JP2023149145A - Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water - Google Patents

Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water Download PDF

Info

Publication number
JP2023149145A
JP2023149145A JP2022057557A JP2022057557A JP2023149145A JP 2023149145 A JP2023149145 A JP 2023149145A JP 2022057557 A JP2022057557 A JP 2022057557A JP 2022057557 A JP2022057557 A JP 2022057557A JP 2023149145 A JP2023149145 A JP 2023149145A
Authority
JP
Japan
Prior art keywords
water
partition member
resin
treated
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022057557A
Other languages
Japanese (ja)
Inventor
克美 山本
Katsumi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2022057557A priority Critical patent/JP2023149145A/en
Priority to PCT/JP2023/001802 priority patent/WO2023188725A1/en
Priority to TW112103613A priority patent/TW202348561A/en
Publication of JP2023149145A publication Critical patent/JP2023149145A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

To provide a method of treating water to be treated, capable of preventing deterioration of the quality of water to be treated flowing in a bilayer type resin tower.SOLUTION: The method of treating water to be treated comprises steps of forming a first packed layer 41 that comes in contact with water to be treated and includes first resin particles 41A in a cylindrical tower body 31, arranging a water-permeable partition member 50 formed of a material flexible to the extent of being able to elastically deform according to the weight of second resin particles 42A different from the first resin particles 41A, on the first packed layer 41 in a condition of not being restricted by the tower body 31, and forming a second packed layer 42 including the second resin particles 42A on the partition member 50. The water to be treated is made to flow inside the tower body 31 from upside to downside.SELECTED DRAWING: Figure 2

Description

本発明は、被処理水の処理方法、超純水の製造方法、複層床式の樹脂塔及び超純水製造装置に関する。 The present invention relates to a method for treating water to be treated, a method for producing ultrapure water, a multi-bed resin tower, and an apparatus for producing ultrapure water.

従来、超純水製造装置の一次純水製造部や二次純水製造部等に設置される樹脂塔として、特許文献1及び特許文献2のようなイオン交換樹脂塔が知られている。イオン交換樹脂塔の内側には、特定のイオン成分を吸着する樹脂粒子が充填された充填層が床として設けられる。1つの樹脂塔の内側に配置される床としては、1つの充填層のみが用いられる単層床と、2つ以上の充填層が上下方向に沿って積層される複層床とがある。 BACKGROUND ART Conventionally, ion exchange resin towers such as those disclosed in Patent Document 1 and Patent Document 2 are known as resin towers installed in a primary pure water production section, a secondary pure water production section, etc. of an ultrapure water production device. Inside the ion exchange resin tower, a packed bed filled with resin particles that adsorbs specific ion components is provided as a bed. Beds arranged inside one resin column include a single-layer bed in which only one packed bed is used, and a multi-layer bed in which two or more packed beds are stacked vertically.

超純水製造時には、被処理水が、イオン交換樹脂塔内を上側から下側に流通する。イオン交換樹脂塔内で充填層を通過した被処理水は、イオン交換樹脂塔の後段に設置された所定の処理設備を通過することによって、最終的に超純水へと処理される。なお、超純水製造時には、被処理水が、イオン交換樹脂塔内を下側から上側に流通する場合もあるが、その場合には、樹脂層が乱れないように特別な工夫をする。 When producing ultrapure water, water to be treated flows through the ion exchange resin column from the top to the bottom. The water to be treated that has passed through the packed bed in the ion exchange resin tower is finally treated to ultrapure water by passing through a predetermined treatment equipment installed at the downstream of the ion exchange resin tower. Note that during the production of ultrapure water, the water to be treated may flow inside the ion exchange resin tower from the bottom to the top, but in that case, special measures are taken to prevent the resin layer from being disturbed.

一方、イオン交換等の処理に伴い、樹脂粒子のイオン成分の吸着性能は低下する。また、樹脂粒子のイオン成分の吸着性能の低下に伴って、樹脂粒子は収縮もしくは膨張する。低下したイオン成分の吸着性能を回復する方法として、特許文献1及び特許文献2では、被処理水の通水終了時、塩酸や苛性ソーダ等の薬品を含む再生液を塔内で下側から上側に流通させ、かつ、充填層を再生液に接触させることによって吸着性能を逆洗・再生する方法(以下、単に「再生式」とも称する。)が開示されている。 On the other hand, with treatment such as ion exchange, the adsorption performance of resin particles for ionic components decreases. Further, as the adsorption performance of the resin particles for ionic components decreases, the resin particles contract or expand. As a method for restoring the degraded adsorption performance of ionic components, Patent Documents 1 and 2 disclose that when the water to be treated is passed through, a regeneration liquid containing chemicals such as hydrochloric acid and caustic soda is pumped from the bottom to the top in the tower. A method (hereinafter also simply referred to as a "regeneration method") of backwashing and regenerating the adsorption performance by circulating the adsorbent and bringing the packed bed into contact with a regeneration liquid is disclosed.

一般的に、逆洗、もしくは再生の際に、樹脂は、上向きの水流によって、展開(浮遊して対流を起こす状態)する。そのため、処理後には樹脂層が少なからず乱れた状態となることは避けられない。また、樹脂層の乱れは処理水の水質の悪化の原因となる。一方、このような再生処理を行わない樹脂塔は「非再生式」と称し、この場合には、逆洗や再生による樹脂層の乱れは起きず、この操作による水質の悪化は起きない。 Generally, during backwashing or regeneration, the resin is expanded (floated and causes convection) by the upward flow of water. Therefore, it is inevitable that the resin layer will be in a somewhat disordered state after the treatment. Further, disturbance of the resin layer causes deterioration of the quality of treated water. On the other hand, a resin tower that does not undergo such regeneration treatment is called a "non-regeneration type"; in this case, the resin layer is not disturbed by backwashing or regeneration, and water quality does not deteriorate due to this operation.

複層床の樹脂塔の方式としては、特許文献1~3が例示される。特許文献1は、2床を直接積層させるものである。これは、構造がシンプルであるが、2層が混合することが常に問題となる方法である。特に逆洗や再生を行う際、混合の可能性が高くなる。通常は、上層に粒子の細かい、かつ/または、比重の小さいイオン交換樹脂を用いて、下層には粒子の大きい、かつ/または、比重の大きい樹脂を用いることによって、混合を避けるようにしているが、完全に2層を分けておくことは難しい。また、塔高が高くなる問題がある。 Examples of multi-layered resin tower systems include Patent Documents 1 to 3. Patent Document 1 directly laminates two beds. Although this method is simple in structure, mixing of the two layers is always a problem. Particularly when backwashing or regeneration is performed, the possibility of mixing increases. Usually, mixing is avoided by using an ion exchange resin with fine particles and/or low specific gravity in the upper layer and a resin with large particles and/or high specific gravity in the lower layer. However, it is difficult to completely separate the two layers. There is also the problem that the height of the tower becomes high.

また、特許文献2や特許文献3は、2床の間に固定式の多孔板を設置するものである。これは、実質的に、単層床の2塔式と同じである。この場合2層が混ざる恐れはないが、特に塔高が高くなる問題や塔の構造が複雑となる問題がある。 Further, in Patent Document 2 and Patent Document 3, a fixed perforated plate is installed between two floors. This is essentially the same as a single-bed, two-column system. In this case, there is no risk that the two layers will mix, but there are problems, particularly that the height of the tower becomes high and the structure of the tower becomes complicated.

また、単層床式の樹脂塔では、層間の混合の問題は起きないが、それでも、逆洗もしくは再生時の樹脂層の乱れが問題となる場合がある。そこで、この対策として、パックトベッド方式を採用することがある。これは、イオン交換樹脂塔内部の隙間をできるだけ少なくした方式で、逆洗、もしくは再生時の樹脂層の乱れは抑制されるが、逆洗による樹脂層内に混入した異物を排出することができないため再生が不十分となる懸念がある。 Furthermore, in a single bed type resin column, although the problem of interlayer mixing does not occur, disturbance of the resin layer during backwashing or regeneration may still be a problem. Therefore, as a countermeasure to this problem, a packed bed method may be adopted. This is a method that minimizes the gaps inside the ion exchange resin tower, which suppresses disturbances in the resin layer during backwashing or regeneration, but it does not allow foreign matter mixed into the resin layer due to backwashing to be discharged. Therefore, there is a concern that regeneration may be insufficient.

また、特許文献4では、イオン交換樹脂の充填層が、イオン交換樹脂塔の内部の下側に配置されると共に、イオン交換樹脂の充填層の上に不活性樹脂粒子の充填層が配置される。そして、不活性樹脂粒子の充填層の上には、透水性を有するメッシュディスクが配置される。メッシュディスクの上には、ガラスビーズの充填層が配置される。ガラスビーズの充填層は、再生液が塔内を上昇する際、不活性樹脂粒子の充填層を押さえる押え層として働く。特許文献4によれば、再生処理の際、収縮もしくは膨張したイオン交換樹脂に再生液を通しても、イオン交換樹脂の充填層の下部の展開(流動化)に起因する充填層の乱れが、メッシュディスクによって抑制されるとされている。 Further, in Patent Document 4, a packed bed of ion exchange resin is arranged at the lower side inside the ion exchange resin column, and a packed bed of inert resin particles is arranged on the packed bed of ion exchange resin. . A mesh disk having water permeability is arranged on the packed bed of inert resin particles. A packed layer of glass beads is placed on top of the mesh disk. The packed bed of glass beads acts as a holding layer that presses down the packed bed of inert resin particles when the regenerated liquid rises in the column. According to Patent Document 4, even if a regenerating liquid is passed through a contracted or expanded ion exchange resin during regeneration processing, the disorder of the packed bed caused by the development (fluidization) of the lower part of the packed bed of the ion exchange resin will not occur until the mesh disk is said to be suppressed by

また、特許文献5では、特許文献4と同様、イオン交換樹脂の充填層が、イオン交換樹脂塔の内部の下側に配置されると共に、イオン交換樹脂の充填層の上に不活性樹脂粒子の充填層が配置される。そして、不活性樹脂粒子の充填層の上には、透水性を有する可動プレートが配置される。可動プレートの上には、再生液が塔内を上昇する際、不活性樹脂粒子の充填層を押さえる押え水が配置される。特許文献5によれば、特許文献4と同様、再生処理の際、収縮もしくは膨張したイオン交換樹脂に再生液を通しても、イオン交換樹脂の充填層の下部の展開(流動化)に起因する充填層の乱れが、可動プレートによって抑制されるとされている。 Further, in Patent Document 5, as in Patent Document 4, a packed bed of ion exchange resin is arranged at the lower side inside the ion exchange resin column, and inert resin particles are placed on top of the packed bed of ion exchange resin. A filling layer is placed. A movable plate having water permeability is arranged on the packed layer of inert resin particles. A presser water is placed above the movable plate to press down on the packed bed of inert resin particles when the regenerated liquid rises in the column. According to Patent Document 5, similar to Patent Document 4, even if a regenerating solution is passed through a contracted or expanded ion exchange resin during regeneration treatment, the packed bed due to expansion (fluidization) of the lower part of the packed bed of the ion exchange resin The movable plate is said to suppress this disturbance.

特開2006-192354号公報Japanese Patent Application Publication No. 2006-192354 特開昭62-210095号公報Japanese Unexamined Patent Publication No. 62-210095 特開2000-202440号公報Japanese Patent Application Publication No. 2000-202440 特開2015-080749号公報Japanese Patent Application Publication No. 2015-080749 特開2015-080750号公報Japanese Patent Application Publication No. 2015-080750

ある現場の超純水製造装置の非再生式の複層床式のイオン交換樹脂塔に実際に通水したところ、著しく水質が悪い問題が発生するケースがあった。そこで、この現場の樹脂塔を詳細に確認したところ、樹脂層が図11の第1充填層41のように乱れていた。また、この原因を調査したところ、次の現象が起きることが判明した。 When water was actually passed through a non-regenerating multi-bed ion-exchange resin column in an ultrapure water production facility at a certain site, there were cases where the water quality was extremely poor. When the resin tower at this site was checked in detail, the resin layer was found to be disordered as shown in the first packed bed 41 in FIG. 11. Further, when we investigated the cause of this problem, we found that the following phenomenon occurred.

樹脂塔の内側に、水と接触していない樹脂粒子を含む第1充填層41と第2充填層42とが配置された後、配置された充填層に対して最初に通水する際(本願においては、以下、水はり工程という)、塔内の下側の第1充填層41の樹脂粒子の間に存在した空気が、結合して気泡が発生する。発生した気泡は、下側の第1充填層41の層中を上昇する。上昇した気泡が塔内の下層の第1充填層41と上層の第2充填層42の境に到達し、さらに上層へ上昇していく際、下側の第1充填層41の第1の樹脂粒子41Aを伴いながら気泡は上昇していくので、下層の第1の樹脂粒子41Aと上側の第2充填層42の第2の樹脂粒子42Aとが混合する。もしくは、部分的に上層の第2充填層42の樹脂層が薄くなってしまう(図11中の状態b)。場合によっては、第2充填層42の樹脂層が消失してしまう(図11中の状態a)。 After the first packed bed 41 and the second packed bed 42 containing resin particles that are not in contact with water are arranged inside the resin column, when water is first passed through the arranged packed beds (in this application) (hereinafter referred to as the water filling step), the air existing between the resin particles in the first packed bed 41 on the lower side of the tower combines to generate air bubbles. The generated air bubbles rise in the lower first packed layer 41. When the rising bubbles reach the boundary between the lower first packed bed 41 and the upper second packed bed 42 in the tower and further rise to the upper layer, the first resin in the lower first packed bed 41 Since the bubbles rise together with the particles 41A, the first resin particles 41A in the lower layer and the second resin particles 42A in the second filled layer 42 in the upper layer mix. Alternatively, the resin layer of the upper second filling layer 42 becomes partially thin (state b in FIG. 11). In some cases, the resin layer of the second filling layer 42 disappears (state a in FIG. 11).

すると、複層床を流通する被処理水に対する処理能力の均一性の低下を伴い、結果、被処理水の水質が低下するという問題が生じる。すなわち、図11中の状態aのような乱れがあると、例えば、第2充填層42が還元性樹脂の場合には、被処理水に含まれる過酸化物が直接第1充填層41のイオン交換樹脂と接触し、酸素が発生する。そのため、処理水の酸素濃度(DO)が増加する。また、図11中の状態bのような乱れがあると、図11中の状態bの直上の第2充填層42のイオン交換樹脂の層高は低くなっているので、通水を継続すると、図11中の状態bの直上の第2充填層42のイオン交換樹脂が失活し、過酸化物が図11中の状態bの直上の第2充填層42を通過し、第1充填層41のイオン交換樹脂と接触する。そのため、処理水の酸素濃度(DO)が増加する。 This causes a problem in that the uniformity of the treatment capacity for the water flowing through the multi-layered bed decreases, resulting in a decrease in the quality of the water to be treated. That is, if there is a disturbance as in state a in FIG. Contact with exchange resin generates oxygen. Therefore, the oxygen concentration (DO) of the treated water increases. Furthermore, if there is a disturbance as in state b in FIG. 11, the height of the ion exchange resin in the second packed bed 42 directly above state b in FIG. 11 is low, so if water continues to flow, The ion exchange resin in the second packed bed 42 directly above state b in FIG. 11 is deactivated, and the peroxide passes through the second packed bed 42 directly above state b in FIG. contact with ion exchange resin. Therefore, the oxygen concentration (DO) of the treated water increases.

単層床式の樹脂塔における充填層の混合を防止する手段として、上下方向で隣接する充填層の境界に、特許文献4のメッシュディスク又は特許文献5の可動プレートのような部材を、仕切り部材として配置する方法が考えられる。しかし、特許文献4のメッシュディスクは、再生処理時に用いられる押え部材であるため、非再生式の複層床式の樹脂塔の内側で隣接する充填層の境界に配置されることは、検討されていない。また、再生処理時でない通常の水処理の際、特に樹脂充填後の水はり時における、効果も検討されていない。また、不活性樹脂層やガラスビーズ層が必要となる為、塔が高くなってしまう問題がある。 As a means to prevent mixing of packed beds in a single-bed resin tower, a member such as the mesh disk of Patent Document 4 or the movable plate of Patent Document 5 is installed at the boundary between vertically adjacent packed beds as a partition member. One possible method is to arrange it as However, since the mesh disk of Patent Document 4 is a holding member used during regeneration processing, it has not been considered to be placed at the boundary between adjacent packed beds inside a non-regeneration type multi-bed resin tower. Not yet. Furthermore, the effects of ordinary water treatment other than during regeneration treatment, especially when watering after filling with resin, have not been studied. Furthermore, since an inert resin layer and a glass bead layer are required, there is a problem that the tower becomes tall.

また、特許文献5の可動プレートも、上記と同様であるとともに、プレート自体の高さが必要であるため、塔が高くなってしまう問題がある。一般的に樹脂塔は高さが必要であるという弱点があり、純水装置の設置において常に問題となる。特に、特許文献4や特許文献5では、塔径の25%以上高くなるので、樹脂塔の設置場所が限定される問題が生じ、超純水装置の設置における大きな問題となる。 Moreover, the movable plate of Patent Document 5 is similar to the above, and requires a height of the plate itself, so there is a problem that the tower becomes tall. In general, resin towers have a weakness in that they require height, which is always a problem when installing water purifiers. In particular, in Patent Document 4 and Patent Document 5, the height is 25% or more of the column diameter, which causes the problem that the installation location of the resin column is limited, which becomes a major problem in the installation of ultrapure water equipment.

加えて、特許文献4では、メッシュディスクが水平状態を保ったまま上下動するためのガイドプレートを固定するリングを、メッシュの外縁部に設ける必要がある。このため、仕切り部材としての重量が増えると共に製造コストが嵩むという問題も生じ得る。また、特許文献5では、可動プレートが水平状態を保ったまま上下動するための棒状の連結体を目板の外縁部に固定する必要がある。このため、特許文献4の場合と同様、仕切り部材としての重量が増えると共に製造コストが嵩むという問題が生じ得る。 In addition, in Patent Document 4, it is necessary to provide a ring on the outer edge of the mesh for fixing a guide plate for moving the mesh disk up and down while maintaining a horizontal state. Therefore, there may arise a problem that the weight of the partition member increases and the manufacturing cost increases. Further, in Patent Document 5, it is necessary to fix a rod-shaped connecting body to the outer edge of the batten so that the movable plate can move up and down while maintaining a horizontal state. Therefore, as in the case of Patent Document 4, there may arise a problem that the weight of the partition member increases and the manufacturing cost increases.

また、複層床式の樹脂塔においては、特許文献1のメッシュディスク又は特許文献2の可動プレートのような部材を充填層同士の境界に仕切り部材として仮に配置した場合、仕切り部材と樹脂層の間に空間が形成され、これが問題の原因となる懸念がある。具体的には、超純水の製造処理において、被処理水の流通によって樹脂粒子が収縮もしくは膨張することにより、上記の空間が生じ、これが樹脂層の乱れと同様に水質の悪化を発生させる可能性がある。 In addition, in a multi-layered resin tower, if a member such as the mesh disk of Patent Document 1 or the movable plate of Patent Document 2 is temporarily arranged as a partition member at the boundary between the packed beds, the partition member and the resin layer There is a concern that a space will be formed in between, which may cause problems. Specifically, in the manufacturing process of ultrapure water, the above-mentioned spaces are created due to the contraction or expansion of resin particles due to the flow of the water to be treated, and this can cause deterioration of water quality as well as disturbance of the resin layer. There is sex.

ここで、下層の充填層の最上部のイオン交換樹脂は、仕切り部材の下面と接触している。通水によって、下層のイオン交換樹脂が収縮すると、収縮は、完全に均一におきることはないので、部分的の収縮が激しい箇所があると、この部分において、樹脂層の最上部と仕切り部材の間に空間が生じてしまう。 Here, the ion exchange resin at the top of the lower packed bed is in contact with the lower surface of the partition member. When the ion exchange resin in the lower layer contracts due to water flow, the contraction will not occur completely uniformly, so if there is a part where the contraction is severe, the top of the resin layer and the partition member will A space will be created in between.

結果、下層の充填層の最上部の表面と仕切り部材の下面との間の隙間が生じる。なお、以下、下層の充填層の上部の表面と仕切り部材の下面との間の隙間を、単に「仕切り部材の下面側の隙間」とも称する。隙間の体積が増加すると、充填層を通り抜ける被処理水の水みち(換言すると「チャネル」)の領域が拡がるため、水質の悪化の原因ともなり得る。 As a result, a gap is created between the top surface of the lower filling layer and the lower surface of the partition member. Note that, hereinafter, the gap between the upper surface of the lower filling layer and the lower surface of the partition member is also simply referred to as "the gap on the lower surface side of the partition member." When the volume of the gap increases, the area of the water path (in other words, "channel") of the water to be treated passing through the packed bed expands, which may cause deterioration of water quality.

本発明は、上記の問題に着目して為されたものであって、複層床式の樹脂塔における複数のイオン交換樹脂の混合を抑制することにより、複層床式の樹脂塔において流通する被処理水の水質の低下を防止できる、被処理水の処理方法、この被処理水の処理方法を用いた超純水の製造方法、複層床式の樹脂塔、及び、この複層床式の樹脂塔を備える超純水製造装置を提供することを目的とする。 The present invention has been made focusing on the above problem, and by suppressing the mixing of a plurality of ion exchange resins in a multi-layered resin tower, the present invention allows the distribution of ion exchange resins in a multi-layered resin tower. A method for treating water to be treated that can prevent deterioration in the quality of water to be treated, a method for producing ultrapure water using this method for treating water to be treated, a multilayer bed type resin tower, and this multilayer bed type An object of the present invention is to provide an ultrapure water production device equipped with a resin tower.

第一態様に係る被処理水の処理方法は、筒状の塔体の内側に被処理水と接触する第1の樹脂粒子を含む第1充填層を形成し、透水性を有する仕切り部材であって、前記第1の樹脂粒子とは異なる第2の樹脂粒子の重量に応じて弾性変形可能な程度の柔軟性を有する素材で形成された仕切り部材を、前記第1充填層の上に前記塔体に対して非拘束状態で配置し、前記仕切り部材の上に前記第2の樹脂粒子を含む第2充填層を形成し、前記塔体の内側で被処理水を上側から下側に流通させる。 The method for treating water to be treated according to the first aspect includes forming a first packed layer containing first resin particles that contacts the water to be treated inside a cylindrical column body, and forming a partition member having water permeability. A partition member made of a material having a degree of flexibility that can be elastically deformed according to the weight of second resin particles different from the first resin particles is placed on the first packed bed in the column. a second packed layer containing the second resin particles is formed on the partition member, and the water to be treated is caused to flow from the upper side to the lower side inside the column body. .

第一態様では、透水性を有する仕切り部材が、塔体の内側で第1充填層と第2充填層との境界に配置されるため、水張りの際の気泡による第1充填層と第2充填層との混合を防止できる。 In the first aspect, since the partition member having water permeability is arranged at the boundary between the first packed bed and the second packed bed inside the tower body, the first packed bed and the second packed bed are filled by air bubbles when filling with water. Mixing with other layers can be prevented.

通水の際に、第1充填層中のイオン交換樹脂の収縮が起きた場合、第1充填層の最上面のイオン交換樹脂と仕切り部材の間に空間が生じる。すると、その空間の直上の第2の樹脂粒子がその空間を埋めるべく移動する。仕切り部材は弾性変形可能なため、それに応じて下側の第1充填層へ向かって変形する。このため、隙間の体積の増加に起因する第1充填層の乱れが抑制され、結果、複層床式の樹脂塔の処理能力の均一性の低下を抑制できる。 When the ion exchange resin in the first packed bed contracts during water flow, a space is created between the ion exchange resin on the top surface of the first packed bed and the partition member. Then, the second resin particles directly above the space move to fill the space. Since the partition member is elastically deformable, it deforms toward the lower first filling layer accordingly. Therefore, disturbance of the first packed bed due to an increase in the volume of the gap is suppressed, and as a result, a decrease in the uniformity of the processing capacity of the multi-bed resin tower can be suppressed.

よって、第一態様によれば、複層床式の樹脂塔において流通する被処理水の水質の低下を防止できる。 Therefore, according to the first aspect, it is possible to prevent the quality of the water to be treated flowing through the multi-bed resin tower from deteriorating.

第二態様では、前記第1の樹脂粒子又は前記第2の樹脂粒子は、イオン交換樹脂であり、非再生式で用いられる。 In a second aspect, the first resin particles or the second resin particles are ion exchange resins and are used in a non-regenerative manner.

第二態様では、イオン成分の吸着性能は、非再生式で用いられる。ここで、通常、非再生式で回復された処理能力の方が、再生式で回復された処理能力より高い。このため、超純水の水質をより向上できる。 In a second embodiment, the ionic component adsorption capacity is used in a non-regenerative manner. Here, the processing capacity recovered by the non-regenerative method is usually higher than the processing capacity recovered by the regenerative method. Therefore, the quality of ultrapure water can be further improved.

第三態様では、外縁に枠部材を有する前記仕切り部材を配置する。 In a third aspect, the partition member having a frame member on its outer edge is arranged.

第三態様では、枠部材によって仕切り部材がめくれ難くなる、このため、第1充填層と第2充填層との混合をより効果的に抑制できる。 In the third aspect, the frame member makes it difficult for the partition member to turn over, so that mixing of the first filling layer and the second filling layer can be suppressed more effectively.

第四態様では、複数の前記仕切り部材が互いに重ね合わせ可能、及び、同一面内で展開可能に連結された仕切り部材連結体であって複数の前記仕切り部材が重ね合わせられた状態の前記仕切り部材連結体を前記塔体の内側に搬送し、搬送された複数の前記仕切り部材を前記塔体の内側で展開し、展開された状態の前記仕切り部材連結体を前記第1充填層の上に配置する。 In a fourth aspect, the partition member is a connected partition member in which a plurality of the partition members are connected to each other so that they can be stacked on top of each other and can be expanded in the same plane, and the partition member is in a state where the plurality of partition members are stacked on top of each other. The connected body is transported inside the tower body, the plurality of transported partition members are expanded inside the tower body, and the expanded partition member connected body is placed on the first packed bed. do.

第四態様では、仕切り部材連結体をコンパクトに折り畳めるので、例えば、塔体に設けられる作業孔が比較的小径であっても、作業孔を通過させることができる。そのため、設置作業を容易に行うことができる。 In the fourth aspect, since the partition member connected body can be folded compactly, for example, even if the working hole provided in the tower body has a relatively small diameter, it can be passed through the working hole. Therefore, installation work can be easily performed.

第五態様に係る超純水の製造方法は、第一態様~第四態様のいずれかの被処理水の処理方法によって処理された被処理水を用いて超純水を製造する。 The method for producing ultrapure water according to the fifth aspect produces ultrapure water using the water to be treated that has been treated by the method for treating water to be treated according to any one of the first to fourth aspects.

第五態様では、超純水を水質の低下を防止して製造できる。 In the fifth aspect, ultrapure water can be produced while preventing deterioration in water quality.

第六態様に係る複層床式の樹脂塔は、筒状の塔体と、前記塔体の内側に充填され被処理水と接触する第1の樹脂粒子を含む第1充填層と、第1の樹脂粒子とは異なる第2の樹脂粒子を含み前記塔体の内側で前記第1充填層の上側に充填された第2充填層と、透水性を有する仕切り部材であって、前記第1充填層と前記第2充填層との境界に前記塔体に対して非拘束状態で配置され、第2の樹脂粒子の重量に応じて弾性変形可能な程度の柔軟性を有する素材で形成された仕切り部材と、を備える。 The multi-layered resin tower according to the sixth aspect includes a cylindrical tower body, a first packed bed containing first resin particles filled inside the tower body and in contact with the water to be treated, and a first a second packed layer containing second resin particles different from the resin particles and filled above the first packed layer inside the tower body; and a partition member having water permeability, A partition formed of a material having flexibility to the extent that it can be elastically deformed according to the weight of the second resin particles, and is disposed in a non-restricted state with respect to the tower body at the boundary between the layer and the second packed bed. A member.

第六態様では、第一態様と同様、複層床式の樹脂塔において流通する被処理水の水質の低下を防止できる。 In the sixth aspect, similar to the first aspect, it is possible to prevent a decrease in the quality of the water to be treated flowing through the multi-bed resin tower.

第七態様に係る超純水製造装置は、原水に前処理が施される前処理部と、前記前処理部によって処理された原水が濾過される一次純水製造部と、前記一次純水製造部によって処理された一次純水の純度を高めることによって超純水を製造する二次純水製造部と、前記前処理部と前記一次純水製造部と前記二次純水製造部とのうち少なくともいずれかに設けられた第六態様に記載の複層床式の樹脂塔と、を備える。 The ultrapure water production apparatus according to a seventh aspect includes a pretreatment section in which raw water is pretreated, a primary pure water production section in which the raw water treated by the pretreatment section is filtered, and the primary pure water production device a secondary pure water production unit that produces ultrapure water by increasing the purity of the primary pure water treated by the pretreatment unit, the primary pure water production unit, and the secondary pure water production unit; The multi-layered resin tower according to the sixth aspect is provided in at least one of the towers.

第七態様では、第五態様と同様、超純水を水質の低下を防止して製造できる。 In the seventh aspect, similarly to the fifth aspect, ultrapure water can be produced while preventing deterioration in water quality.

本発明によれば、複層床式の樹脂塔において流通する被処理水の水質の低下を防止できる。 According to the present invention, it is possible to prevent a decrease in the quality of water to be treated flowing through a multi-bed resin tower.

本実施形態に係る超純水製造装置を説明するブロック図である。FIG. 1 is a block diagram illustrating an ultrapure water production apparatus according to the present embodiment. 本実施形態に係る複層床式の樹脂塔を、一部を破断して説明する断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway sectional view illustrating a multi-layered resin tower according to the present embodiment. 本実施形態に係る複層床式の樹脂塔の内側で、樹脂粒子が収縮する前における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the state of a first packed bed and a second packed bed separated by a partition member before resin particles shrink inside the multi-bed type resin column according to the present embodiment. 本実施形態に係る仕切り部材を説明する斜視図である。It is a perspective view explaining the partition member concerning this embodiment. 図5(A)は、本実施形態に係る複層床式の樹脂塔の非通水時のイオン交換樹脂の状態を模式的に説明する断面図であり、図5(B)は、樹脂塔の水はり時の樹脂塔内のイオン交換樹脂の状態を模式的に説明する断面図であり、図5(C)は、図5(B)の水はりの工程がさらに進んだ際の樹脂塔内のイオン交換樹脂の状態を模式的に説明する断面図である。FIG. 5(A) is a cross-sectional view schematically illustrating the state of the ion exchange resin in the multi-bed type resin tower according to the present embodiment when water is not flowing, and FIG. FIG. 5(C) is a cross-sectional view schematically illustrating the state of the ion exchange resin in the resin tower during water filling, and FIG. 5(C) shows the resin tower when the water filling process of FIG. 5(B) has further progressed. FIG. 3 is a cross-sectional view schematically illustrating the state of the ion exchange resin inside. 本実施形態に係る複層床式の樹脂塔の内側で、樹脂粒子が収縮した後における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the state of a first packed bed and a second packed bed separated by a partition member after resin particles have shrunk inside the multi-bed type resin column according to the present embodiment. 図7(A)は、実施例に係る複層床式の樹脂塔の内側で、被処理水が流通する前における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する写真であり、図7(B)は、実施例に係る複層床式の樹脂塔の内側で、被処理水が流通した後における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する写真である。FIG. 7(A) shows the state of the first packed bed and the second packed bed separated by the partition member before the water to be treated flows inside the multi-bed type resin tower according to the example. FIG. 7(B) is a photograph for explaining the first packed bed and the second packed bed separated by the partition member after the water to be treated has circulated inside the multi-bed type resin tower according to the example. It is a photograph explaining the state with a packed bed. 図8(A)は、第1比較例に係る複層床式の樹脂塔の内側で、被処理水が流通する前における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する写真であり、図8(B)は、第1比較例に係る複層床式の樹脂塔の内側で、被処理水が流通した後における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する写真である。FIG. 8(A) shows the first packed bed and the second packed bed separated by the partition member before the water to be treated flows inside the multi-bed resin tower according to the first comparative example. FIG. 8(B) is a photograph explaining the state, and FIG. 8(B) shows the first filling separated by the partition member after the water to be treated has circulated inside the multi-layered resin tower according to the first comparative example. It is a photograph explaining the state of a layer and a 2nd filling layer. 第2比較例に係る複層床式の樹脂塔の内側で、樹脂粒子が収縮した後における、仕切り部材によって隔てられた第1充填層と第2充填層との状態を説明する断面図である。FIG. 7 is a cross-sectional view illustrating the state of a first packed bed and a second packed bed separated by a partition member after resin particles have shrunk inside a multi-bed type resin tower according to a second comparative example. . 図10(A)は、変形例に係る仕切り部材連結体の複数の仕切り部材が展開された状態を説明する平面図であり、図10(B)は、図10(A)中の9B-9B線断面図であり、図10(C)は、変形例に係る仕切り部材連結体の複数の仕切り部材が重ね合わせられた状態を説明する断面図である。FIG. 10(A) is a plan view illustrating a state in which a plurality of partition members of a partition member connected body according to a modified example are expanded, and FIG. 10(B) is a plan view 9B-9B in FIG. 10(A). FIG. 10(C) is a cross-sectional view illustrating a state in which a plurality of partition members of a partition member connected body according to a modification are overlapped. 第1比較例に係る複層床式の樹脂塔の内部のイオン交換樹脂の状態を模式的に説明する樹脂塔の断面図である。FIG. 2 is a cross-sectional view of a resin tower schematically illustrating the state of the ion exchange resin inside the multi-bed type resin tower according to a first comparative example.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Embodiments of the present invention will be described below. In the description of the drawings below, the same or similar parts are denoted by the same or similar symbols. However, the drawings are schematic, and the relationship between thickness and planar dimensions, the ratio of the thickness of each device and each member, etc. are different from the reality. Therefore, specific thickness and dimensions should be determined with reference to the following explanation. Furthermore, the drawings include portions that differ in dimensional relationships and ratios.

<超純水製造装置>
図1に示すように、本実施形態に係る超純水製造装置10は、前処理部12、一次純水製造部14、タンク16及び二次純水製造部18を備える。
<Ultrapure water production equipment>
As shown in FIG. 1, the ultrapure water production apparatus 10 according to the present embodiment includes a pretreatment section 12, a primary pure water production section 14, a tank 16, and a secondary pure water production section 18.

(前処理部)
前処理部12には、原水として、市水、井水、工業用水等が導入される。本実施形態では、前処理部12は、導入された原水の懸濁物質を除去することによって、前処理水を生成する。前処理部としては、原水に前処理が施される設備であれば、原水の水質等に応じて適宜構成できる。
(Pre-processing section)
City water, well water, industrial water, etc. are introduced into the pretreatment unit 12 as raw water. In this embodiment, the pretreatment unit 12 generates pretreated water by removing suspended matter from the introduced raw water. The pre-treatment section can be constructed as appropriate depending on the quality of the raw water, as long as it is a facility that pre-treats the raw water.

本発明では、前処理部としては、原水に前処理が施される設備であれば、原水の水質等に応じて適宜構成できる。例えば、前処理部12は、砂ろ過装置や精密ろ過装置等を備え、さらに必要に応じて被処理水の温度を調節するための熱交換器等を有してよい。 In the present invention, the pre-treatment section can be configured as appropriate depending on the quality of the raw water, etc., as long as it is equipment that pre-treats the raw water. For example, the pretreatment unit 12 may include a sand filter device, a microfiltration device, etc., and may further include a heat exchanger or the like for adjusting the temperature of the water to be treated, if necessary.

(一次純水製造部)
一次純水製造部14では、前処理部12によって処理された原水、すなわち前処理水が濾過される。一次純水製造部14は、前処理水中の有機成分、イオン成分、溶存ガス等を除去することによって一次純水を製造し、製造された一次純水をタンク16に供給する。
(Primary pure water production department)
In the primary pure water production section 14, the raw water treated by the pretreatment section 12, that is, the pretreated water, is filtered. The primary pure water production unit 14 produces primary pure water by removing organic components, ionic components, dissolved gases, etc. from the pretreated water, and supplies the produced primary pure water to the tank 16 .

図示を省略するが、一次純水製造部14は、例えば、活性炭装置(AC)、二床三塔型装置(2ベット3タワー,2B3T)、逆浸透膜装置(RO)、紫外線酸化装置(TOC-UV)、混床式のイオン交換装置(MB)、脱気装置(DG)等の設備を備える。 Although not shown, the primary pure water production unit 14 includes, for example, an activated carbon device (AC), a two-bed three-tower device (2 beds, three towers, 2B3T), a reverse osmosis membrane device (RO), and an ultraviolet oxidation device (TOC). -UV), a mixed bed ion exchanger (MB), and a deaerator (DG).

活性炭装置は、例えばヤシガラ活性炭等の活性炭を内部に備える活性炭塔である。活性炭装置は、被処理水中に含まれる有機物を活性炭に吸着させて除去する。二床三塔型装置は、第1のイオン交換装置と、脱炭酸装置と、第2のイオン交換装置とが、直列に配置された統合装置である。 The activated carbon device is an activated carbon tower that includes activated carbon such as coconut shell activated carbon. Activated carbon devices remove organic substances contained in water to be treated by adsorbing them onto activated carbon. The two-bed three-tower type device is an integrated device in which a first ion exchange device, a decarboxylation device, and a second ion exchange device are arranged in series.

第1のイオン交換装置は、樹脂塔内にカチオン交換樹脂が収容された、例えば再生式単層床式もしくは再生式複層床式の陽イオン交換樹脂塔である。脱炭酸装置は、第1のイオン交換装置により処理された被処理水から炭酸成分を除去する。第2のイオン交換装置は、樹脂塔内にアニオン交換樹脂が収容された、例えば再生式単層床式もしくは再生式複層床式の陰イオン交換樹脂塔である。 The first ion exchange device is, for example, a regenerative single-layer bed type or regenerative multi-layer bed type cation exchange resin tower in which a cation exchange resin is housed in the resin tower. The decarboxylation device removes carbonic acid components from the water treated by the first ion exchange device. The second ion exchange device is, for example, a regenerative single-layer bed type or regenerative multi-layer bed type anion exchange resin tower in which an anion exchange resin is housed in the resin tower.

逆浸透膜装置は、二床三塔型装置で処理された被処理水中の不純物や塩類を、逆浸透膜(RO膜)により除去する。紫外線酸化装置は、逆浸透膜装置を通過した被処理水に紫外線を照射することによって、水中の微量有機物を分解除去する。イオン交換装置は、たとえば、樹脂塔内にカチオン交換樹脂とアニオン交換樹脂とが収容された混床式のイオン交換樹脂塔である。 The reverse osmosis membrane device uses a reverse osmosis membrane (RO membrane) to remove impurities and salts from the water to be treated that has been treated in a two-bed, three-tower type device. The ultraviolet oxidation device decomposes and removes trace amounts of organic matter in the water by irradiating the water to be treated that has passed through the reverse osmosis membrane device with ultraviolet rays. The ion exchange device is, for example, a mixed bed type ion exchange resin column in which a cation exchange resin and an anion exchange resin are housed in the resin column.

脱気装置は、イオン交換装置を通過した被処理水中に含まれる酸素等の気体成分を除去するための例えば膜脱気装置や真空脱気装置である。一次純水製造部14によって製造された一次純水は、例えば全有機炭素(TOC)濃度が5μgC/L以下、抵抗率が17MΩ・cm以上である。 The deaerator is, for example, a membrane deaerator or a vacuum deaerator for removing gaseous components such as oxygen contained in the water to be treated that has passed through the ion exchange device. The primary pure water manufactured by the primary pure water manufacturing unit 14 has, for example, a total organic carbon (TOC) concentration of 5 μgC/L or less and a resistivity of 17 MΩ·cm or more.

(タンク)
タンク16は、一次純水を貯留する。図示を省略するが、超純水製造装置10を構成するそれぞれの設備には、それぞれの設備の動作を制御する制御装置が接続される。制御装置によって、タンク16から、必要量の一次純水を二次純水製造部18に供給できる。
(tank)
Tank 16 stores primary pure water. Although not shown, each of the equipment constituting the ultrapure water production apparatus 10 is connected to a control device that controls the operation of each equipment. A necessary amount of primary pure water can be supplied from the tank 16 to the secondary pure water production section 18 by the control device.

(二次純水製造部)
二次純水製造部18は、一次純水製造部14によって処理された一次純水の純度を高めることによって超純水を製造する。具体的には、二次純水製造部18は、一次純水製造部14により製造された一次純水中の不純物を除去することによって、二次純水を製造する。製造された二次純水は、超純水として、超純水の使用場所であるユースポイントPOU(Point Of Use)に供給される。ユースポイントPOUを通過した余剰分の超純水は、タンク16によって回収される。
(Secondary pure water production department)
The secondary pure water production unit 18 produces ultrapure water by increasing the purity of the primary pure water processed by the primary pure water production unit 14. Specifically, the secondary pure water production section 18 produces secondary pure water by removing impurities in the primary pure water produced by the primary pure water production section 14. The produced secondary pure water is supplied as ultrapure water to a point of use (POU) where the ultrapure water is used. The surplus ultrapure water that has passed through the use point POU is collected by the tank 16.

図示を省略するが、二次純水製造部18は、タンク16の下流側に、例えば、熱交換器、紫外線酸化装置(TOC-UV)、過酸化水素除去装置、脱気膜装置、樹脂塔等の設備を備える。熱交換器は、タンク16から供給された一次純水の温度を調節する。紫外線酸化装置は、熱交換器で温度調節された一次純水に紫外線を照射して、水中の微量有機物を分解除去する。 Although not shown, the secondary pure water production unit 18 includes, for example, a heat exchanger, an ultraviolet oxidation device (TOC-UV), a hydrogen peroxide removal device, a degassing membrane device, and a resin column on the downstream side of the tank 16. Equipped with the following equipment. The heat exchanger adjusts the temperature of the primary pure water supplied from the tank 16. The ultraviolet oxidation device decomposes and removes trace amounts of organic matter in the water by irradiating primary pure water whose temperature is controlled with a heat exchanger with ultraviolet light.

過酸化水素除去装置は、水中の過酸化水素を分解除去するための装置である。過酸化水素除去装置は、例えばパラジウム(Pd)担持樹脂によって過酸化水素を分解除去するパラジウム担持樹脂装置や、塩基性陰イオン交換樹脂に亜硫酸基及び/又は亜硫酸水素基を有する還元性樹脂を充填した還元性樹脂装置等である。 A hydrogen peroxide removal device is a device for decomposing and removing hydrogen peroxide in water. Hydrogen peroxide removal devices include, for example, palladium-supported resin devices that decompose and remove hydrogen peroxide using palladium (Pd)-supported resins, and basic anion exchange resins filled with reducing resins having sulfite groups and/or hydrogen sulfite groups. This includes reducing resin equipment.

脱気膜装置は、気体透過性を有する膜の二次側(すなわち、超純水の製造工程の下流測)を減圧して、一次側(すなわち、超純水の製造工程の上流測)を流通する水中の溶存ガスのみを二次側に透過させて除去する。 A degassing membrane device depressurizes the secondary side (i.e., downstream measurement in the ultrapure water production process) of a membrane that has gas permeability, and depressurizes the primary side (i.e., the upstream measurement in the ultrapure water production process). Only the dissolved gas in the flowing water is removed by permeating it to the secondary side.

本実施形態に係る樹脂塔は、第1充填層と第2充填層とを有する複層床式のイオン交換樹脂塔である。樹脂塔の内側に配置されたそれぞれの床は、ポリッシャーとして被処理水の中の微量の陽イオン成分又は陰イオン成分を吸着除去する。樹脂塔の内側には、本実施形態に係る仕切り部材が配置される。 The resin tower according to this embodiment is a multi-bed type ion exchange resin tower having a first packed bed and a second packed bed. Each bed arranged inside the resin tower acts as a polisher and adsorbs and removes trace amounts of cationic or anionic components in the water to be treated. The partition member according to this embodiment is arranged inside the resin tower.

なお、本実施形態では、複層床式の樹脂塔が、二次純水製造部18における最終段、すなわちユースポイントPOUの直前の位置に設けられる限外ろ過膜装置(UF)の直前に設置する場合が例示される。本発明に係る樹脂塔は、例えば一次純水製造部14の最終段等、二次純水製造部18以外の設備の任意の位置に配置できる。本発明では、複層床式の樹脂塔は、前処理部12と一次純水製造部14と二次純水製造部18とのうち少なくともいずれかの位置に設けられればよい。 In this embodiment, a multi-layered resin tower is installed at the final stage in the secondary pure water production section 18, that is, immediately before the ultrafiltration membrane device (UF) provided at the position immediately before the use point POU. An example is given below. The resin column according to the present invention can be placed at any position in the equipment other than the secondary pure water producing section 18, such as the final stage of the primary pure water producing section 14, for example. In the present invention, the multi-layered resin tower may be provided in at least one of the pretreatment section 12, the primary pure water production section 14, and the secondary pure water production section 18.

二次純水製造部において、例えば、脱気膜装置の後段に本発明に係るイオン交換樹脂塔が配置され、かつ、イオン交換樹脂塔の後段に限外ろ過膜装置(UF)が配置されてもよい。限外ろ過膜装置は、樹脂塔によって処理された被処理水を処理することにより、例えば粒子径50nm以上(より好ましくは10nm以上)の微粒子を除去して超純水(すなわち、二次純水)を製造する。 In the secondary pure water production department, for example, the ion exchange resin tower according to the present invention is arranged after the degassing membrane device, and the ultrafiltration membrane device (UF) is arranged after the ion exchange resin tower. Good too. The ultrafiltration membrane device processes the water to be treated by the resin tower, removes fine particles with a particle size of 50 nm or more (more preferably 10 nm or more), and produces ultrapure water (i.e., secondary pure water). ) is manufactured.

本実施形態に係る超純水製造装置10によって製造される超純水の水質としては、例えば粒子径50nm以上の微粒子数が50pcs./L以下、全有機炭素(TOC)濃度が1μgC/L以下、抵抗率が18MΩ・cm以上である。鉄(Fe)濃度が0.05μg/L以下、溶存酸素(DO)濃度2μg/L以下である。 The quality of the ultrapure water produced by the ultrapure water production apparatus 10 according to the present embodiment is such that, for example, the number of fine particles with a particle diameter of 50 nm or more is 50 pcs. /L or less, the total organic carbon (TOC) concentration is 1 μgC/L or less, and the resistivity is 18 MΩ·cm or more. The iron (Fe) concentration is 0.05 μg/L or less, and the dissolved oxygen (DO) concentration is 2 μg/L or less.

なお、本発明では、超純水製造装置を構成する設備又は装置は、適宜設定できる。例えば、ユースポイントPOUで使用された超純水を蓄えるタンク及びタンクに接続された廃水回収装置が設けられてもよい。廃水回収装置によって回収された排水としての超純水は、前処理部12のライン中の所定の装置に被処理水として送り出されることによって、超純水製造装置のラインを再び流通してもよい。 In addition, in this invention, the equipment or apparatus which comprises an ultrapure water production apparatus can be set suitably. For example, a tank for storing ultrapure water used at the point-of-use POU and a wastewater recovery device connected to the tank may be provided. The ultrapure water as wastewater recovered by the wastewater recovery device may be sent to a predetermined device in the line of the pretreatment unit 12 as water to be treated, so that it can be circulated through the line of the ultrapure water production device again. .

<複層床式の樹脂塔>
次に、本実施形態に係る複層床式の樹脂塔を、図2~図6を参照して具体的に説明する。図2に示すように、本実施形態に係る複層床式の樹脂塔25は、塔体31と、第1充填層41と、第2充填層42と、仕切り部材50と、を備える。
<Multi-layered resin tower>
Next, the multi-layered resin tower according to this embodiment will be specifically explained with reference to FIGS. 2 to 6. As shown in FIG. 2, the multi-bed resin tower 25 according to the present embodiment includes a tower body 31, a first packed bed 41, a second packed bed 42, and a partition member 50.

(塔体)
塔体31は、円筒状の容器であると共に、樹脂塔25の本体である。なお、本発明では、塔体の形状は円筒状に限定されず、角筒状等、他の筒状であってよい。塔体31の筒の径は、例えば、300mm~2000mm程度である。樹脂塔25の塔体31の上部には、入口管32が設けられる。入口管32は、塔体31の内側に入口水としての被処理水を導く。また、樹脂塔25の塔体31の下部には、出口管34が設けられる。出口管34は、出口水としての被処理水を塔体31の外側に導く。
(Tower body)
The tower body 31 is a cylindrical container and is the main body of the resin tower 25. In addition, in the present invention, the shape of the tower body is not limited to a cylindrical shape, but may be other cylindrical shapes such as a rectangular tube shape. The diameter of the cylinder of the tower body 31 is, for example, about 300 mm to 2000 mm. An inlet pipe 32 is provided at the upper part of the tower body 31 of the resin tower 25 . The inlet pipe 32 introduces water to be treated as inlet water into the inside of the column body 31 . Further, an outlet pipe 34 is provided at the lower part of the column body 31 of the resin column 25. The outlet pipe 34 guides the water to be treated as outlet water to the outside of the column body 31 .

(第1充填層及び第2充填層)
図3に示すように、第1充填層41は、複数の第1の樹脂粒子41Aを含む。第2充填層42は、複数の第2の樹脂粒子42Aを含む。第1充填層41は、塔体31の内側の内部空間における下側に充填されると共に、第2充填層42は、塔体31の内側で第1充填層41の上側に充填される。
(First packed bed and second packed bed)
As shown in FIG. 3, the first filled layer 41 includes a plurality of first resin particles 41A. The second filling layer 42 includes a plurality of second resin particles 42A. The first packed bed 41 is filled in the lower side of the internal space inside the column body 31, and the second packed bed 42 is filled in the upper side of the first packed bed 41 inside the column body 31.

(第1の樹脂粒子)
本実施形態では、第1充填層41を形成する第1の樹脂粒子41Aは、被処理水との接触によって収縮することによって体積変化が生じるイオン交換樹脂の粒子である。なお、本発明では、樹脂粒子は、膨張してもよい。また、本発明では、第1の樹脂粒子41Aとしては、強酸性イオン交換樹脂(SC)、強塩基性イオン交換樹脂(SA)、強酸性イオン交換樹脂(SC)と強塩基性イオン交換樹脂(SA)との混合等を適宜採用できる。
(First resin particles)
In this embodiment, the first resin particles 41A forming the first packed bed 41 are ion exchange resin particles whose volume changes by shrinking upon contact with the water to be treated. Note that in the present invention, the resin particles may be expanded. Further, in the present invention, as the first resin particles 41A, strong acid ion exchange resin (SC), strong basic ion exchange resin (SA), strong acid ion exchange resin (SC), and strong basic ion exchange resin ( Mixing with SA) can be adopted as appropriate.

本実施形態に係る第1の樹脂粒子41Aの粒径R1は、例えば、0.4mm程度~0.5mm程度である。図3中に例示された粒径R1は、被処理水が第1充填層41を流通する前、すなわち、第1の樹脂粒子41Aが収縮する前の大きさである。なお、本発明では、第1の樹脂粒子41Aの径は、これに限定されず適宜変更できる。また、本実施形態では、説明の便宜のため、すべての第1の樹脂粒子41Aが同じ粒径R1を有するように例示されているが、実際には第1の樹脂粒子41Aの粒径は、それぞれ異なる場合がある。 The particle size R1 of the first resin particles 41A according to the present embodiment is, for example, about 0.4 mm to about 0.5 mm. The particle size R1 illustrated in FIG. 3 is the size before the water to be treated flows through the first packed bed 41, that is, before the first resin particles 41A shrink. Note that in the present invention, the diameter of the first resin particles 41A is not limited to this and can be changed as appropriate. Further, in this embodiment, for convenience of explanation, all the first resin particles 41A are illustrated as having the same particle size R1, but in reality, the particle size of the first resin particles 41A is Each may be different.

(第2の樹脂粒子)
本実施形態では、第2充填層42を形成する第2の樹脂粒子42Aは、第1の樹脂粒子41Aと同様、被処理水との接触によって収縮するイオン交換樹脂の粒子である。第2の樹脂粒子42Aの種類は、第1の樹脂粒子41Aの種類と異なる。
(Second resin particles)
In the present embodiment, the second resin particles 42A forming the second packed bed 42 are particles of ion exchange resin that contract upon contact with the water to be treated, like the first resin particles 41A. The type of the second resin particles 42A is different from the type of the first resin particles 41A.

第2の樹脂粒子42Aとしては、各種の強酸性イオン交換樹脂(SC)、シリカ除去用の強塩基性イオン交換樹脂(SA)、亜硫酸基及び/又は亜硫酸水素基を担持した強塩基性イオン交換樹脂樹脂(還元性樹脂)、N-グルカミン基等のホウ素選択性をもつ交換基ももつホウ素選択性樹脂(B)、貴金属触媒担持樹脂等を適宜採用できる。貴金属触媒担持樹脂の貴金属は、例えばパラジウム(Pd)又は白金(Pt)等を採用できる。 The second resin particles 42A include various strong acidic ion exchange resins (SC), strong basic ion exchange resins (SA) for removing silica, and strong basic ion exchange resins carrying sulfite groups and/or hydrogen sulfite groups. A resin resin (reducing resin), a boron-selective resin (B) that also has a boron-selective exchange group such as an N-glucamine group, a resin supporting a noble metal catalyst, etc. can be appropriately employed. The noble metal of the noble metal catalyst supporting resin may be, for example, palladium (Pd) or platinum (Pt).

本実施形態に係る第2の樹脂粒子42Aの粒径R1は、第1の樹脂粒子41Aと同様に、0.4mm程度~0.5mm程度である。図3中に例示された粒径R1は、第1の樹脂粒子41Aと同様、第2の樹脂粒子42Aが収縮する前の大きさである。なお、本発明では、第2の樹脂粒子42Aの径は、これに限定されず、適宜変更できる。また、第1の樹脂粒子41Aの場合と同様に、すべての第2の樹脂粒子42Aが同じ粒径R2を有するように例示されているが、実際には第2の樹脂粒子42Aの粒径は、それぞれ異なる場合がある。 The particle size R1 of the second resin particles 42A according to this embodiment is about 0.4 mm to about 0.5 mm, similar to the first resin particles 41A. The particle size R1 illustrated in FIG. 3 is the size before the second resin particles 42A shrink, similar to the first resin particles 41A. Note that in the present invention, the diameter of the second resin particles 42A is not limited to this, and can be changed as appropriate. Further, as in the case of the first resin particles 41A, all the second resin particles 42A are illustrated as having the same particle size R2, but in reality, the particle size of the second resin particles 42A is , each may be different.

本実施形態に係る樹脂塔25は、通常、同規模の複数並列の樹脂塔で構成される。また、再生時に超純水製造装置の運転停止を避けるため、予備の樹脂塔を備える場合もある。 The resin tower 25 according to the present embodiment is usually composed of a plurality of parallel resin towers of the same scale. Additionally, in order to avoid shutting down the ultrapure water production equipment during regeneration, a spare resin tower may be provided.

本実施形態に係る樹脂塔25は非再生式の樹脂塔である。このため、第1充填層41又は第2充填層42のイオン交換能力が低下した場合は、装置を停止して、塔体31の内側から取り外される。取り外された充填層は、例えば工場等、超純水製造装置とは別の場所で再生処理が施されることによって再利用できる。また、取り外された充填層が再利用されることなく、新たな充填層が、第1充填層41又は第2充填層42として、樹脂塔25の内側に配置されてもよい。 The resin tower 25 according to this embodiment is a non-regenerating resin tower. Therefore, when the ion exchange capacity of the first packed bed 41 or the second packed bed 42 decreases, the apparatus is stopped and the first packed bed 41 or the second packed bed 42 is removed from the inside of the column body 31. The removed packed bed can be reused by being recycled at a location other than the ultrapure water production device, such as a factory. Alternatively, a new packed bed may be placed inside the resin column 25 as the first packed bed 41 or the second packed bed 42 without reusing the removed packed bed.

本発明の樹脂塔25は非再生式のため、樹脂交換の頻度を下げるため、前段に再生式のイオン交換装置等の脱イオン装置を備える。例えば、本発明の樹脂塔25が1次系に設置される場合、前段に、逆浸透装置、再生式イオン交換装置、2B3T装置、電気再生式イオン交換装置(EDI)等の脱イオン装置が設置される。本発明の樹脂塔25が2次系に設置される場合には、1次系に備えられた逆浸透装置、再生式イオン交換装置、2B3T装置、電気再生式イオン交換装置(EDI)等がこの役目を担う。 Since the resin column 25 of the present invention is of a non-regenerative type, a deionization device such as a regenerative type ion exchange device is provided at the front stage in order to reduce the frequency of resin exchange. For example, when the resin column 25 of the present invention is installed in the primary system, a deionization device such as a reverse osmosis device, a regenerative ion exchange device, a 2B3T device, an electric regenerative ion exchange device (EDI), etc. is installed in the previous stage. be done. When the resin column 25 of the present invention is installed in the secondary system, the reverse osmosis device, regenerative ion exchange device, 2B3T device, electric regenerative ion exchange device (EDI), etc. provided in the primary system are installed in this system. play a role.

本発明は、イオン交換樹脂の充填の際に仕切り部材を設置するだけでよく、また樹脂層高さも変化しない。また、仕切り部材は既存の装置のマンホール塔から出し入れできるので、既存の単層床もしくは複層床の樹脂塔をなんら改造せずに適用することができる。なお、単層床の場合は、複層床に変更する際に採用可能である。また、本発明を用いると、イオン交換樹脂の粒径や比重の制限がなくなるので、イオン交換樹脂の選択が自由になる。そのため、例えば、最適な水質を得るに適した樹脂や低価格の樹脂を制限なく選ぶ等が可能となる。 In the present invention, it is only necessary to install a partition member when filling the ion exchange resin, and the height of the resin layer does not change. Furthermore, since the partition member can be taken in and out of the manhole tower of an existing device, it can be applied to an existing single-layer floor or multi-layer resin tower without any modification. In addition, in the case of a single-layer floor, it can be adopted when changing to a multi-layer floor. Further, when the present invention is used, there are no restrictions on the particle size or specific gravity of the ion exchange resin, so the selection of the ion exchange resin becomes free. Therefore, for example, it becomes possible to select resins suitable for obtaining the optimum water quality or resins at low cost without any restrictions.

また、複層床の場合、下層には一般的な樹脂、すなわち、カチオンかアニオン、もしくは、その両方を全般的に除去する樹脂が充填され、上層には下層の樹脂層の機能を補う等の何か特別な機能を追加するための樹脂を充填する場合が多い。そのため、下層の樹脂層が厚く、上層の樹脂層が薄くなる傾向がある。したがって、本願の課題のような、樹脂層の乱れが起きる場合、薄い上層は特に樹脂層の乱れの影響を受けやすく、上層が担う機能が著しく低下する場合が多い。本発明を用いることにより、この問題を解決することができる。 In addition, in the case of a multilayer bed, the lower layer is filled with a general resin, that is, a resin that generally removes cations and/or anions, and the upper layer is filled with a resin that supplements the functions of the lower resin layer. It is often filled with resin to add some special function. Therefore, the lower resin layer tends to be thicker and the upper resin layer tends to be thinner. Therefore, when disturbance of the resin layer occurs as in the problem of the present application, the thin upper layer is particularly susceptible to the disturbance of the resin layer, and the function performed by the upper layer is often significantly degraded. By using the present invention, this problem can be solved.

(仕切り部材)
図3に示したように、仕切り部材50は、第1充填層41と第2充填層42との境界に配置される。図4に示すように、仕切り部材50は、平面視で円形状である。仕切り部材50は、網目部52と枠部材54とを有する。
(Partition member)
As shown in FIG. 3, the partition member 50 is arranged at the boundary between the first filling layer 41 and the second filling layer 42. As shown in FIG. 4, the partition member 50 has a circular shape in plan view. The partition member 50 has a mesh portion 52 and a frame member 54.

(網目部)
網目部52は、面状であり、円形状の仕切り部材50の中央に位置する。網目部52には、第2充填層42の荷重が、上側から加えられる。図6に示すように、網目部52は、第2充填層42が含む複数の第2の樹脂粒子42Aの重量に応じて弾性変形可能な程度の柔軟性を有する素材で形成される。
(mesh part)
The mesh portion 52 has a planar shape and is located at the center of the circular partition member 50. The load of the second filling layer 42 is applied to the mesh portion 52 from above. As shown in FIG. 6, the mesh portion 52 is formed of a material that is flexible enough to be elastically deformable according to the weight of the plurality of second resin particles 42A included in the second filling layer 42.

換言すると、仕切り部材50は、網目部52の上に第2充填層42が配置された状態で、被処理水の流通が実行される際に、弾性変形可能な柔軟性を有するように構成される。本実施形態の網目部52は、例えばポリ塩化ビニリデン等の有機系の素材で作製されることによって、網目部52が金属製である場合より、上下方向において、より柔軟に変形可能である。仕切り部材としては、サランネット(商品名)が好ましい。 In other words, the partition member 50 is configured to have the flexibility to be elastically deformable when the second filling layer 42 is disposed on the mesh portion 52 and the water to be treated is distributed. Ru. The mesh portion 52 of this embodiment is made of an organic material such as polyvinylidene chloride, so that it can be deformed more flexibly in the vertical direction than when the mesh portion 52 is made of metal. As the partition member, Saran Net (trade name) is preferable.

なお、図6中に例示された第1の樹脂粒子41Aの粒径R2は、被処理水が第1充填層41を流通した後、すなわち、第1の樹脂粒子41Aが収縮した後の粒径である。同様に、第2の樹脂粒子42Aの粒径R2は、被処理水が第1充填層41を流通した後、すなわち、第2の樹脂粒子42Aが収縮した後の粒径である。例えば、本発明では、網目部の柔軟性は、第2の充填層の層厚のうち一定の割合の厚みに応じた高さの分、下側に突出するように弾性変形可能であるように設定され得る。 Note that the particle size R2 of the first resin particles 41A illustrated in FIG. 6 is the particle size after the water to be treated flows through the first packed bed 41, that is, after the first resin particles 41A have shrunk. It is. Similarly, the particle size R2 of the second resin particles 42A is the particle size after the water to be treated flows through the first packed bed 41, that is, after the second resin particles 42A have shrunk. For example, in the present invention, the flexibility of the mesh portion is such that it can be elastically deformed to protrude downward by a height corresponding to a certain percentage of the thickness of the second filling layer. Can be set.

網目部52は、収縮した後の粒径R2を有する第2の樹脂粒子42Aのうち、最も小さい粒径を有する第2の樹脂粒子42Aが網目を通過することを妨げられるように、網目の形状が設定される。具体的には、本実施形態では例えば、網目部52のメッシュが60程度であると共に、網目部52の目開きは、0.3mm程度以下である。また、網目部52の織り方は、水の通過抵抗が低くなる観点から平織が好ましいが、畳折であってもよい。なお、本発明ではメッシュ、線径及び目開き等の寸法並びに織り方等を含む網目部の仕様は、適宜変更できる。 The mesh portion 52 has a mesh shape such that the second resin particles 42A having the smallest particle size among the second resin particles 42A having the particle size R2 after shrinkage are prevented from passing through the mesh. is set. Specifically, in this embodiment, for example, the mesh of the mesh portion 52 is about 60, and the opening of the mesh portion 52 is about 0.3 mm or less. Further, the weave of the mesh portion 52 is preferably plain weave from the viewpoint of lowering water passage resistance, but tatami-folding may also be used. In the present invention, the specifications of the mesh portion, including dimensions such as the mesh, wire diameter and opening, and weaving method, can be changed as appropriate.

(枠部材)
枠部材54は、図4に示したように、リング状である。枠部材54は、仕切り部材50の外縁に設けられる。枠部材54は、例えばチタンやステンレス等の耐腐食性が比較的高い金属素材によって作製できる。なお、樹脂や動物の毛髪等の金属素材以外の素材によって作製されてもよい。なお、枠部材54はなくてもかまわない。
(Frame member)
The frame member 54 is ring-shaped, as shown in FIG. The frame member 54 is provided at the outer edge of the partition member 50. The frame member 54 can be made of a metal material with relatively high corrosion resistance, such as titanium or stainless steel. Note that it may be made of materials other than metal materials, such as resin or animal hair. Note that the frame member 54 may be omitted.

本実施形態では、枠部材54は、塔体31の内側で上下動可能な程度に塔体31の内壁面との間に僅かな隙間を有して配置される。このため、仕切り部材50は、塔体31に対して非拘束状態で配置される。なお、非拘束状態とは塔の壁面等に固定しないことを意味する。本実施形態では、枠部材54によって仕切り部材50がめくれ難くなる。 In this embodiment, the frame member 54 is arranged with a small gap between it and the inner wall surface of the tower body 31 to the extent that it can move up and down inside the tower body 31. Therefore, the partition member 50 is arranged in an unrestricted state with respect to the tower body 31. Note that the unrestricted state means that it is not fixed to the wall of the tower, etc. In this embodiment, the frame member 54 makes it difficult for the partition member 50 to turn over.

図4中には、見易さのため、上下方向に沿って一定の厚みを有し、かつ、平面視で帯状の枠部材54が例示されているが、本実施形態では、枠部材54の厚みは、実質的に無視できる程度に薄い。具体的には、例えば、網目部52のメッシュを構成する線部材と同等程度の厚みを有する針金状の金属素材によって、枠部材54を作製できる。枠部材54の厚みを薄く設定することによって、仕切り部材50の軽量化及びコスト低減を図ることができる。なお、本発明では、枠部材54の厚みは、これに限定されず、適宜変更できる。 In FIG. 4, for ease of viewing, a frame member 54 is illustrated that has a constant thickness in the vertical direction and is belt-shaped in a plan view, but in this embodiment, the frame member 54 is The thickness is so thin that it can be practically ignored. Specifically, the frame member 54 can be made of, for example, a wire-like metal material having a thickness comparable to that of the wire members forming the mesh of the mesh portion 52. By setting the thickness of the frame member 54 thin, it is possible to reduce the weight and cost of the partition member 50. Note that in the present invention, the thickness of the frame member 54 is not limited to this, and can be changed as appropriate.

本実施形態では、仕切り部材50は、網目部52が目開きを有することと、枠部材54が上下動可能な程度に塔体31の内壁面との間に僅かな隙間を有して配置されることとによって、透水性を有する。なお、本発明では、仕切り部材50の透水性は、網目部52が目開きを有することと、枠部材54が上下動可能な程度に塔体31の内壁面との間に僅かな隙間を有して配置されることのうちの一方のみによって実現されてもよい。また、例えば貫通孔等、目開き以外の水の通り道が形成されることによって、仕切り部材50の透水性が実現されてもよい。 In this embodiment, the partition member 50 is arranged so that the mesh portion 52 has openings and there is a slight gap between the frame member 54 and the inner wall surface of the tower body 31 to the extent that the frame member 54 can move up and down. It has water permeability. In the present invention, the water permeability of the partition member 50 is determined by the fact that the mesh portion 52 has openings and that there is a slight gap between the frame member 54 and the inner wall surface of the tower body 31 to the extent that the frame member 54 can move up and down. This may be achieved by only one of the following arrangements. Further, the water permeability of the partition member 50 may be realized by forming a water passage other than openings, such as a through hole, for example.

<被処理水の処理方法及び超純水の製造方法>
次に、本実施形態に係る被処理水の処理方法を説明する。まず、本実施形態に係る樹脂塔25を用意する。次に、樹脂塔25の塔体31の内側に第1充填層41を形成する。次に、仕切り部材50を、第1充填層41の上に塔体31に対して非拘束状態で配置する。次に、図5(A)に示すように、仕切り部材50の上に、第2充填層42を形成する。そして、図5(B)及び図5(C)に示すような水はり工程を経た後に、被処理水を上側から下側に流通させればよい。
<Method for treating water to be treated and method for producing ultrapure water>
Next, a method for treating water to be treated according to this embodiment will be explained. First, the resin tower 25 according to this embodiment is prepared. Next, a first packed bed 41 is formed inside the tower body 31 of the resin tower 25. Next, the partition member 50 is placed on the first packed bed 41 in an unrestricted state relative to the tower body 31. Next, as shown in FIG. 5(A), a second filling layer 42 is formed on the partition member 50. Then, after passing through the water filling process as shown in FIGS. 5(B) and 5(C), the water to be treated may be passed from the upper side to the lower side.

図5(B)中には、第1充填層41の内部に蓄積された被処理水Wの内部で、気泡Bが生じた状態が例示されている。また、図5(C)中には、第1充填層41の内部に蓄積された被処理水Wの内部で、気泡Bが上昇する状態と、気泡Bが仕切り部材50を通過する状態と第2充填層42の内部で気泡Bが上昇する状態が例示されている。 In FIG. 5(B), a state in which bubbles B are generated inside the water to be treated W accumulated inside the first packed bed 41 is illustrated. Moreover, in FIG. 5(C), inside the water W to be treated accumulated inside the first packed bed 41, a state in which the bubbles B rise, a state in which the bubbles B pass through the partition member 50, and a state in which the bubbles B pass through the partition member 50 are shown. A state in which bubbles B rise inside the second filling layer 42 is illustrated.

また、本実施形態に係る樹脂塔25は、非再生式である。このため、本実施形態に係る被処理水の処理方法では、イオン交換樹脂の吸着性能が低下した場合、第1の樹脂粒子41A又は第2の樹脂粒子42Aを塔体31の内側から取り出す。そして、新品の樹脂を充填すればよい。 Furthermore, the resin tower 25 according to this embodiment is of a non-regenerative type. Therefore, in the method for treating water to be treated according to the present embodiment, when the adsorption performance of the ion exchange resin decreases, the first resin particles 41A or the second resin particles 42A are taken out from the inside of the column body 31. Then, fill it with new resin.

上記の一連の処理によって、本実施形態に係る被処理水の処理方法を構成できる。また、本実施形態に係る被処理水の処理方法によって処理された被処理水が超純水製造装置10の製造ラインで用いられることによって、高純度な超純水を製造することが可能になる。 The above-described series of processes can configure the method for treating water to be treated according to the present embodiment. Further, by using the water to be treated by the method for treating water to be treated according to the present embodiment in the production line of the ultrapure water production apparatus 10, it becomes possible to produce highly pure ultrapure water. .

なお、本発明では、被処理水の処理方法としては、超純水の製造方法に限定されず、樹脂塔25の内側で樹脂粒子を用いて処理が行われる方法であればよい。また、樹脂塔25の内側で樹脂粒子を用いて処理が行われる方法であれば、処理の対象物としては水に限定されず、任意の液体、気体等の流体が用いられてよい。 In the present invention, the method for treating the water to be treated is not limited to the method for producing ultrapure water, and any method may be used as long as the treatment is performed inside the resin tower 25 using resin particles. Further, as long as the treatment is performed using resin particles inside the resin tower 25, the object to be treated is not limited to water, and any fluid such as liquid or gas may be used.

次に、本実施形態に係る樹脂塔25の試験例を実施例として説明する。透明なアクリル製の塔体31を用意した。塔体31の筒の内径は、約50mmであった。 Next, a test example of the resin tower 25 according to the present embodiment will be described as an example. A transparent acrylic tower body 31 was prepared. The inner diameter of the cylinder of the tower body 31 was about 50 mm.

次に、塔体31の内側に、第1の樹脂粒子41Aとして強塩基性陰イオン交換樹脂(商品名:DuoliteAGP,ローム アンド ハース社製)を、約200ml充填することによって、第1充填層41を形成した。次に、塔体31の内側で第1充填層41の上に、網目部52がメッシュ50のサランネット製の仕切り部材50を装填した。 Next, about 200 ml of a strong basic anion exchange resin (trade name: Duolite AGP, manufactured by Rohm and Haas) is filled as the first resin particles 41A into the inside of the column body 31. was formed. Next, on the first packed bed 41 inside the tower body 31, a partition member 50 made of Saran net and having a mesh portion 52 of the mesh 50 was loaded.

次に、塔体31の内側で仕切り部材50の上に、第2の樹脂粒子42Aとして強酸性陽イオン交換樹脂(商品名:ダイヤイオンSKT10L,三菱ケミカル社製)を約200ml充填することによって、第2充填層42を形成した。そして、図7(A)に示すように、第1充填層41の上側に仕切り部材50を介して第2充填層42が配置された、実施例に係る複層床式の樹脂塔25を形成した。 Next, by filling about 200 ml of a strong acidic cation exchange resin (trade name: Diaion SKT10L, manufactured by Mitsubishi Chemical Corporation) as the second resin particles 42A on the partition member 50 inside the column body 31, A second filling layer 42 was formed. Then, as shown in FIG. 7(A), a multi-layer bed type resin tower 25 according to the embodiment is formed, in which the second packed bed 42 is arranged above the first packed bed 41 via the partition member 50. did.

ここで、超純水製造装置では、通常、樹脂塔25の塔内に最初に通水する際、第1充填層41では、第1の樹脂粒子41Aの表面に付着していた空気が気泡として発生する。第1充填層41で発生した気泡は、水中を上昇する。上昇した気泡が第2充填層42に到達すると、第1充填層41と第2充填層42とが混合する。また、第2充填層42の複数の第2の樹脂粒子42Aの配列に乱れが生じる。結果、第1充填層41と第2充填層42とを流通する被処理水の水質が低下する。 Here, in the ultrapure water production apparatus, when water is first passed into the resin column 25, the air attached to the surface of the first resin particles 41A is usually formed as bubbles in the first packed bed 41. Occur. The bubbles generated in the first packed bed 41 rise in the water. When the rising bubbles reach the second filled layer 42, the first filled layer 41 and the second filled layer 42 are mixed. Further, the arrangement of the plurality of second resin particles 42A of the second filling layer 42 is disturbed. As a result, the quality of the water flowing through the first packed bed 41 and the second packed bed 42 is reduced.

このため、実施例では、第1の樹脂粒子41Aの表面に付着する空気によって形成される気泡の動きを観察し易くするため、一定量の空気を、実施例に係る複層床式の樹脂塔25の下部から導入した。そして、試験用水を3[m/時間]の流速で、下側から上側に向かって流通させ、第1充填層41の内側に気泡を通過させた。試験用水の水温は、16℃であった。なお、この際イオン交換樹脂層が展開すなわち、水流によって樹脂が対流することはなかった。 Therefore, in the example, in order to make it easier to observe the movement of bubbles formed by the air adhering to the surface of the first resin particles 41A, a certain amount of air was pumped into the multi-layered resin tower according to the example. It was introduced from the bottom of 25. Then, the test water was caused to flow from the bottom to the top at a flow rate of 3 [m/hour] to allow air bubbles to pass inside the first packed bed 41 . The water temperature of the test water was 16°C. In addition, at this time, the ion exchange resin layer did not develop, that is, the resin did not undergo convection due to the water flow.

実施例では、第1充填層41の内側に通過させた気泡のほとんどは、仕切り部材50の網目部52に保持されることによって、上側の第2充填層42への移動が抑制された。このため、図7(B)に示すように、実施例では、第1充填層41の内側に気泡を通過させた後、第1充填層41と第2充填層42との境界が鮮明に観察できた。図7(A)中で、塔体31の外壁面に貼付された粘着部材に描かれた黒い横線の位置は、第1充填層41と第2充填層42との境界を示す。すなわち、第1充填層41と第2充填層42とが混合しなかった。また、第2充填層42の複数の第2の樹脂粒子42Aの配列に乱れが生じなかった。 In the example, most of the air bubbles that passed inside the first filled layer 41 were held by the mesh portion 52 of the partition member 50, thereby suppressing their movement to the upper second filled layer 42. Therefore, as shown in FIG. 7(B), in the example, after the bubbles are passed inside the first filled layer 41, the boundary between the first filled layer 41 and the second filled layer 42 is clearly observed. did it. In FIG. 7A, the position of the black horizontal line drawn on the adhesive member attached to the outer wall surface of the tower body 31 indicates the boundary between the first packed bed 41 and the second packed bed 42. That is, the first filling layer 41 and the second filling layer 42 did not mix. Moreover, no disturbance occurred in the arrangement of the plurality of second resin particles 42A of the second filled layer 42.

なお、図7(B)中では、塔体31の内側における第1充填層41と第2充填層42との境界の高さが、粘着部材に描かれた黒い横線の位置より低い。これは、通水によって第1の樹脂粒子41A間の空気が気泡として樹脂層外へ抜けたため、樹脂粒子同士が通水前より密に隣接した結果、第1充填層41全体としての厚みが減少したためである。 In addition, in FIG. 7(B), the height of the boundary between the first packed bed 41 and the second packed bed 42 inside the tower body 31 is lower than the position of the black horizontal line drawn on the adhesive member. This is because the air between the first resin particles 41A escapes out of the resin layer in the form of bubbles due to the water flow, so the resin particles adjoin each other more closely than before the water flow, resulting in a decrease in the thickness of the first filled layer 41 as a whole. This is because.

<第1比較例>
一方、図8(A)に示すように、仕切り部材以外について実施例に係る樹脂塔25の仕様と同じ仕様を有する樹脂塔を第1比較例として用意し、第1比較例に係る樹脂塔を用いて、実施例の試験条件と同じ試験条件で、第1比較例に係る試験例を実施した。
<First comparative example>
On the other hand, as shown in FIG. 8(A), a resin tower having the same specifications as the resin tower 25 according to the example except for the partition member was prepared as a first comparative example, and the resin tower according to the first comparative example was A test example according to the first comparative example was conducted under the same test conditions as those of the example.

第1比較例の場合、図8(B)に示すように、第1充填層41の内側に通過させた気泡が上側の第2充填層42へ移動することによって、第1充填層41と第2充填層42との境界が観察できなくなった。すなわち、第1充填層41と第2充填層42とが混合すると共に、第2充填層42の複数の第2の樹脂粒子42Aの配列に乱れが生じた。なお、この例では樹脂層の境界面全体が乱れてしまい、図11のような状態は観察できなかったが、これは、使用した試験用のカラムが径の小さいものであるためと考えられる。 In the case of the first comparative example, as shown in FIG. The boundary with the second filling layer 42 could no longer be observed. That is, the first filled layer 41 and the second filled layer 42 were mixed, and the arrangement of the plurality of second resin particles 42A of the second filled layer 42 was disturbed. Note that in this example, the entire boundary surface of the resin layer was disturbed and the state shown in FIG. 11 could not be observed, but this is thought to be because the test column used had a small diameter.

<第2比較例>
また、本実施形態に係る仕切り部材50と異なり、柔軟性を有さない網目部を有する仕切り部材50Zが設けられた場合の樹脂塔を、第2比較例として用意した。図9に示すように、第2比較例では、網目部が柔軟性を有さないため、仕切り部材50Zの下面側では、第1の樹脂粒子41Aが縮小しても、網目部が隙間を埋めるように変形しない。このため、第2比較例では、通水を継続し、イオン交換樹脂の体積が変化する際に、仕切り部材50Zの下面側の隙間Gの体積の増加は、被処理水の流通に伴い、拡大し続けることになる。この隙間は水質悪化の原因となるばかりか、通水を継続すると、仕切り部材50は次第に水平を保ちにくくなり、傾いたり、転覆する恐れがある。
<Second comparative example>
In addition, a resin tower was prepared as a second comparative example in which a partition member 50Z having a mesh portion without flexibility, unlike the partition member 50 according to the present embodiment, was provided. As shown in FIG. 9, in the second comparative example, the mesh portion does not have flexibility, so even if the first resin particles 41A shrink on the lower surface side of the partition member 50Z, the mesh portion fills the gap. It does not deform like this. Therefore, in the second comparative example, when water continues to flow and the volume of the ion exchange resin changes, the volume of the gap G on the lower surface side of the partition member 50Z expands as the water to be treated flows. will continue to do so. Not only does this gap cause deterioration of water quality, but if water continues to flow through the partition member 50, it becomes increasingly difficult to keep it level, and there is a risk that the partition member 50 may tilt or overturn.

本願発明の方法を用いると、イオン交換樹脂塔に新品のイオン交換樹脂を充填後に水はりを行う際に、下側の第1充填層41で発生した気泡が上昇して、第1充填層41と第2充填層42を横切る際、仕切り部材50によって、下側の第1の樹脂粒子41Aが気泡の上昇に伴って上側の第2充填層42に移動することが防止される。このため、気泡の上昇に起因する、下側の第1の樹脂粒子41Aと上側の樹脂粒子との混合が抑制される。 When the method of the present invention is used, when the ion exchange resin column is filled with water after being filled with new ion exchange resin, air bubbles generated in the lower first packed bed 41 rise and the first packed bed 41 When crossing the second filled layer 42, the partition member 50 prevents the lower first resin particles 41A from moving to the upper second filled layer 42 as the bubbles rise. Therefore, mixing of the lower first resin particles 41A and the upper resin particles due to the rise of air bubbles is suppressed.

また、図5(A)に示すように、初回に通水する際は、第1の樹脂粒子41A及び第2の樹脂粒子42Aのそれぞれの樹脂粒子間が水で満たされていないので、水の浮力は無い。また、図5(B)及び図5(C)に示すように、被処理水Wの中を気泡Bが上昇する際も、樹脂層(第1充填層41)の上部は水で満たされていないので、仕切り部材50の重しとなるので、仕切り部材50が転覆することはない。 Furthermore, as shown in FIG. 5(A), when water is passed for the first time, the spaces between each of the first resin particles 41A and the second resin particles 42A are not filled with water. There is no buoyancy. Furthermore, as shown in FIGS. 5(B) and 5(C), even when the bubbles B rise in the water to be treated W, the upper part of the resin layer (first packed layer 41) is filled with water. Since there is no cover, the partition member 50 becomes a weight, so the partition member 50 does not overturn.

また、図5(C)に続き、通水を開始し、仕切り部材50の上側に被処理水Wが貯まると、常に上からの水流で第2の樹脂粒子42Aも仕切り部材50に押し付けられるので、そのままの状態が維持される。通水を停止しても、図5中の下側から上側に向かう逆洗をしなければ、そのままの状態を維持できる。 Further, following FIG. 5(C), when water flow is started and the water to be treated W accumulates above the partition member 50, the second resin particles 42A are always pressed against the partition member 50 by the water flow from above. , will remain as it is. Even if water flow is stopped, the current state can be maintained as long as backwashing from the bottom to the top in FIG. 5 is not performed.

<その他の実施形態>
本発明は下記の開示した実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本発明を限定するものではない。
<Other embodiments>
Although the present invention has been described with reference to the embodiments disclosed below, the statements and drawings that form part of this disclosure are not intended to limit the present invention.

<変形例:仕切り部材連結体>
本実施形態では、図1に示したように、塔体31の内側に、平面視で円形状の1枚の仕切り部材50が配置される場合が例示されたが、本発明では、これに限定されない。例えば、図10(A)に示す変形例に係る仕切り部材連結体60のように、3つの仕切り部材が連結されることによって、平面視で円形状の1枚の仕切り部材連結体60が形成されてもよい。
<Modification: Partition member connection body>
In this embodiment, as shown in FIG. 1, the case where one partition member 50 having a circular shape in plan view is arranged inside the tower body 31 was exemplified, but the present invention is limited to this. Not done. For example, like a partition member connection body 60 according to a modified example shown in FIG. 10(A), three partition members are connected to form one partition member connection body 60 having a circular shape in plan view. It's okay.

変形例に係る仕切り部材連結体60は、第1仕切り部材60Aと、第2仕切り部材60Bと、第3仕切り部材60Cと、第1連結具70と、第2連結具72とを備える。仕切り部材連結体60の径dは、塔体31の内径とほぼ等しい。また、第1仕切り部材60Aと、第2仕切り部材60Bと、第3仕切り部材60Cとは、図10(A)中で、それぞれ上下方向に沿って延びる。 The partition member connected body 60 according to the modification includes a first partition member 60A, a second partition member 60B, a third partition member 60C, a first connector 70, and a second connector 72. The diameter d of the partition member connected body 60 is approximately equal to the inner diameter of the tower body 31. Further, the first partition member 60A, the second partition member 60B, and the third partition member 60C each extend in the vertical direction in FIG. 10(A).

第1仕切り部材60Aは、網目部62Aと、網目部の外縁に設けられた枠部材64Aとを有する。第2仕切り部材60Bは、網目部62Bと、網目部の外縁に設けられた枠部材64Bとを有する。第3仕切り部材60Cは、網目部62Cと、網目部の外縁に設けられた枠部材64Cとを有する。なお、変形例に係る仕切り部材連結体60のそれぞれの仕切り部材の網目部の構造と枠部材との構造については、図1中に例示された仕切り部材50の場合と同様であるため、重複説明を省略する。 The first partition member 60A includes a mesh portion 62A and a frame member 64A provided at the outer edge of the mesh portion. The second partition member 60B includes a mesh portion 62B and a frame member 64B provided at the outer edge of the mesh portion. The third partition member 60C has a mesh portion 62C and a frame member 64C provided at the outer edge of the mesh portion. Note that the structure of the mesh portion of each partition member and the structure of the frame member of the partition member connected body 60 according to the modified example are the same as those of the partition member 50 illustrated in FIG. omitted.

第1仕切り部材60Aは、図10(A)中の仕切り部材連結体60における左右方向の中央に位置する。第1仕切り部材60Aは、仕切り部材連結体60の円の中心を含む部材である。第1仕切り部材60Aの外縁は、円の中心を挟んでそれぞれ、図10(A)中で上下方向に沿って延びる一対の直線部と、一対の直線部の上端同士を繋ぐ上側の円弧部と、一対の直線部の下端同士を繋ぐ下側の円弧部とを有する。第1仕切り部材60Aは、図10(A)中で、仕切り部材連結体60の円の中心を挟んで、上下対称かつ左右対称である。 The first partition member 60A is located at the center in the left-right direction of the partition member connected body 60 in FIG. 10(A). The first partition member 60A is a member that includes the center of the circle of the partition member connection body 60. The outer edge of the first partition member 60A includes a pair of straight line parts that extend along the vertical direction in FIG. , and a lower circular arc portion connecting the lower ends of the pair of straight portions. The first partition member 60A is vertically symmetrical and horizontally symmetrical with respect to the center of the circle of the partition member coupling body 60 in FIG. 10(A).

第2仕切り部材60Bは、図10(A)中の第1仕切り部材60Aの左側に位置する。第2仕切り部材60Bの外縁は、図10(A)中の第1仕切り部材60Aの左側の直線部と間を空けて平行に上下方向に沿って延びる直線部と、直線部の左側で直線部の上端と下端とを繋ぐ円弧部とを有する。すなわち、第2仕切り部材60Bは、平面視で扇状であると共に、図10(A)中で、上下対称である。 The second partition member 60B is located on the left side of the first partition member 60A in FIG. 10(A). The outer edge of the second partition member 60B has a straight part extending vertically in parallel with the left straight part of the first partition member 60A in FIG. 10(A) and a straight part on the left side of the straight part. It has an arcuate part connecting the upper end and the lower end of. That is, the second partition member 60B is fan-shaped in plan view and vertically symmetrical in FIG. 10(A).

第3仕切り部材60Cは、図10(A)中の第1仕切り部材60Aの右側に位置する。第3仕切り部材60Cの外縁は、図10(A)中の第1仕切り部材60Aの右側の直線部と間を空けて平行に上下方向に沿って延びる直線部と、直線部の右側で直線部の上端と下端とを繋ぐ円弧部とを有する。すなわち、第3仕切り部材60Cは、平面視で扇状であると共に、図10(A)中で、上下対称である。 The third partition member 60C is located on the right side of the first partition member 60A in FIG. 10(A). The outer edge of the third partition member 60C has a straight part extending vertically in parallel with the straight part on the right side of the first partition member 60A in FIG. 10(A) and a straight part on the right side of the straight part. It has an arcuate part connecting the upper end and the lower end of. That is, the third partition member 60C is fan-shaped in plan view and vertically symmetrical in FIG. 10(A).

図10(A)中、第2仕切り部材60Bと第3仕切り部材60Cとは、左右対称に配置される。すなわち、第2仕切り部材60Bと第3仕切り部材60Cとを部品として共通化できるので、作製コストの低減や保管スペースの削減等の観点で有利である。 In FIG. 10(A), the second partition member 60B and the third partition member 60C are arranged symmetrically. That is, the second partition member 60B and the third partition member 60C can be used as common parts, which is advantageous from the viewpoint of reducing manufacturing costs and storage space.

変形例では、仕切り部材連結体60が上下対称かつ左右対称であるように、3つの仕切り部材50が配置される。なお、本発明では「仕切り部材」の個数は、3つに限定されず、2つ以上の部材によって構成されてよい。 In the modified example, three partition members 50 are arranged so that the partition member connected body 60 is vertically symmetrical and horizontally symmetrical. Note that, in the present invention, the number of "partition members" is not limited to three, and may be composed of two or more members.

第1連結具70は、図10(B)及び図10(C)に示すように、可撓性を有するフレキシブル部材で作製されることによって伸縮自在である。変形例では、第1連結具70は、第1仕切り部材60A及び第2仕切り部材60Bの間と、第1仕切り部材60A及び第3仕切り部材60Cの間とに、それぞれ6つずつ上下方向に互いに間を空けて配置される。なお、本発明では、第1連結具の素材、形状及び個数等については、これに限定されず、適宜変更できる。 As shown in FIGS. 10(B) and 10(C), the first connector 70 is made of a flexible member and is therefore expandable and contractible. In the modified example, six first connectors 70 are provided between the first partition member 60A and the second partition member 60B, and between the first partition member 60A and the third partition member 60C, six each in the vertical direction. placed with a gap between them. Note that in the present invention, the material, shape, number, etc. of the first connector are not limited to these, and can be changed as appropriate.

第2連結具72は、図10(A)に示すように、平面視で帯状である。第2連結具72は、図3中に例示された仕切り部材50の網目部と同様の透水性及び柔軟性を有する素材によって作製される網目状の部材である。また、第2連結具72の網目のメッシュは、塔体31の内側で第2連結具72の上側に位置する第2の樹脂粒子42Aの径よりも小さい。 The second connector 72 is strip-shaped in plan view, as shown in FIG. 10(A). The second connector 72 is a mesh member made of a material having water permeability and flexibility similar to the mesh portion of the partition member 50 illustrated in FIG. 3 . Further, the mesh of the second connector 72 is smaller than the diameter of the second resin particles 42A located above the second connector 72 inside the tower body 31.

第2連結具72は、第1仕切り部材60A及び第2仕切り部材60Bの間と、第1仕切り部材60A及び第3仕切り部材60Cの間とに、それぞれ1つずつ配置される。具体的には、図10(A)及び図10(B)に示すように、左側の第2連結具72は、互いに間を空けて配置された第1仕切り部材60Aの外縁と及び第2仕切り部材60Bの外縁との両方に亘る程度の左右方向の幅を有する。 One second connector 72 is arranged between the first partition member 60A and the second partition member 60B and between the first partition member 60A and the third partition member 60C. Specifically, as shown in FIGS. 10(A) and 10(B), the second connector 72 on the left side connects to the outer edge of the first partition member 60A and the second partition, which are spaced apart from each other. It has a width in the left and right direction that spans both the outer edge of the member 60B.

また、図10(B)中の左側の第2連結具72は、第1仕切り部材60Aの上面と及び第2仕切り部材60Bの上面とに接合される。変形例では、第1仕切り部材60A及び第2仕切り部材60Bと第2連結具72とは、縫い付けによって接合される。なお、本発明では、接合方法はこれに限定されず、熱溶接や接着剤による接合等、任意である。 Further, the second connector 72 on the left side in FIG. 10(B) is joined to the upper surface of the first partition member 60A and the upper surface of the second partition member 60B. In the modified example, the first partition member 60A and the second partition member 60B and the second connector 72 are joined by sewing. Note that in the present invention, the joining method is not limited to this, and any method such as heat welding or joining using an adhesive may be used.

透水性及び柔軟性を有する第2連結具72によって、第1仕切り部材60A及び第2仕切り部材60Bの間の位置における、第1充填層41と第2充填層42との混合が防止されると共に、第2連結具72の下面側で第1充填層41との間に形成される隙間を小さくすることができる。なお、図10(A)及び図10(B)中の右側の第2連結具72は、左側の第2連結具72と左右対称に配置されると共に、左側の第2連結具72と同様の構成を有する。 The second connector 72 having water permeability and flexibility prevents the first filling layer 41 and the second filling layer 42 from mixing at a position between the first partition member 60A and the second partition member 60B. , the gap formed between the lower surface side of the second connector 72 and the first filling layer 41 can be reduced. Note that the second connector 72 on the right side in FIGS. 10(A) and 10(B) is arranged symmetrically with the second connector 72 on the left side, and is similar to the second connector 72 on the left side. It has a configuration.

図10(A)及び図10(B)に示したように、仕切り部材連結体60では、第1連結具70と第2連結具72とによって、第1仕切り部材60Aと第2仕切り部材60Bと第3仕切り部材60Cとが同一面内で展開可能に連結される。なお、本発明では、複数の仕切り部材の連結に際し、第1連結具70と第2連結具72との両方は必須ではなく、いずれか一方によってのみ、複数の仕切り部材が連結されてよい。 As shown in FIGS. 10(A) and 10(B), in the partition member connected body 60, the first connecting tool 70 and the second connecting tool 72 connect the first partition member 60A and the second partition member 60B. The third partition member 60C is connected so as to be expandable within the same plane. Note that, in the present invention, when connecting a plurality of partition members, both the first connector 70 and the second connector 72 are not essential, and the plurality of partition members may be connected by only one of them.

また、図10(C)に示すように、変形例に係る仕切り部材連結体60では、第1連結具70と第2連結具72とによって、第1仕切り部材60Aと第2仕切り部材60Bと第3仕切り部材60Cとが互いに重ね合わせ可能である。なお、図10(C)中では、第2仕切り部材60Bと第3仕切り部材60Cとが、いずれも第1仕切り部材60Aの上側に重ね合わせられた状態が例示されたが、本発明では、重ね合わせ状態は、これに限定されない。本発明では、第2仕切り部材60Bと第3仕切り部材60Cとが、いずれも第1仕切り部材60Aの下側に重ね合わせられてよいし、或いは、第1仕切り部材60Aを挟んで互いに反対側の面上に重ね合わせられてもよい。 Moreover, as shown in FIG. 10(C), in the partition member connected body 60 according to the modification, the first connecting tool 70 and the second connecting tool 72 connect the first partition member 60A, the second partition member 60B, and the The three partition members 60C can be stacked on top of each other. In addition, in FIG. 10(C), the second partition member 60B and the third partition member 60C are both overlapped on the upper side of the first partition member 60A, but in the present invention, the overlapping The alignment state is not limited to this. In the present invention, the second partition member 60B and the third partition member 60C may both be stacked on the lower side of the first partition member 60A, or may be placed on opposite sides of the first partition member 60A. It may be superimposed on the surface.

また、変形例では、3つの仕切り部材のそれぞれに枠部材が設けられた場合が例示されたが、本発明では、枠部材は、複数の仕切り部材において塔体31の内壁面に対向する部分の外縁にのみ設けられてもよい。すなわち、枠部材は、互いに隣接する仕切り部材の外縁の直線部には設けられず、展開状態の仕切り部材連結体60の円形の外縁を構成する部分にのみ設けられてよい。隣接する仕切り部材の外縁の直線部に枠部材が設けられないので、枠部材が設けられない部分においても、網目部の柔軟性を確保できる。 Further, in the modified example, a case was illustrated in which a frame member was provided for each of the three partition members, but in the present invention, the frame member is provided in the portion of the plurality of partition members that faces the inner wall surface of the tower body 31. It may be provided only on the outer edge. That is, the frame member may not be provided on the linear portion of the outer edge of the partition members that are adjacent to each other, but may be provided only on the portion that constitutes the circular outer edge of the partition member connected body 60 in the expanded state. Since the frame member is not provided on the linear portion of the outer edge of the adjacent partition members, the flexibility of the mesh portion can be ensured even in the portion where the frame member is not provided.

変形例に係る仕切り部材連結体60の使用方法としては、例えば図10(C)に示すように、まず、複数の仕切り部材が重ね合わせられた状態の仕切り部材連結体60を塔体31の内側に搬送する。そして、搬送された複数の仕切り部材を塔体31の内側で展開し、展開された状態の仕切り部材連結体60を第1充填層41の上に配置すればよい。 As a method of using the partition member connected body 60 according to the modified example, first, as shown in FIG. Transport to. Then, the plurality of transported partition members may be unfolded inside the tower body 31, and the partition member connected body 60 in the unfolded state may be placed on the first packed bed 41.

また、仕切り部材を複数の部品としておいて、部品として塔内に持ち込み、塔内で結合させるようにしても良い。 Alternatively, the partition member may be made into a plurality of parts, brought into the tower as parts, and combined within the tower.

変形例では、仕切り部材連結体60をコンパクトに折り畳めるので、例えば、塔体31に設けられる作業孔が比較的小径であっても、作業孔を通過させることができる。 In the modified example, since the partition member connected body 60 can be folded compactly, even if the working hole provided in the tower body 31 has a relatively small diameter, it can be passed through the working hole, for example.

また、図1~図11中に例示した構成を部分的に組み合わせて、本発明を構成することもできる。以上のとおり本発明は、上記に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲の発明特定事項によってのみ定められるものである。 Furthermore, the present invention can be configured by partially combining the configurations illustrated in FIGS. 1 to 11. As described above, the present invention includes various embodiments not described above, and the technical scope of the present invention is determined only by the matters specifying the invention in the claims that are reasonable from the above explanation. be.

10 超純水製造装置
12 前処理部
14 一次純水製造部
16 タンク
18 二次純水製造部
25 樹脂塔
31 塔体
32 入口管
34 出口管
41 第1充填層
41A 第1の樹脂粒子
42 第2充填層
42A 第2の樹脂粒子
50 仕切り部材
50Z 仕切り部材
52 網目部
54 枠部材
60 仕切り部材連結体
60A,60B,60C 仕切り部材
62A,62B,62C 網目部
64A,64B,64C 枠部材
70 第1連結具
72 第2連結具
B 気泡
G 隙間
H 水位
POU ユースポイント
R1 粒径
R2 粒径
W 被処理水
d 径
10 Ultrapure water production device 12 Pretreatment section 14 Primary pure water production section 16 Tank 18 Secondary pure water production section 25 Resin tower 31 Tower body 32 Inlet pipe 34 Outlet pipe 41 First packed bed 41A First resin particles 42 2 Filling layer 42A Second resin particles 50 Partition member 50Z Partition member 52 Mesh part 54 Frame member 60 Partition member connections 60A, 60B, 60C Partition members 62A, 62B, 62C Mesh part 64A, 64B, 64C Frame member 70 1st Connector 72 Second connector B Air bubble G Gap H Water level POU Use point R1 Particle size R2 Particle size W Treated water d Diameter

Claims (7)

筒状の塔体の内側に被処理水と接触する第1の樹脂粒子を含む第1充填層を形成し、
透水性を有する仕切り部材であって、前記第1の樹脂粒子とは異なる第2の樹脂粒子の重量に応じて弾性変形可能な程度の柔軟性を有する素材で形成された仕切り部材を、前記第1充填層の上に前記塔体に対して非拘束状態で配置し、
前記仕切り部材の上に第2の樹脂粒子を含む第2充填層を形成し、
前記塔体の内側で被処理水を上側から下側に流通させることを特徴とする、
被処理水の処理方法。
forming a first packed bed containing first resin particles in contact with the water to be treated inside the cylindrical column;
The partition member has water permeability and is made of a material that is flexible enough to be elastically deformed according to the weight of second resin particles different from the first resin particles. 1 disposed on a packed bed in an unrestrained state with respect to the column body,
forming a second filling layer containing second resin particles on the partition member;
The water to be treated is caused to flow from the upper side to the lower side inside the column body,
How to treat treated water.
前記第1の樹脂粒子又は前記第2の樹脂粒子は、イオン交換樹脂であり、非再生式で用いられることを特徴とする、
請求項1に記載の被処理水の処理方法。
The first resin particles or the second resin particles are ion exchange resins and are used in a non-regenerative manner,
The method for treating water to be treated according to claim 1.
外縁に枠部材を有する前記仕切り部材を配置することを特徴とする、
請求項1又は2に記載の被処理水の処理方法。
characterized in that the partition member having a frame member on the outer edge is arranged,
The method for treating water to be treated according to claim 1 or 2.
複数の前記仕切り部材が互いに重ね合わせ可能、及び、同一面内で展開可能に連結された仕切り部材連結体であって複数の前記仕切り部材が重ね合わせられた状態の前記仕切り部材連結体を前記塔体の内側に搬送し、
搬送された複数の前記仕切り部材を前記塔体の内側で展開し、
展開された状態の前記仕切り部材連結体を前記第1充填層の上に配置することを特徴とする、
請求項3に記載の被処理水の処理方法。
A plurality of partition members are connected to each other so that they can be overlapped with each other and can be expanded in the same plane, and the partition member connection body in which the plurality of partition members are overlapped is connected to the tower. transported inside the body,
Expanding the plurality of transported partition members inside the tower body,
The partition member connected body in an expanded state is arranged on the first filling layer,
The method for treating water to be treated according to claim 3.
請求項1又は2に記載の被処理水の処理方法によって処理された被処理水を用いて超純水を製造することを特徴とする、
超純水の製造方法。
Ultrapure water is produced using the water to be treated by the method for treating water to be treated according to claim 1 or 2,
A method for producing ultrapure water.
筒状の塔体と、
前記塔体の内側に充填され被処理水と接触する第1の樹脂粒子を含む第1充填層と、
第1の樹脂粒子とは異なる第2の樹脂粒子を含み前記塔体の内側で前記第1充填層の上側に充填された第2充填層と、
透水性を有する仕切り部材であって、前記第1充填層と前記第2充填層との境界に前記塔体に対して非拘束状態で配置され、第2の樹脂粒子の重量に応じて弾性変形可能な程度の柔軟性を有する素材で形成された仕切り部材と、
を備えることを特徴とする複層床式の樹脂塔。
A cylindrical tower body,
a first packed bed containing first resin particles filled inside the column body and in contact with the water to be treated;
a second packed bed containing second resin particles different from the first resin particles and filled above the first packed bed inside the tower;
A partition member having water permeability, which is disposed at the boundary between the first packed bed and the second packed bed in a non-restricted state with respect to the tower body, and is elastically deformed according to the weight of the second resin particles. A partition member formed of a material having a possible degree of flexibility;
A multi-layered resin tower characterized by being equipped with.
原水に前処理が施される前処理部と、
前記前処理部によって処理された原水が濾過される一次純水製造部と、
前記一次純水製造部によって処理された一次純水の純度を高めることによって超純水を製造する二次純水製造部と、
前記前処理部と前記一次純水製造部と前記二次純水製造部とのうち少なくともいずれかに設けられた請求項6に記載の複層床式の樹脂塔と、
を備えることを特徴とする超純水製造装置。
a pretreatment section where raw water is pretreated;
a primary pure water production unit in which the raw water treated by the pretreatment unit is filtered;
a secondary pure water production unit that produces ultrapure water by increasing the purity of the primary pure water processed by the primary pure water production unit;
The multi-layered resin tower according to claim 6, which is provided in at least one of the pretreatment section, the primary pure water production section, and the secondary pure water production section;
An ultrapure water production device characterized by comprising:
JP2022057557A 2022-03-30 2022-03-30 Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water Pending JP2023149145A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022057557A JP2023149145A (en) 2022-03-30 2022-03-30 Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water
PCT/JP2023/001802 WO2023188725A1 (en) 2022-03-30 2023-01-20 Method for treating water to be treated, method for producing ultrapure water, multi-layered bed resin tower, and ultrapure water production apparatus
TW112103613A TW202348561A (en) 2022-03-30 2023-02-02 Method of treating water to be treated, method of producing ultrapure water, multi-layered bed resin tower, and ultrapure water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022057557A JP2023149145A (en) 2022-03-30 2022-03-30 Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water

Publications (1)

Publication Number Publication Date
JP2023149145A true JP2023149145A (en) 2023-10-13

Family

ID=88200749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022057557A Pending JP2023149145A (en) 2022-03-30 2022-03-30 Method of treating water to be treated, method of producing ultrapure water, bilayer type resin tower, and device of producing ultrapure water

Country Status (3)

Country Link
JP (1) JP2023149145A (en)
TW (1) TW202348561A (en)
WO (1) WO2023188725A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554377A (en) * 1968-09-18 1971-01-12 Omer E Miller Liquid treating apparatus
JPS62136298U (en) * 1986-02-19 1987-08-27
GB9505091D0 (en) * 1995-03-14 1995-05-03 Permutit Co Ltd Apparatus for purification of liquid
JP2006192354A (en) * 2005-01-12 2006-07-27 Kurita Water Ind Ltd Non-regenerative type ion exchange vessel and ultrapure water production apparatus

Also Published As

Publication number Publication date
WO2023188725A1 (en) 2023-10-05
TW202348561A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP5045099B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
US20110180491A1 (en) Method and apparatus for treating organic matter-containing water
EP1642867B1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
WO2023188725A1 (en) Method for treating water to be treated, method for producing ultrapure water, multi-layered bed resin tower, and ultrapure water production apparatus
JP4439674B2 (en) Deionized water production equipment
KR101494302B1 (en) Apparatus for removal of manganese ions in backwashing water for membrane filtration
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
JP3982355B2 (en) Ion exchange device and ultrapure water production device
JP2009208046A (en) Apparatus for producing electrodeionization water
JP5842347B2 (en) Subsystem for ultrapure water production
JP2016047496A (en) Pure water production apparatus, ultrapure water production system, and pure water production method
WO2018037870A1 (en) Regenerative ion exchange device and operation method therefor
JP2016097389A (en) Reactor storage body, reactor and water treatment device
KR102489442B1 (en) Anion exchange resin and water treatment method using the same
JP2940651B2 (en) Pure water production equipment
JP2018086657A (en) Pure water production apparatus, ultrapure water production system, and pure water producing method
JP2020025923A (en) Ion exchange device and ultrapure water production device
WO2024053305A1 (en) Ultrapure water production device and ultrapure water production method
JP2024036140A (en) Ultrapure water production equipment and ultrapure water production method
WO2022190727A1 (en) Water treatment method and water treatment apparatus
JP7012196B1 (en) Water treatment equipment, ultrapure water production equipment, water treatment method and regenerative ion exchange tower
JP2022053969A (en) Pure water production device, and pure water production method
JP2023077744A (en) Regeneration process for pure water production apparatus and pure water production apparatus