JP2023170142A - Woody member concrete member composite structure - Google Patents

Woody member concrete member composite structure Download PDF

Info

Publication number
JP2023170142A
JP2023170142A JP2022081673A JP2022081673A JP2023170142A JP 2023170142 A JP2023170142 A JP 2023170142A JP 2022081673 A JP2022081673 A JP 2022081673A JP 2022081673 A JP2022081673 A JP 2022081673A JP 2023170142 A JP2023170142 A JP 2023170142A
Authority
JP
Japan
Prior art keywords
concrete
wood
reinforced concrete
wooden
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022081673A
Other languages
Japanese (ja)
Inventor
直木 麻生
Naoki Aso
明 渡慶次
Akira Tokeshi
泰伸 神田
Yasunobu Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2022081673A priority Critical patent/JP2023170142A/en
Publication of JP2023170142A publication Critical patent/JP2023170142A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a composite cross-sectional structural member in which a concrete member reinforced with steel and a woody member are integrally arranged in a balanced cross-sectional ratio.SOLUTION: A steel-reinforced concrete member 12 is sandwiched between woody members 11U, 11L made of structural laminated lumber to be structurally integrated, and a plurality of shearing force transmission means 16, 17 are provided between the concrete member 12 and the woody members 11U, 11L along the longitudinal direction of the member so as to constitute a composite structural member, and when used as a constituent member (horizontal member 10) of a structure, the composite structural member can be integrally deformed against acting external force to exhibit sufficient strength.SELECTED DRAWING: Figure 3

Description

本発明は、木質部材と鉄筋コンクリート部材とを一体化した、横架材あるいは鉛直支持部材に適用される木質部材コンクリート部材合成構造に関する。 TECHNICAL FIELD The present invention relates to a wood-concrete-composite structure that integrates a wood member and a reinforced concrete member and is applied to a horizontal frame member or a vertical support member.

従来の木質部材と鉄筋コンクリート部材とを一体化した合成構造部材の一例として、図18に示したT形断面形状からなる梁部材100(横架材)がある。図示したような断面形状の横架材100では、鉄筋コンクリート部材101からなるフランジ部分と木質部材102からなるウエブ部分とを一体的に接合し、曲げ作用時の梁断面形状を保持させるように挙動する。この場合、鉄筋コンクリート部材101と木質部材102との合成断面の効果により梁としての曲げ剛性は向上するが、梁耐力の向上はあまり期待できない。一方、柱等の鉛直支持部材として利用される場合、大きな圧縮力を保持する場合、断面が過大になり適正な建築計画が実現できないという問題がある。 As an example of a conventional composite structural member that integrates a wooden member and a reinforced concrete member, there is a beam member 100 (horizontal member) having a T-shaped cross section shown in FIG. In the horizontal member 100 having the cross-sectional shape shown in the figure, the flange portion made of the reinforced concrete member 101 and the web portion made of the wooden member 102 are integrally joined, and behave so as to maintain the cross-sectional shape of the beam during bending. . In this case, although the bending rigidity of the beam is improved due to the effect of the composite cross section of the reinforced concrete member 101 and the wooden member 102, it is not expected that the beam resistance will be improved much. On the other hand, when used as a vertical support member such as a column, there is a problem that if a large compressive force is to be maintained, the cross section becomes too large and an appropriate architectural plan cannot be realized.

また、木質部材と鉄筋コンクリート部材との合成構造部材の一例として特許文献1に開示された複合梁がある。この複合梁では、鉄筋コンクリート部材がT形断面形状梁で、そのウエブ部分の側面を覆う側面部材として木質部材が用いられている。さらに鉄筋コンクリート部材と木質部材との応力負担の一体化を図るために、応力分担手段として梁ウエブ部分を幅方向に貫通する複数本のボルトがナット締めされて取り付けられている。 Further, there is a composite beam disclosed in Patent Document 1 as an example of a composite structural member of a wooden member and a reinforced concrete member. In this composite beam, the reinforced concrete member is a T-shaped cross-sectional beam, and a wooden member is used as a side member that covers the side surface of the web portion. Furthermore, in order to unify the stress burden between the reinforced concrete member and the wooden member, a plurality of bolts passing through the beam web portion in the width direction are tightened with nuts as stress sharing means.

特開2022-15390号公報Japanese Patent Application Publication No. 2022-15390

図18に示した複合梁を構成する横架材100では、木質部材102の上面に所定の梁幅からなる鉄筋コンクリート部材101を載せ、ボルト等で両者を一体化させるが、鉄筋コンクリート部材101と木質部材102を上下に合わせることになるため部材せい(梁せい)が大きくなる。横架材100で部材せいが大きくなると天井が低くなり、所定の天井高さを確保するために階高を大きくする必要がある。そのため、建物高さが大きくなり、外壁面も多くなり、建設コストが増加するという問題がある。また、構造上の問題として、木質部材の上に鉄筋コンクリート部材が重ねられているだけでは、横架材100の耐力を向上は見込めない。 In the horizontal member 100 constituting the composite beam shown in FIG. 18, a reinforced concrete member 101 having a predetermined beam width is placed on the top surface of a wooden member 102, and the two are integrated with bolts or the like. 102 will be aligned vertically, resulting in a large member size (beam size). When the height of the horizontal members 100 increases, the ceiling becomes lower, and it is necessary to increase the floor height in order to secure a predetermined ceiling height. Therefore, there are problems in that the height of the building increases, the number of external walls increases, and the construction cost increases. Further, as a structural problem, it is not expected that the strength of the horizontal member 100 will be improved just by stacking the reinforced concrete member on top of the wooden member.

また、特許文献1に開示された複合梁では、応力分担手段としてのボルトの機能によって、鉄筋コンクリート梁と木質材とは一体的な力学的挙動を示すが、断面積の大きな鉄筋コンクリート梁が構造主体となっており、側部に設けられた断面積の小さな木質材は補助的な構造部材であり、小さな応力負担しか考慮されていない。また、鉛直支持部材としての断面形は想定されていない。 Furthermore, in the composite beam disclosed in Patent Document 1, the reinforced concrete beam and the wooden material exhibit an integral mechanical behavior due to the function of the bolts as stress sharing means, but the reinforced concrete beam with a large cross-sectional area is the main component of the structure. The wood material with a small cross-sectional area provided on the sides is an auxiliary structural member, and only a small stress burden is considered. Further, a cross-sectional shape as a vertical support member is not assumed.

そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、鉄筋等の補強材を含むコンクリート部材と木質部材とがバランスよい断面割合で一体的に配置された合成断面を形成し、横架材においては曲げ作用時に効果的な合成構造として機能して梁耐力の向上が図れ、軸方向支持部材においては、軸圧縮に対する柱耐力が向上できる木質部材コンクリート部材合成構造を提供することにある。 SUMMARY OF THE INVENTION Therefore, the purpose of the present invention is to solve the problems of the above-mentioned conventional techniques, and to form a composite cross section in which concrete members including reinforcing materials such as reinforcing bars and wood members are integrally arranged with a well-balanced cross-sectional ratio. To provide a composite structure of wooden members and concrete members, which can function as an effective composite structure during bending in horizontal members and improve beam bearing strength, and can improve column bearing strength against axial compression in axial support members. It is in.

本発明は、鋼材補強されたコンクリート部材が、積層形成された集成材からなる木質部材で挟持されて一体化されてなる合成構造であって、該合成構造部材に作用する外力に対して一体変形可能な合成断面を有することを特徴とする。 The present invention is a composite structure in which a steel-reinforced concrete member is sandwiched and integrated with a wood member made of laminated laminated wood, and the composite structure deforms integrally in response to an external force acting on the composite structural member. It is characterized by having a possible composite cross section.

前記コンクリート部材と前記木質部材との間に、部材長手方向に沿って複数のせん断力伝達手段が設けられたことが好ましい。 It is preferable that a plurality of shear force transmission means be provided between the concrete member and the wooden member along the longitudinal direction of the member.

前記せん断力伝達手段は、前記木質部材及び前記コンクリート部材内に挿入された鋼板と、該鋼板を固定保持するドリフトピンからなることが好ましい。 Preferably, the shear force transmission means includes a steel plate inserted into the wooden member and the concrete member, and a drift pin that fixes and holds the steel plate.

前記せん断力伝達手段は、前記木質部材と前記コンクリート部材とを連結するように配設されたラグスクリューボルトからなることが好ましい。 Preferably, the shear force transmission means is a lag screw bolt arranged to connect the wooden member and the concrete member.

前記コンクリート部材と前記木質部材とは面接着により一体化されたことが好ましい。 Preferably, the concrete member and the wood member are integrated by surface adhesion.

前記合成構造は、構造物の横架材または鉛直支持部材に適用可能な部材形状に製作されることが好ましい。 Preferably, the composite structure is manufactured into a member shape that can be applied to a horizontal member or a vertical support member of a structure.

前記コンクリート部材は鉄筋コンクリート部材であり、前記木質部材は構造用集成材であることが好ましい。 Preferably, the concrete member is a reinforced concrete member, and the wood member is a structural laminated timber.

本発明によれば、横架材、軸方向支持材において、鉄筋等の補強材を含むコンクリート部材と木質部材とがバランスよい断面割合で配置された合成断面を構成したことで、横架材の曲げ強度、耐力、鉛直支持部材の軸圧縮に対する柱耐力が向上するという効果を奏する。 According to the present invention, in the horizontal frame members and the axial support members, a composite cross section is formed in which concrete members including reinforcing materials such as reinforcing bars and wood members are arranged at a well-balanced cross-sectional ratio. This has the effect of improving the bending strength, yield strength, and column yield strength against axial compression of the vertical support member.

本発明の木質部材コンクリート部材合成構造の第1実施形態としての横架材の断面を示した断面図。FIG. 1 is a sectional view showing a cross section of a horizontal member as a first embodiment of the wooden member concrete member composite structure of the present invention. 図1に示した横架材を適用した柱梁構造の一例を示した概略骨組構造図。FIG. 2 is a schematic frame structure diagram showing an example of a column-beam structure to which the horizontal members shown in FIG. 1 are applied. 図1に示した横架材の断面構成を説明するために、横架材の一部を切り取って示した斜視図。FIG. 2 is a perspective view showing a part of the horizontal member cut away to explain the cross-sectional configuration of the horizontal member shown in FIG. 1; 本発明の木質部材コンクリート部材合成構造の第2実施形態としての横架材の断面を示した断面図。FIG. 2 is a cross-sectional view showing a cross section of a horizontal member as a second embodiment of the wooden member concrete member composite structure of the present invention. 図4に示した横架材を適用した柱梁構造の一例を示した概略骨組構造図。FIG. 5 is a schematic frame structure diagram showing an example of a column-beam structure to which the horizontal members shown in FIG. 4 are applied. 図4に示した横架材の断面構成を説明するために、横架材の一部を切り取って示した斜視図。FIG. 5 is a perspective view showing a part of the horizontal frame member cut away to explain the cross-sectional configuration of the horizontal frame member shown in FIG. 4; 本発明の木質部材コンクリート部材合成構造の第3実施形態としての横架材の断面を示した断面図。FIG. 3 is a sectional view showing a cross section of a horizontal member as a third embodiment of the wooden member concrete member composite structure of the present invention. 図7に示した横架材の断面構成を説明するために、横架材の一部を切り取って示した斜視図。FIG. 8 is a perspective view showing a part of the horizontal member cut away to explain the cross-sectional configuration of the horizontal member shown in FIG. 7; 本発明の木質部材コンクリート部材合成構造の第4実施形態としての横架材の断面を示した断面図。FIG. 4 is a sectional view showing a cross section of a horizontal member as a fourth embodiment of the wood member concrete member composite structure of the present invention. 図9に示した横架材の断面構成を説明するために、横架材の一部を切り取って示した斜視図。10 is a perspective view showing a part of the horizontal member cut away to explain the cross-sectional configuration of the horizontal member shown in FIG. 9. FIG. 図9に示した横架材の梁断面に貫通孔を形成した変形例を示した断面図。10 is a sectional view showing a modification example in which through holes are formed in the cross section of the beam of the horizontal member shown in FIG. 9. FIG. 図9に示した構成の横架材の鉄筋コンクリート梁部分を現場打ちコンクリートで構築するようにした変形例における木質部材の断面を示した断面図。FIG. 10 is a sectional view showing a cross section of a wooden member in a modified example in which the reinforced concrete beam portion of the horizontal member having the configuration shown in FIG. 9 is constructed with cast-in-place concrete. 図12に示した横架材の鉄筋コンクリート梁断面に貫通孔を形成した変形例を示した断面図。13 is a sectional view showing a modification example in which through holes are formed in the cross section of the reinforced concrete beam of the horizontal member shown in FIG. 12. FIG. 本発明の木質部材コンクリート部材合成構造を鉛直支持部材(柱部材)に適用した第5実施形態における鉛直支持部材断面を示した断面図。FIG. 7 is a sectional view showing a cross section of a vertical support member (column member) in a fifth embodiment in which the wooden member concrete member composite structure of the present invention is applied to a vertical support member (column member). 本発明の木質部材コンクリート部材合成構造を横架材(梁)と鉛直支持部材(柱部材)とに適用した一例を示した概略骨組構造図。FIG. 1 is a schematic frame structure diagram showing an example in which the wooden member concrete member composite structure of the present invention is applied to a horizontal frame member (beam) and a vertical support member (column member). 本発明の木質部材コンクリート部材合成構造を鉛直支持部材(柱部材)に適用した第6実施形態における鉛直支持部材の断面形状2例((a)、(b))を示した断面図。Sectional views showing two examples ((a), (b)) of cross-sectional shapes of a vertical support member in a sixth embodiment in which the wooden member-concrete member composite structure of the present invention is applied to a vertical support member (column member). 本発明の木質部材コンクリート部材合成構造を横架材(梁)と鉛直支持部材(柱部材)とに適用した一例において柱梁接合部(a)、鉛直支持部材(b)を鉄筋コンクリート造とした構造例を示した概略骨組構造図。In an example in which the wood-concrete member composite structure of the present invention is applied to horizontal members (beams) and vertical support members (column members), the column-beam joint (a) and the vertical support member (b) are made of reinforced concrete. A schematic frame structure diagram showing an example. 従来の木質部材と鉄筋コンクリート部材からなるT形断面合成構造梁の一例を示した断面図。FIG. 1 is a sectional view showing an example of a conventional T-shaped cross-sectional composite structural beam made of wood members and reinforced concrete members.

以下、本発明の木質部材コンクリート部材合成構造の複数の実施形態の構造例について添付図面を参照して説明する。第1実施形態~第4実施形態において、横架材としての合成構造について説明し、第5実施形態、第6実施形態において、鉛直支持部材としての合成構造について説明する。 Hereinafter, structural examples of a plurality of embodiments of the wooden member concrete member composite structure of the present invention will be described with reference to the accompanying drawings. In the first to fourth embodiments, a synthetic structure as a horizontal member will be described, and in the fifth and sixth embodiments, a synthetic structure as a vertical support member will be described.

[第1実施形態]
図1は、本発明の木質部材コンクリート部材合成構造の第1実施形態として、木質梁部材11に構造用集成材を、鉄筋コンクリート梁部材12にコンクリート部材を採用した横架材10の合成断面形状を示した横断面図である。この横架材10は、図1に示したように、扁平梁形状の鉄筋コンクリート梁部材12の上下に、扁平梁の梁幅より小さな梁幅からなる断面形状の矩形の木質梁部材11が接合された合成構造部材である。なお、本実施形態においては横架材として図2に例示したラーメン構造の梁部材を想定しているため、以下、本発明の各実施形態で説明する横架材を合成構造梁10と呼ぶ。また、コンクリート部材としては製造の容易化の点からプレキャストコンクリート部材を想定しているが、現場打設コンクリートによってコンクリート部材を製造してよいことは言うまでもない。
[First embodiment]
FIG. 1 shows a composite cross-sectional shape of a horizontal member 10 in which structural laminated timber is used for the wooden beam member 11 and concrete member is used for the reinforced concrete beam member 12, as a first embodiment of the wooden member concrete member composite structure of the present invention. FIG. As shown in FIG. 1, this horizontal member 10 is constructed by joining wooden beam members 11 having a rectangular cross-sectional shape and having a beam width smaller than that of the flat beam to the upper and lower sides of a flat beam-shaped reinforced concrete beam member 12. It is a composite structural member. In addition, in this embodiment, since the beam member of the rigid-frame structure illustrated in FIG. 2 is assumed as a horizontal member, the horizontal member explained in each embodiment of this invention is hereafter called the composite structure beam 10. Moreover, although precast concrete members are assumed to be used as the concrete members from the viewpoint of ease of manufacture, it goes without saying that the concrete members may be manufactured using concrete cast on site.

本実施形態の合成構造梁10の木質梁部材11としては、同図に示したように、鉄筋コンクリート梁部材の上下を挟むように、所定寸法の矩形断面に積層して接合された構造用集成材が採用されている。本実施形態で用いられる構造用集成材はJAS規格で規定され、同一条件で製造された2列の集成材とするための幅方向の接着工程、ラミナを積層接着した複数の構成単位の積層方向の接着(二次接着)工程を経て製作されている。木質梁部材11は、具体的にはスギ、カラマツ等からなるラミナを所定厚さに積層接着してなる単位幅200mm、高さ375mmの集成材を幅方向に2列接着することで、梁幅400mm、高さ375mmの部材で構成されている。 As shown in the figure, the wooden beam member 11 of the composite structural beam 10 of the present embodiment is made of structural laminated wood that is laminated and joined in a rectangular cross section with predetermined dimensions so as to sandwich the upper and lower sides of the reinforced concrete beam member. has been adopted. The structural laminated timber used in this embodiment is specified by the JAS standard, and includes a width direction bonding process to create two rows of laminated timber manufactured under the same conditions, and a lamination direction of multiple structural units in which lamina is laminated and bonded. It is manufactured through the adhesion (secondary adhesion) process. Specifically, the wooden beam member 11 is made by gluing two rows of laminated wood in the width direction, each having a unit width of 200 mm and a height of 375 mm, which are made by laminating and bonding lamina made of cedar, larch, etc. to a predetermined thickness. It is made up of members 400mm long and 375mm high.

本実施形態の合成構造梁10を構成する鉄筋コンクリート梁部材12は、所定の梁主筋が断面内に配筋された梁幅700mm、梁せい150mmの扁平梁形状のプレキャストコンクリート部材からなる。鉄筋コンクリート梁の有効幅は接合される柱幅(図2、図3参照)、梁幅の大きい方、または梁スパンの1/4以下とすることが好ましい。 The reinforced concrete beam member 12 constituting the composite structural beam 10 of this embodiment is a precast concrete member in the shape of a flat beam with a beam width of 700 mm and a beam depth of 150 mm, in which predetermined beam main reinforcements are arranged in the cross section. It is preferable that the effective width of a reinforced concrete beam is equal to or less than 1/4 of the width of the column to be joined (see FIGS. 2 and 3), the larger of the beam width, or the beam span.

図1に示した本実施形態の合成構造梁10は、あらかじめ個別に製作された矩形断面の木質梁部材11と扁平梁形状の鉄筋コンクリート梁部材12とを、工場等において所定の製造工程を経て一体接合することで製造される。本実施形態では、鉄筋コンクリート梁部材12の下面と下側木質梁部材11Lの上面とはドリフトピン接合および接着剤による全面接着により一体接合されている。ドリフトピン接合では、ドリフトピン16として長さ300mm程度、φ10mm程度のネジ加工鋼棒が用いられ、ドリフトピン16の梁長手方向の配列ピッチは200mm程度に設定されている(図3)。ドリフトピン16の寸法、配列ピッチ等は木材強度、ドリフトピン16の引張強度、曲げ強度等を考慮して決定することが好ましい。また、鉄筋コンクリート梁部材12の下面と木質梁部材11の上面との全面接着には2液性エポキシ系樹脂接着剤が用いられている。 The composite structural beam 10 of this embodiment shown in FIG. 1 is made by integrating a wooden beam member 11 with a rectangular cross section and a reinforced concrete beam member 12 with a flat beam shape, which have been separately manufactured in advance, through a predetermined manufacturing process in a factory or the like. Manufactured by joining. In this embodiment, the lower surface of the reinforced concrete beam member 12 and the upper surface of the lower wooden beam member 11L are integrally joined by drift pin joining and full-surface adhesion using an adhesive. In the drift pin joining, a threaded steel rod with a length of about 300 mm and a diameter of about 10 mm is used as the drift pin 16, and the arrangement pitch of the drift pins 16 in the longitudinal direction of the beam is set to about 200 mm (FIG. 3). The dimensions, arrangement pitch, etc. of the drift pins 16 are preferably determined in consideration of the strength of the wood, the tensile strength, bending strength, etc. of the drift pins 16. Further, a two-component epoxy resin adhesive is used for the entire surface bonding between the lower surface of the reinforced concrete beam member 12 and the upper surface of the wooden beam member 11.

本実施形態において、鉄筋コンクリート梁部材12の上面と上側木質梁部材11Uの下面とは、図1,図3に示したように、ラグスクリューボルト接合および接着剤による全面接着により一体接合されている。ラグスクリューボルト接合では、ラグスクリューボルト17として長さ500mm程度、M12程度のネジ加工鋼棒が用いられている。ラグスクリューボルト17の梁長手方向の配列ピッチは300mm程度に設定されている。鉄筋コンクリート梁部材12の上面と上側木質梁部材11下面との全面接着には2液性エポキシ系樹脂接着剤が用いられている。ラグスクリューボルト17のボルト径、配列ピッチ等は木材強度、ボルト引張強度、曲げ強度等を考慮して決定することが好ましい。なお、接合面でのラグスクリューボルト17による接合強度が十分確保される場合には、ボルト長さを短くして、ボルト全長が木質梁部材11内の一部に納まるような長さとしてもよい。その場合、各ボルト孔にモルタルや樹脂を用いた充填材を充填するとともに、木栓(図示せず)等で開口を塞いでボルト孔が木質梁部材11の上面に現れないようにすることが好ましい。 In this embodiment, the upper surface of the reinforced concrete beam member 12 and the lower surface of the upper wooden beam member 11U are integrally joined by lag screw bolt connection and full-surface bonding with an adhesive, as shown in FIGS. 1 and 3. In the lag screw bolt connection, a threaded steel bar with a length of about 500 mm and a diameter of about M12 is used as the lag screw bolt 17. The arrangement pitch of the lag screw bolts 17 in the longitudinal direction of the beam is set to about 300 mm. A two-component epoxy resin adhesive is used to fully bond the upper surface of the reinforced concrete beam member 12 and the lower surface of the upper wooden beam member 11. The bolt diameter, arrangement pitch, etc. of the lag screw bolts 17 are preferably determined in consideration of wood strength, bolt tensile strength, bending strength, etc. Note that if sufficient joint strength is ensured by the lag screw bolt 17 at the joint surface, the length of the bolt may be shortened so that the entire length of the bolt fits within a portion of the wooden beam member 11. . In that case, each bolt hole may be filled with a filler using mortar or resin, and the opening may be closed with a wooden plug (not shown) to prevent the bolt hole from appearing on the top surface of the wooden beam member 11. preferable.

上述のように鉄筋コンクリート梁部材12と木質梁部材11とが一体化されて構成された合成構造梁は、図2,図3に示したように、木質梁部材11が鉄筋コンクリート梁部材12の上下位置に配置され、一体的に接合され、後述する鉛直支持部材としての柱部材とともに、作用荷重に対して一体的に力学的挙動を示す梁長9m(図2)の梁部材として構造体の一部を構成する。 As shown in FIGS. 2 and 3, the composite structural beam constructed by integrating the reinforced concrete beam member 12 and the wooden beam member 11 as described above is such that the wooden beam member 11 is located at the upper and lower positions of the reinforced concrete beam member 12. It is part of the structure as a beam member with a beam length of 9 m (Fig. 2) that is placed in the ground, is integrally joined, and exhibits mechanical behavior in an integrated manner under applied loads along with column members as vertical support members (described later). Configure.

ここで、上述した木質梁部材11として適用された構造用集成材に代わる数種の木質部材について説明する。構造用集成材と同等の構造部材として適用可能な以下の木質部材が挙げられる。
(構造用単板積層材(LVL))
構造用単板積層材は「単板積層材のJAS規格」によって規格化された積層材で、本発明の木質梁部材11には、主繊維方向に直交する単板がほとんどないA種のうち、梁部材に適用可能なグレード材を用いることが好ましい。適用可能な部材寸法例としては、たとえば本発明で想定している幅400mm、木質梁としての梁せい400mm、梁長9m程度まで適用可能である。
(製材)
製材は、「製材のJAS規格」によって規格化された板材で、材料基本寸法が幅120mm、梁せい360mmであるため、所定梁断面形状となるように集積して取り扱うことが好ましい。
(CLT)
CLTは、上述した集成材の木材繊維方向が直交するように積層した集成材で、変形に強い面材料として有効である。このため梁部材として利用する際、機能は限定的となるが、後述する鋼板挿入ドリフトピン接合を行う際のドリフトピンの異方性が解消されるため、接合部位での力学的効果が期待できる。
Here, several types of wooden members that can replace the structural laminated timber used as the wooden beam member 11 described above will be described. The following wooden members can be used as structural members equivalent to structural laminated timber.
(Structural veneer laminate (LVL))
Structural veneer laminated material is a laminated material standardized by the "JAS standard for veneer laminated materials", and the wooden beam member 11 of the present invention is a type A type in which there are almost no veneers perpendicular to the main fiber direction. It is preferable to use a grade material applicable to the beam member. Examples of applicable member dimensions are, for example, the width assumed in the present invention of 400 mm, the beam length as a wooden beam of 400 mm, and the beam length of about 9 m.
(lumber)
The sawn lumber is a board standardized by the "JAS Standard for Lumber", and the basic dimensions of the material are 120 mm in width and 360 mm in beam height, so it is preferable to handle it by collecting it so that it has a predetermined beam cross-sectional shape.
(CLT)
CLT is a laminated wood laminated with wood fiber directions perpendicular to each other, and is effective as a surface material that is resistant to deformation. Therefore, when used as a beam member, the function is limited, but since the anisotropy of the drift pin when performing steel plate insertion drift pin joining, which will be described later, is eliminated, a mechanical effect can be expected at the joint site. .

(せん断力伝達部材)
木質梁部材11と鉄筋コンクリート梁部材12との間のせん断力伝達部材としての接合棒材を用いた接合手段として、ラグスクリューボルト接合、ドリフトピン接合(後述する。)があるが、それらに代えて各種ネジロッド(ネジ鉄筋、異形棒鋼、FRPロッド等)を利用するアンカーボルト接合、部材接合用の貫通孔内に芯材として挿入させた接合棒材の周囲に接着剤を充填固化させるグルードインロッド(GIR)接合等を採用することもできる。また、接合棒材を介した接合に代え、または追加要素としてシアコッター、シアープレート、スプリットリング等を接合面に取り付けたり、接合面に所定形状の凹凸面を形成することも好ましい。
(shear force transmission member)
There are lag screw bolt joints and drift pin joints (described later) as joining means using joint bars as shear force transmitting members between the wooden beam member 11 and the reinforced concrete beam member 12, but instead of these, Anchor bolt connections using various threaded rods (threaded reinforcing bars, deformed steel bars, FRP rods, etc.), glue-in rods that fill and solidify adhesive around the connecting rod inserted as a core material into through holes for joining parts. GIR) bonding etc. can also be adopted. It is also preferable to attach a shear cotter, a shear plate, a split ring, etc. to the joint surface as an additional element, or to form an uneven surface of a predetermined shape on the joint surface, instead of joining through a joint rod.

さらに、木質部材と鉄筋コンクリート梁部材との面接合手段として、2液性エポキシ系樹脂接着剤の他、ポリウレタン系樹脂接着剤、2液性アクリル系樹脂接着剤、水性ビニルウレタン系接着剤等、木材と鋼板等の異種材料との接着性能が高い接着剤を選択することが好ましい。 Furthermore, in addition to two-component epoxy resin adhesives, polyurethane resin adhesives, two-component acrylic resin adhesives, water-based vinyl urethane adhesives, etc. can be used for surface bonding between wooden members and reinforced concrete beam members. It is preferable to select an adhesive that has high adhesion performance between the material and dissimilar materials such as steel plates.

[第2実施形態]
図4は、本発明の第2実施形態として、構造用集成材からなる木質梁部材21と鉄筋コンクリート梁部材22との接合に、鋼板挿入ドリフトピン接合を採用した合成構造梁20の合成断面形状を示した横断面図である。この合成構造梁20も、第1実施形態と同様に、扁平梁形状の鉄筋コンクリート梁部材22の上下位置に同一断面形状の木質梁部材21が接合された断面形状からなり、木質梁部材21、鉄筋コンクリート梁部材22の構成要素も第1実施形態と同様である。この合成構造梁20では、図4,図6に示したように、横方向に接合された構造用集成材23の接合面に沿って設けられた所定幅のスリット24内に、あらかじめ鉄筋コンクリート梁部材22に一部が埋設支持された接合用鋼板25を挿入し、多数のドリフトピン26を木質梁部材21の側面から打ち込むことで、鉄筋コンクリート梁部材22と木質梁部材21との一体接合が図られている。この鋼板挿入ドリフトピン接合を採用することで、合成構造梁20の見えがかりや施工性が良くなり、モーメント抵抗接合要素としても優れた性能を示すという効果が期待できる。
[Second embodiment]
FIG. 4 shows a composite cross-sectional shape of a composite structural beam 20 in which a steel plate insertion drift pin connection is used to connect a wooden beam member 21 made of structural laminated timber and a reinforced concrete beam member 22, as a second embodiment of the present invention. FIG. Similar to the first embodiment, this composite structural beam 20 also has a cross-sectional shape in which wooden beam members 21 having the same cross-sectional shape are joined to the upper and lower positions of a flat beam-shaped reinforced concrete beam member 22, and the wooden beam members 21, reinforced concrete The constituent elements of the beam member 22 are also the same as in the first embodiment. In this composite structural beam 20, as shown in FIG. 4 and FIG. The reinforced concrete beam member 22 and the wooden beam member 21 are integrally joined by inserting a joining steel plate 25 which is partially supported embedded in the reinforced concrete beam member 22 and driving a large number of drift pins 26 from the side of the wooden beam member 21. ing. By employing this steel plate insertion drift pin joint, the appearance and workability of the composite structural beam 20 are improved, and the effect of exhibiting excellent performance as a moment resistance joint element can be expected.

以下、本実施形態の特徴的な構成要素である鋼板挿入ドリフトピン接合について、図4~図6を参照して説明する。本実施形態で合成構造梁20内に挿入埋設される鋼板25の寸法は、縦750mm、横750mm、厚さ12mmで、図5に示したように、完成形である合成構造梁20の両梁端から各2m程度の位置に埋設配置される。この鋼板25は高さ方向の中央位置の側面に所定本数のジベル27が取り付けられており、鉄筋コンクリート梁部材22の製作時に、これらのジベル27の位置を中心として鉄筋コンクリート梁部材22内に埋設保持される(図4,6参照)。これにより鋼板25と鉄筋コンクリート梁部材22との付着、せん断の一体化が図られる。また、図6に示したように、鋼板25の縁辺に沿って複数の孔28が列設されている。これらの孔28に所定長さのドリフトピン26を木質梁部材21の外側面から挿入貫通させることにより、鋼板25を芯材として木質梁部材21と鉄筋コンクリート梁部材22との一体化が図られる。また、鉄筋コンクリート梁部材22の上下面と木質梁部材21の上下面とは2液性エポキシ系樹脂接着剤によって全面接着されている。合成構造梁20内に挿入される鋼板25の枚数、挿入位置については、合成構造梁20の一体的挙動が実現するように適宜設定できることはいうまでもない。 The steel plate insertion drift pin joint, which is a characteristic component of this embodiment, will be described below with reference to FIGS. 4 to 6. In this embodiment, the dimensions of the steel plate 25 inserted and buried in the composite structural beam 20 are 750 mm long, 750 mm wide, and 12 mm thick, and as shown in FIG. 5, both beams of the completed composite structural beam 20 are They are buried approximately 2m from each end. A predetermined number of dowels 27 are attached to the sides of the steel plate 25 at the center position in the height direction, and when the reinforced concrete beam member 22 is manufactured, the steel plate 25 is embedded and held in the reinforced concrete beam member 22 around the positions of these dowels 27. (See Figures 4 and 6). As a result, the attachment and shearing of the steel plate 25 and the reinforced concrete beam member 22 are unified. Further, as shown in FIG. 6, a plurality of holes 28 are arranged in a row along the edge of the steel plate 25. By inserting drift pins 26 of a predetermined length into these holes 28 from the outer surface of the wooden beam member 21, the wooden beam member 21 and the reinforced concrete beam member 22 are integrated with the steel plate 25 as a core material. Further, the upper and lower surfaces of the reinforced concrete beam member 22 and the upper and lower surfaces of the wooden beam member 21 are fully bonded with a two-component epoxy resin adhesive. It goes without saying that the number and insertion positions of the steel plates 25 inserted into the composite structural beam 20 can be set as appropriate so that the integral behavior of the composite structural beam 20 is realized.

上述のように挿入鋼板ドリフトピン接合により、鉄筋コンクリート梁部材22と木質梁部材21とが一体化されて構成された合成構造梁20は、第1実施形態と同様に、工場製作時に、木質梁部材21が鉄筋コンクリート梁部材22の上下位置に一体的に接合されることで、作用荷重に対して一体的に力学的挙動を示す梁長9m(図5)からなるプレキャスト梁部材となる。 As described above, the composite structural beam 20 is constructed by integrating the reinforced concrete beam member 22 and the wooden beam member 21 by inserting steel plate drift pins, and the wooden beam member 21 is assembled at the time of factory manufacture, as in the first embodiment. 21 are integrally joined to the upper and lower positions of the reinforced concrete beam member 22, resulting in a precast beam member having a beam length of 9 m (FIG. 5) that exhibits mechanical behavior in an integrated manner under applied loads.

[第3実施形態]
図7は、本発明の第3実施形態として、木質梁部材31に構造用集成材を、鉄筋コンクリート梁部材32にT形断面プレキャスト鉄筋コンクリート梁部材32を採用した合成構造梁30の断面形状例を示した横断面図である。この合成構造梁30は、図7に示したように、鉄筋コンクリート梁部材32の上側に矩形断面からなる上側木質梁部材31Uが、下側に鉄筋コンクリート梁部材32のウエブ部分32aを囲むような溝形断面形状の下側木質梁部材31Lが配置、接合された形状からなる。
[Third embodiment]
FIG. 7 shows an example of the cross-sectional shape of a composite structural beam 30 as a third embodiment of the present invention, in which structural laminated timber is used for the wooden beam member 31 and a T-shaped cross-section precast reinforced concrete beam member 32 is used for the reinforced concrete beam member 32. FIG. As shown in FIG. 7, this composite structural beam 30 has a groove-shaped upper wooden beam member 31U having a rectangular cross section on the upper side of the reinforced concrete beam member 32 and a groove-like structure surrounding the web portion 32a of the reinforced concrete beam member 32 on the lower side. The lower wooden beam member 31L having a cross-sectional shape is arranged and joined.

本実施形態では、鉄筋コンクリート梁部材32がT形断面形状であるため、ウエブ部分32aの側面と下面とを覆う下側木質梁部材31Lは溝形断面形状となっている。下側木質梁部材31Lと鉄筋コンクリート梁部材32との接合は、第1実施形態と同様に、鉄筋コンクリート梁部材32のウエブ部分32aの下面に対するドリフトピン36を用いた接合および接着剤による全面接着が採用されている。使用するドリフトピン36等の設置方法、各材料の仕様は第1実施形態の構成と同様である。 In this embodiment, since the reinforced concrete beam member 32 has a T-shaped cross-section, the lower wooden beam member 31L that covers the side and lower surfaces of the web portion 32a has a groove-shaped cross-section. As in the first embodiment, the lower wooden beam member 31L and the reinforced concrete beam member 32 are connected by using a drift pin 36 on the lower surface of the web portion 32a of the reinforced concrete beam member 32 and by bonding the entire surface with an adhesive. has been done. The method of installing the drift pin 36 and the like used and the specifications of each material are the same as the configuration of the first embodiment.

鉄筋コンクリート梁部材32の上面と上側木質梁部材31Uの下面とは、本実施形態では、図7,図8に示したように、ラグスクリューボルト接合および接着剤による全面接着により一体接合されている。ラグスクリューボルト37の構成、接着剤の構成は、第1実施形態の構成と同様である。 In this embodiment, the upper surface of the reinforced concrete beam member 32 and the lower surface of the upper wooden beam member 31U are integrally joined by lag screw bolt joining and full-surface bonding with an adhesive, as shown in FIGS. 7 and 8. The structure of the lag screw bolt 37 and the structure of the adhesive are the same as those of the first embodiment.

上述のようにT形断面形状の鉄筋コンクリート梁部材32と矩形及び溝形断面の木質梁部材31U、31Lとが一体化されて構成された合成構造梁30は、図7,図8に示したように、工場製作時に木質梁部材31(31U、31L)が鉄筋コンクリート梁部材32の上下位置に配置され、一体的に接合され、鉄筋コンクリート梁部材32が十分な応力負担することで、作用荷重に対して一体的に力学的挙動を示す梁長9m(たとえば図2参考)からなるプレキャスト梁部材となる。 As shown in FIGS. 7 and 8, the composite structural beam 30 is constructed by integrating the reinforced concrete beam member 32 with a T-shaped cross section and the wooden beam members 31U and 31L with rectangular and groove cross sections as described above. During factory manufacturing, the wooden beam members 31 (31U, 31L) are placed above and below the reinforced concrete beam member 32 and are integrally joined, so that the reinforced concrete beam member 32 bears sufficient stress, so that it can withstand the applied load. This is a precast beam member with a beam length of 9 m (for example, see FIG. 2) that exhibits mechanical behavior in an integrated manner.

[第4実施形態]
図9は、本発明の第4実施形態として、木質梁部材41に構造用集成材を、鉄筋コンクリート梁部材42にT形断面形状のプレキャストコンクリート梁部材を採用し、木質梁部材41と鉄筋コンクリート梁部材との接合に鋼板挿入ドリフトピン接合を採用した合成構造梁40の一例の断面形状を示している。この合成構造梁40は、図9,10に示したように、第2実施形態と同様に、横方向に接合された構造用集成材43の接合面に沿って所定幅のスリット44を設け、あらかじめ鉄筋コンクリート梁部材42に一部が埋設された接合用鋼板45を挿入し、多数のドリフトピン46を木質梁部材41の側面から打ち込むことで、鉄筋コンクリート梁部材42と木質梁部材41との一体接合を図っている。合成構造梁40の断面としては、第3実施形態と同様のT形断面形状梁からなる鉄筋コンクリート梁部材42の上下に異なる断面形状の木質梁部材41(41U、41L)が接合された合成構造梁40となっている。本実施形態の合成構造梁40の木質梁部材41、鉄筋コンクリート梁部材42の構成要素、鋼板挿入ドリフトピン接合方式の構成は、第1実施形態、第3実施形態と同様である。
[Fourth embodiment]
FIG. 9 shows a fourth embodiment of the present invention in which structural laminated timber is used as the wooden beam member 41 and a precast concrete beam member with a T-shaped cross section is used as the reinforced concrete beam member 42. The cross-sectional shape of an example of a composite structural beam 40 in which a steel plate insertion drift pin connection is adopted for connection with the beam 40 is shown. As shown in FIGS. 9 and 10, this composite structural beam 40 has a slit 44 of a predetermined width along the joint surface of the structural laminated timber 43 joined laterally, as in the second embodiment, The reinforced concrete beam member 42 and the wooden beam member 41 are integrally joined by inserting a joining steel plate 45, which is partially buried in the reinforced concrete beam member 42 in advance, and driving a large number of drift pins 46 from the side of the wooden beam member 41. We are trying to The cross section of the composite structural beam 40 is a composite structural beam in which wooden beam members 41 (41U, 41L) with different cross-sectional shapes are joined above and below a reinforced concrete beam member 42 that is a T-shaped cross-sectional beam similar to the third embodiment. It is 40. The components of the wooden beam member 41 and the reinforced concrete beam member 42 of the composite structural beam 40 of this embodiment, and the structure of the steel plate insertion drift pin joining method are the same as those of the first embodiment and the third embodiment.

[第4実施形態の変形例]
鉄筋コンクリート梁部材42にT形断面形状梁が用いられている第4実施形態において、ウエブ部分42aを貫通する梁貫通孔47を設置する変形例および鉄筋コンクリート梁部材42を現場打ちコンクリートによって構築するようにした変形例について、図11~図13を参照して説明する。
(梁貫通孔設置)
図11は、合成構造梁40において、鉄筋コンクリート梁部材42のウエブ部分42aの下側に梁貫通孔47が設けられた変形例を示している。本発明の合成構造梁40において梁貫通孔47を設ける場合、同図に示したように、あらかじめプレキャストコンクリートとして製造される鉄筋コンクリート梁部材42のウエブ部分42aにボイド管等(図示せず)を利用してあらかじめ仮貫通孔を形成しておくとともに、下側木質梁部材41Lの側面の所定位置に仮貫通孔と同径あるいは大きな径の開口48を形成しておくことで、各部材を接合して合成構造梁40を構築した際に、ウエブ部分42aに所定口径の梁貫通孔47を形成することができる。このとき梁外面は木質部材であるため、配管設置後の開口周囲の閉塞加工等の作業を容易に行うことができる。
[Modification of the fourth embodiment]
In the fourth embodiment in which a T-shaped cross-sectional beam is used as the reinforced concrete beam member 42, there is a modification in which a beam through hole 47 is installed that penetrates the web portion 42a, and the reinforced concrete beam member 42 is constructed with cast-in-place concrete. A modified example will be described with reference to FIGS. 11 to 13.
(Beam through hole installation)
FIG. 11 shows a modified example of a composite structural beam 40 in which a beam through hole 47 is provided on the lower side of a web portion 42a of a reinforced concrete beam member 42. When providing the beam through hole 47 in the composite structural beam 40 of the present invention, as shown in the figure, a void pipe or the like (not shown) is used in the web portion 42a of the reinforced concrete beam member 42 manufactured in advance as precast concrete. By forming a temporary through hole in advance and forming an opening 48 with the same diameter or a larger diameter as the temporary through hole at a predetermined position on the side surface of the lower wooden beam member 41L, each member can be joined. When constructing the composite structural beam 40, a beam through hole 47 of a predetermined diameter can be formed in the web portion 42a. At this time, since the outer surface of the beam is a wooden member, work such as closing around the opening after piping installation can be easily performed.

(現場打ち鉄筋コンクリートによる構築)
本発明では、合成構造梁40のうちの鉄筋コンクリート梁部材42は工場製作されるプレキャストコンクリート部材を想定しているが、構造物の構築現場において、現場打ちコンクリート作業によって鉄筋コンクリート梁部材42を製造することも可能である。その場合の施工方法について、図12,図13を参照して説明する。
(Construction using cast-in-place reinforced concrete)
In the present invention, the reinforced concrete beam member 42 of the composite structural beam 40 is assumed to be a precast concrete member manufactured in a factory, but it is also possible to manufacture the reinforced concrete beam member 42 by pouring concrete on site at the construction site of the structure. is also possible. The construction method in that case will be explained with reference to FIGS. 12 and 13.

図12は、現場打ちコンクリートによって鉄筋コンクリート梁部材42を製作する際のコンクリート打設前工程の一例を仮想線で示した断面図である。同図に示したように、鉄筋コンクリート梁部材42を現場打ちコンクリートで製作する際、下側木質梁部材41LにはT形断面形状梁のウエブ部分42a(図11)に相当する空間Vが形成され、下側木質梁部材41Lの一部がウエブ部分42aのコンクリート打設時の型枠M1となる。この型枠M1内には梁主筋等の必要な鉄筋が配筋されている。さらに下側木質梁部材41Lの上端位置に張り出しフランジ部分のための型枠M2が取り付けられ、サポートSで支保された状態が仮想線で示されている。一方、上側木質梁部材41Uの下面には梁幅方向の中心に向けて下方傾斜するテーパ面41aが形成されている。このテーパ面41aが設けられることにより、コンクリート打設時に、流動するコンクリートが上側木質梁部材41Uの下面に、コンクリート硬化後に空隙となるような空気(エア)が溜まらないように確実に充填される。 FIG. 12 is a sectional view showing an example of the pre-concrete pouring process when manufacturing the reinforced concrete beam member 42 using cast-in-place concrete, using imaginary lines. As shown in the figure, when manufacturing the reinforced concrete beam member 42 with cast-in-place concrete, a space V corresponding to the web portion 42a (FIG. 11) of the T-shaped cross-sectional beam is formed in the lower wooden beam member 41L. , a part of the lower wooden beam member 41L becomes the formwork M1 when concrete is poured into the web portion 42a. Necessary reinforcing bars such as beam main reinforcements are arranged within this formwork M1. Furthermore, a formwork M2 for an overhanging flange portion is attached to the upper end position of the lower wooden beam member 41L, and a state in which it is supported by a support S is shown in phantom lines. On the other hand, a tapered surface 41a that slopes downward toward the center in the beam width direction is formed on the lower surface of the upper wooden beam member 41U. By providing this tapered surface 41a, during concrete pouring, flowing concrete is reliably filled into the lower surface of the upper wooden beam member 41U so that air does not accumulate, which would become voids after the concrete hardens. .

図13は、図12に示したのと同様の鉄筋コンクリート梁部材42を現場打ちコンクリートで製作する際に、梁下貫通孔47を同時に形成するようにした施工例を示している。同図に示したように、梁下貫通孔47の設置部分には所定口径のボイド管49が設置され、さらにこの梁下貫通孔47と連通する位置の木質梁部材41側にも開口48が設けられている。この開口48はコンクリート打設時には取り外し可能なプラグ(閉塞栓)P等で閉塞しておくことでコンクリートの流出防止が図られている。 FIG. 13 shows an example of construction in which a reinforced concrete beam member 42 similar to that shown in FIG. 12 is manufactured using cast-in-place concrete, and a through-hole 47 under the beam is formed at the same time. As shown in the figure, a void pipe 49 of a predetermined diameter is installed in the installation portion of the under-beam through-hole 47, and an opening 48 is also provided on the side of the wooden beam member 41 at a position communicating with the under-beam through-hole 47. It is provided. This opening 48 is closed with a removable plug P or the like during concrete pouring to prevent concrete from flowing out.

[第5実施形態]
図14は、本発明の木質部材コンクリート部材合成構造の第5実施形態として、鉛直支持部材50としての柱部材(以下、柱部材50と記す。)の断面構成を示している。図15は、この鉛直支持部材としての柱部材50と横架材20(一例として)とからなるラーメン架構の一例を示している。本実施形態の柱部材50の断面は略正方形断面形状からなり、同図に示したように、断面中央位置の鉄筋コンクリート部分52の幅が150mm、鉄筋コンクリート部分52を挟む両側の木質部分51の幅が各275mmで、一辺の柱せいが700mm(275+150+275)となっている。鉄筋コンクリート部分52と木質部分51とは接合面に配置された各5本のアンカーボルト53によるアンカーボルト接合と接着剤による全面接着とにより一体接合されている。アンカーボルト53は鉄筋コンクリート部分51ではコンクリート内に直接埋設され、木質部分52ではアンカー穴内に充填されたエポキシ系樹脂接着剤54によって固定保持されている。このように柱断面において木質部分51に鉄筋コンクリート部分52が付加されることにより、柱の圧縮耐力を大幅に増加させることができる。この柱部材50の木質部分51には、上述した横架材に適用される構造用集成材他、強度、耐力が適合する各種の木質材料を採用できる。
[Fifth embodiment]
FIG. 14 shows a cross-sectional configuration of a column member (hereinafter referred to as column member 50) as a vertical support member 50 as a fifth embodiment of the wooden member concrete member composite structure of the present invention. FIG. 15 shows an example of a rigid-frame frame consisting of column members 50 as vertical support members and horizontal members 20 (as an example). The cross section of the column member 50 of this embodiment has a substantially square cross-sectional shape, and as shown in the figure, the width of the reinforced concrete portion 52 at the center of the cross section is 150 mm, and the width of the wooden portions 51 on both sides of the reinforced concrete portion 52 is 150 mm. Each column is 275mm long, and the column width on each side is 700mm (275+150+275). The reinforced concrete part 52 and the wooden part 51 are integrally joined by anchor bolt joints using five anchor bolts 53 arranged on the joint surfaces and full-surface adhesion using an adhesive. The anchor bolt 53 is directly buried in concrete in the reinforced concrete portion 51, and is fixedly held in the wooden portion 52 by an epoxy resin adhesive 54 filled in the anchor hole. By adding the reinforced concrete portion 52 to the wooden portion 51 in the cross section of the column in this manner, the compressive strength of the column can be significantly increased. For the wooden portion 51 of the column member 50, various types of wooden materials having suitable strength and yield strength can be used, in addition to the structural laminated wood used for the horizontal members described above.

[第6実施形態]
図16各図は、本発明の木質部材コンクリート部材合成構造の第6実施形態として、第5実施形態と同様に、木質部分61に構造用集成材を、鉄筋コンクリート部分62にプレキャスト鉄筋コンクリート部分62を採用した鉛直支持部材(合成構造柱60)において、木質部分61と鉄筋コンクリート部分62との接合に鋼板挿入ドリフトピン接合を採用した柱断面形状を示した断面図である。この合成構造柱60では、横方向に接合された構造用集成材の接合面に沿って設けられた所定幅のスリット64内に、あらかじめ鉄筋コンクリート部分62に一部が埋設支持された接合用鋼板65を挿入し、多数のドリフトピン66を木質部分61の側面から打ち込むことで、鉄筋コンクリート部分62と木質部分61との一体接合が図られている。この鋼板挿入ドリフトピン接合を採用して一体化された木質部分61と鉄筋コンクリート部分62とによる合成構造により柱耐力が向上するという力学的な効果とともに、柱側部の見えがかりが良くなるという意匠的な効果も期待できる。
[Sixth embodiment]
Each figure in FIG. 16 shows a sixth embodiment of the wood-concrete member composite structure of the present invention, in which structural laminated timber is used for the wood part 61 and precast reinforced concrete part 62 is used for the reinforced concrete part 62, as in the fifth embodiment. FIG. 3 is a cross-sectional view showing the cross-sectional shape of a vertical support member (synthetic structure column 60) in which a steel plate insertion drift pin connection is adopted for joining a wooden part 61 and a reinforced concrete part 62. In this composite structural column 60, a joining steel plate 65 is partially embedded and supported in a reinforced concrete portion 62 in advance in a slit 64 of a predetermined width provided along the joining surface of structural laminated timber joined laterally. The reinforced concrete portion 62 and the wooden portion 61 are integrally joined by inserting a large number of drift pins 66 into the side surface of the wooden portion 61. The composite structure of the wooden part 61 and the reinforced concrete part 62, which are integrated by adopting this steel plate insertion drift pin joint, has the mechanical effect of improving the column's bearing capacity, as well as the design effect of improving the visibility of the side of the column. You can also expect great effects.

また、第6実施形態の変形例として柱断面内に2枚の鋼板65,65を挿入し、これら2枚の鋼板65,65を貫通するように、多数のドリフトピン66を木質部分61の側面から打ち込むことで、鉄筋コンクリート部分62と木質部分61とが一体接合されている。2枚の鋼板65,65を用いることにより鉄筋コンクリート部分62と木質部分61との一層の一体化を図ることができる。 In addition, as a modification of the sixth embodiment, two steel plates 65, 65 are inserted into the cross section of the column, and a large number of drift pins 66 are inserted into the side surface of the wooden portion 61 so as to penetrate these two steel plates 65, 65. The reinforced concrete portion 62 and the wooden portion 61 are integrally joined by pouring from the ground. By using the two steel plates 65, 65, the reinforced concrete portion 62 and the wooden portion 61 can be further integrated.

[合成構造を用いたラーメン架構の構成例]
以上の説明では、本発明の合成構造を、横架材(梁)、鉛直支持部材(柱)に適用した例として、たとえば図2,図15を示して説明した。いずれの場合にも柱梁接合部は、梁の鉄筋コンクリート部分と柱の鉄筋コンクリート部、梁の木質部分と梁の鉄筋コンクリート部とがそれぞれ立体的に直交して接合される部位となる。これらの部材が接合される各部位における構造要素(鉄筋、せん断伝達部材等)の配置の複雑さを避けるため、また鉛直支持部材(柱)の耐力の向上を目的として図17各図のようなラーメン架構とすることも好ましい。たとえば図17(a)に示したように、合成構造からなる梁部材と柱部材との交点である柱梁接合部70を鉄筋コンクリート構造で一体構成することで、柱梁接合部の施工が容易になるとともに、梁、柱に配筋される各主筋間の応力伝達経路を単純化することができる。図17(b)に示したラーメン架構では、柱部材全体を鉄筋コンクリート柱71とすることで柱耐力の向上を実現している。
[Example of configuration of rigid frame using synthetic structure]
In the above description, the composite structure of the present invention is applied to horizontal members (beams) and vertical support members (columns), for example, with reference to FIGS. 2 and 15. In either case, the column-beam joint is a part where the reinforced concrete part of the beam and the reinforced concrete part of the column, and the wooden part of the beam and the reinforced concrete part of the beam, are joined three-dimensionally orthogonally to each other. In order to avoid complicating the arrangement of structural elements (reinforcing bars, shear transmission members, etc.) at each location where these members are joined, and to improve the strength of the vertical support members (columns), the structure shown in Figure 17 was It is also preferable to use a rigid frame structure. For example, as shown in Fig. 17(a), the column-beam joint 70, which is the intersection of a beam member made of a composite structure and a column member, is integrally constructed with a reinforced concrete structure, making it easy to construct the column-beam joint. At the same time, the stress transmission path between the main reinforcements arranged in the beams and columns can be simplified. In the rigid-frame frame shown in FIG. 17(b), the entire column member is made of a reinforced concrete column 71, thereby achieving an improvement in column resistance.

以上の説明では、横架材の一例として梁部材を想定して説明を行ったが、鉄筋コンクリート部材をスラブ構造の一部として扱うことにより、剛床構造を容易に構成することができる。また、室内の納まりとして、鉄筋コンクリート部材の上側に設けられる木質部材を二重床等の下部空間内に位置させることにより、フラットな床面が構築できる。さらに、合成構造を外周架構に用いれば、室内において床上に木質部材を現しにすることで、椅子等の室内に備える什器と一体化させた意匠とすることもでき、これにより床・天井を木質化した落ち着いた雰囲気の室内空間を提供される。 In the above explanation, a beam member was assumed as an example of a horizontal member, but a rigid floor structure can be easily constructed by treating a reinforced concrete member as a part of a slab structure. Further, by locating the wooden member provided above the reinforced concrete member in the lower space of a double floor or the like to accommodate the room, a flat floor surface can be constructed. Furthermore, if a composite structure is used for the outer frame, it is possible to create a design that is integrated with indoor fixtures such as chairs by exposing the wooden parts on the floor indoors. It provides an interior space with a relaxed atmosphere.

また、木質部材と鉄筋コンクリート部材とからなる合成構造について説明したが、鉄筋コンクリート部材に代えて各種の補強繊維を用いた繊維補強コンクリート部材、鉄骨鉄筋コンクリート部材、PC鋼材を配線してなるプレストレストコンクリート部材と木質部材とからなる合成構造についても同様の構成が可能である。 In addition, we have explained a composite structure consisting of wooden members and reinforced concrete members, but we have also explained fiber-reinforced concrete members using various reinforcing fibers instead of reinforced concrete members, steel-framed reinforced concrete members, prestressed concrete members made by wiring prestressed steel members, and wood-based members. A similar configuration is also possible for a composite structure consisting of members.

なお、本発明は上述した実施形態に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 Note that the present invention is not limited to the embodiments described above, and various changes can be made within the scope of each claim. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included within the technical scope of the present invention.

10,20,30,40,50 合成構造梁(横架材)
11,21,31,41,51 木質梁部材
12,22,32,42,52 鉄筋コンクリート梁部材
25,45,65 接合用鋼板
16,26,36,46,66 ドリフトピン
17,37 ラグスクリューボルト
60 合成構造柱(鉛直支持部材)
61 木質部分
62 鉄筋コンクリート部分
10, 20, 30, 40, 50 Composite structural beam (horizontal material)
11, 21, 31, 41, 51 Wooden beam members 12, 22, 32, 42, 52 Reinforced concrete beam members 25, 45, 65 Joining steel plates 16, 26, 36, 46, 66 Drift pins 17, 37 Lag screw bolts 60 Composite structural column (vertical support member)
61 Wooden part 62 Reinforced concrete part

Claims (7)

鋼材補強されたコンクリート部材が、積層形成された集成材からなる木質部材で挟持されて一体化されてなる合成構造であって、該合成構造部材に作用する外力に対して一体変形可能な合成断面を有することを特徴とする木質部材コンクリート部材合成構造。 A composite structure in which a steel-reinforced concrete member is sandwiched and integrated with a wood member made of laminated laminated wood, and the composite cross section is capable of integrally deforming in response to external forces acting on the composite structural member. A wood member concrete member composite structure characterized by having. 前記コンクリート部材と前記木質部材との間に、部材長手方向に沿って複数のせん断力伝達手段が設けられたことを特徴とする請求項1に記載の木質部材コンクリート部材合成構造。 2. The wood-concrete member composite structure according to claim 1, wherein a plurality of shear force transmission means are provided between the concrete member and the wood member along the longitudinal direction of the member. 前記せん断力伝達手段は、前記木質部材及び前記コンクリート部材内に挿入された鋼板と、該鋼板を固定保持するドリフトピンからなる請求項2に記載の木質部材コンクリート部材合成構造。 3. The wood-concrete member composite structure according to claim 2, wherein the shear force transmission means comprises a steel plate inserted into the wood member and the concrete member, and a drift pin that fixes and holds the steel plate. 前記せん断力伝達手段は、前記木質部材と前記コンクリート部材とを連結するように配設されたラグスクリューボルトからなる請求項2に記載の木質部材コンクリート部材合成構造。 3. The wood-concrete member composite structure according to claim 2, wherein said shear force transmission means comprises a lag screw bolt arranged to connect said wood member and said concrete member. 前記コンクリート部材と前記木質部材とは面接着により一体化された請求項1に記載の木質部材コンクリート部材合成構造。 The wood-concrete-member composite structure according to claim 1, wherein the concrete member and the wood member are integrated by surface adhesion. 前記合成構造は、構造物の横架材または鉛直支持部材に適用可能な部材形状に製作される請求項1に記載の木質部材コンクリート部材合成構造。 The wood-concrete composite structure according to claim 1, wherein the composite structure is manufactured in a member shape that can be applied to horizontal members or vertical support members of a structure. 前記コンクリート部材は鉄筋コンクリート部材であり、前記木質部材は構造用集成材である請求項1に記載の木質部材コンクリート部材合成構造。 The wood-concrete-member composite structure according to claim 1, wherein the concrete member is a reinforced concrete member, and the wood member is a structural laminated timber.
JP2022081673A 2022-05-18 2022-05-18 Woody member concrete member composite structure Pending JP2023170142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022081673A JP2023170142A (en) 2022-05-18 2022-05-18 Woody member concrete member composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022081673A JP2023170142A (en) 2022-05-18 2022-05-18 Woody member concrete member composite structure

Publications (1)

Publication Number Publication Date
JP2023170142A true JP2023170142A (en) 2023-12-01

Family

ID=88928076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081673A Pending JP2023170142A (en) 2022-05-18 2022-05-18 Woody member concrete member composite structure

Country Status (1)

Country Link
JP (1) JP2023170142A (en)

Similar Documents

Publication Publication Date Title
US7549263B1 (en) Structural insulated panel with hold down chase
CA2909402C (en) Pre-stressed beams or panels
WO1996002713A1 (en) Premanufactured structural elements
JP5507051B2 (en) Seismic wall
JP4590373B2 (en) Structural wall
JP2002322817A (en) Fiber reinforcement system for building and building novel member
JP7030754B2 (en) Wall structure and how to build the wall structure
JP2023126339A (en) Reinforcement structure of wooden member
JP2007092318A (en) Joint structure of wooden structural member, horizontal member, column structure, and column fitting, framework of wooden building with these parts, and method of assembling the framwork
JP2601113B2 (en) Column-beam connection structure in glulam structure
JP2023170142A (en) Woody member concrete member composite structure
JP2004285817A (en) Woody earthquake-resistance opening frame built into wooden body
JP3588015B2 (en) Fiber reinforcement system for buildings
JP2021147816A (en) Earthquake resistant wall
JP7405640B2 (en) Wooden building materials and structures
KR20220045445A (en) Connection of wood structure and the construction method thereof
JP2022015390A (en) Composite beam
JP7394256B1 (en) Joint structure
JP2008156836A (en) Structure of earthquake-resistant wall and earthquake-resistant reinforcement construction method
JP7401145B1 (en) Structural base materials, structural members and structures
JP5650383B2 (en) Multistage braided joint shaft
JP2019031777A (en) Joint structure of woody slab
WO2021245735A1 (en) Laminated wood joint structure
KR102239574B1 (en) Seismic retrofit system and construction method of concrete column using non-anchor and steel frame joint type
EP4074912A1 (en) Floor beam for buildings and bridges