JP2023168095A - 排ガス中のn2o排出量低減方法および制御装置 - Google Patents

排ガス中のn2o排出量低減方法および制御装置 Download PDF

Info

Publication number
JP2023168095A
JP2023168095A JP2022079744A JP2022079744A JP2023168095A JP 2023168095 A JP2023168095 A JP 2023168095A JP 2022079744 A JP2022079744 A JP 2022079744A JP 2022079744 A JP2022079744 A JP 2022079744A JP 2023168095 A JP2023168095 A JP 2023168095A
Authority
JP
Japan
Prior art keywords
air
furnace
fluidized
air preheater
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022079744A
Other languages
English (en)
Inventor
全信 杉原
Harunobu Sugihara
均 廣瀬
Hitoshi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2022079744A priority Critical patent/JP2023168095A/ja
Publication of JP2023168095A publication Critical patent/JP2023168095A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Abstract

【課題】焼却設備の耐熱性等を向上させることでコストを増大させることなく、N2Oの排出量を低減する流動焼却炉における運転方法およびその装置を提供する。さらに、炉内空塔速度を抑え、炉内で生じる排ガスの滞留時間を増やすことでN2O排出量を抑制する。【解決手段】焼却システムの流動焼却炉の焼却排ガスと流動空気を熱交換する空気予熱器において、並流ラインの供給路と向流ラインの供給路で、空気予熱器冷却空気割合を最小値と最大値の範囲内にするための操作を行い、空気予熱器冷却空気割合が最小値と最大値の範囲内であれば、炉内注水量を最小値と最大値の範囲内にするため、炉入口温度の設定温度を減少または上昇させる操作を行うことを特徴とする排ガス中のN2O排出量低減方法及び排ガス中のN2O排出量低減を実行する制御プログラムに基づいて動作する制御装置。【選択図】図1

Description

本発明は、流動焼却炉内の空気予熱器における予熱空気温度を制御してN20の排出量を低減する方法および制御装置に関する。
流動焼却炉は、炉に入れた砂等の流動媒体を炉の下部から送り込まれる空気により流動させて流動層(流動床)を生成し、熱せられた流動層内に投入された下水汚泥または都市ゴミ等の焼却対象物を流動媒体とともに撹拌させて焼却する焼却炉である。
流動焼却炉内の流動状態は、炉に供給する空気(単に供給空気、燃焼空気、流動空気あるいは予熱空気とも称す。)、焼却対象物や補助燃料等の量、および炉内の温度、圧力に依存して変化し、流動状態を安定させて燃焼状態を最適にすることは、焼却対象物の燃焼効率を上げるために重要である。
例えば、流動焼却炉において、炉内の明るさ、焼却対象物の供給量、温度、酸素濃度または炉内の圧力に応じて流動媒体を流動させるために炉内に供給する空気量を調節する手法が提案されている(特許文献1参照)。
また、流動焼却炉において、排ガスの酸素濃度と炉内上部の水分濃度とに基づいて下水汚泥のケーキの含水率の増減を推定し、推定結果に基づいて炉に供給する空気の量、炉内温度、炉に供給する焼却対象物の量等を調節することで、燃焼の安定化を計る手法が提案されている(特許文献2参照)。
また、焼却対象物に含まれる有機成分を焼却する際の排ガスから生じる温室効果ガスの1つであるN2O(亜酸化窒素。以下、N2Oと記す。)の排出を、地球温暖化防止のために低減していく必要がある。
排ガス、特に、N2OやNOxの排出量の低減に関しては、アンモニア系の還元剤と多孔性流動媒体のスラリー状混合物を炉内に噴射する方法が知られている(特許文献3参照)。
下水汚泥の排出量は年々増加しており、その内の約70%は、焼却処理されている。汚泥は、それを燃焼させた際他の燃料と比べて窒素含有量が非常に高く、焼却処理によってN2Oの排出が懸念されている。
過給式流動焼却炉システムは圧力下の燃焼による高温域の形成で、燃焼排ガスに含まれるN2Oを低減できる。
過給式流動焼却炉においては、流動床で燃焼させる燃焼(汚泥等)を炉頂、炉出口にかけて例えば870~880℃の温度で燃焼し温室効果ガスであるN2Oを分解させる。なお、N2Oの温室効果はCO2換算量で298倍である。
焼却炉の温度調節は、脱水汚泥性状に応じて炉内温度を維持するために、補助燃料供給による燃焼(助燃状態)、または、脱水汚泥の水分が少なく燃えやすい場合、補助燃料を供給せず、炉内温度が高まるときに炉内注水によって冷却する状態の燃焼(自燃状態)による温度調整を行っている。
特許3108742号公報 特開2004-125332号公報 特許第5640120号公報 特開2020-159655公報
図4に示すような従来の流動焼却炉に使用されている空気予熱器では、熱源(焼却排ガス)流入部の温度が高くなり、伝熱管取付部である管板30fの温度が高くなりすぎてしまうと熱膨張により変形して損傷する恐れが生じる。そのため、一部の燃焼空気を分岐させ予熱前の冷却空気とし管板部へ導入していた。残りの燃焼空気は圧縮空気導入ヘッダー30mから導入して、焼却排ガスと熱交換した後に、同様に焼却排ガスと熱交換された冷却空気と混合し、予熱空気としていた。
この過程において管板への冷却空気量は一定であった。
そして、焼却対象物の焼却量が少ない低負荷時には、排ガスの発熱量が増えず、排ガスとの熱交換後の予熱空気温度が低くなることから、焼却炉へ供給する補助燃料を多く使用して焼却炉の燃焼温度を確保していた。
逆に、高負荷時には、予熱空気温度が高くなることから、空気冷却器を別途設けての予熱空気の冷却、焼却炉内への注水(動力・用水の使用)や焼却量(焼却対象物、例えば汚泥)を調整していた。
ところで、この種の流動焼却炉では、焼却炉内の流動状態を示す指標の1つに空塔速度がある。例えば、流動焼却炉を設計する際には、所定の負荷での運転時に適した空塔速度が設定され、設定された空塔速度で焼却対象物が焼却されるように焼却炉の大きさや流動媒体の粒子径等が決められる。炉内の流動状態は炉内の空塔速度と相関があるため、設計値ではない運転中の空塔速度を求めることができれば流動状態を間接的に確認することが可能である。
例えば、空塔速度が適正範囲を下回り、流動媒体の流動不足が発生すると、燃焼効率が低下し、さらに、燃焼により発生した灰が炉から排出されにくくなることにより炉内の流動砂に灰分を含めた流動媒体が増加してしまう。
一方、空塔速度が適正範囲を上回り、流動媒体が過剰に流動すると、良好に排出される灰に加えさらに流動砂である流動媒体が炉外に飛散し、炉内の流動媒体が減少してしまう。増加した流動媒体の炉からの引き抜き、および減少した流動媒体の炉への補充は、流動焼却炉の運転コストを上昇させる。したがって、空塔速度が適正範囲に収まるように流動焼却炉を運転することが望ましい。
しかしながら、焼却炉内の空塔速度は、炉に供給される空気の量だけでなく、焼却対象物、補助燃料の燃焼や炉内注水により発生するガスの量に依存して変化する。このため、例えば、空気の供給量だけを用いて求めた空塔速度では、炉内の流動状態を正確に表すことは困難である。
特許文献1では、設計時に各要素制御の結果により制御可能な空塔速度範囲を設定しているが、上述のように実際の空塔速度の計測が難しく実施されていない。
また、排出ガスのうち、特に、N2O排出量を低減するためには、高温でN2Oを分解することが行われる。後述の実施の形態では、N2Oの排出量低減を例として説明する。
図2は炉内最高温度とN2O排出係数の相関例を説明する図で、横軸に炉内最高温度[℃]を、縦軸に脱水ケーキ乾燥重量あたりのN2O排出係数[kg-N2O/t-DS]を取って相関式を近似したものである。N2Oの分解は、図2に示されるように、炉内温度と相関関係にある。
しかし、更なるN2Oの分解をするために温度を上げると、図2の近似曲線から明らかなように、N2Oの減少量が低下する。そのため、N2Oの排出量低減の要求に対して炉内温度の高温化のみでの対応は難しくなってくる。
炉内温度を更に上昇させることでN2Oの分解促進が可能であるとしても、より局所的に高温場の発生による弊害、空気予熱器流入排ガス温度の高温化や炉出口温度の上昇による飛灰の溶融付着による弊害を生じる可能性が高くなってしまい、焼却設備の耐熱性向上や飛灰の溶融付着対策のためのコストが増大し、N2O分解のために運転管理対策を別途施す必要がある。
本発明の目的は、N2O分解に必要な焼却温度を維持するにあたり、焼却設備の耐熱性等を向上させることでコストを増大させることなく、N2Oの排出量を低減する流動焼却炉における運転方法およびその装置を提供することにある。さらに、低含水率の汚泥を焼却する流動焼却において、自然状態の場合、炉内温度が高まって注水量が増加し、後述するように炉内の排ガスの滞留時間が短くなってN20が増加するので、炉内空塔速度(以降、スペースレートと称す。)を抑え、炉内で生じる排ガスの滞留時間を増やすことでN2O排出量を抑制することを目的とする。
上記目的を達成するための本発明に係るN2O低減技術は、温度条件以外に炉内で発生するガスの炉内滞留時間に着目し、炉内滞留時間もN2O低減の指標としたことを特徴とする。
上記したように、N2Oの排出量抑制には、炉内の排出ガス最高温度に相関があると考えられていたが、本発明者等の研究により、炉内ガス滞留時間にも相関があることが判明した。すなわち、後述するように、炉内ガス滞留時間の増加に伴いN2Oの排出量が抑制されるという反比例関係を明らかにしている。なお、これは特許文献3の図3にも上述の相関性を示唆するデータが認められる。
上記の炉内ガス滞留時間を長くするためには、(1)炉を大きくする、(2)炉内の排ガススペースレートを小さくする、といった二つの方法がある。スペースレートは、図1で示す汚泥供給装置10からの汚泥等の焼却対象物〔供給汚泥量計測器82(F3のプロセス値)〕、炉内注水を行う水供給装置15の水〔供給水量計測器83(F4のプロセス値)〕、燃料供給装置20の重油などの燃料〔供給燃料量計測器84(F5のプロセス値)〕、及び、流動焼却炉2への燃焼空気〔空気予熱器空気量計測器27(F2のプロセス値)〕の各供給量に基づき、流動焼却炉内からのガス発生量を算出して求める。流動焼却炉2からの排ガス発生量は直接測定してもよいし、排ガス中の灰の影響で測定が困難な場合には、集塵機40出口以降の下流の排ガス経路(供給路41等)で排ガス量を測定するようにしてもよい。各計測器で指示する各供給量からスペースレートを求める場合、先ず各供給量から質量流量を算出しておき、容積流量に換算してガス発生量を求めスペースレートを算出する。焼却対象物のガス発生量の算出については、例えば、測定装置や分析作業による含水率、有機成分率および元素組成に基づいて前記焼却対象物を焼却した場合の前記ガス発生量を算出する。リアルタイムでの測定値でなく、日常的に測定装置や分析作業での値を統計的に整理した値を使用して、焼却対象物のガス発生量を算出することでよい。
(1)は設備コストの増大につながることから、通常(2)で対応する。焼却炉として炉床温度T1を制御するのに補助燃料を用いている時は影響がないが、炉内注水で温度制御を行っている時には、炉入口空気温度T2が上昇することにより注水量が増えてしまい、排ガス流量が増大する。結果として、炉内スペースレートが上昇する。
このため図1に示す空気予熱器において、分岐供給路56aと分岐供給路56bとからなる供給路56と調節弁47から構成される分岐ラインの供給空気の分配調節を行うにあたって、空気予熱器での排ガスと供給空気の熱交換面積を小さくして熱交換量を少なくする分岐供給路56a(並流ライン)と逆に空気予熱器での排ガスと供給空気の熱交換面積を大きくして熱交換量を多くする分岐供給路56b(向流ライン)のうち、供給空気の並流ラインを通る比率を多くし、炉入口空気温度T2を下降させることにより、炉床温度T1の上昇を抑えられるので炉内注水量の増加量が抑制され、炉内スペースレートの上昇を抑えることができる。その結果、N2O排出量の抑制につながることとなる。
このように、N2Oの分解は、前記で説明した図2に示される温度相関以外に、高温度場でのガス滞留時間に比例した分解が行われる。本発明では、炉内で生ずるガスが炉内を通過する速度(スペースレート)を指標に炉内滞留時間を十分に確保する運転手法を採用することでN2Oの低減を図った。
同種の手法として、前記特許文献4があるが、本発明は、N2Oの分解における高温場炉内ガス滞留時間を目的としたスペースレート管理・調整を〔0023〕に記述の「空気予熱器の熱交換(並流・向流)バイアス比の変動、温度調整」の技術を応用し、N2Oの低減を図る方法および構成とした点に特徴を有する。
本発明に係るN2O排出量低減制御手段の代表的な特徴を列挙すれば、以下のとおりである。なお、ここでは、発明の理解を容易にするため、各構成に後述する実施の形態で説明する図面で使用される符号を併記するが、本発明はこの符号で示される具体的な構成要素に限定されるものではない。
〔1〕焼却システム1の流動焼却炉2の焼却排ガスと流動空気を熱交換する空気予熱器30において、流動焼却炉2へ供給される流動空気の供給路56は、空気予熱器30上流に位置する並流ラインの供給路56aと向流ラインの供給路56bとがあり、空気予熱器冷却空気割合F1を最小値F1minと最大値F1maxの範囲内にするため、空気予熱器冷却空気割合F1が最小値F1minを下回る場合には空気予熱器冷却空気割合F1を上昇させる操作を行い、空気予熱器冷却空気割合F1が最大値F1maxを上回る場合には空気予熱器冷却空気割合F1を減少させる操作を行い、空気予熱器冷却空気割合F1が最小値F1minと最大値F1maxの範囲内であれば、炉内注水量F4を最小値F4minと最大値F4maxの範囲内にするため、炉内注水量F4が最小値F4minを下回る場合には炉入口温度T2の設定温度T2spを上昇させ、炉内注水量F4が最大値F4maxを上回る場合には炉入口温度T2の設定温度T2spを減少させ、炉入口温度T2を設定温度T2spにするために、炉入口温度T2が設定温度T2spを下回る場合には炉入口温度T2を上昇させる操作を行い、炉入口温度T2が設定温度T2spを上回る場合には炉入口温度T2を減少させる操作を行うことを特徴とする排ガス中のN2O排出量低減方法。
〔2〕空気予熱器冷却空気割合F1の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする〔1〕に記載の排ガス中のN2O排出量低減方法。
〔3〕炉入口温度T2の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする〔1〕に記載の排ガス中のN2O排出量低減方法。
〔4〕空気予熱器冷却空気割合F1を調節する調節弁47(CV3)の位置は、並流ラインと向流ラインの少なくともどちらかであることを特徴とする〔1〕乃至〔3〕の何れかに記載の排ガス中のN2O排出量低減方法。
〔5〕流動焼却炉からの燃焼排ガスと熱交換を行う空気予熱器への供給空気は、流動ブロワまたは過給式流動焼却炉の焼却システムにおける過給機から供給することを特徴とする〔1〕乃至〔4〕の何れかに記載の排ガス中のN2O排出量低減方法。
〔6〕焼却システム1の流動焼却炉2の焼却排ガスと流動空気を熱交換する空気予熱器30において、流動焼却炉2へ供給される流動空気の供給路56は、空気予熱器30上流に位置する並流ラインの供給路56aと向流ラインの供給路56bとがあり、空気予熱器冷却空気割合F1を最小値F1minと最大値F1maxの範囲内にするため、空気予熱器冷却空気割合F1が最小値F1minを下回る場合には空気予熱器冷却空気割合F1を上昇させる操作を行い、空気予熱器冷却空気割合F1が最大値F1maxを上回る場合には空気予熱器冷却空気割合F1を減少させる操作を行い、空気予熱器冷却空気割合F1が最小値F1minと最大値F1maxの範囲内であれば、炉内注水量F4を最小値F4minと最大値F4maxの範囲内にするため、炉内注水量F4が最小値F4minを下回る場合には炉入口温度T2の設定温度T2spを上昇させ、炉内注水量F4が最大値F4maxを上回る場合には炉入口温度T2の設定温度T2spを減少させ、炉入口温度T2を設定温度T2spにするために、炉入口温度T2が設定温度T2spを下回る場合には炉入口温度T2を上昇させる操作を行い、炉入口温度T2が設定温度T2spを上回る場合には炉入口温度T2を減少させる操作を行うことを特徴とする排ガス中のN2O排出量低減を実行する制御プログラムに基づいて動作する制御装置。
〔7〕空気予熱器冷却空気割合F1の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする〔6〕に記載の制御装置。
〔8〕炉入口温度T2の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする〔6〕に記載の制御装置。
〔9〕空気予熱器冷却空気割合F1を調節する調節弁47(CV3)の位置は、並流ラインと向流ラインの少なくともどちらかであることを特徴とする〔6〕乃至〔8〕の何れかに記載の制御装置。
〔10〕流動焼却炉からの燃焼排ガスと熱交換を行う空気予熱器への供給空気は、流動ブロワまたは過給式流動焼却炉の焼却システムにおける過給機から供給することを特徴とする〔6〕乃至〔9〕の何れかに記載の制御装置。
本発明では、例えば、低含水率の汚泥を焼却する流動焼却炉において、自燃状態の場合、炉内温度が高まって注水量が増加し、炉内高温場の滞留時間が短くなってN2Oが増加するので、空気予熱器への供給空気を分岐している向流と並流のラインにおいて、向流ライン側の調節弁47で向流と並流のラインに流れる空気割合を調節し、空気予熱器の伝熱量を変化させ、温度を下げたいときには並流ラインの量を増やす操作とし、予熱空気温度を下げることで炉内温度を下げ、炉内への注水量を減らし、炉内でのガス発生量を抑え、炉内スペースレートを抑えることで排ガスの滞留時間を増やしN2O排出量を抑制することができる。
また、本発明によれば、N2O分解に必要な焼却温度を維持するにあたり、流動焼却設備の耐熱性等を向上させることでコストを増大させることなく、N2Oの排出量を確実にすることができる。
第1の実施形態における流動焼却炉の制御装置を含む焼却システムの一例を示す概要図である。 炉内最高温度とN2O排出係数の相関例を説明する図である。 炉内スペースレートと相関式算出N2OとN2O測定値の乖離の説明図である。 空気予熱器の構造の一例を示す断面図である。 空気予熱器から流動焼却炉へ供給される燃焼空気量全体に対する空気予熱器冷却空気量の割合と焼却炉入口空気温度の関係を表す図である。 制御装置が実行する演算の流れを示す説明図である。 第2の実施形態における気泡式流動焼却炉の焼却システムの一例を示す概要図である。
以下、本実施形態について図面を参照して説明する。
図1に示す焼却システム1は、流動焼却炉2、汚泥(ケーキ)供給装置10、水供給装置15、燃料供給装置20、空気予熱器30、集塵機40、過給機50、起動用ブロワ60、白煙防止ファン70、白煙防止(予熱)器75、煙突を備えた排煙処理塔80、制御装置90からなる。
焼却システム1は、温度計23、24、圧力計25、空気予熱器空気量計測器26、27、過給機回転数計測機器28を有している。
図1における空気予熱器空気量計測器27に記載されているF2は、過給機50から空気予熱器30へ供給する圧縮空気量を表す。
例えば、本発明の実施態様において流動焼却炉2は、過給式の流動焼却炉である。流動焼却炉2は、昇温された圧縮空気を焼却炉2に供給し、高温・高圧の状態で焼却炉2内の焼却対象物を燃焼することで、燃焼速度を高くすることができ、N2Oの有害物質の排出量を減らすことができる。
なお、以下の説明では、流動焼却炉2は、単に焼却炉2とも称される。
矢印の付いた太い実線は、汚泥(ケーキ)、補助燃料、空気、水又は排ガスの供給路(供給管)を示し、矢印の付いた破線は、バイパス路を示す。
矢印の付いた細い実線(例えば、(1)圧力計25から調節弁48(CV4)に接続されている線、(2)調節弁48(CV4)から過給機回転数計測機器28に、(3)過給機回転数計測機器28から空気予熱器空気量計測器27に、(4)空気予熱器空気量計測器27から調節弁49(CV5)に接続されている線、(5)温度計23から調節弁17(CV2)、調節弁22(CV1)に接続されている線、(6)調節弁17(CV2)から温度計24に接続されている線、(7)温度計24から調節弁47(CV3)に接続されている線、(8)空気予熱器空気量計測器26から調節弁47(CV3)に接続されている線等)は、制御装置からこれらの調節弁に制御信号を送る信号線を示す。
例えば、制御装置90は、圧力計25からの圧力値を受け、該圧力値に基づいて開度指令信号を調節弁48(CV4)に送り、前記調節弁48の開度を調節する。
流動焼却炉2は、炉内に流動床3、予熱空気取入口4、始動用バーナ5を備えている。また、汚泥(ケーキ)供給装置10に接続された供給路(汚泥供給管)11から供給される汚泥を取り込む汚泥込み口(図示しない)、水供給装置15に接続された供給路(水供給管)16から供給される水(注水)を取り込む水(注水)取込口(図示しない)、燃料供給装置20に接続された供給路(燃料供給管)21から供給される補助燃料を取り込む燃料取込口(図示しない)が設けられている。
汚泥(ケーキ)供給装置10は、下水処理設備から送られてホッパ(図示しない)に貯められた下水汚泥のケーキを供給管11から焼却炉2に順次供給する。
水供給装置15は、接続された供給管16から水(注水)を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調整し、燃料供給装置20は、接続された供給管21から補助燃料を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調整する。
水供給管16には、調節弁17(CV2)が、燃料供給管21には、調節弁22(CV1)が設けられている。
調節弁17(CV2)及び調節弁22(CV1)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
温度計23は、流動焼却炉2内に備えている流動床3の温度を計測する。温度計23は、制御装置90に接続されていて計測された温度値を該制御装置90に出力する。
温度計24は、空気予熱器30から流動焼却炉2内に供給される予熱空気の温度を計測する。温度計24は、制御装置90に接続されていて計測された温度値を該制御装置90に出力する。
圧力計25は、流動焼却炉2内の圧力を計測する。圧力計25は、制御装置90に接続されていて計測された圧力値を該制御装置90に出力する。
空気予熱器空気量計測器26は、過給機50から空気予熱器30に供給される圧縮空気量を計測する。空気予熱器空気量計測器26は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。
空気予熱器空気量計測器27は、過給機50から供給される圧縮空気量を計測する。空気予熱器空気量計測器27は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。
過給機回転数計測器28は、過給機50の回転数を計測する。過給機回転数計測器28は、制御装置90に接続されていて計測された回転数値を該制御装置90に出力する。
図4は、空気予熱器の構造の一例を示す断面図である、
前記空気予熱器30は、円筒の筐体30aからなり、該筐体30aの内部を仕切り板30cで仕切り上部の並流式の熱交換室30dと下部の向流式の熱交室30eを設けて構成される。
30fは高温側管板、30gは低温側管板、30hは伝熱管、30iはバッフルプレート、30jは排ガス排出室、30kは上部の並流式の熱交換室30dに圧縮空気を送る圧縮空気導入ヘッダー、30mは下部の向流式の熱交換室30eに圧縮空気を送る圧縮空気導入ヘッダー、30nは熱流体排出ヘッダー、F6は高温排ガス、F7は低温排ガスである。
流動焼却炉2から供給路58を介して空気予熱器30に供給される高温排ガスF6と上部の熱交換室30dとは高温側管板30fにより隔てられると共に、上記排ガス排出室30jと上部の熱交換室30d及び下部の向流式の熱交換室30eは上記低温側管板30gにより隔てられる。熱交換室(熱交換室30d及び熱交換室30e)内には多数本の伝熱管30hが配管され、その上下端は、上記高温側管板30fおよび上記低温側管板30gにそれぞれ接続されている。伝熱管30hを通じて上記熱交換室内に流入する高温排ガスF6は、流動焼却炉2から供給路58を介して送り込まれる。
また、上記熱交換室の中間部には、仕切り板30cが取り付けられていて、該熱交換室を、上部熱交換室30dと下部熱交換室30eに二分する。これら上部熱交換室30dと下部熱交換室30e内には、数枚のバッフルプレート(邪魔板)30iが配設されている。
上部の並流式の熱交換室は、空気と排ガスの流れが同じ方向になることもあって熱交換量が少ないので空気予熱器から排出される空気が暖まり難く、一方下部の向流式熱交換室は、空気と排ガスの流れが逆になることもあって熱交換量が多いので出てくる空気が暖まり易い。
従って、下部の向流式の熱交換室30eから流れる割合を増やせば、予熱空気温度が上昇し、上部の並流式の熱交換室30dから流れる割合を増やせば、予熱空気温度が低下する。
そして前記供給路29が接続される位置において、上部の並流式の熱交換室30dから流れてくる予熱空気と下部の向流式熱交換室30eから流れてくる予熱空気とが混合され、混合された予熱空気が焼却炉へ供給される。
本発明の実施態様である空気予熱器30は、流動焼却炉2から供給路58を介して送り込まれた排ガスと、過給機50から供給路56、分岐供給路56a、分岐供給路56bを介して送り込まれた圧縮空気とが熱交換される。そして熱交換された空気は、供給路29を介して予熱空気取入口4から焼却炉2内へ供給される。
図1におけるF1は、過給機50から空気予熱器30に供給される燃焼空気量全体に対して、上部の熱交換室30dへ流す空気の割合を表す。
集塵機40は、供給路31から送り込まれた空気予熱器30から排出される排ガスから、該排ガスに含まれる灰等の固形成分を分離して回収し、灰等の固形成分が取り除かれた排ガスを、供給路41を介して過給機50へ送り込み、該送られた排ガスは過給機50から供給路42を介して白煙防止器75に送り込まれる。
過給機50は、共通の回転軸51に接続されたタービン52およびコンプレッサ53を有する。タービン52は、集塵機40から供給路41を介して過給機50に送られる排ガスを受けて高速回転することで、コンプレッサ53を高速回転させる。
コンプレッサ53は、過給機50に取り込まれた空気を圧縮し、圧縮した空気を供給路56、分岐供給路56a、分岐供給路56bを介して空気予熱器30に送り込む。空気予熱器30では、排ガスと圧縮空気とが熱交換され、昇温された圧縮空気が供給路29を介して焼却炉2の予熱空気取入口4に送られる。
供給路56には、分岐供給路56aと分岐供給路56bの間に調節弁47(CV3)が設けられている。調節弁47(CV3)は制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により空気予熱器30の上側に供給する分岐供給路56aと空気予熱器30の下側に供給する分岐供給路56bに供給する圧縮空気量が調整される。
起動用ブロワ60は、焼却システム1の起動時に取り込んだ空気を供給路61から前記空気供給路56に、供給路62から前記過給機50に供給する。
63は前記供給路62に設けられた逆止弁である。
起動後に流動焼却炉2からの排ガスで過給機50のコンプレッサ53からの流動空気を確保できる段階になったときには、起動用ブロワ60からの大気(空気)供給を停止し、大気を供給路65から前記過給機50に供給するよう切り替える。66は、前記供給路65に設けられた調節弁であり制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
白煙防止ファン70は、取り込んだ空気を、供給路71を介して白煙防止器75に送り込む。
白煙防止器75は、大気を取り込む白煙防止ファン70から送り込まれる空気と、供給路42を介して供給される過給機50から排出される排ガスと熱交換して昇温させる。昇温された空気は排煙処理塔80に向けて送られる。
排煙処理塔80では、排ガスに含まれる硫黄酸化物および煤塵などの大気汚染物質を排ガスから除去する。
前記供給路41と供給路42との間に設けられたバイパス路43には、過給機の排ガス量を調整する調節弁48(CV4)が設けられている。
調節弁48(CV4)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により供給路41から過給機50に送られる排ガス量が調整される。例えば、調節弁48(CV4)の開度を大きくすると集塵機40から過給機に排ガスを供給する供給路41から過給機50に送られる排ガスの一部が過給機50から白煙防止器75へ排ガスを供給する供給路42へ流れるため、供給路41から過給機50に送られる排ガス量が減少される。
そして供給路41から過給機50に送られる排ガス量に応じて、コンプレッサ53下流の圧縮空気の供給路、空気予熱器30及び焼却炉2内の圧力が調整される。
また、圧縮空気供給路56と供給路71との間に設けられたバイパス路57には、余剰空気量を調整する調節弁49(CV5)が設けられている。
調節弁49(CV5)は、制御装置90に接続されていて該制御装置90から出力される開度指令の制御信号に応じて開度が調節される。
供給空気の圧力調節の際には、この開度の調節により過給機50から供給路56へ送られる圧縮空気の圧力が調整されて圧縮空気量が調整される。
例えば、圧縮空気の質量流量が一定の場合においては、圧力が大きいときは容積流量が少なくなるので、余剰空気調節弁49(CV5)の開度を大きくしてバイパス路57から供給路71へ余剰空気を逃して圧力を開放することで、供給路56から空気予熱器30に送られる圧縮空気の容積流量を増加させるのに対して、圧力が小さいときは容積流量が多くなるので、余剰空気調節弁49(CV5)の開度を小さくしてバイパス路57から供給路71へ余剰空気を逃さず圧力を保持することで、供給路56から空気予熱器30に送られる圧縮空気の容積流量を減少させる。
つまり、流動空気の圧力変化に伴う容積流量の変化により流動空気量が影響を受けるので、余剰空気調節弁49(CV5)の開度調節をすることで、流動空気量を一定範囲にし、流動焼却炉での流動床の流動状態を安定化させ、燃焼状態を適切にすることができるのである。
制御装置90は、例えば、PLC(Programmable Logic Controller)を含み、PLCが実行する制御プログラムに基づいて動作する。
そして、制御装置90は、各種センサ(温度計、圧力計、空気予熱器空気量計測器、過給機回転数計測機器等)からの信号を受け取り、内蔵する制御プログラムにより、前記受け取った信号に対応した制御信号を各種機器(調節弁)に送り各種機器を制御する。
第1演算部91は流動焼却炉2に供給される供給物である前記焼却対象物の供給装置10、水供給装置15、燃料供給装置20および過給機50等の空気供給元の、これら複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出する。第2演算部92は算出された前記排ガス量に基づいて前記流動焼却炉のスペースレートを算出する。
図3は炉内スペ-スレート[m/sec]に対する図2における相関式から求めた算出N2Oと分析装置で測定した排ガスのN2O測定値の乖離[%]を説明する図である。図3に示すように、炉内スペ-スレート[m/sec]の増減に対する相関式算出N2OとN2O測定値の乖離[%]は、略一次直線で近似できる。炉内スペースレート0.73m/sec付近で乖離がなくなり、相関式からの算出N20とN2O測定値が一致する。これより大きい範囲では乖離がプラス方向に大きくなって、算出N2OよりもN2O測定値が大きくなり、スペースレートが大きい範囲では炉内ガス滞留時間が小さくなることで実際の排出N2O量が増加してしまうことを意味する。一方、炉内スペースレート0.73m/sec付近より小さい範囲では乖離がマイナス方向に大きくなって、算出N2OよりもN2O測定値が小さくなり、スペースレートが小さい範囲では炉内ガス滞留時間が大きくなることで実際の排出N2O量が減少していることを意味する。このことから、炉内スペ-スレート[m/sec]を可能な範囲で小さくすることで、N2O排出量を抑制することができる。
ところで、低含水率の汚泥を焼却する流動焼却炉において自燃状態の場合等、炉内温度が高まって注水量が増加し、注水により炉内で発生するガスのため炉内高温場の滞留時間が短くなり、炉内スペースレートが小さくなってしまい、上述のようにその影響を受けてN2Oの増加する場合がある。
そこで本発明では空気予熱器への供給空気を分岐している向流と並流のラインにおいて、向流ライン側の調節弁47で向流と並流のラインに流れる空気割合を調節し、空気予熱器の伝熱量を変化させ、温度を下げたいときには並流ラインの量を増やす操作とし、予熱空気温度を下げることで炉内温度を下げ、炉内への注水量を減らし、炉内でのガス発生量を抑え、炉内スペースレートを抑えることで排ガスの滞留時間を増やしN2O排出量を抑制する。
図5は、空気予熱器冷却空気割合F1と焼却炉入口空気温度の関係を表す図である。F1は、過給機50から空気予熱器30に供給される燃焼空気量全体に対して、上部の熱交換室30dへ流す空気の割合を表す。例えば、空気予熱器冷却空気割合F1は最小15%(F1min)~最大70%(F1max)になる。なお、空気予熱器冷却空気割合F1に最小値を設けている理由としては、図4に示す伝熱管取付部である管板30fの温度が高くなりすぎてしまうと熱膨張により変形して損傷する恐れが生じるので、予熱前の冷却空気とし管板部へ導入するためである。
図5は、一例として空気予熱器冷却空気割合をF1min約22%、F1max40%で運転した例である。
図中の実線は空気予熱器冷却空気割合F1を表し、点線は焼却炉入口空気温度である。
図からわかるように空気予熱器冷却空気割合に応じて焼却炉入口空気温度が増減している。つまり、空気予熱器冷却空気割合を調節することで焼却炉入口空気温度を制御することができるのである。
図6は、図1に示す制御装置の動作の一例を示すフローチャートである。
本発明は、炉内注水量に応じて入口空気温度T2の設定温度T2spを制御し、焼却炉の入口温度T2の設定温度T2spとなるように調節弁47(CV3)で制御する(空気予熱器における上部熱交換室から供給される空気の熱量と下部熱交換室から供給される空気の熱量との熱量バランスをとる)システムであり、例えば、下記の流れで制御装置が作動する。
スタート:以下の流れで所定の周期で繰り返し実行される。
ステップ1(S1):空気予熱器冷却空気割合F1が最小値F1min≦F1≦最大値F1maxとなっているか判定する。Yesの場合はステップ2(S2)へ進む。
ステップ2(S2):炉内注水量F4が最小値F4min≦F4≦最大値F4maxとなっているか判定する。Yesの場合はステップ3(S3)へ進む。
ステップ3(S3):焼却炉の入口温度T2が設定温度T2spになっているか判定する。設定温度T2spはある範囲を有してもよい。Yesの場合は終了する。
ステップ4(S4):空気予熱器冷却空気割合F1が最小値F1minより小さければS5へ進む。
ステップ5(S5):空気予熱器冷却空気割合F1を上昇させるために調節弁47(CV3)の開度を小さくする。その後はエンドへ進む。
ステップ6(S6):S4でNoならば(F1>F1maxの場合)、空気予熱器冷却空気割合F1を減少させるために調節弁47(CV3)の開度を大きくする。その後はエンドへ進む。
ステップ7(S7):炉内注水量F4に応じて入口空気温度T2の設定温度T2spを調整する。
流動焼却炉においては、汚泥の発熱量が低い時には補助燃料を用いて炉内の温度制御を行うが、汚泥の発熱量が高い時には炉内に水を注入し、炉内の温度制御を行う。炉内注水を行うと、水は蒸発し排ガス量が増えるため、ガス炉内滞留時間は短くなり、N20排出量は増加する。
したがって、N2O排出量を低くするためには炉内注水量を少なくする必要がある。炉内へ供給する燃焼空気の入口空気温度T2を低くすれば、炉内注水量を少なくすることができることから、空気予熱器における熱交換分岐ラインの分配調節によってN2O排出量を抑制する。
炉内注水量F4が最小値F4minより小さければS8へ進む。
ステップ8(S8):炉内注水量F4が最小値F4minを下回る場合は炉内温度を高める余地があるとみなし、設定温度T2spを上昇させる。その後はS3へ進む。
ステップ9(S9):炉内注水量F4が最小値F4maxを上回る場合は炉内温度が高まって注水によるガス発生量が多くなり、炉内のガス滞留時間がN2Oの分解が低下するまでに短くなるとみなし、設定温度T2spを減少させる。その後はS3へ進む。
ステップ10(S10):S3での判定がNoの場合、入口空気温度T2が設定温度T2spを下回るか否かを判定する。
ステップ11(S11):S10でYesの場合、入口空気温度T2を上昇させるために調節弁47(CV3)で開度を大きくする。その後はエンドへ進む。
ステップ12(S12):S10でNoの場合(T2>T2spの場合)、入口空気温度T2を減少させるために調節弁47(CV3)で開度を小さくする。その後はエンドへ進む。
以上のステップを周期的に行い、空気予熱器冷却空気割合F1を一定範囲に保つことで空気予熱器の伝熱管取付部である管板の熱膨張による損傷を防止し、炉頂注水量F4に応じて入口空気温度T2の設定温度T2spを調節することで、過度の注水による炉内ガス発生量を抑えてN2O発生量を適正範囲に抑えるようガス滞留時間を調整し、空気予熱器冷却空気割合F1を調節して、入口空気温度T2を設定温度T2spに近づけるようカスケード制御を行うことができる。
なお、本発明を図1に示す過給式流動焼却炉の焼却システムの場合について説明しているが、本発明は図7に示す気泡式流動焼却炉の焼却システムの場合についても適用できる。気泡式流動焼却炉は、過給機50の代わりに流動ブロワを設けて、焼却ガスをタービンで回転させてコンプレッサで圧縮空気を生成する過給機による加圧を行わずに炉へ流動空気を送る。過給式流動焼却炉の場合は過給機50から空気予熱器30へ燃焼空気を送るのに対して、気泡式流動焼却炉では流動ブロワから空気予熱器30へ燃焼空気を送るようにする。
本発明では、焼却炉入口温度が設定温度かどうかを判定し、設定温度に応じて、流動焼却炉へ供給される供給給気が空気予熱器上流で並流ラインと向流ラインに分岐する供給路の、分岐後の向流ライン側の供給路途中にある調節弁を操作することにより、空気予熱器で熱交換する熱量の調節を行い、焼却炉入口温度の制御を行うことを説明しているが、調節弁の位置は分岐後の並流ライン側の供給路56a途中であってもよい。調節弁の動作は図6で示すフローチャートで行った説明において逆方向となる。また、上述のような空気予熱器で熱交換する熱量の調節を行うことができれば、並流ラインと向流ラインのどちらにも調節弁を設けて開度調節することでもよい。
1:焼却システム
2:流動焼却炉
10:汚泥供給装置
15:水供給装置
17:調節弁(CV2)
20:燃料供給装置
22:調節弁(CV1)
23:温度計
24:温度計
25:圧力計
26:空気予熱機空気量計測器
27:空気予熱機空気量計測器
28:過給機回転数計測器
30:空気予熱器
40:集塵機
47:調節弁(CV3)
48:調節弁(CV4)
49:調節弁(CV5)
50:過給機
60:起動用ブロワ
70:白煙防止ファン
75:白煙防止器
80:排煙処理塔
90:制御装置

Claims (10)

  1. 焼却システム1の流動焼却炉2の焼却排ガスと流動空気を熱交換する空気予熱器30において、流動焼却炉2へ供給される流動空気の供給路56は、空気予熱器30上流に位置する並流ラインの供給路56aと向流ラインの供給路56bとがあり、空気予熱器冷却空気割合F1を最小値F1minと最大値F1maxの範囲内にするため、空気予熱器冷却空気割合F1が最小値F1minを下回る場合には空気予熱器冷却空気割合F1を上昇させる操作を行い、空気予熱器冷却空気割合F1が最大値F1maxを上回る場合には空気予熱器冷却空気割合F1を減少させる操作を行い、空気予熱器冷却空気割合F1が最小値F1minと最大値F1maxの範囲内であれば、炉内注水量F4を最小値F4minと最大値F4maxの範囲内にするため、炉内注水量F4が最小値F4minを下回る場合には炉入口温度T2の設定温度T2spを上昇させ、炉内注水量F4が最大値F4maxを上回る場合には炉入口温度T2の設定温度T2spを減少させ、炉入口温度T2を設定温度T2spにするために、炉入口温度T2が設定温度T2spを下回る場合には炉入口温度T2を上昇させる操作を行い、炉入口温度T2が設定温度T2spを上回る場合には炉入口温度T2を減少させる操作を行うことを特徴とする排ガス中のN2O排出量低減方法。
  2. 空気予熱器冷却空気割合F1の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする請求項1に記載の排ガス中のN2O排出量低減方法。
  3. 炉入口温度T2の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする請求項1に記載の排ガス中のN2O排出量低減方法。
  4. 空気予熱器冷却空気割合F1を調節する調節弁47(CV3)の位置は、並流ラインと向流ラインの少なくともどちらかであることを特徴とする請求項1乃至3の何れかに記載の排ガス中のN2O排出量低減方法。
  5. 流動焼却炉からの燃焼排ガスと熱交換を行う空気予熱器への供給空気は、流動ブロワまたは過給式流動焼却炉の焼却システムにおける過給機から供給することを特徴とする請求項1乃至4の何れかに記載の排ガス中のN2O排出量低減方法。
  6. 焼却システム1の流動焼却炉2の焼却排ガスと流動空気を熱交換する空気予熱器30において、流動焼却炉2へ供給される流動空気の供給路56は、空気予熱器30上流に位置する並流ラインの供給路56aと向流ラインの供給路56bとがあり、空気予熱器冷却空気割合F1を最小値F1minと最大値F1maxの範囲内にするため、空気予熱器冷却空気割合F1が最小値F1minを下回る場合には空気予熱器冷却空気割合F1を上昇させる操作を行い、空気予熱器冷却空気割合F1が最大値F1maxを上回る場合には空気予熱器冷却空気割合F1を減少させる操作を行い、空気予熱器冷却空気割合F1が最小値F1minと最大値F1maxの範囲内であれば、炉内注水量F4を最小値F4minと最大値F4maxの範囲内にするため、炉内注水量F4が最小値F4minを下回る場合には炉入口温度T2の設定温度T2spを上昇させ、炉内注水量F4が最大値F4maxを上回る場合には炉入口温度T2の設定温度T2spを減少させ、炉入口温度T2を設定温度T2spにするために、炉入口温度T2が設定温度T2spを下回る場合には炉入口温度T2を上昇させる操作を行い、炉入口温度T2が設定温度T2spを上回る場合には炉入口温度T2を減少させる操作を行うことを特徴とする排ガス中のN2O排出量低減を実行する制御プログラムに基づいて動作する制御装置。
  7. 空気予熱器冷却空気割合F1の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする請求項6に記載の制御装置。
  8. 炉入口温度T2の調整を冷却空気調節弁47(CV3)の調節で行うことを特徴とする請求項6に記載の制御装置。
  9. 空気予熱器冷却空気割合F1を調節する調節弁47(CV3)の位置は、並流ラインと向流ラインの少なくともどちらかであることを特徴とする請求項6乃至8の何れかに記載の制御装置。
  10. 流動焼却炉からの燃焼排ガスと熱交換を行う空気予熱器への供給空気は、流動ブロワまたは過給式流動焼却炉の焼却システムにおける過給機から供給することを特徴とする請求項6乃至9の何れかに記載の制御装置。
JP2022079744A 2022-05-13 2022-05-13 排ガス中のn2o排出量低減方法および制御装置 Pending JP2023168095A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022079744A JP2023168095A (ja) 2022-05-13 2022-05-13 排ガス中のn2o排出量低減方法および制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022079744A JP2023168095A (ja) 2022-05-13 2022-05-13 排ガス中のn2o排出量低減方法および制御装置

Publications (1)

Publication Number Publication Date
JP2023168095A true JP2023168095A (ja) 2023-11-24

Family

ID=88837946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022079744A Pending JP2023168095A (ja) 2022-05-13 2022-05-13 排ガス中のn2o排出量低減方法および制御装置

Country Status (1)

Country Link
JP (1) JP2023168095A (ja)

Similar Documents

Publication Publication Date Title
US3861334A (en) Waste heat recovery
CN102084184B (zh) 氧气燃烧锅炉的燃烧控制方法及装置
JP2009257751A (ja) 酸素燃焼石炭燃料ボイラ及び空気燃焼と酸素燃焼との間の移行方法
CN102047040B (zh) 氧燃烧锅炉的一次再循环废气流量控制方法及装置
WO2011016556A1 (ja) 有機性廃棄物処理システム及び方法
CN106439858B (zh) 一种危废焚烧烟气循环与急冷的复杂前馈控制方法
JP5013808B2 (ja) ストーカ式焼却炉の燃焼制御装置
JP2000510228A (ja) 示差温度による熱交換器効率の制御
JP2023168095A (ja) 排ガス中のn2o排出量低減方法および制御装置
CN103814253B (zh) 热力二次燃烧设备以及用于其运行的方法
US8607717B2 (en) Batch waste gasification process
JP2023151255A (ja) 排ガス中のn2o排出量低減方法および制御装置
CN109737435A (zh) 蓄热式焚烧炉超温处理工艺及装置
JP4299841B2 (ja) コークス乾式消火方法及び装置
JP2023163723A (ja) 流動焼却炉の制御方法及び制御装置
JP2023151263A (ja) 排ガス中のn2o排出量の低減方法およびその装置
JPS63254391A (ja) 炉システム
JP2023151252A (ja) 過給式流動焼却炉の炉内温度制御方法および制御装置
TW201700918A (zh) 流動床式污泥焚化爐及焚化處理方法
JP3869669B2 (ja) コークス乾式消火方法及び装置
KR100919290B1 (ko) 탈질공정을 갖는 엔진 열병합발전소의 순환수 제어장치
WO2013146598A1 (ja) 加圧流動炉システムの運転方法
RU26109U1 (ru) Установка для сжигания твердых горючих отходов
JP2020085386A (ja) 廃棄物処理設備及び廃棄物処理設備の運転方法
JP2013200087A5 (ja)