 8 provided in the holding body 40 extends is not only the thickness direction of the ultraviolet leakage suppressing part 8 or the direction parallel to the axial direction of the holding body 40 but also the axial direction. It may also be in a direction tilted with respect to. For example, the direction in which the cylindrical inner wall extends is set so that it is inclined toward the axis from the inside to the outside of the holder 40, and the direction in which the cylindrical inner wall extends is set so that it is inclined from the inside to the outside of the holder 40 toward the opposite axis. The direction in which the inner wall extends can be set.
 図18は、傾斜させた姿勢で部分体50を嵌入させた支持体52の断面図であり、部分体50の筒状内壁の軸心bが保持体の内から外に向かって保持体40(不図示)の軸心a側に傾くように、支持体52の配設穴54によって部分体50を傾斜させた姿勢で保持することが出来る。 FIG. 18 is a cross-sectional view of the support body 52 into which the partial body 50 is fitted in an inclined position, in which the axis b of the cylindrical inner wall of the partial body 50 is directed from the inside of the holder toward the outside of the holder 40 ( The partial body 50 can be held in an inclined position by the arrangement hole 54 of the support body 52 so as to be tilted toward the axis a (not shown).
 なお、筒状内壁の低反射部は、紫外線の反射防止や紫外線吸収を目的とするものに限定するものではなく、電磁波の反射防止や吸収を目的としてもよく、この場合の電磁波とは、ガンマ線、X線、紫外線、可視光線、赤外線、電波、マイクロ波、超短波、短波、中波、長波、超長波、極超長波等である。
 上記の通り、筒状内壁集合体を有する紫外線漏出抑制部(電磁波遮断フィルタ)を設けた場合に紫外線を筒状内壁によって遮って紫外線が外部に漏れるのを防止できる。また筒状内壁の内側が孔となっているので、筒状内壁が空気の流動を妨げることがなく、空気の流速を殆ど低下させることがない。
Note that the low-reflection portion of the cylindrical inner wall is not limited to the purpose of preventing reflection or absorbing ultraviolet rays, but may also be used for preventing reflection or absorbing electromagnetic waves. In this case, electromagnetic waves include gamma rays. , X-rays, ultraviolet rays, visible light, infrared rays, radio waves, microwaves, very short waves, short waves, medium waves, long waves, very long waves, extremely long waves, etc.
As described above, when the ultraviolet leakage suppressing section (electromagnetic wave blocking filter) having the cylindrical inner wall assembly is provided, the ultraviolet rays can be blocked by the cylindrical inner wall and can be prevented from leaking to the outside. Further, since the inner side of the cylindrical inner wall has holes, the cylindrical inner wall does not impede the flow of air, and the flow velocity of the air is hardly reduced.
 筒状内壁60のサイズ(幅dや、軸方向に沿った長さ等)は、少なくとも紫外線光源4から放出された紫外線を確実に遮断或いは充分に低減させるまで反射及び吸収し得る大きさに設定する。そのため、例えば筒状内壁60から紫外線光源4までの距離、角度や、紫外線光源4の長さ(紫外線ランプ管長)等に応じて設定し得る。 The size of the cylindrical inner wall 60 (width d, length along the axial direction, etc.) is set to a size that can reflect and absorb at least the ultraviolet light emitted from the ultraviolet light source 4 until it is reliably blocked or sufficiently reduced. do. Therefore, it can be set depending on, for example, the distance and angle from the cylindrical inner wall 60 to the ultraviolet light source 4, the length of the ultraviolet light source 4 (ultraviolet lamp tube length), and the like.
 その場合は、紫外線光源4から直接紫外線漏出抑制部8に向かう紫外線の有り得る入射と、紫外線光源4から紫外線反射部6で反射して紫外線漏出抑制部8に向かう紫外線の有り得る入射と、を想定し、紫外線漏出抑制部8外に直接通過しないような筒状内壁60のサイズを定める。具体的に図19に示す紫外線光源4が紫外線ランプ様の形状であるとき、紫外線光源4から放射される紫外線の内、筒状内壁60の軸心にできるだけ平行に近い入射角の紫外線を想定し、該紫外線が筒状内壁60によって遮られるように各部の寸法や仕様等を設定する。
 このとき、紫外線光源4の一端部4a(紫外線漏出抑制部8の反対側に位置する端部)から当該紫外線漏出抑制部8における紫外線光源4の近傍に位置する筒状内壁60Aに向かって照射される紫外線を想定する。ここで一端部4aから紫外線漏出抑制部8までの距離が凡そ425(mm)、紫外線光源4の表面から筒状内壁60Aまでの紫外線光源4の軸直交方向に沿った方向の距離を凡そ92(mm)とした場合、一端部4aから筒状内壁60Aに向かう紫外線は、紫外線光源4の軸心に対して約4~5°傾斜した向きで入射する。
 同様にして、一端部4aから紫外線反射部6で反射する紫外線の内、筒状内壁60の軸心にできるだけ近い入射角で紫外線反射部6に入射し、且つそこで反射した紫外線が筒状内壁60によって遮られるように各部の寸法や仕様等を設定する。この場合は、図19の反射光ラインに示すように、一端部4aから紫外線反射部6で反射し、紫外線漏出抑制部8の径方向外側に位置する筒状内壁60Bに入射する紫外線を想定し、筒状内壁60A、60Bにそれぞれ入射する紫外線を遮るように、各部の寸法や仕様等を設定する。
In that case, assume the possible incidence of ultraviolet rays that go directly from the ultraviolet light source 4 to the ultraviolet leakage suppressing section 8, and the possible incidence of ultraviolet rays that are reflected from the ultraviolet light source 4 and go toward the ultraviolet leakage suppressing section 8 after being reflected by the ultraviolet reflecting section 6. , the size of the cylindrical inner wall 60 is determined so that the ultraviolet rays do not directly pass outside the leakage suppressing part 8. Specifically, when the ultraviolet light source 4 shown in FIG. 19 is shaped like an ultraviolet lamp, it is assumed that among the ultraviolet rays emitted from the ultraviolet light source 4, the ultraviolet rays have an incident angle as close to parallel to the axis of the cylindrical inner wall 60 as possible. The dimensions and specifications of each part are set so that the ultraviolet rays are blocked by the cylindrical inner wall 60.
At this time, radiation is emitted from one end 4a of the ultraviolet light source 4 (the end located on the opposite side of the ultraviolet leakage suppressing part 8) toward the cylindrical inner wall 60A of the ultraviolet leakage suppressing part 8 located near the ultraviolet light source 4. Assuming ultraviolet rays. Here, the distance from the one end 4a to the ultraviolet leakage suppressing part 8 is approximately 425 (mm), and the distance from the surface of the ultraviolet light source 4 to the cylindrical inner wall 60A in the direction perpendicular to the axis of the ultraviolet light source 4 is approximately 92 (mm). mm), the ultraviolet rays directed from the one end 4a toward the cylindrical inner wall 60A are incident at an angle of about 4 to 5 degrees with respect to the axis of the ultraviolet light source 4.
Similarly, among the ultraviolet rays reflected from the one end 4a by the ultraviolet reflecting part 6, the ultraviolet rays enter the ultraviolet ray reflecting part 6 at an incident angle as close as possible to the axis of the cylindrical inner wall 60, and the ultraviolet rays reflected there are reflected on the cylindrical inner wall 60. Set the dimensions and specifications of each part so that they are blocked by In this case, as shown by the reflected light line in FIG. 19, it is assumed that ultraviolet rays are reflected from the one end 4a by the ultraviolet reflecting part 6 and enter the cylindrical inner wall 60B located on the radially outer side of the ultraviolet leakage suppressing part 8. The dimensions and specifications of each part are set so as to block the ultraviolet rays incident on the cylindrical inner walls 60A and 60B, respectively.
 筒状内壁60のサイズを大きくした場合、筒状内壁60の内側の空間が広がり、結果筒状内壁60に入射する紫外線は、筒状内壁60の外側に近い出口側近傍に当たるが、筒状内壁60内での塵埃の集積等による異物による閉塞を防止し、又通気性を向上させることができる。 When the size of the cylindrical inner wall 60 is increased, the space inside the cylindrical inner wall 60 expands, and as a result, the ultraviolet rays incident on the cylindrical inner wall 60 hit near the exit side near the outside of the cylindrical inner wall 60. It is possible to prevent clogging due to foreign matter such as accumulation of dust within the chamber 60, and improve ventilation.
 一方で、筒状内壁60のサイズを小さくした場合、筒状内壁60の内側の空間が狭まり、筒状内壁60に入射する紫外線は、筒状内壁60の紫外線光源4に近い入口側近傍に当たる。結果、筒状内壁60内で紫外線の反射及び吸収が繰り返し行われ、紫外線の線量を限りなく零に近い値まで低減し得る。即ち、筒状内壁60の低反射部に紫外線が当たったときに、反射及び吸収し、その紫外線が当たった位置から筒状内壁60の出口側までの間隔が有る、紫外線の反射回数が増えるのでその分だけ反射及び吸収が繰り返されて紫外線量を低減していくことができる。 On the other hand, when the size of the cylindrical inner wall 60 is reduced, the space inside the cylindrical inner wall 60 is narrowed, and the ultraviolet rays incident on the cylindrical inner wall 60 hit the vicinity of the entrance side of the cylindrical inner wall 60 near the ultraviolet light source 4. As a result, ultraviolet rays are repeatedly reflected and absorbed within the cylindrical inner wall 60, and the dose of ultraviolet rays can be reduced to a value as close to zero as possible. That is, when ultraviolet rays hit the low reflection portion of the cylindrical inner wall 60, they are reflected and absorbed, and there is a distance from the position where the ultraviolet rays hit to the exit side of the cylindrical inner wall 60, so the number of times the ultraviolet rays are reflected increases. The amount of ultraviolet rays can be reduced by repeating reflection and absorption accordingly.
 上記した通り、黒色無電解ニッケルメッキによる低反射部は、反射率を2%未満とする性能を有するが、仮に紫外線の反射率を2%とした場合は、紫外線光源4から放射された紫外線量X(J/cm)に対して低反射部で一度反射させることにより、0.02倍の紫外線量に低減する。従って、筒状内壁60内で紫外線をn回反射させたときの紫外線量Xは、X=X×0.02の式によって算出でき、筒状内壁60内で紫外線を反射する毎にその紫外線量が著しく低減することは明白である。 As mentioned above, the low reflection part made of black electroless nickel plating has the ability to reduce the reflectance to less than 2%, but if the reflectance of ultraviolet rays is set to 2%, the amount of ultraviolet rays emitted from the ultraviolet light source 4 By once reflecting X (J/cm 2 ) at the low reflection portion, the amount of ultraviolet rays is reduced to 0.02 times. Therefore, the amount of ultraviolet rays X n when the ultraviolet rays are reflected n times within the cylindrical inner wall 60 can be calculated using the formula: It is clear that the amount of UV radiation is significantly reduced.
 筒状内壁60の軸方向に沿った長さを延長する程、紫外線の線量を大きく低減し得る。即ち、筒状内壁60の内周面を軸方向に沿って延長することで、筒状内壁60において紫外線が当たる位置と筒状内壁60の最奥までの距離が延びる。従って、筒状内壁60内での紫外線の反射及び吸収の回数が増えて紫外線量を更に低減することができる。 As the length of the cylindrical inner wall 60 in the axial direction is extended, the dose of ultraviolet rays can be reduced to a greater extent. That is, by extending the inner circumferential surface of the cylindrical inner wall 60 along the axial direction, the distance between the position on the cylindrical inner wall 60 that is exposed to ultraviolet rays and the innermost part of the cylindrical inner wall 60 is extended. Therefore, the number of times that ultraviolet rays are reflected and absorbed within the cylindrical inner wall 60 increases, and the amount of ultraviolet rays can be further reduced.
 なお、上記において紫外線を確実に遮断或いは充分に低減させるまで反射及び吸収するように、筒状内壁60のサイズ設定について説明したが、これに加え、図20に示すように筒状内壁60(部分体50)を支持体52内で傾斜させて配することでも、紫外線の線量をより低減することが出来る。
 ここで、図21は拡大した部分体50を示す断面図であり、一端部4aから直接紫外線が入射する筒状内壁60A等の筒状内壁60において、入射した紫外線の当たる位置が入口側に更に近づく為、筒状内壁60における紫外線の反射及び吸収が更に繰り返されて、紫外線の線量をより低減することができる。
In addition, although the size setting of the cylindrical inner wall 60 has been explained above so as to reliably block ultraviolet rays or reflect and absorb them until they are sufficiently reduced, in addition to this, as shown in FIG. The dose of ultraviolet rays can also be further reduced by arranging the body 50) at an angle within the support body 52.
Here, FIG. 21 is an enlarged cross-sectional view showing the partial body 50, and in the cylindrical inner wall 60 such as the cylindrical inner wall 60A into which the ultraviolet rays directly enter from the one end 4a, the position where the incident ultraviolet rays hit is further toward the entrance side. Therefore, reflection and absorption of ultraviolet rays on the cylindrical inner wall 60 are further repeated, and the dose of ultraviolet rays can be further reduced.
 なお、部分体50の傾斜向きによっては、反射光ラインに沿った紫外線が筒状内壁60Bを通過し得る。従って部分体50を傾斜姿勢で配する場合、反射光ラインの紫外線を確実に遮る姿勢となるように、部分体50を設置する傾斜角を設定する。図21においては垂直な角度から約3°傾けた姿勢で部分体50を配しているが、勿論、3°未満或いは3°を超える角度で傾けるようにしてもよい。 Note that depending on the inclination direction of the partial body 50, the ultraviolet rays along the reflected light line may pass through the cylindrical inner wall 60B. Therefore, when the partial body 50 is disposed in an inclined position, the inclination angle at which the partial body 50 is installed is set so as to be in a position that reliably blocks the ultraviolet rays of the reflected light line. In FIG. 21, the partial body 50 is arranged at an angle of approximately 3 degrees from the vertical angle, but it may of course be tilted at an angle of less than 3 degrees or more than 3 degrees.
 なお、複数の筒状内壁集合体を軸方向に沿って複数積み重ねることで多段状に設けてもよい。例えば、図22に示すように、支持体52内で、部分体50を二段となるように軸方向に沿って重ねて配置して、紫外線漏出抑制部8を設けてもよい。結果、筒状内壁集合体に入射した紫外線は、筒状内壁60の軸方向長さが延長された外側に至るまでの反射及び吸収の回数を増やすことができる。
 勿論、部分体50による段数は、二段以上であってもよいことは言うまでもない。その場合の段毎の筒状内壁の寸法や仕様等は、同一であっても異なっていてもよい。
Note that a plurality of cylindrical inner wall assemblies may be stacked in multiple stages along the axial direction to form a multi-stage structure. For example, as shown in FIG. 22, the ultraviolet leakage suppressing portion 8 may be provided by arranging the partial bodies 50 in two stages in the supporting body 52, one over the other in the axial direction. As a result, the number of times the ultraviolet rays incident on the cylindrical inner wall assembly are reflected and absorbed before reaching the outside where the axial length of the cylindrical inner wall 60 is extended can be increased.
Of course, it goes without saying that the number of stages of the partial bodies 50 may be two or more. In that case, the dimensions, specifications, etc. of the cylindrical inner wall for each stage may be the same or different.
 また、各段を成す部分体50は、互いに異なる波長の電磁波を遮る低反射部を有していてもよい。例えば、部分体50は、互いに異なる材料及び/又は異なる表面処理が施して成るものが有り得る。紫外線漏出抑制部8は、紫外線を遮る為の部分体50、可視光線を遮る為の部分体50、電波を遮る為の部分体50等を重ねて構成してもよい。
 なお、下端部材46にも部分体50を配して紫外線の漏出を抑制するようにしてもよいことは言うまでもない。
Moreover, the partial bodies 50 forming each stage may have a low reflection part that blocks electromagnetic waves of different wavelengths. For example, the partial bodies 50 may be made of different materials and/or with different surface treatments. The ultraviolet leakage suppressing section 8 may be configured by stacking a partial body 50 for blocking ultraviolet rays, a partial body 50 for blocking visible light, a partial body 50 for blocking radio waves, and the like.
It goes without saying that the partial body 50 may also be disposed on the lower end member 46 to suppress leakage of ultraviolet rays.
 また、低反射部は、多層状に構成してもよい。この場合は表層側から基材(筒状内壁)側に向かって徐々に減衰対象の電磁波をその波長が長いものとなるように層を積み重ねて多層化する。例えば、図23に示す筒状内壁の表面を拡大した図において、基材側100に波長が長い電磁波に対して減衰性を有する長波減衰層102、当該長波減衰層102によって減衰する電磁波よりも波長が短い電磁波に対して減衰性を有する中波減衰層104、更に波長が短い電磁波に対して減衰性を有する短波減衰層106の順に配する。このような多層状の低反射部によれば、電磁波は、先ず短波長減衰層106に入射する。短波長減衰層106で減衰しなかった電磁波は、短波長減衰層106を透過して中波長減衰層104で減衰し得る。そして中波長減衰層104で減衰しなかった電磁波は、中波長減衰層104を透過して長波長減衰層102で減衰し得る。 Additionally, the low reflection portion may be configured in a multilayered manner. In this case, layers are stacked to form a multilayer structure such that the wavelength of the electromagnetic waves to be attenuated gradually increases from the surface layer side toward the base material (cylindrical inner wall) side. For example, in the enlarged view of the surface of the cylindrical inner wall shown in FIG. 23, there is a long-wave attenuation layer 102 on the base material side 100 that has a property of attenuating electromagnetic waves with longer wavelengths, and a wavelength longer than the electromagnetic waves attenuated by the long-wave attenuation layer 102. A medium wave attenuating layer 104 having an attenuating property for electromagnetic waves having a short wavelength, and a short wave attenuating layer 106 having an attenuating property for electromagnetic waves having a short wavelength are arranged in this order. According to such a multilayered low reflection section, electromagnetic waves first enter the short wavelength attenuation layer 106. The electromagnetic waves that are not attenuated by the short wavelength attenuation layer 106 can be transmitted through the short wavelength attenuation layer 106 and attenuated by the medium wavelength attenuation layer 104 . The electromagnetic waves that are not attenuated by the medium wavelength attenuation layer 104 can be transmitted through the medium wavelength attenuation layer 104 and attenuated by the long wavelength attenuation layer 102 .
 各層は、溶射や、溶融メッキ、乾式メッキ、乾式塗装、湿式メッキ、湿式塗装等の適宜方法で形成し得る。ここで、溶射は、例えばフレーム溶射、電気式溶射(例えば、プラズマ溶射、アーク溶射等)、コールドスプレー等を含み得る。乾式メッキは、PVD法(例えば、真空蒸着、イオンプレーティング、スパッタリング等)や、CVD法(熱CVD、プラズマCVD等)を含み得る。乾式塗装は、粉体塗装、溶剤塗装等を含み得る。湿式メッキは、電気メッキ、無電解メッキを含み得る。湿式塗装は、電着塗装、水性塗装を含み得る。 Each layer can be formed by an appropriate method such as thermal spraying, hot-dip plating, dry plating, dry painting, wet plating, or wet painting. Here, thermal spraying may include, for example, flame spraying, electric thermal spraying (eg, plasma spraying, arc spraying, etc.), cold spraying, and the like. Dry plating can include PVD methods (eg, vacuum evaporation, ion plating, sputtering, etc.) and CVD methods (thermal CVD, plasma CVD, etc.). Dry coating may include powder coating, solvent coating, and the like. Wet plating may include electroplating and electroless plating. Wet coatings can include electrodeposition coatings and water-based coatings.
 1…ユニット挿脱型毒性対象減消装置、2…挿脱ユニット、4…紫外線光源、6…紫外線反射部、8…紫外線漏出抑制部、10…流動発生部、12…捕集部、14…電源ユニット、20…本体、22…吸入口、24…吹出口、40…保持体、42…嵌合部、44…上端部材、46…下端部材、50…部分体、52…支持体、60…筒状内壁。

 
DESCRIPTION OF SYMBOLS 1... Unit insertion/removal type toxicity target reduction device, 2... Insertion/removal unit, 4... Ultraviolet light source, 6... Ultraviolet light reflecting section, 8... Ultraviolet leakage suppressing section, 10... Flow generation section, 12... Collection section, 14... Power supply unit, 20...main body, 22...intake port, 24...outlet, 40...holding body, 42...fitting part, 44...upper end member, 46...lower end member, 50...partial body, 52...support body, 60... Cylindrical inner wall.

Claims (9)

  1.  支持体の内側の空間を区分した並行する複数の筒状内壁からなる筒状内壁集合体と、
     上記筒状内壁の表面に設けられ、電磁波の反射率が所定以下である低反射部と、を有し、
     上記筒状内壁集合体によって電磁波を遮ることを特徴とする電磁波遮断フィルタ。
    a cylindrical inner wall assembly consisting of a plurality of parallel cylindrical inner walls that partition a space inside the support;
    a low reflection part provided on the surface of the cylindrical inner wall and having a reflectance of electromagnetic waves of a predetermined value or less;
    An electromagnetic wave blocking filter characterized in that the cylindrical inner wall assembly blocks electromagnetic waves.
  2.  前記筒状内壁集合体は、前記筒状内壁の軸心が前記支持体の軸心に対して傾斜する向きに配されることを特徴とする請求項1記載の電磁波遮断フィルタ。 The electromagnetic wave blocking filter according to claim 1, wherein the cylindrical inner wall assembly is arranged in a direction in which the axis of the cylindrical inner wall is inclined with respect to the axis of the support.
  3.  前記筒状内壁集合体は、前記支持体に嵌入可能に設けられ、且つ前記筒状内壁が前記支持体の軸心に対して傾斜した姿勢で前記支持体に支持されることを特徴とする請求項1記載の電磁波遮断フィルタ。 The cylindrical inner wall assembly is provided so as to be fit into the support, and the cylindrical inner wall is supported by the support in an attitude inclined with respect to the axis of the support. The electromagnetic wave blocking filter according to item 1.
  4.  前記支持体は、前記筒状内壁集合体を複数支持することを特徴とする請求項1記載の電磁波遮断フィルタ。 The electromagnetic wave blocking filter according to claim 1, wherein the support supports a plurality of the cylindrical inner wall aggregates.
  5.  前記筒状内壁集合体は、複数の前記筒状内壁を軸方向に沿って多段に配することを特徴とする請求項1記載の電磁波遮断フィルタ。 The electromagnetic wave blocking filter according to claim 1, wherein the cylindrical inner wall assembly has a plurality of cylindrical inner walls arranged in multiple stages along the axial direction.
  6.  前記筒状内壁集合体は、段毎に異なる波長の電磁波を遮ることを特徴とする請求項5記載の電磁波遮断フィルタ。 The electromagnetic wave blocking filter according to claim 5, wherein the cylindrical inner wall assembly blocks electromagnetic waves of different wavelengths for each stage.
  7.  前記筒状内壁集合体は、前記筒状内壁の軸心が前記支持体の軸心に対して3°傾斜する向きに配されることを特徴とする請求項2記載の電磁波遮断フィルタ。 3. The electromagnetic wave blocking filter according to claim 2, wherein the cylindrical inner wall assembly is arranged such that the axial center of the cylindrical inner wall is inclined by 3 degrees with respect to the axial center of the support body.
  8.  前記筒状内壁集合体は、前記筒状内壁が前記支持体の軸心に対して3°傾斜した姿勢で前記支持体に支持されることを特徴とする請求項3記載の電磁波遮断フィルタ。 4. The electromagnetic wave blocking filter according to claim 3, wherein the cylindrical inner wall assembly is supported by the support body with the cylindrical inner wall inclined at 3 degrees with respect to the axis of the support body.
  9.  前記低反射部における反射率が0.3%以下であることを特徴とする請求項1記載の電磁波遮断フィルタ。

     
    The electromagnetic wave blocking filter according to claim 1, wherein the reflectance in the low reflection portion is 0.3% or less.

PCT/JP2023/015392 2022-04-18 2023-04-17 Electromagnetic wave blocking filter WO2023204194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-068557 2022-04-18
JP2022068557 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023204194A1 true WO2023204194A1 (en) 2023-10-26

Family

ID=88419807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015392 WO2023204194A1 (en) 2022-04-18 2023-04-17 Electromagnetic wave blocking filter

Country Status (1)

Country Link
WO (1) WO2023204194A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131092A (en) * 1989-10-17 1991-06-04 Nec Corp Electromagnetic wave shield
JPH10202145A (en) * 1997-01-22 1998-08-04 Hitachi Plant Eng & Constr Co Ltd Electrostatic type air cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131092A (en) * 1989-10-17 1991-06-04 Nec Corp Electromagnetic wave shield
JPH10202145A (en) * 1997-01-22 1998-08-04 Hitachi Plant Eng & Constr Co Ltd Electrostatic type air cleaner

Similar Documents

Publication Publication Date Title
RU2280473C2 (en) Method and device for purifying air
CN104703631B (en) Air treatment system
US20230248877A1 (en) Personal and mobile devices for providing biological protection by the ultraviolet irradiation of recirculated air
WO2004035100A2 (en) Cleaning of air
US11629872B2 (en) Single pass kill air purifier system and process of operation
US11724001B2 (en) Air purification and sterilization unit
US20210372637A1 (en) Methods and Systems for Air Management to Reduce or Block Exposure to Airborne Pathogens
WO2023204194A1 (en) Electromagnetic wave blocking filter
US20220080065A1 (en) Integrated Air Sanitizer and Surface Disinfector
WO2023204160A1 (en) Unit-insertable/removable toxic object reducing/eliminating device
JP2010075664A (en) Ion generating device and air cleaning device
US20220170651A1 (en) Method and system for air ventilation, sterilization and filtration
US20230181787A1 (en) Ultraviolet Air Sterilizer
US20230270897A1 (en) Toxic subject decreasing/eliminating device
ES2864155B2 (en) debugging equipment
KR20210091072A (en) Air cleaner
JP2023171414A (en) Toxic substance reduction device
JP7471635B2 (en) Air sterilizer
JP2023135506A (en) Emission device, purifier, and air conditioner
US20240082454A1 (en) Adaptive air quality control system
US11554193B2 (en) Bioaerosol inactivator UVC antimicrobial reactor
KR102319481B1 (en) Multi sterilizer
JP4961659B2 (en) UV sterilizer
JP2022007897A (en) Reducing apparatus of toxic object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791842

Country of ref document: EP

Kind code of ref document: A1