JP2023167834A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2023167834A
JP2023167834A JP2022079327A JP2022079327A JP2023167834A JP 2023167834 A JP2023167834 A JP 2023167834A JP 2022079327 A JP2022079327 A JP 2022079327A JP 2022079327 A JP2022079327 A JP 2022079327A JP 2023167834 A JP2023167834 A JP 2023167834A
Authority
JP
Japan
Prior art keywords
conductive
film
layer
conductive film
spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022079327A
Other languages
Japanese (ja)
Inventor
教章 鈴木
Noriaki Suzuki
博美 伊藤
Hiromi Ito
瑞枝 北田
Mizue Kitada
毅 浅田
Takeshi Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2022079327A priority Critical patent/JP2023167834A/en
Publication of JP2023167834A publication Critical patent/JP2023167834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

To provide a semiconductor device which can prevent the occurrence of a problem such as an increase in leakage current and a reduction in voltage-withstanding even when the reverse bias is applied for a long period of time to a space between a drain and a source under a high-temperature environment.SOLUTION: A semiconductor device comprises: a first conductive type semiconductor layer 20; an active electrode layer 30 which is formed on one side of the semiconductor layer 20 in an active region; a plurality of voltage-withstanding buried layers 25 which are formed on the semiconductor layer 20 in a voltage-withstanding region surrounding the active region and are made of a second conductive type semiconductor material; and an interlayer insulating layer 40 which is formed on one side of the voltage-withstanding buried layers 25 and in which conductive films 11, 12 extending in the in-plane direction are buried. The conductive films 11, 12 have the first conductive film 11, and the second conductive film 12 provided on a side closer to one side than the first conductive film 11.SELECTED DRAWING: Figure 1

Description

本発明は、活性領域を囲む耐圧領域を有する半導体装置に関する。 The present invention relates to a semiconductor device having a breakdown voltage region surrounding an active region.

従来から、スーパージャンクション構造を有する半導体装置が知られている。スーパージャンクション構造を有する半導体装置によれば、活性領域を囲む耐圧領域に複数(例えば数十本)のガードリングが設けられているため、逆バイアス時には空乏層が活性領域から耐圧領域の最外周部まで伸長し、半導体装置の耐圧を高くすることができる。 2. Description of the Related Art Semiconductor devices having a superjunction structure have been known. According to a semiconductor device having a superjunction structure, a plurality of (for example, several dozen) guard rings are provided in the breakdown voltage region surrounding the active region, so that during reverse bias, the depletion layer moves from the active region to the outermost periphery of the breakdown voltage region. It is possible to increase the breakdown voltage of the semiconductor device.

このようなスーパージャンクション構造を有する半導体装置において、特に高温環境下長時間逆バイアスを与えた場合であってもリーク電流が増加したり耐圧が低下したりすることを防止するための半導体装置が特許文献1で提案されている。この特許文献1では、第1導電型の半導体層と、活性領域における半導体層の表面に形成され、第2導電型の半導体材料からなる複数の柱状埋込層と、活性領域における半導体層の表面上に形成された活性電極層と、活性領域を囲む耐圧領域における半導体層の表面に形成され、第2導電型の半導体材料からなる複数の環状柱状埋込層と、耐圧領域及び当該耐圧領域を囲む周辺領域における半導体層の表面上に形成された絶縁層とを備える、スーパージャンクション構造を有する半導体装置であって、周辺領域における半導体層の表面に形成され、第2導電型の半導体材料からなる第2環状柱状埋込層と、周辺領域における絶縁層上に形成された環状導電層とをさらに備える半導体装置が提案されている。 The patent is for a semiconductor device that prevents leakage current from increasing and breakdown voltage from decreasing even when reverse bias is applied for a long time in a high-temperature environment in a semiconductor device having such a superjunction structure. This is proposed in Document 1. In Patent Document 1, a semiconductor layer of a first conductivity type, a plurality of columnar buried layers formed on the surface of the semiconductor layer in the active region and made of a semiconductor material of the second conductivity type, and a surface of the semiconductor layer in the active region are disclosed. an active electrode layer formed thereon; a plurality of annular columnar buried layers formed on the surface of the semiconductor layer in a breakdown voltage region surrounding the active region and made of a semiconductor material of a second conductivity type; A semiconductor device having a superjunction structure, comprising: an insulating layer formed on a surface of a semiconductor layer in a surrounding peripheral region; A semiconductor device has been proposed that further includes a second annular columnar buried layer and an annular conductive layer formed on an insulating layer in a peripheral region.

しかしながら、高温環境下で長時間逆バイアスを与えた場合、パッケージ樹脂中の可動イオンがパッシベーション膜や層間絶縁膜中を移動し、さらにはスーパージャンクション構造の上部まで移動する事により空乏層の伸びに影響し、表面の電界強度分布が崩れる事でリーク電流の増加や耐圧低下が発生するという問題が生じ得る。 However, when a reverse bias is applied for a long time in a high-temperature environment, mobile ions in the package resin move through the passivation film and interlayer insulation film, and even move to the top of the superjunction structure, causing the depletion layer to elongate. This may cause problems such as an increase in leakage current and a decrease in breakdown voltage due to the collapse of the electric field strength distribution on the surface.

特開2013-102087号公報Japanese Patent Application Publication No. 2013-102087

本発明は、高温環境下で長時間逆バイアスを与えた場合であっても、リーク電流の増加や耐圧低下が発生するという問題が生じることを防止できる半導体装置を提供する。 The present invention provides a semiconductor device that can prevent problems such as an increase in leakage current and a decrease in breakdown voltage even when a reverse bias is applied for a long time in a high-temperature environment.

本発明による半導体装置は、
第1導電型の半導体層と、
活性領域における前記半導体層の一方側に形成された活性電極層と、
活性領域を囲む耐圧領域における前記半導体層に形成され、第2導電型の半導体材料からなる複数の耐圧埋込層と、
前記耐圧埋込層の一方側に形成された絶縁膜であって、面内方向に延在した導電膜が埋設された絶縁膜と、
を備え、
前記導電膜は、第一導電膜と、前記第一導電膜よりも一方側に設けられた第二導電膜と、を有してもよい。
The semiconductor device according to the present invention includes:
a first conductivity type semiconductor layer;
an active electrode layer formed on one side of the semiconductor layer in an active region;
a plurality of breakdown voltage buried layers formed in the semiconductor layer in a breakdown voltage region surrounding an active region and made of a semiconductor material of a second conductivity type;
an insulating film formed on one side of the withstand voltage buried layer, in which a conductive film extending in the in-plane direction is embedded;
Equipped with
The conductive film may include a first conductive film and a second conductive film provided on one side of the first conductive film.

本発明による半導体装置において、
前記第一導電膜は、互いに離間した複数の第一導電離間膜を有し、
前記第二導電膜は、互いに離間した複数の第二導電離間膜を有してもよい。
In the semiconductor device according to the present invention,
The first conductive film has a plurality of first conductive spacing films spaced apart from each other,
The second conductive film may include a plurality of second conductive spacing films spaced apart from each other.

本発明による半導体装置において、
平面視において前記耐圧埋込層と重複する箇所に前記第二導電離間膜が設けられ、
平面視において前記第二導電離間膜の間に前記第一導電離間膜が設けられてもよい。
In the semiconductor device according to the present invention,
The second conductive spacing film is provided at a location overlapping with the voltage-resistant buried layer in a plan view,
The first conductive spacing film may be provided between the second conductive spacing films in plan view.

本発明による半導体装置において、
複数の耐圧埋込層の各々に対応して前記第二導電離間膜が設けられ、
平面視において前記第二導電離間膜の間の各々に前記第一導電離間膜が設けられてもよい。
In the semiconductor device according to the present invention,
The second conductive spacing film is provided corresponding to each of the plurality of voltage-resistant buried layers,
The first conductive spacing film may be provided between each of the second conductive spacing films in plan view.

本発明による半導体装置は、
耐圧領域における前記半導体層の一方側に形成された周辺電極層を備え、
縦断面において、前記活性電極層と前記周辺電極層との間に設けられた前記耐圧埋込層の数と前記第二導電離間膜の数は同数であってもよい。
The semiconductor device according to the present invention includes:
comprising a peripheral electrode layer formed on one side of the semiconductor layer in the breakdown voltage region,
In a longitudinal section, the number of voltage-resistant buried layers and the number of second conductive spacing films provided between the active electrode layer and the peripheral electrode layer may be the same.

本発明による半導体装置は、
耐圧領域における前記半導体層の一方側に形成された周辺電極層を備え、
平面視において、最も外方に位置する第二導電離間膜の外方側端部と前記周辺電極層とは重複してもよい。
The semiconductor device according to the present invention includes:
comprising a peripheral electrode layer formed on one side of the semiconductor layer in the breakdown voltage region,
In a plan view, the outer end of the second conductive spacing film located outermost and the peripheral electrode layer may overlap.

本発明による半導体装置において、
平面視において、最も内方に位置する第二導電離間膜の内方側端部と前記活性電極層とは重複してもよい。
In the semiconductor device according to the present invention,
In a plan view, the innermost end of the second conductive spacing film located innermost and the active electrode layer may overlap.

本発明のように耐圧埋込層の一方側に形成された絶縁膜であって、面内方向に延在した導電膜が埋設された絶縁膜であって、第一導電膜と、第一導電膜よりも一方側に設けられた第二導電膜を有する絶縁膜を採用することで、高温環境下で長時間逆バイアスを与えた場合であっても、リーク電流の増加や耐圧低下が発生するという問題が生じることを防止できる。 An insulating film formed on one side of a pressure-resistant buried layer as in the present invention, in which a conductive film extending in the in-plane direction is embedded, the first conductive film and the first conductive film being embedded. By using an insulating film with a second conductive film provided on one side of the film, an increase in leakage current and a decrease in breakdown voltage occur even when reverse bias is applied for a long time in a high-temperature environment. This problem can be prevented from occurring.

本発明の第1の実施の形態による半導体装置の縦断面図。FIG. 1 is a vertical cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施の形態による半導体装置において、耐圧埋込層、第一導電離間膜及び第二導電離間膜の面内での重複を示すための縦断面図。FIG. 2 is a vertical cross-sectional view showing in-plane overlap of a voltage-resistant buried layer, a first conductive spacing film, and a second conductive spacing film in the semiconductor device according to the first embodiment of the present invention. 本発明の第1の実施の形態による半導体装置において、周辺電極層と第二導電離間膜の面内での重複を示すための縦断面図。FIG. 3 is a vertical cross-sectional view showing in-plane overlap between a peripheral electrode layer and a second conductive spacing film in the semiconductor device according to the first embodiment of the present invention. 本発明の第1の実施の形態による半導体装置において、活性電極層と第二導電離間膜の面内での重複を示すための縦断面図。FIG. 3 is a vertical cross-sectional view showing the in-plane overlap between the active electrode layer and the second conductive spacing film in the semiconductor device according to the first embodiment of the present invention. 本発明の第1の実施の形態による半導体装置において、可動イオンが疑似的なコンデンサによってトラップされる態様を模式的に示した縦断面図。FIG. 2 is a vertical cross-sectional view schematically showing how mobile ions are trapped by a pseudo capacitor in the semiconductor device according to the first embodiment of the present invention. 第一導電膜及び第二導電膜を設けなかった場合のHTRB試験時の表面電界強度を示したグラフ。The graph which showed the surface electric field intensity at the time of the HTRB test when the first conductive film and the second conductive film were not provided. 第一導電膜及び第二導電膜を設けた場合のHTRB試験時の表面電界強度を示したグラフ。A graph showing the surface electric field strength during an HTRB test when a first conductive film and a second conductive film are provided. 本発明の第1の実施の形態において、平面視において環状に設けられた第一導電膜を示した概略平面図。FIG. 2 is a schematic plan view showing a first conductive film provided in an annular shape in plan view in the first embodiment of the present invention. 本発明の第1の実施の形態において、平面視において環状に設けられた第二導電膜を示した概略平面図。FIG. 3 is a schematic plan view showing a second conductive film provided in an annular shape in plan view in the first embodiment of the present invention. 本発明の第1の実施の形態の変形例による半導体装置の縦断面図。FIG. 3 is a vertical cross-sectional view of a semiconductor device according to a modification of the first embodiment of the present invention. 本発明の第2の実施の形態において、第一導電膜よりも第二導電膜が第二方向において長く延在している態様となっている半導体装置の縦断面図。FIG. 7 is a longitudinal cross-sectional view of a semiconductor device in a second embodiment of the present invention, in which a second conductive film extends longer in a second direction than a first conductive film. 本発明の第2の実施の形態において、第一導電膜と第二導電膜が同程度の長さで第二方向において延在している態様となっている半導体装置の縦断面図。FIG. 7 is a longitudinal cross-sectional view of a semiconductor device in which a first conductive film and a second conductive film have approximately the same length and extend in a second direction in a second embodiment of the present invention. 本発明の第3の実施の形態による半導体装置の縦断面図。FIG. 7 is a vertical cross-sectional view of a semiconductor device according to a third embodiment of the present invention. 1層の導電膜からなる複数の導電離間膜を層間絶縁層に設ける態様を示した縦断面図。FIG. 3 is a vertical cross-sectional view showing an embodiment in which a plurality of conductive spacing films each made of one layer of conductive films are provided in an interlayer insulating layer.

第1の実施の形態
《構成》
本実施の形態において、「一方側」は図1の上方側を意味し、「他方側」は図1の下方側を意味する。図1の上下方向を「第一方向」と呼び、左右方向を「第二方向」と呼び、紙面の表裏方向を「第三方向」と呼ぶ。第二方向及び第三方向を含む面内方向を「面内方向」という。第一方向の一方側から見た場合を平面視という。なお、本実施の形態の第二方向は、面内方向のうち、後述するガードリングからなる耐圧埋込層25の延在する方向に直交する方向を意味している。
First embodiment <<Configuration>>
In this embodiment, "one side" means the upper side in FIG. 1, and "the other side" means the lower side in FIG. The vertical direction in FIG. 1 is called a "first direction," the horizontal direction is called a "second direction," and the front and back direction of the paper is called a "third direction." The in-plane direction including the second direction and the third direction is referred to as the "in-plane direction." The view from one side in the first direction is called planar view. Note that the second direction in this embodiment means a direction perpendicular to the direction in which a pressure-resistant buried layer 25 made of a guard ring, which will be described later, extends among in-plane directions.

本実施の形態による半導体装置は、スーパージャンクション構造を有するショットキーバリアダイオードであってもよい。但し、これに限られることはなく、pnダイオード、MOSFET、サイリスター、IGBT等であってもよい。 The semiconductor device according to this embodiment may be a Schottky barrier diode having a superjunction structure. However, it is not limited to this, and may be a pn diode, MOSFET, thyristor, IGBT, or the like.

図1に示すように、半導体装置は、第1導電型の半導体層20と、活性領域における半導体層20の一方側に形成された活性電極層30と、活性領域を囲む耐圧領域における半導体層20に形成され、第2導電型の半導体材料からなる複数の耐圧埋込層25と、耐圧埋込層25の一方側に形成された層間絶縁層40であって、面内方向に延在した導電膜11,12が埋設された層間絶縁層40と、を有している。導電膜11,12は、第一導電膜11と、第一導電膜11よりも一方側(半導体装置のおもて面側)に設けられた第二導電膜12と、を有している。導電膜11,12は例えばポリシリコン等からなってもよい。耐圧領域は活性領域の一部又は全体を取り囲んで設けられてもよい。耐圧領域の一部又は全体を取り囲んで周辺領域が設けられてもよい。本実施の形態では、第1導電型としてn型を用い、第2導電型としてp型を用いて説明するが、これに限られることはなく、第1導電型としてp型を用い、第2導電型としてn型を用いてもよい。なお活性領域とは活性電極層30が半導体層20と接触する領域の他方側(下方側)を意味し、オン状態のときに裏面からおもて面に向かって電流が流れる領域を意味している。図1に示す態様で周辺領域は、周辺電極層60が半導体層20と接触する領域の他方側(下方側)を意味している。 As shown in FIG. 1, the semiconductor device includes a semiconductor layer 20 of a first conductivity type, an active electrode layer 30 formed on one side of the semiconductor layer 20 in an active region, and a semiconductor layer 20 in a breakdown voltage region surrounding the active region. a plurality of voltage-resistant buried layers 25 made of a semiconductor material of a second conductivity type, and an interlayer insulating layer 40 formed on one side of the voltage-resistant buried layer 25, and a conductive layer extending in the in-plane direction. and an interlayer insulating layer 40 in which the films 11 and 12 are embedded. The conductive films 11 and 12 include a first conductive film 11 and a second conductive film 12 provided on one side of the first conductive film 11 (on the front side of the semiconductor device). The conductive films 11 and 12 may be made of polysilicon, for example. The breakdown voltage region may be provided surrounding part or all of the active region. A peripheral region may be provided surrounding part or all of the breakdown voltage region. In this embodiment mode, an n-type is used as the first conductivity type, and a p-type is used as the second conductivity type. However, the present invention is not limited to this. N-type may be used as the conductivity type. Note that the active region refers to the other side (lower side) of the area where the active electrode layer 30 contacts the semiconductor layer 20, and refers to the area where current flows from the back surface to the front surface when in the on state. There is. In the embodiment shown in FIG. 1, the peripheral region means the other side (lower side) of the region where the peripheral electrode layer 60 contacts the semiconductor layer 20.

n型の半導体層20の裏面側(下方側)には、半導体層20よりも不純物濃度の大きなn+型の半導体基板21が設けられてもよい。n型の半導体層20はn+型の半導体基板21上でエピタキシャル成長することで形成されてもよい。 An n + -type semiconductor substrate 21 having a higher impurity concentration than the semiconductor layer 20 may be provided on the back side (lower side) of the n - type semiconductor layer 20 . The n-type semiconductor layer 20 may be formed by epitaxial growth on the n + -type semiconductor substrate 21.

活性領域におけるn-型半導体層20のおもて面領域には、p型シリコンからなる複数の柱状埋込層125が設けられてもよい。活性領域におけるn-型半導体層20のおもて面に設けられた活性電極層30は、ソース電極層としてのショットキーバリアメタル層であってもよい。活性領域を囲む耐圧領域におけるn-型半導体層20のおもて面領域に設けられた耐圧埋込層25は、p型シリコンからなる複数のガードリング(環状埋込層)であってもよい。n+型半導体基板21の裏面に、ドレイン電極層90が設けられてもよい。柱状埋込層125は、おもて面側にp型高濃度オーミック拡散領域(図示せず)を有してもよい。耐圧埋込層25は、おもて面側にp型高濃度拡散領域(図示せず)を有してもよい。 A plurality of columnar buried layers 125 made of p-type silicon may be provided in the front surface region of the n - type semiconductor layer 20 in the active region. The active electrode layer 30 provided on the front surface of the n - type semiconductor layer 20 in the active region may be a Schottky barrier metal layer as a source electrode layer. The breakdown voltage buried layer 25 provided in the front surface region of the n - type semiconductor layer 20 in the breakdown voltage region surrounding the active region may be a plurality of guard rings (annular buried layers) made of p-type silicon. . A drain electrode layer 90 may be provided on the back surface of the n + -type semiconductor substrate 21 . The columnar buried layer 125 may have a p-type high concentration ohmic diffusion region (not shown) on the front surface side. The breakdown voltage buried layer 25 may have a p-type high concentration diffusion region (not shown) on the front surface side.

活性領域におけるn-型半導体層20のおもて面領域にはp型ボディ領域161と、p型ボディ領域161のおもて面領域に形成されたn+型ソース領域165及びp+型コンタクト領域167が設けられてもよい。また、活性領域のn-型半導体層20のおもて面上にはゲート絶縁層172と、ゲート絶縁層172のおもて面側に設けられたゲート電極層170と、ゲート電極層170とソース電極層である活性電極層30との間に設けられた層間絶縁膜174が設けられてもよい(図4も参照)。本実施の形態では、ソース電極層である活性電極層30、ドレイン電極層90及びゲート電極層170が設けられる態様を用いて説明しているが、これに限られることはなく、アノードとカソードを有する半導体装置が用いられてもよい。 In the front surface region of the n type semiconductor layer 20 in the active region, there is a p type body region 161, and an n + type source region 165 and a p + type contact formed in the front surface region of the p type body region 161. A region 167 may also be provided. Further, on the front surface of the n - type semiconductor layer 20 in the active region, there is a gate insulating layer 172, a gate electrode layer 170 provided on the front surface side of the gate insulating layer 172, and a gate electrode layer 170. An interlayer insulating film 174 may be provided between the source electrode layer and the active electrode layer 30 (see also FIG. 4). Although this embodiment mode is described using a mode in which the active electrode layer 30, which is a source electrode layer, the drain electrode layer 90, and the gate electrode layer 170 are provided, the present invention is not limited to this, and an anode and a cathode are provided. A semiconductor device having the following may be used.

周辺領域における層間絶縁層40の一方側には平面視において環状からなる周辺電極層60が設けられてもよい。周辺電極層60はn-型半導体層20のおもて面領域に形成されたn型高濃度拡散領域(n++拡散領域)65と連結されてもよい。n型高濃度拡散領域65の不純物濃度は例えば1×1019cm-3~5×1020cm-3である。 A peripheral electrode layer 60 having an annular shape in plan view may be provided on one side of the interlayer insulating layer 40 in the peripheral region. The peripheral electrode layer 60 may be connected to an n-type high concentration diffusion region (n ++ diffusion region) 65 formed in the front surface region of the n - type semiconductor layer 20 . The impurity concentration of the n-type high concentration diffusion region 65 is, for example, 1×10 19 cm −3 to 5×10 20 cm −3 .

+型半導体基板21とn-型半導体層20とで半導体基体が構成される。n-型半導体層20の厚さは、例えば6μm~70μmであり、n-型半導体層20の不純物濃度は、例えば5×1013cm-3~5×1016cm-3である。n+型半導体基板21の不純物濃度は例えば1×1019cm-3~5×1020cm-3である。 The n + -type semiconductor substrate 21 and the n - -type semiconductor layer 20 constitute a semiconductor base. The thickness of the n - type semiconductor layer 20 is, for example, 6 μm to 70 μm, and the impurity concentration of the n type semiconductor layer 20 is, for example, 5×10 13 cm −3 to 5×10 16 cm −3 . The impurity concentration of the n + -type semiconductor substrate 21 is, for example, 1×10 19 cm −3 to 5×10 20 cm −3 .

柱状埋込層125は、n-型半導体層20における活性領域に形成した第1トレンチ116の内部にエピタキシャル成長させて形成したp型半導体材料(第2導電型半導体材料)からなってもよい。柱状埋込層125の本数は使用目的や構造に合わせて適宜設定することができる。p型半導体材料の不純物濃度は、例えば5×1013cm-3~5×1016cm-3である。 The columnar buried layer 125 may be made of a p-type semiconductor material (second conductivity type semiconductor material) formed by epitaxial growth inside the first trench 116 formed in the active region of the n - type semiconductor layer 20. The number of columnar buried layers 125 can be appropriately set according to the purpose of use and structure. The impurity concentration of the p-type semiconductor material is, for example, 5×10 13 cm −3 to 5×10 16 cm −3 .

柱状埋込層125の深さは例えば5μm~50μmであり、柱状埋込層125の幅は例えば0.5μm~5μmである。柱状埋込層125は第1間隔で平行に形成されてもよい。第1間隔は例えば1μm~15μmである。 The depth of the columnar buried layer 125 is, for example, 5 μm to 50 μm, and the width of the columnar buried layer 125 is, for example, 0.5 μm to 5 μm. The columnar buried layers 125 may be formed in parallel with a first interval. The first interval is, for example, 1 μm to 15 μm.

耐圧埋込層25は、n-型半導体層20における耐圧領域に形成した第2トレンチの内部にエピタキシャル成長させて形成したp型半導体材料(第2導電型半導体材料)からなってもよい。耐圧埋込層25の本数は例えば5本~50本であるが、使用目的や構造に合わせて適宜設定することができる。p型半導体材料の不純物濃度は、例えば2×1014cm-3~5×1016cm-3である。 The breakdown voltage buried layer 25 may be made of a p-type semiconductor material (second conductivity type semiconductor material) formed by epitaxial growth inside a second trench formed in the breakdown voltage region of the n - type semiconductor layer 20. The number of voltage-resistant buried layers 25 is, for example, 5 to 50, but can be set as appropriate depending on the purpose of use and structure. The impurity concentration of the p-type semiconductor material is, for example, 2×10 14 cm −3 to 5×10 16 cm −3 .

耐圧埋込層25の深さは例えば5μm~50μmであり、耐圧埋込層25の幅は例えば0.5μm~5μmである。耐圧埋込層25は、それぞれ第2間隔で平行に形成されている。第2間隔は、例えば1μm~15μmである。 The depth of the voltage-resistant buried layer 25 is, for example, 5 μm to 50 μm, and the width of the voltage-resistant buried layer 25 is, for example, 0.5 μm to 5 μm. The voltage-resistant buried layers 25 are formed in parallel with each other at second intervals. The second interval is, for example, 1 μm to 15 μm.

層間絶縁層40はシリコン酸化膜からなってもよい。活性電極層30はn-型半導体層20とはショットキー接合を形成し、柱状埋込層125とはオーミック接合を形成してもよい。活性電極層30の材料は金属(例えばアルミニウム)であり、活性電極層30の厚さは例えば5μmである。周辺電極層60の材料は金属(例えばアルミニウム)であり、周辺電極層60の厚さは例えば5μmである。ドレイン電極層90は、電極材料である金属(例えばTi-Ni-Au等の多層金属膜)を半導体基体の裏面に蒸着して形成してもよい。ドレイン電極層90である多層金属膜全体の厚さは例えば0.5μmである。周辺電極層60はドレイン電極層90と電気的に接続されており、周辺電極層60とドレイン電極層90は同電位となってもよい。 The interlayer insulating layer 40 may be made of a silicon oxide film. The active electrode layer 30 may form a Schottky junction with the n - type semiconductor layer 20 and may form an ohmic junction with the columnar buried layer 125. The material of the active electrode layer 30 is metal (for example, aluminum), and the thickness of the active electrode layer 30 is, for example, 5 μm. The material of the peripheral electrode layer 60 is metal (for example, aluminum), and the thickness of the peripheral electrode layer 60 is, for example, 5 μm. The drain electrode layer 90 may be formed by depositing a metal (for example, a multilayer metal film such as Ti--Ni--Au) as an electrode material on the back surface of the semiconductor substrate. The thickness of the entire multilayer metal film that is the drain electrode layer 90 is, for example, 0.5 μm. The peripheral electrode layer 60 is electrically connected to the drain electrode layer 90, and the peripheral electrode layer 60 and the drain electrode layer 90 may be at the same potential.

第一導電膜11は、面内方向で互いに離間した複数の第一導電離間膜1を有してもよい。同様に、第二導電膜12は、面内方向で互いに離間した複数の第二導電離間膜2を有してもよい。 The first conductive film 11 may include a plurality of first conductive spacing films 1 spaced apart from each other in the in-plane direction. Similarly, the second conductive film 12 may include a plurality of second conductive spacing films 2 spaced apart from each other in the in-plane direction.

耐圧埋込層25のおもて面側には、耐圧埋込層25から半導体装置の厚み方向に向かった直線上(第一方向に平行に延びた直線上)に第二導電離間膜2が設けられてもよい(図2の「A」参照)。この場合、平面視において耐圧埋込層25と重複する箇所に第二導電離間膜2が設けられることになる。第二導電離間膜2の面内方向の間の裏面側には、当該間(第二導電離間膜2の面内方向の間)から半導体装置の厚み方向に向かった直線上(第一方向に平行に延びた直線上)に第一導電離間膜1が設けられてもよい(図2の「B」参照)。この場合、平面視において第二導電離間膜2の間に第一導電離間膜1が設けられることになる(図7A及び図7B参照)。 On the front side of the voltage-resistant buried layer 25, a second conductive spacing film 2 is provided on a straight line from the voltage-resistant buried layer 25 toward the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction). (See “A” in FIG. 2). In this case, the second conductive spacing film 2 is provided at a location overlapping with the voltage-resistant buried layer 25 in plan view. On the back side between the in-plane directions of the second conductive spacing film 2, there is a The first conductive spacing film 1 may be provided on a straight line extending in parallel (see "B" in FIG. 2). In this case, the first conductive spacing film 1 is provided between the second conductive spacing films 2 in plan view (see FIGS. 7A and 7B).

複数の耐圧埋込層25の各々に対応して第二導電離間膜2が設けられてもよい。この場合には、複数の耐圧埋込層25の各々から半導体装置の厚み方向のおもて面側に向かった直線上(第一方向に平行に延びた直線上)に第二導電離間膜2が設けられることになる。複数の耐圧埋込層25の各々から半導体装置の厚み方向のおもて面側に向かった直線上(第一方向に平行に延びた直線上)に1つの第二導電離間膜2が設けられる場合には、耐圧埋込層25の数と第二導電離間膜2の数とは同じ数になる。この際、活性電極層30の他方側(裏面側、図1の下方側)に位置し、平面視において活性電極層30によって全体が覆われる耐圧埋込層25に対応する第二導電離間膜2は設けられておらず、面内方向で活性電極層30と周辺電極層60との間に設けられた耐圧埋込層25の数と第二導電離間膜2の数とは同じ数になってもよい(図1参照)。 The second conductive spacing film 2 may be provided corresponding to each of the plurality of voltage-resistant buried layers 25. In this case, the second conductive spacing film 2 is placed on a straight line from each of the plurality of pressure-resistant buried layers 25 toward the front surface side in the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction). will be established. One second conductive spacing film 2 is provided on a straight line from each of the plurality of pressure-resistant buried layers 25 toward the front surface side in the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction). In this case, the number of voltage-resistant buried layers 25 and the number of second conductive spacing films 2 are the same. At this time, the second conductive spacing film 2 corresponds to the pressure-resistant buried layer 25 located on the other side (back side, lower side in FIG. 1) of the active electrode layer 30 and completely covered by the active electrode layer 30 in plan view. is not provided, and the number of pressure-resistant buried layers 25 and the number of second conductive spacing films 2 provided between the active electrode layer 30 and the peripheral electrode layer 60 in the in-plane direction are the same. (See Figure 1).

耐圧埋込層25が平面視において環状からなる場合には、耐圧埋込層25に対応して第二導電膜12も平面視において環状で構成されることになる(図7B参照)。この場合には、平面視において第二導電離間膜2の間に設けられるようにして、環状の第一導電膜11が設けられることになる(図7A参照)。図7Bでは模式的に第二導電膜12を示しているが、図7Bに示す第二導電膜12では、複数の第二導電離間膜2が一定距離だけ離間して、配置されることになる(図1参照)。同様に、図7Aでは模式的に第一導電膜11を示しているが、図7Aに示す第一導電膜11では、複数の第一導電離間膜1が一定距離だけ離間して、配置されることになる(図1参照) When the voltage-resistant buried layer 25 has an annular shape in a plan view, the second conductive film 12 also has an annular shape in a plan view corresponding to the voltage-resistant buried layer 25 (see FIG. 7B). In this case, the annular first conductive film 11 is provided between the second conductive spacing films 2 in plan view (see FIG. 7A). Although FIG. 7B schematically shows the second conductive film 12, in the second conductive film 12 shown in FIG. 7B, a plurality of second conductive spacing films 2 are arranged at a certain distance apart. (See Figure 1). Similarly, although FIG. 7A schematically shows the first conductive film 11, in the first conductive film 11 shown in FIG. 7A, a plurality of first conductive spacing films 1 are arranged at a certain distance apart. (See Figure 1)

耐圧埋込層25が平面視においてドット形状からなる場合には、耐圧埋込層25に対応して第二導電離間膜2も平面視においてドット形状からなる。この場合には、第二導電離間膜2に対応して第一導電離間膜1も平面視においてドット形状からなる。但し、設計の容易性等を考慮すると、耐圧埋込層25を平面視において環状から形成し、図7A及び図7Bで示すように、第一導電膜11及び第二導電膜12の各々を平面視において環状から形成することが有益である。 When the voltage-resistant buried layer 25 has a dot shape in a plan view, the second conductive spacing film 2 also has a dot shape in a plan view corresponding to the voltage-resistant buried layer 25. In this case, the first conductive spacing film 1 also has a dot shape in plan view, corresponding to the second conductive spacing film 2. However, in consideration of ease of design, the pressure-resistant buried layer 25 is formed in an annular shape in plan view, and each of the first conductive film 11 and the second conductive film 12 is formed in a planar shape as shown in FIGS. 7A and 7B. It is advantageous to form it from an annular shape in view.

平面視において第二導電離間膜2の間の各々に第一導電離間膜1が設けられてもよい。この場合には、第二導電離間膜2の間の各々から半導体装置の厚み方向の裏面側に向かった直線上(第一方向に平行に延びた直線上)に第一導電離間膜1が設けられることになる。 The first conductive spacing film 1 may be provided between each of the second conductive spacing films 2 in plan view. In this case, the first conductive spacing film 1 is provided on a straight line from each of the second conductive spacing films 2 toward the back surface side in the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction). It will be done.

周辺電極層60から半導体装置の裏面側に半導体装置の厚み方向の裏面側に向かった直線上(第一方向に平行に延びた直線上)に最も外方に位置する第二導電離間膜2の外方側端部が設けられてもよい(図3の「C」参照)。この場合には、平面視において、最も外方に位置する第二導電離間膜2の外方側端部と周辺電極層60とは重複することになる。 The second conductive spacing film 2 located most outwardly on a straight line from the peripheral electrode layer 60 to the back side of the semiconductor device in the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction). An outer end may be provided (see "C" in Figure 3). In this case, the outer end of the second conductive spacing film 2 located at the outermost position and the peripheral electrode layer 60 overlap in plan view.

活性電極層30から半導体装置の裏面側に半導体装置の厚み方向に向かった直線上(第一方向に平行に延びた直線上)に最も内方に位置する第二導電離間膜2の内方側端部が設けられてもよい(図4の「D」参照)。この場合には、平面視において、最も内方に位置する第二導電離間膜2の内方側端部と活性電極層30とは重複することになる。 The inner side of the second conductive spacing film 2 located innermost on a straight line from the active electrode layer 30 toward the back side of the semiconductor device in the thickness direction of the semiconductor device (on a straight line extending parallel to the first direction) An end may be provided (see "D" in Figure 4). In this case, in plan view, the innermost end of the second conductive spacing film 2 located innermost and the active electrode layer 30 overlap.

本実施の形態の第一導電膜11及び第二導電膜12を埋設した層間絶縁層40は、例えば以下のようにして形成される。 The interlayer insulating layer 40 in which the first conductive film 11 and the second conductive film 12 of this embodiment are embedded is formed, for example, as follows.

まず、最終的に形成される層間絶縁層40の厚みの概ね1/3だけ、耐圧埋込層25がおもて面領域に形成されたn-型半導体層20に層間絶縁層40を形成する。その後で、形成された層間絶縁層40の上に第一導電膜11を形成する。この際には、例えばポリシリコン等からなる導電膜を形成し、当該導電膜を部分的に除去することで、複数の第一導電離間膜1を形成する。 First, the interlayer insulating layer 40 is formed on the n - type semiconductor layer 20 in which the withstand voltage buried layer 25 is formed in the front surface region by approximately 1/3 of the thickness of the interlayer insulating layer 40 to be finally formed. . After that, the first conductive film 11 is formed on the formed interlayer insulating layer 40. At this time, a plurality of first conductive spacing films 1 are formed by forming a conductive film made of, for example, polysilicon and partially removing the conductive film.

次に、複数の第一導電離間膜1を覆うようにして、最終的に形成される層間絶縁層40の厚みの概ね2/3まで層間絶縁層40を形成する。その後で、形成された層間絶縁層40の上に第二導電膜12を形成する。この際にも、例えばポリシリコン等からなる導電膜を形成し、当該導電膜を部分的に除去することで、複数の第二導電離間膜2を形成する。 Next, the interlayer insulating layer 40 is formed to cover the plurality of first conductive spacing films 1 to approximately ⅔ of the thickness of the interlayer insulating layer 40 to be finally formed. After that, the second conductive film 12 is formed on the formed interlayer insulating layer 40. Also in this case, a plurality of second conductive spacing films 2 are formed by forming a conductive film made of, for example, polysilicon and partially removing the conductive film.

次に、複数の第二導電離間膜2を覆うようにして、残りの層間絶縁層40を形成する。このようにすることで、第一導電膜11及び第二導電膜12を埋設した層間絶縁層40が形成されることになる。 Next, the remaining interlayer insulating layer 40 is formed so as to cover the plurality of second conductive spacing films 2. By doing so, the interlayer insulating layer 40 in which the first conductive film 11 and the second conductive film 12 are embedded is formed.

本実施の形態では、第一導電膜11及び第二導電膜12が層間絶縁層40内に設けられる態様を用いて説明しているが、このような態様に限られることはなく、半導体装置の厚み方向(第一方向)に3層以上が積層されてもよく、第三導電膜、第四導電膜、・・・、第n導電膜(「n」は3以上の整数である。)が設けられてもよい。 Although this embodiment mode is described using a mode in which the first conductive film 11 and the second conductive film 12 are provided within the interlayer insulating layer 40, the present invention is not limited to this mode; Three or more layers may be laminated in the thickness direction (first direction), and a third conductive film, a fourth conductive film, ..., an n-th conductive film ("n" is an integer of 3 or more). may be provided.

《効果》
次に、上述した構成からなる本実施の形態による効果の一例について説明する。なお、「効果」で説明するあらゆる態様を、上記構成で採用することができる。
"effect"
Next, an example of the effect of the present embodiment having the above-described configuration will be described. Note that all the aspects described under "effects" can be employed in the above configuration.

耐圧埋込層25の一方側に形成された層間絶縁層40であって、面内方向に延在した導電膜11,12が埋設された層間絶縁層40であって、第一導電膜11と、第一導電膜11よりも一方側に設けられた第二導電膜12を有する層間絶縁層40を採用する場合には、高温環境下でドレイン-ソース間に長時間逆バイアスを与えた場合であっても、リーク電流の増加や耐圧低下が発生するという問題が生じることを防止できる。 An interlayer insulating layer 40 formed on one side of the withstand voltage buried layer 25, in which the conductive films 11 and 12 extending in the in-plane direction are embedded, the first conductive film 11 and In the case of employing the interlayer insulating layer 40 having the second conductive film 12 provided on one side of the first conductive film 11, when a reverse bias is applied between the drain and the source for a long time in a high temperature environment, Even if this happens, problems such as an increase in leakage current and a decrease in breakdown voltage can be prevented from occurring.

第一導電膜11が互いに離間した複数の第一導電離間膜1を有する場合や、第二導電膜12が互いに離間した複数の第二導電離間膜2を有する場合には、低抵抗の第一導電離間膜1及び第二導電離間膜2と、これら第一導電離間膜1及び第二導電離間膜2に挟まれた層間絶縁層40によって疑似的なコンデンサを形成することができ(図5参照)、可動イオンを疑似的なコンデンサによって捕獲できる。このため、リーク電流の増加や耐圧低下が発生するという問題が生じることをより効果的に防止できる。図6A及び図6BはHTRB(高温逆バイアス:High Temperature Reverse Bias)試験時の表面電界強度を示したグラフであり、横軸が活性領域からの面内距離を示し、縦軸が電界強度を示している。本実施の形態の態様によれば、図6Bで示すように、可動イオンの影響を受けず、設計通りの電界強度を保持することができる。他方、本実施の形態とは異なり、第一導電膜11及び第二導電膜12を設けなかった場合には、図6Aで示すように、可動イオンにより表面の電界強度が低下し、最外部で電界強度が上昇しBD(ブレークダウン)を引き起こしやすくなる。 When the first conductive film 11 has a plurality of first conductive spacing films 1 spaced apart from each other, or when the second conductive film 12 has a plurality of second conductive spacing films 2 spaced apart from each other, a low resistance first A pseudo capacitor can be formed by the conductive spacing film 1, the second conductive spacing film 2, and the interlayer insulating layer 40 sandwiched between the first conductive spacing film 1 and the second conductive spacing film 2 (see FIG. 5). ), mobile ions can be captured by a pseudo capacitor. Therefore, problems such as an increase in leakage current and a decrease in breakdown voltage can be more effectively prevented. 6A and 6B are graphs showing the surface electric field strength during the HTRB (High Temperature Reverse Bias) test, where the horizontal axis represents the in-plane distance from the active region, and the vertical axis represents the electric field strength. ing. According to the aspect of this embodiment, as shown in FIG. 6B, the electric field strength as designed can be maintained without being affected by mobile ions. On the other hand, unlike this embodiment, if the first conductive film 11 and the second conductive film 12 are not provided, as shown in FIG. 6A, the electric field strength on the surface decreases due to mobile ions, and The electric field strength increases, making it easier to cause BD (breakdown).

つまり、図6Aのように第一導電膜11及び第二導電膜12を設けなかった場合には、高温によりパッケージ樹脂の可動イオンが動きやすくなる。その結果、ドレイン-ソース間のバイアスによって可動イオンが周辺構造部表面に集結し、集結した可動イオンが空乏層伸長に影響し、電界強度分布を崩して耐圧低下を引き起こしうる。これに対して、本実施の形態によれば、高温環境下で逆バイアスを与え続けた場合に、可動イオンが層間絶縁層40中に移動してきても、第一導電膜11及び第二導電膜12によって可動イオンをブロックすることができる。また、ブロックをすり抜けようとした可動イオンは第一導電膜11及び第二導電膜12と層間絶縁層40によって形成された容量により捕獲され(図5参照)、周辺構造の半導体層20と層間絶縁層40の界面上部近傍に近づけない(図6B参照)。このため、周辺構造での空乏層の伸びに影響を与えず、リーク電流増加や耐圧変動を起こさない構成とすることができる。 That is, when the first conductive film 11 and the second conductive film 12 are not provided as shown in FIG. 6A, the mobile ions of the package resin tend to move due to high temperature. As a result, mobile ions gather on the surface of the peripheral structure due to the bias between the drain and source, and the gathered mobile ions affect the extension of the depletion layer, disrupting the electric field strength distribution and causing a drop in breakdown voltage. In contrast, according to the present embodiment, even if mobile ions move into the interlayer insulating layer 40 when a reverse bias is continuously applied in a high-temperature environment, the first conductive film 11 and the second conductive film 12 can block mobile ions. In addition, mobile ions that try to pass through the block are captured by the capacitance formed by the first conductive film 11, the second conductive film 12, and the interlayer insulating layer 40 (see FIG. 5), and are captured by the capacitance formed by the first conductive film 11, the second conductive film 12, and the interlayer insulating layer 40 (see FIG. 5). Do not get close to the upper part of the interface of layer 40 (see FIG. 6B). Therefore, it is possible to create a structure that does not affect the extension of the depletion layer in the peripheral structure and does not cause an increase in leakage current or a variation in breakdown voltage.

発明者らは平面視において耐圧埋込層25と重複する箇所に、複数の第一導電離間膜1を設け、複数の第一導電離間膜1の間に第二導電離間膜2を設ける態様も実験したが(図8参照)、リーク電流増加や耐圧変動を引き起こさないという観点からは、平面視において耐圧埋込層25と重複する箇所に、上側(一方側)に位置する複数第二導電離間膜2を設け、複数の第二導電離間膜2の間に下側(他方側)に位置する第一導電離間膜1を設ける態様が好ましいことを確認できた。 The inventors have also provided an embodiment in which a plurality of first conductive spacing films 1 are provided at locations overlapping with the pressure-resistant buried layer 25 in a plan view, and a second conductive spacing film 2 is provided between the plurality of first conductive spacing films 1. We conducted an experiment (see FIG. 8), but from the viewpoint of not causing an increase in leakage current or a variation in breakdown voltage, it was found that a plurality of second conductive spaces located on the upper side (on one side) overlapped with the breakdown voltage buried layer 25 in plan view. It has been confirmed that it is preferable to provide the membrane 2 and provide the first conductive spacing membrane 1 located below (on the other side) between the plurality of second conductive spacing membranes 2.

また、発明者らは平面視において耐圧埋込層25と重複する箇所に、1層の導電膜110からなる複数の導電離間膜111を層間絶縁層40に設ける態様についても実験したが(図12参照)、リーク電流増加や耐圧変動を引き起こさないという効果に関して、十分なものを得ることができなかった。 In addition, the inventors also experimented with an embodiment in which a plurality of conductive spacing films 111 made of a single conductive film 110 are provided in the interlayer insulating layer 40 at locations overlapping with the voltage-resistant buried layer 25 in plan view (Fig. 12 ), it was not possible to obtain a sufficient effect of not causing an increase in leakage current or a variation in breakdown voltage.

平面視において耐圧埋込層25と重複する箇所に第二導電離間膜2が設けられ、平面視において第二導電離間膜2の間に第一導電離間膜1が設けられる場合には、耐圧埋込層25の一方側に第二導電離間膜2を位置づけつつ、第二導電離間膜2と第一導電離間膜1との間で疑似的なコンデンサを形成することができ、リーク電流の増加や耐圧低下が発生するという問題が生じることをさらに効果的に防止できる点で有益である。 When the second conductive spacing film 2 is provided at a location overlapping with the pressure-resistant buried layer 25 in a plan view, and the first conductive spacing film 1 is provided between the second conductive spacing films 2 in a plan view, the pressure-resistant buried layer 25 is provided. While positioning the second conductive spacing film 2 on one side of the embedded layer 25, a pseudo capacitor can be formed between the second conductive spacing film 2 and the first conductive spacing film 1, thereby preventing an increase in leakage current. This is advantageous in that it is possible to more effectively prevent the problem of a decrease in breakdown voltage.

複数の耐圧埋込層25の各々に対応して第二導電離間膜2が設けられ、平面視において第二導電離間膜2の間の各々に第一導電離間膜1が設けられる場合には、複数の耐圧埋込層25の各々に対応して第二導電離間膜2を設け、かつ当該第二導電離間膜2と当該第二導電離間膜2に対応する第一導電離間膜1との間で疑似的なコンデンサを形成することができ、各耐圧埋込層25に起因したリーク電流の増加や耐圧低下を防止できる点で有益である。 When the second conductive spacing film 2 is provided corresponding to each of the plurality of pressure-resistant buried layers 25, and the first conductive spacing film 1 is provided between each of the second conductive spacing films 2 in plan view, A second conductive spacing film 2 is provided corresponding to each of the plurality of pressure-resistant buried layers 25, and between the second conductive spacing film 2 and the first conductive spacing film 1 corresponding to the second conductive spacing film 2. This is advantageous in that it is possible to form a pseudo capacitor using the method, and to prevent an increase in leakage current and a decrease in breakdown voltage caused by each breakdown voltage buried layer 25.

縦断面において、活性電極層30と周辺電極層60との間に設けられた耐圧埋込層25の数と第二導電離間膜2の数が同数であって、第二導電離間膜2の間の各々に第一導電離間膜1が設けられる場合には、耐圧埋込層25に一対一で対応する第二導電離間膜2を設けることができ、各耐圧埋込層25に起因したリーク電流の増加や耐圧低下をより効果的に防止できる点で有益である。なお、前述した可動イオンを効果的に捕獲するためには、本態様のように、活性電極層30と周辺電極層60との間に設けられた耐圧埋込層25の数と第二導電離間膜2が数は同数であって、第二導電離間膜2の間の各々に第一導電離間膜1が設けられることが、後述する第2の実施の形態や第3の実施の形態のような対応と比較しても好ましい。 In the longitudinal section, the number of pressure-resistant buried layers 25 provided between the active electrode layer 30 and the peripheral electrode layer 60 is the same as the number of second conductive spacing films 2, and the number of the second conductive spacing films 2 is the same. When the first conductive spacing film 1 is provided in each of the withstand voltage buried layers 25, the second conductive spacing film 2 can be provided in one-to-one correspondence with the withstand voltage buried layers 25, and the leakage current caused by each withstand voltage buried layer 25 can be provided. This is advantageous in that it can more effectively prevent an increase in pressure and a drop in withstand voltage. Note that in order to effectively capture the above-mentioned mobile ions, as in this embodiment, the number of pressure-resistant buried layers 25 provided between the active electrode layer 30 and the peripheral electrode layer 60 and the second conductive distance must be adjusted. The number of films 2 is the same, and the first conductive spacing film 1 is provided between each of the second conductive spacing films 2, as in the second embodiment and the third embodiment described later. It is also preferable compared to other solutions.

平面視において、最も外方に位置する第二導電離間膜2の外方側端部と周辺電極層60とが重複する場合には(図3参照)、最も外方に位置する第二導電離間膜2を安定した電圧状態とすることができる点で有益である。 In a plan view, when the outer end of the second conductive spacing film 2 located at the outermost position overlaps with the peripheral electrode layer 60 (see FIG. 3), the second conductive spacer film located at the outermost position overlaps with the peripheral electrode layer 60 (see FIG. 3). This is advantageous in that the membrane 2 can be brought into a stable voltage state.

平面視において、最も内方に位置する第二導電離間膜2の内方側端部と活性電極層30とが重複する場合には(図4参照)、最も内方に位置する第二導電離間膜2を安定した電圧状態とすることができる点で有益である。 In a plan view, when the inner end of the second conductive spacing film 2 located innermost overlaps the active electrode layer 30 (see FIG. 4), the second conductive spacing film 2 located innermost overlaps with the active electrode layer 30 (see FIG. 4). This is advantageous in that the membrane 2 can be brought into a stable voltage state.

第2の実施の形態
次に、本発明の第2の実施の形態について説明する。
Second Embodiment Next, a second embodiment of the present invention will be described.

本実施の形態では、図9で示すように、面内で延在した一つの第一導電膜11(第一導電離間膜1)が設けられてもよい。同様に面内で延在した一つの第二導電膜12(第二導電離間膜2)が設けられている。その他の構成については、第1の実施の形態と同様であり、第1の実施の形態で説明したあらゆる態様を採用することができる。第1の実施の形態で説明した部材については同じ符号を用いて説明する。 In this embodiment, as shown in FIG. 9, one first conductive film 11 (first conductive spacing film 1) extending in the plane may be provided. Similarly, one second conductive film 12 (second conductive spacing film 2) extending within the plane is provided. The other configurations are the same as those in the first embodiment, and all aspects described in the first embodiment can be adopted. The members described in the first embodiment will be described using the same reference numerals.

図9に示す態様では、第一導電膜11よりも第二導電膜12が第二方向において長く延在している態様となっている。但し、このような態様に限られることはなく、例えば図10で示すように、第一導電膜11と第二導電膜12が同程度の長さで第二方向において延在してもよい。また、第二導電膜12よりも第一導電膜11が第二方向において長く延在してもよい。 In the embodiment shown in FIG. 9, the second conductive film 12 extends longer than the first conductive film 11 in the second direction. However, the present invention is not limited to this embodiment, and for example, as shown in FIG. 10, the first conductive film 11 and the second conductive film 12 may extend in the second direction with approximately the same length. Further, the first conductive film 11 may extend longer than the second conductive film 12 in the second direction.

本実施の形態でも、第一導電膜11と第二導電膜12との間で疑似的なコンデンサを形成することができ、リーク電流の増加や耐圧低下が発生するという問題が生じることを防止できる。但し、第一導電膜11や第二導電膜12の一箇所に電圧が集中し、耐圧が落ちるリスクがあることは否めない。このため、第1の実施の形態で示すように、第一導電膜11が互いに離間した複数の第一導電離間膜1を有し、かつ第二導電膜12が互いに離間した複数の第二導電離間膜2を有する態様を採用する方が有益ではある。 Also in this embodiment, a pseudo capacitor can be formed between the first conductive film 11 and the second conductive film 12, and problems such as an increase in leakage current and a decrease in breakdown voltage can be prevented from occurring. . However, it cannot be denied that there is a risk that the voltage will be concentrated at one location of the first conductive film 11 or the second conductive film 12, and the withstand voltage will drop. Therefore, as shown in the first embodiment, the first conductive film 11 has a plurality of first conductive spacing films 1 spaced from each other, and the second conductive film 12 has a plurality of second conductive films 1 spaced apart from each other. It is more advantageous to adopt an embodiment having the spacing film 2.

第3の実施の形態
次に、本発明の第3の実施の形態について説明する。
Third Embodiment Next, a third embodiment of the present invention will be described.

本実施の形態では、図11で示すように、耐圧埋込層25と一対一で対応していない態様で第二導電膜12が設けられ、当該第二導電膜12に対応して第一導電離間膜1が設けられている。その他の構成については、第1の実施の形態と同様であり、第1の実施の形態で説明したあらゆる態様を採用することができる。第1の実施の形態で説明した部材については同じ符号を用いて説明する。 In this embodiment, as shown in FIG. 11, the second conductive film 12 is provided in a manner that does not correspond one-to-one with the voltage-resistant buried layer 25, and the first conductive film 12 is provided in correspondence with the second conductive film 12. A spacing membrane 1 is provided. The other configurations are the same as those in the first embodiment, and all aspects described in the first embodiment can be adopted. The members described in the first embodiment will be described using the same reference numerals.

本実施の形態でも、第一導電膜11と第二導電膜12との間で疑似的なコンデンサを形成することができ、リーク電流の増加や耐圧低下が発生するという問題が生じることを防止できる。但し、効果としては、第1の実施の形態で示すように、耐圧埋込層25に一対一で対応する第二導電離間膜2を設け、かつ第二導電離間膜2の間の各々に第一導電離間膜1が設けられる態様を採用する方が、一つ一つの耐圧埋込層25に対応して第二導電離間膜2及び第一導電離間膜1を設けることができ、リーク電流の増加や耐圧低下が発生するという問題が生じることをより効果的に防止できる点で有益である。また、第2の実施の形態でも述べた電圧が集中する結果として耐圧が落ちるリスクを低減する観点からも、第1の実施の形態の態様を採用する方が有益ではある。 Also in this embodiment, a pseudo capacitor can be formed between the first conductive film 11 and the second conductive film 12, and problems such as an increase in leakage current and a decrease in breakdown voltage can be prevented from occurring. . However, as an effect, as shown in the first embodiment, the second conductive spacing films 2 are provided in one-to-one correspondence with the voltage-resistant buried layers 25, and the second conductive spacing films 2 are provided in each space between the second conductive spacing films 2. By adopting the mode in which one conductive spacing film 1 is provided, the second conductive spacing film 2 and the first conductive spacing film 1 can be provided corresponding to each withstand voltage buried layer 25, and leakage current can be reduced. This is advantageous in that it is possible to more effectively prevent problems such as increases and decreases in breakdown voltage. Furthermore, from the viewpoint of reducing the risk of the withstand voltage dropping as a result of voltage concentration as described in the second embodiment, it is more beneficial to adopt the aspect of the first embodiment.

上述した各実施の形態の記載及び図面の開示は、請求の範囲に記載された発明を説明するための一例に過ぎず、上述した各実施の形態の記載又は図面の開示によって請求の範囲に記載された発明が限定されることはない。また、出願当初の請求項の記載はあくまでも一例であり、明細書、図面等の記載に基づき、請求項の記載を適宜変更することもできる。 The description of each of the embodiments described above and the disclosure of the drawings are merely examples for explaining the invention described in the claims, and the description of each of the embodiments and the disclosure of the drawings described above are only examples for explaining the invention described in the claims. The invented invention is not limited. Furthermore, the claims originally filed are merely examples, and the claims may be changed as appropriate based on the description, drawings, etc.

1 第一導電離間膜
2 第二導電離間膜
11 第一導電膜
12 第二導電膜
20 半導体層
25 耐圧埋込層
30 活性電極層
40 層間絶縁層
60 周辺電極層
1 First conductive spacing film 2 Second conductive spacing film 11 First conductive film 12 Second conductive film 20 Semiconductor layer 25 Voltage-resistant buried layer 30 Active electrode layer 40 Interlayer insulating layer 60 Peripheral electrode layer

Claims (7)

第1導電型の半導体層と、
活性領域における前記半導体層の一方側に形成された活性電極層と、
活性領域を囲む耐圧領域における前記半導体層に形成され、第2導電型の半導体材料からなる複数の耐圧埋込層と、
前記耐圧埋込層の一方側に形成された絶縁膜であって、面内方向に延在した導電膜が埋設された絶縁膜と、
を備え、
前記導電膜は、第一導電膜と、前記第一導電膜よりも一方側に設けられた第二導電膜と、を有する半導体装置。
a first conductivity type semiconductor layer;
an active electrode layer formed on one side of the semiconductor layer in an active region;
a plurality of breakdown voltage buried layers formed in the semiconductor layer in a breakdown voltage region surrounding an active region and made of a semiconductor material of a second conductivity type;
an insulating film formed on one side of the withstand voltage buried layer, in which a conductive film extending in the in-plane direction is embedded;
Equipped with
A semiconductor device in which the conductive film includes a first conductive film and a second conductive film provided on one side of the first conductive film.
前記第一導電膜は、互いに離間した複数の第一導電離間膜を有し、
前記第二導電膜は、互いに離間した複数の第二導電離間膜を有する、請求項1に記載の半導体装置。
The first conductive film has a plurality of first conductive spacing films spaced apart from each other,
The semiconductor device according to claim 1, wherein the second conductive film has a plurality of second conductive spacing films spaced apart from each other.
平面視において前記耐圧埋込層と重複する箇所に前記第二導電離間膜が設けられ、
平面視において前記第二導電離間膜の間に前記第一導電離間膜が設けられる、請求項2の記載の半導体装置。
The second conductive spacing film is provided at a location overlapping with the voltage-resistant buried layer in a plan view,
3. The semiconductor device according to claim 2, wherein the first conductive spacing film is provided between the second conductive spacing films in plan view.
複数の耐圧埋込層の各々に対応して前記第二導電離間膜が設けられ、
平面視において前記第二導電離間膜の間の各々に前記第一導電離間膜が設けられる、請求項3に記載の半導体装置。
The second conductive spacing film is provided corresponding to each of the plurality of voltage-resistant buried layers,
4. The semiconductor device according to claim 3, wherein the first conductive spacing film is provided between each of the second conductive spacing films in plan view.
耐圧領域における前記半導体層の一方側に形成された周辺電極層を備え、
縦断面において、前記活性電極層と前記周辺電極層との間に設けられた前記耐圧埋込層の数と前記第二導電離間膜の数は同数である、請求項4に記載の半導体装置。
comprising a peripheral electrode layer formed on one side of the semiconductor layer in the breakdown voltage region,
5. The semiconductor device according to claim 4, wherein in a longitudinal section, the number of the breakdown voltage buried layers and the number of the second conductive spacing films provided between the active electrode layer and the peripheral electrode layer are the same.
耐圧領域における前記半導体層の一方側に形成された周辺電極層を備え、
平面視において、最も外方に位置する第二導電離間膜の外方側端部と前記周辺電極層とは重複する、請求項2乃至5のいずれか1項に記載の半導体装置。
comprising a peripheral electrode layer formed on one side of the semiconductor layer in the breakdown voltage region,
6. The semiconductor device according to claim 2, wherein an outer end of the second conductive spacing film located at the outermost position and the peripheral electrode layer overlap in plan view.
平面視において、最も内方に位置する第二導電離間膜の内方側端部と前記活性電極層とは重複する、請求項2乃至5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 2, wherein the innermost end of the second conductive spacing film located innermost and the active electrode layer overlap in plan view.
JP2022079327A 2022-05-13 2022-05-13 Semiconductor device Pending JP2023167834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022079327A JP2023167834A (en) 2022-05-13 2022-05-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022079327A JP2023167834A (en) 2022-05-13 2022-05-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2023167834A true JP2023167834A (en) 2023-11-24

Family

ID=88837841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022079327A Pending JP2023167834A (en) 2022-05-13 2022-05-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2023167834A (en)

Similar Documents

Publication Publication Date Title
US8957502B2 (en) Semiconductor device
JP5396756B2 (en) Semiconductor device
JP6277814B2 (en) Semiconductor device
JP3751463B2 (en) High voltage semiconductor element
US10109725B2 (en) Reverse-conducting semiconductor device
JP5509908B2 (en) Semiconductor device and manufacturing method thereof
JP5900503B2 (en) Semiconductor device
JP4289123B2 (en) Semiconductor device
JP5406171B2 (en) SiC semiconductor device
JP5783893B2 (en) Semiconductor device
US11195908B2 (en) Semiconductor device with carrier lifetime control
JP2019071313A (en) Semiconductor device
JP2003174169A (en) Semiconductor device
JP2020202271A (en) Semiconductor device and method for manufacturing semiconductor device
JP2024019673A (en) Semiconductor device
TWI416732B (en) Semiconductor device
JP5735611B2 (en) SiC semiconductor device
JP7028093B2 (en) Semiconductor device
US7535075B2 (en) Semiconductor device
CN109844954B (en) Semiconductor device and method for manufacturing the same
JP2014130896A (en) Semiconductor device
JP2023167834A (en) Semiconductor device
JP2012004466A (en) Semiconductor device
JP2019071335A (en) Trench gate semiconductor device
JP2016162783A (en) Semiconductor device