JP2023156122A - 圧力センサ - Google Patents

圧力センサ Download PDF

Info

Publication number
JP2023156122A
JP2023156122A JP2022065800A JP2022065800A JP2023156122A JP 2023156122 A JP2023156122 A JP 2023156122A JP 2022065800 A JP2022065800 A JP 2022065800A JP 2022065800 A JP2022065800 A JP 2022065800A JP 2023156122 A JP2023156122 A JP 2023156122A
Authority
JP
Japan
Prior art keywords
cavity
pressure
substrate
pressure sensor
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022065800A
Other languages
English (en)
Inventor
ウィルフリード ヘラー,マーティン
Wilfried Heller Martin
宜久 山下
Yoshihisa Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2022065800A priority Critical patent/JP2023156122A/ja
Priority to US18/194,088 priority patent/US20230324243A1/en
Publication of JP2023156122A publication Critical patent/JP2023156122A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0026Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】高精度な圧力測定が可能であり、かつ小型化が可能な圧力センサを提供する。【解決手段】基板と、基板に設けられたキャビティと、基板の上に設けられてキャビティを封止するキャップと、基板を通り、キャビティの内部で中空に保持された圧力導管と、を含む圧力センサであって、圧力導管は、管状の絶縁層と、絶縁層の内面に設けられ、内部に空洞部を有する圧電材料層とを含み、キャビティの内部で端部は閉じられ、基板の外部に他端は開放され、基板の外部とキャビティの内部との圧力差による圧力導管の変形を、圧電材料層の電圧変化として検出する。【選択図】図1

Description

本発明はMEMS構造の圧力センサに関し、特に圧電材料を圧力導管に使用した圧力センサに関する。
MEMS構造を用いた圧力センサでは、シリコン基板上に形成されて内部が封止されたキャビティ内に、管状の圧力導管が配置されている。圧力導管は、キャビティ内の中空に保持され、圧力導管の内部は圧力センサの外部と連通している。そしてキャビティ内の圧力と外部の圧力との圧力差によって生じる圧力導管の変形を、圧力導管に接続されたトランスデューサで検出することにより、周囲の圧力変化を検出する(例えば、特許文献1参照)。
特表2017-537302号公報
しかしながら、トランスヂューサは、対向配置された電極からなるコンデンサ構造を備え、電極の間隔の変化をコンデンサの容量変化として検出するものであり、一般には複数の電極対を含む。このため圧力センサの専有面積が大きくなるという問題があった。また、トランスヂューサは加速度が働いた場合にも電極の間隔が変化するため、加速度が働くような環境下では正確な圧力変化を検出できないという問題もあった。
そこで、本発明は、高精度な圧力測定が可能であり、かつ小型化が可能な圧力センサの提供を目的とする。
即ち、本発明の第1の態様は、
基板と、基板に設けられたキャビティと、基板の上に設けられてキャビティを封止するキャップと、基板を通り、キャビティの内部で中空に保持された圧力導管と、を含む圧力センサであって、
圧力導管は、管状の絶縁層と、絶縁層の内面に設けられ、内部に空洞部を有する圧電材料層とを含み、
キャビティの内部で端部は閉じられ、基板の外部に他端は開放され、
基板の外部とキャビティの内部との圧力差による圧力導管の変形を、圧電材料層の電圧変化として検出する圧力センサに関する。
以上のように、本発明では、小型で高精度の圧力測定が可能な圧力センサの提供が可能となる。
本発明の実施の形態1にかかる圧力センサの概略を示す平面図である。 図1の圧力導管をA-A方向に見た場合の断面図である。 図1の圧力導管をB-B方向に見た場合の断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態1にかかる圧力センサの製造工程を示す断面図である。 本発明の実施の形態2にかかる圧力センサの概略を示す平面図である。 図4の圧力導管をC-C方向に見た場合の断面図である。 図4の圧力導管をD-D方向に見た場合の断面図である。
<実施の形態1>
図1は、全体が100で表される、本発明の実施の形態1にかかる圧力センサの概略を示す平面図である。圧力センサ100は、例えばシリコンからなる基板1を含む。基板1には、凹部形状のキャビティ20が設けられている。
圧力センサ100は、固定部分10aと可動部分10bとを備えた圧力導管(ブルドン管)10を有する。固定部分10aはキャビティ20の周囲の基板1中に設けられ、可動部分10bはキャビティ20内で中空に浮いた状態で保持される。図1では、可動部分10bを略円形としたが、後述するように圧力差により可動部分10bが変形する構造であれば、半円形状等、他の湾曲形状でも良い。固定部分10aは、抵抗の少ない直線が好ましいが、湾曲していても構わない。
図2A、図2Bは、圧力導管10の可動部分10bをA-A方向、およびB-B方向に見た場合の断面図を示す。図2A、2Bに示すように、圧力導管10は、内部が空洞部6の管からなる。具体的には、圧力導管10は、環状の絶縁層4と、その内壁を覆う圧電材料層5を含む。圧電材料層5の内部は空洞部6となっている。絶縁層4は、例えばシリコン酸化物やシリコン窒化物からなる。また、圧電材料層5は、例えばホウ素やアルミニウムをドープした多結晶シリコンからなるが、他の半導体材料を用いても良いし、酸化亜鉛、チタン酸バリウム鉛等の圧電材料を用いても良い。
圧力導管10の固定部分10aの端部は基板1の側面まで延びて、空洞部6は外部雰囲気と連通している。一方、圧力導管10の可動部分10bの端部は閉じており、キャビティ20の内部とは連通していない。また、図2Bに示すように、可動部分10bの端部近傍では、絶縁層4の上部が開口され、開口内にコンタクト7が設けられている。コンタクト7は、例えば金やアルミニウムからなり、圧電材料層5と電気的に接続される。同様に、圧力導管10の固定部分10aの端部近傍にも、圧電材料層5と電気的に接続するコンタクト17が設けられている。
キャビティ20の外側の基板1の上には、2つの引出配線15、16が設けられている。引出配線15、16は、例えば金やアルミニウムからなり、引出配線15は、圧力導管10の固定部分10aのコンタクト17に接続されている。一方、引出配線16はインシュレーションジョイント(IJ)21の上を通り、フレックスリード11に接続されている。フレックスリード11は、圧力導管10の変形に伴って、自身も変形する。フレックスリード11は、例えば金やアルミニウムからなり、キャビティ20内で中空に保持される。
基板1の上には、例えばシリコン基板からなるキャップ(図示せず)が被せられ、キャップと基板1とでキャビティ20の内部が密封される。キャビティ20の内部は真空状態が好ましい。このように、圧力導管10の可動部分10bおよびフレックスリード11は、密封されたキャビティ20内で中空に保持される。
次に、圧力センサ100の動作原理について説明する。上述のように、MEMS構造の圧力導管10は、固定部分10aの端部が開口し、可動部分10bの端部が封止された管状構造を有する。このため、圧力導管10の内部は圧力センサ100の周囲の圧力と等しくなり、真空状態に封止されたキャビティ20内の圧力との間で圧力差が生じる。この圧力差が大きいほど、即ち、外部の圧力がキャビティ20内の圧力(真空)より高くなるほど、湾曲した圧力導管10の可動部分10bが延びるように変形する。
ここで、圧力導管10の内側に設けられた、圧電材料層5は、歪に応じて電圧が発生する圧電効果を有するため、圧力導管10の可動部分10bが延びるように変形した場合、圧力導管10に設けられた2つのコンタクト7、17の間の電圧が変化する。このため、例えば引出配線15、16の間の電圧を検出することにより、圧力センサ100の周囲の圧力変化を検出することが可能となる。
このように、本発明の実施の形態にかかる圧力センサ100では、圧力導管10の中に設けた圧電材料層5を用いて圧力導管10の変形を検出できるため、圧力導管の外部に設けたトランスデューサで圧力導管の変形を検出していた従来構造に比較して構造が簡単になる。また、トランスデューサが不要なため、小型化も可能となる。
さらに、トランスデューサのような加速度変化の影響を受ける構成を有さないため、高精度の圧力検出が可能となる。このことは、加速度センサ(慣性センサ)との集積化を可能とする。
続いて、圧力センサ100の製造方法を簡単に説明する。図3A~3Fは、実施の形態1にかかる圧力センサ100の製造方法を示し、図3A~3F中、図1と同一符号は、同一または相当箇所を示す。製造方法は以下の工程1~7を含む。
工程1:図3Aに示すように、例えばシリコンからなる基板1を準備し、フォトリソグラフィ技術を用いて基板1の表面にフォトレジストマスク2を形成する。続いて、フォトレジストマスク2をエッチングマスクに用いて、基板1をエッチングして溝部3を設ける。溝部3は、図1に示す圧力導管10の位置に形成する。基板1のエッチングは、例えばSFガスを用いたプラズマエッチングで行う。溝部3は、表面から深さ方向に向かって開口幅が広くなるようにエッチングする。
工程2:図3Bに示すように、有機溶剤等を用いてフォトレジストマスク2を除去した後、基板1の熱酸化を行う。この結果、基板1の表面および溝部3の壁面を覆うように、例えば二酸化シリコンからなる絶縁層4が連続して形成される。
工程3:図3Cに示すように、例えばホウ素がドープされた多結晶シリコンからなる圧電材料層5を等方向に形成する。圧電材料層5は、例えばSiHガスを用いた熱CVD法やプラズマCVD法で作製する。ホウ素のドーピングには、例えばBガスを用いる。溝部3は表面から深さ方向に向かって開口幅が広くなっているため、圧電材料層5は、内部に空洞部6を残した状態で、溝部3の開口部を閉じるように形成される。
工程4:図3Dに示すように、絶縁層4をストッパに用いた選択エッチングにより、絶縁層4の上の圧電材料層5を除去する。続いて、溝部3の上部の開口部の圧電材料層5を、例えば熱酸化により酸化する。この結果、溝部3の中では、空洞部6を囲むように圧電材料層5が形成され、更に圧電材料層5を囲むように絶縁層4が形成される。
工程5:図3Eに示すように、所定の位置で、圧電材料層5の上の絶縁層4を除去し、コンタクト7を形成する。続いて、蒸着法を用いて、フレックスリード11を形成する。更に、コンタクト17に接続された引出配線15、およびフレックスリード11と接続された引出配線16を、例えば蒸着法により形成する。コンタクト7、17、フレックスリード11、引出配線15、16は、例えば金やアルミニウムからなる
工程6:図3Fに示すように、キャビティ形成領域において、溝部3の上を除いて表面の絶縁層4を除去する。続いて、残った絶縁層4をエッチングマスクに用いて基板1を選択的にエッチングしてキャビティ20を形成する。基板1の選択エッチング工程において、周囲が絶縁層4で囲まれた圧力導管10はエッチングされず、キャビティ20の内部に、圧力導管10とフレックスリード11が中空に浮いた状態で保持される。
工程7:最後に図示しないキャップを基板1の上に接合して、キャビティ20の内部を封止する。キャップの接合工程を真空中で行うことで、キャビティ20の内部は真空状態になる。
以上の工程で、基板1に埋め込まれた固定部分10aと、キャビティ20内で中空に保持された可動部分10bとを有する圧力導管10を備えた圧力センサ100が完成する。
<実施の形態2>
図4は、全体が200で表される、本発明の実施の形態2にかかる圧力センサの概略を示す平面図である。また、図5A、5Bは、図4の圧力導管10をC-C方向およびD-D方向に見た場合の断面図である。図4~5B中、図1と同一符号は、同一または相当箇所を示す。
圧力導管10の可動部分10bの端部のコンタクト7と引出配線16との間を、上述の圧力センサ100ではフレックスリード11を用いて接続したが、本発明の実施の形態2にかかる圧力センサ200では、圧力導管10の上に設けられた配線層27で接続する。他の構造は圧力センサ100と同じである。
図5Aに示すように、配線層27は、圧力導管10の上部の絶縁層4の上に、圧力導管10に沿って設けられる。配線層27は、例えば金やアルミニウムからなり、蒸着法等で形成される。また、図5Bに示すように、圧力導管10の可動部分10bの端部において、配線層27は、コンタクト7を介して圧電材料層5に接続されている。
圧力センサ200では、例えば引出配線15、16の間の電圧を検出することにより、圧力センサ200の周囲の圧力変化を検出することが可能となる。
特に、フレックスリード11に代えて圧力導管10の上に設けた配線層27を用いるため、圧力センサ200をより小型化が可能となり、また構造を簡略化できる。
<付記>
本開示は、
基板と、基板に設けられたキャビティと、基板の上に設けられてキャビティを封止するキャップと、基板を通り、キャビティの内部で中空に保持された圧力導管と、を含む圧力センサであって、
圧力導管は、管状の絶縁層と、絶縁層の内面に設けられ、内部に空洞部を有する圧電材料層とを含み、
キャビティの内部で端部は閉じられ、基板の外部に他端は開放され、
基板の外部とキャビティの内部との圧力差による圧力導管の変形を、圧電材料層の電圧変化として検出する圧力センサである。かかる構成により、小型で高精度の圧力測定が可能な圧力センサの提供が可能となる。
本開示では、圧電材料層は、一端が第1の引出配線に接続され、他端がキャビティの内部で中空に保持されたフレックスリードを介して第2の引出配線に接続され、第1の引出配線と第2の引出配線との間の電圧変化が検出される圧力センサでも良い。かかる構成により、小型で高精度の圧力測定が可能な圧力センサを提供できる。
本開示では、圧電材料層は、一端が第1の引出配線に接続され、他端が圧力導管の上に設けられた配線層を介して第2の引出配線に接続され、第1の引出配線と第2の引出配線との間の電圧変化が検出される圧力センサでも良い。かかる構成により、より小型で高精度の圧力測定が可能な圧力センサを提供できる。
本開示では、圧力導管は、キャビティの内部で、中空に保持された湾曲部分を有する圧力センサでも良い。かかる構成により、高精度の圧力測定が可能となる。
本開示では、絶縁層は、シリコン酸化物からなり、圧電材料層は、多結晶シリコンからなる圧力センサでも良い。かかる構成により、製造工程が容易になる。
本発明にかかる圧力導管を備えたMEMS構造の圧力センサは、周辺の気圧を測定する圧力センサ、加速度センサと集積化した圧力センサ等に適用できる。
1 基板
2 フォトレジストマスク
3 溝部
4 絶縁層
5 圧電材料層
6 空洞部
7、17 コンタクト
10 圧力導管
10a 固定部分
10b 可動部分
11 フレックスリード
15、16 引出配線
20 キャビティ
27 配線層
21 インシュレーションジョイント
100、200 圧力センサ

Claims (5)

  1. 基板と、前記基板に設けられたキャビティと、前記基板の上に設けられて前記キャビティを封止するキャップと、前記基板を通り、前記キャビティの内部で中空に保持された圧力導管と、を含む圧力センサであって、
    前記圧力導管は、管状の絶縁層と、前記絶縁層の内面に設けられ、内部に空洞部を有する圧電材料層とを含み、
    前記キャビティの内部で端部は閉じられ、前記基板の外部に他端は開放され、
    前記基板の外部と前記キャビティの内部との圧力差による前記圧力導管の変形を、前記圧電材料層の電圧変化として検出する圧力センサ。
  2. 前記圧電材料層は、一端が第1の引出配線に接続され、他端がキャビティの内部で中空に保持されたフレックスリードを介して第2の引出配線に接続され、前記第1の引出配線と前記第2の引出配線との間の電圧変化が検出される請求項1に記載の圧力センサ。
  3. 前記圧電材料層は、一端が第1の引出配線に接続され、他端が前記圧力導管の上に設けられた配線層を介して第2の引出配線に接続され、前記第1の引出配線と前記第2の引出配線との間の電圧変化が検出される請求項1に記載の圧力センサ。
  4. 前記圧力導管は、前記キャビティの内部で、中空に保持された湾曲部分を有する請求項1~3のいずれか1項に記載の圧力センサ。
  5. 前記絶縁層は、シリコン酸化物からなり、前記圧電材料層は、多結晶シリコンからなる請求項1~4のいずれか1項に記載の圧力センサ。
JP2022065800A 2022-04-12 2022-04-12 圧力センサ Pending JP2023156122A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022065800A JP2023156122A (ja) 2022-04-12 2022-04-12 圧力センサ
US18/194,088 US20230324243A1 (en) 2022-04-12 2023-03-31 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022065800A JP2023156122A (ja) 2022-04-12 2022-04-12 圧力センサ

Publications (1)

Publication Number Publication Date
JP2023156122A true JP2023156122A (ja) 2023-10-24

Family

ID=88240204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022065800A Pending JP2023156122A (ja) 2022-04-12 2022-04-12 圧力センサ

Country Status (2)

Country Link
US (1) US20230324243A1 (ja)
JP (1) JP2023156122A (ja)

Also Published As

Publication number Publication date
US20230324243A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US7157781B2 (en) Enhancement of membrane characteristics in semiconductor device with membrane
US10809140B2 (en) Pressure sensor generating a transduced signal with reduced ambient temperature dependence, and manufacturing method thereof
US6640643B2 (en) Capacitive pressure sensor with multiple capacitive portions
JP5032030B2 (ja) マイクロマシニング型の構成素子の製造方法
JP5127210B2 (ja) Memsセンサが混載された半導体装置
US6552404B1 (en) Integratable transducer structure
US9586815B2 (en) Micro-electromechanical apparatus with multiple chambers and method for manufacturing the same
US8907434B2 (en) MEMS inertial sensor and method for manufacturing the same
JP5649474B2 (ja) 静電容量型圧力センサおよび静電容量型圧力センサの製造方法
US20180188127A1 (en) Mems capacitive pressure sensor and manufacturing method
JPH0750789B2 (ja) 半導体圧力変換装置の製造方法
US11533565B2 (en) Dual back-plate and diaphragm microphone
EP3540398B1 (en) All silicon capacitive pressure sensor
KR20120015845A (ko) 정전용량형 압력센서 및 그의 제조방법
JP4539413B2 (ja) 静電容量型センサの構造
JP5950226B2 (ja) 静電容量型圧力センサおよびその製造方法、圧力センサパッケージ
JP2023156122A (ja) 圧力センサ
JP2009270961A (ja) Memsセンサおよびその製造方法
JP5939168B2 (ja) 半導体装置
US7321156B2 (en) Device for capacitive pressure measurement and method for manufacturing a capacitive pressure measuring device
US11027967B2 (en) Deformable membrane and a compensating structure thereof
JP2015182188A (ja) Memsデバイス及びその製造方法
JPWO2018235415A1 (ja) 物理量センサ
JP6142736B2 (ja) 半導体圧力センサ
JP2010225747A (ja) 配線用半導体基板