JP2023147596A - Processing device, processing state monitoring method and cutting tool - Google Patents

Processing device, processing state monitoring method and cutting tool Download PDF

Info

Publication number
JP2023147596A
JP2023147596A JP2022055179A JP2022055179A JP2023147596A JP 2023147596 A JP2023147596 A JP 2023147596A JP 2022055179 A JP2022055179 A JP 2022055179A JP 2022055179 A JP2022055179 A JP 2022055179A JP 2023147596 A JP2023147596 A JP 2023147596A
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
workpiece
thermoelectromotive force
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022055179A
Other languages
Japanese (ja)
Inventor
英二 社本
Eiji Shamoto
健宏 早坂
Takehiro HAYASAKA
優二 秋元
Yuji Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Bellows Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Fuji Bellows Co Ltd
Fuji Seiko Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Bellows Co Ltd, Fuji Seiko Ltd, Tokai National Higher Education and Research System NUC filed Critical Fuji Bellows Co Ltd
Priority to JP2022055179A priority Critical patent/JP2023147596A/en
Publication of JP2023147596A publication Critical patent/JP2023147596A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

To provide a technique for monitoring a processing state by utilizing a principle of a tool-material to be cut thermocouple method.SOLUTION: A rotating mechanism 11 rotates a spindle 10 mounted with a cutting tool 20 or with a material 30 to be cut. A movement control part 102 controls relative movement of the cutting tool 20 with respect to the material 30 to be cut. A monitoring part 104 monitors a processing state, while using thermoelectromotive force generated at a plurality of contact points at which the cutting tool 20 contacts the material 30 to be cut, during rotation of the spindle.SELECTED DRAWING: Figure 1

Description

本開示は、加工装置、加工状態監視方法および切削工具に関する。 The present disclosure relates to a machining device, a machining state monitoring method, and a cutting tool.

切削加工中の工具刃先温度を測定する手法として、工具-被削材熱電対法が知られている。工具-被削材熱電対法は、2種類の導電体でつくったループの接点間に温度差が発生すると、接点間に熱起電力が生じてループに電流が流れるゼーベック効果を利用して、工具と被削材との間に発生する熱起電力から工具刃先温度(切削温度)を測定する。熱起電力は2つの接点の温度と2種類の導電体の材料によって決まるため、熱起電力を測定すれば、予め作成した温度校正曲線から切削温度を求めることができる。なお、切削工具材料の主成分は一般に非金属であるが、多くの場合、導電性のバインダ等を含むため、熱起電力の測定が可能である。 The tool-workpiece thermocouple method is known as a method for measuring the temperature of the tool edge during cutting. The tool-workpiece thermocouple method uses the Seebeck effect, which occurs when a temperature difference occurs between the contacts of a loop made of two types of conductors, a thermoelectromotive force is generated between the contacts and current flows through the loop. The tool tip temperature (cutting temperature) is measured from the thermoelectromotive force generated between the tool and the workpiece. Since the thermoelectromotive force is determined by the temperatures of the two contact points and the materials of the two types of conductors, by measuring the thermoelectromotive force, the cutting temperature can be determined from a temperature calibration curve created in advance. Although the main component of the cutting tool material is generally nonmetallic, it often contains a conductive binder and the like, so thermoelectromotive force can be measured.

非特許文献1は、工具-被削材熱電対法を実現する構造として、回転主軸と固定構造との電気接点に水銀接点を使用し、工具-被削材間の短絡を防ぐための電気的な絶縁部品を使用した構造を開示する。また非特許文献2は、工具-被削材熱電対法を実現する構造として、回転主軸と固定構造との電気接点にスリップリングを使用し、工具-被削材間の短絡を防ぐための電気的な絶縁部品を使用した構造を開示する。 Non-Patent Document 1 discloses a structure for realizing the tool-workpiece material thermocouple method, which uses a mercury contact as an electrical contact between the rotating spindle and a stationary structure to prevent a short circuit between the tool and the workpiece material. A structure using insulating parts is disclosed. Furthermore, Non-Patent Document 2 discloses a structure for realizing the tool-workpiece material thermocouple method, in which a slip ring is used as an electrical contact point between the rotating spindle and a fixed structure, and an electrical The present invention discloses a structure using standard insulating parts.

Milton C. Shaw, “Metal Cutting Principles”, Claendon Press Oxford, 1984, p.252Milton C. Shaw, “Metal Cutting Principles”, Claendon Press Oxford, 1984, p.252 山崎格,“高硬度材の断続切削における加工特性”,Nachi Technical Report - Machining,株式会社不二越,Oct 2011, Vol.23A2Itaru Yamazaki, “Machining characteristics in interrupted cutting of high hardness materials”, Nachi Technical Report - Machining, Fujikoshi Co., Ltd., Oct 2011, Vol.23A2

非特許文献1、2に開示された技術は、いずれも回転主軸の後端側に電気接点を設けるため、回転主軸を改造する必要があり、コストがかかる。また、水銀の使用は安全上の問題があり、スリップリングは高速回転する主軸に使用することが困難である。そこで回転主軸を改造することなく、また水銀やスリップリングを使用することなく、加工の状態を簡易に監視するための技術の開発が望まれている。 In both of the techniques disclosed in Non-Patent Documents 1 and 2, an electric contact is provided on the rear end side of the rotating main shaft, so the rotating main shaft needs to be modified, which increases cost. Additionally, the use of mercury poses safety problems, and slip rings are difficult to use on spindles that rotate at high speeds. Therefore, there is a need for the development of a technology to easily monitor the machining status without modifying the rotating spindle or using mercury or slip rings.

本開示はこうした状況に鑑みてなされており、その目的とするところは、工具-被削材熱電対法の原理を利用して加工の状態を監視するための技術を提供することにある。 The present disclosure has been made in view of these circumstances, and its purpose is to provide a technique for monitoring the state of machining using the principle of the tool-workpiece thermocouple method.

上記課題を解決するために、本開示のある態様の加工装置は、切削工具または被削材が取り付けられた主軸を回転させる回転機構と、被削材に対する切削工具の相対的な移動を制御する移動制御部と、主軸回転中に、切削工具と被削材とが接触する複数の接触点で発生する熱起電力を用いて、加工の状態を監視する監視部とを備える。 In order to solve the above problems, a processing device according to an aspect of the present disclosure includes a rotation mechanism that rotates a main shaft to which a cutting tool or a workpiece is attached, and a rotation mechanism that controls relative movement of the cutting tool with respect to the workpiece. It includes a movement control section and a monitoring section that monitors the machining state using thermoelectromotive force generated at a plurality of contact points where the cutting tool and the workpiece come into contact while the spindle is rotating.

本開示の別の態様の加工状態監視方法は、切削工具と被削材とが接触する複数の接触点で発生する熱起電力の差分を測定するステップと、複数の接触点で発生する熱起電力の差分を用いて、加工の状態を監視するステップとを有する。 A machining state monitoring method according to another aspect of the present disclosure includes a step of measuring a difference in thermoelectromotive force generated at a plurality of contact points where a cutting tool and a workpiece come into contact; and monitoring the machining state using the power difference.

本開示のさらに別の態様の切削工具は、被削材を加工するとき被削材に接触する複数の導電性の接触部材と、複数の接触部材が固定される固定部材と、複数の接触部材の間を絶縁する絶縁部材と、少なくとも1つの接触部材に接続する導電部材とを備える。 A cutting tool according to still another aspect of the present disclosure includes a plurality of conductive contact members that contact a workpiece when processing the workpiece, a fixing member to which the plurality of contact members are fixed, and a plurality of contact members. and an electrically conductive member connected to at least one contact member.

なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 Note that any combination of the above components and the expressions of the present disclosure converted between methods, devices, systems, etc. are also effective as aspects of the present disclosure.

実施形態の加工装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a processing device according to an embodiment. 切削工具の例を示す図である。It is a figure showing an example of a cutting tool. 切削温度と切削速度の関係を表す実験結果を示す図である。It is a figure which shows the experimental result showing the relationship between cutting temperature and cutting speed. 切削温度と送り量の関係を表す実験結果を示す図である。It is a figure which shows the experimental result showing the relationship between cutting temperature and feed amount. 切削工具の例を示す図である。It is a figure showing an example of a cutting tool. 複数の接触点における電圧を測定する回路の例を示す図である。FIG. 2 is a diagram illustrating an example of a circuit that measures voltages at multiple contact points. 切削工具の例を示す図である。It is a figure showing an example of a cutting tool. 切削工具の例を示す図である。It is a figure showing an example of a cutting tool.

図1は、実施形態の加工装置1の概略構成の一例を示す。実施形態の加工装置1は、チャック31を介して主軸10に取り付けられた被削材30を回転させて、回転する被削材30に切削工具20の切れ刃を切り込ませる旋盤である。切削工具20は、複数の導電性のシャンク24a、24bと、複数の導電性の切れ刃23a、23bと、切れ刃23aと切れ刃23bの間を絶縁する絶縁部材25とを備える。シャンク24a、24bは、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23a、23bは、それぞれシャンク24a、24bに固定される。シャンク24a、24bは絶縁部材25により連結されて一体に形成されてよく、切削工具20は3つ以上の切れ刃を備えてよい。実施形態では、切削工具20の切れ刃23a、23bと被削材30とが異なる材料で形成されて、異なる種類の導電体であることを前提とし、切削加工中、被削材30が複数の切れ刃23a、23bにより同時に切削される。 FIG. 1 shows an example of a schematic configuration of a processing apparatus 1 according to an embodiment. The processing device 1 of the embodiment is a lathe that rotates a workpiece 30 attached to a main shaft 10 via a chuck 31 and causes a cutting edge of a cutting tool 20 to cut into the rotating workpiece 30. The cutting tool 20 includes a plurality of conductive shanks 24a and 24b, a plurality of conductive cutting edges 23a and 23b, and an insulating member 25 that insulates between the cutting edges 23a and 23b. The shank 24a, 24b is a fixing member that fixes a chip (blade portion) having a cutting edge, and the cutting edge 23a, 23b is fixed to the shank 24a, 24b, respectively. The shank 24a, 24b may be connected by an insulating member 25 and formed integrally, and the cutting tool 20 may include three or more cutting edges. In the embodiment, it is assumed that the cutting edges 23a, 23b of the cutting tool 20 and the workpiece 30 are made of different materials and are different types of conductors, and that the workpiece 30 has a plurality of Cutting is performed simultaneously by the cutting edges 23a and 23b.

加工装置1はベッド2上に、主軸ハウジング12と、被削材30に対して切削工具20を相対的に移動させる送り機構21とを備える。切削工具20は、工具固定部22に固定され、工具固定部22は、送り機構21に移動可能に支持される。図1に示す加工装置1では、送り機構21が工具固定部22をX軸、Y軸、Z軸方向に動かす機構を有し、被削材30に対して切削工具20を相対的に移動させる。送り機構21は、各軸用のモータおよびボールネジを含んで構成されてよい。なお加工装置1の別の例では、切削工具20が主軸10に固定されて、送り機構が、被削材30を切削工具20に対して移動させてもよい。 The processing device 1 includes, on a bed 2, a spindle housing 12 and a feed mechanism 21 that moves a cutting tool 20 relative to a workpiece 30. The cutting tool 20 is fixed to a tool fixing part 22, and the tool fixing part 22 is movably supported by the feeding mechanism 21. In the processing apparatus 1 shown in FIG. 1, the feed mechanism 21 has a mechanism for moving the tool fixing part 22 in the X-axis, Y-axis, and Z-axis directions, and moves the cutting tool 20 relative to the workpiece 30. . The sending mechanism 21 may include a motor and a ball screw for each axis. Note that in another example of the processing device 1, the cutting tool 20 may be fixed to the main shaft 10, and the feed mechanism may move the workpiece 30 relative to the cutting tool 20.

主軸10は、主軸ハウジング12に回転可能に支持され、具体的には主軸ハウジング12に固定された金属製またはセラミック製のベアリング13a、13bが、主軸10を回転可能に支持する。回転機構11は主軸10を回転する機構を備え、モータと、モータの回転動力を主軸10に伝達する伝達構造を有する。伝達構造は、モータの回転動力を主軸10に伝達するVベルトや歯車を含んで構成されてよい。なお回転機構11は、主軸10に内蔵されたビルトインモータであって、主軸10を直接駆動してもよい。 The main shaft 10 is rotatably supported by a main shaft housing 12. Specifically, metal or ceramic bearings 13a and 13b fixed to the main shaft housing 12 rotatably support the main shaft 10. The rotation mechanism 11 includes a mechanism for rotating the main shaft 10, and has a motor and a transmission structure for transmitting the rotational power of the motor to the main shaft 10. The transmission structure may include a V-belt and gears that transmit the rotational power of the motor to the main shaft 10. Note that the rotation mechanism 11 may be a built-in motor built into the main shaft 10 and directly drive the main shaft 10.

実施形態の加工装置1は、主軸回転中に、切削工具20と被削材30とが接触する複数の接触点で発生する熱起電力を用いて、加工の状態を監視する機能を有する。実施形態において複数の切れ刃23a、23bは、加工中に被削材30に接触する接触部材であり、複数の接触点50a、50bで被削材30を同時に加工する。このとき接触点50a、50bの温度が高温となることで、複数の切れ刃23a、23bのそれぞれと被削材30との間に熱起電力(電圧)が発生する。切削工具20において導電部材42aは、切れ刃23aと測定部45を電気的に接続し、導電部材42bは、切れ刃23bと測定部45を電気的に接続する。導電部材42aおよび導電部材42bは、外部を絶縁体で被覆した導線であってよく、それぞれシャンク24aおよびシャンク24bの内部に配置されてよい。測定部45は、切れ刃23aと被削材30の間に生じた熱起電力と、切れ刃23bと被削材30の間に生じた熱起電力の差分を測定する。 The processing apparatus 1 of the embodiment has a function of monitoring the state of processing using thermoelectromotive force generated at a plurality of contact points where the cutting tool 20 and the workpiece 30 come into contact while the main shaft is rotating. In the embodiment, the plurality of cutting edges 23a, 23b are contact members that contact the workpiece 30 during machining, and simultaneously process the workpiece 30 at the plurality of contact points 50a, 50b. At this time, the temperature of the contact points 50a, 50b becomes high, and a thermoelectromotive force (voltage) is generated between each of the plurality of cutting edges 23a, 23b and the workpiece 30. In the cutting tool 20, the conductive member 42a electrically connects the cutting edge 23a and the measuring section 45, and the conductive member 42b electrically connects the cutting edge 23b and the measuring section 45. The conductive member 42a and the conductive member 42b may be conductive wires whose exteriors are coated with an insulator, and may be disposed inside the shank 24a and the shank 24b, respectively. The measurement unit 45 measures the difference between the thermoelectromotive force generated between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23b and the workpiece 30.

図1において測定部45は、切削工具20の外部に設けられているように示されているが、切削工具20が測定部45を備えて、測定部45が切削工具20の内部に設けられることが好ましい。この場合、切削工具20は、加工時に複数の切れ刃23a、23bにおいて生じる熱起電力の差分を測定する測定部45を内蔵することになる。なお測定部45は加工装置1に設けられてもよく、この場合は、切削工具20が導電部材42a、42bの端部に接続する端子を備え、切削工具20が加工装置1に取り付けられたときに、当該端子に、加工装置1における測定部45から延びる配線が接続して、加工装置1における測定部45が、複数の切れ刃23a、23bにおいて生じる熱起電力の差分を測定する。 Although the measuring section 45 is shown as being provided outside the cutting tool 20 in FIG. is preferred. In this case, the cutting tool 20 has a built-in measurement unit 45 that measures the difference in thermoelectromotive force generated between the plurality of cutting edges 23a and 23b during machining. Note that the measuring unit 45 may be provided in the processing device 1; in this case, the cutting tool 20 is provided with terminals connected to the ends of the conductive members 42a, 42b, and when the cutting tool 20 is attached to the processing device 1, Then, a wire extending from a measuring section 45 in the processing device 1 is connected to the terminal, and the measuring section 45 in the processing device 1 measures the difference in thermoelectromotive force generated at the plurality of cutting edges 23a and 23b.

制御部100は、回転機構11による主軸10の回転を制御する主軸制御部101と、送り機構21による切削工具20と被削材30の間の相対的な移動を制御する移動制御部102と、測定部45により測定された電圧を取得する取得部103と、取得部103により取得された電圧を用いて加工の状態を監視する監視部104とを備える。 The control unit 100 includes a spindle control unit 101 that controls rotation of the spindle 10 by the rotation mechanism 11, a movement control unit 102 that controls relative movement between the cutting tool 20 and the workpiece 30 by the feed mechanism 21, It includes an acquisition section 103 that acquires the voltage measured by the measurement section 45, and a monitoring section 104 that monitors the processing state using the voltage acquired by the acquisition section 103.

一般に、ほとんどの回転工具は複数の切れ刃を有し(多刃工具と呼ばれる)、固定工具(代表的には旋削工具)においても高能率化や静的/動的変位低減(バランスカットなどとも呼ばれる)、びびり振動安定化のために多刃工具が適用されることがある。実施形態では、多刃工具の切れ刃間を絶縁し、加工時における複数の接触点(切削点)で生じる熱起電力の差分から、加工の状態を監視する手法を提案する。 In general, most rotary tools have multiple cutting edges (called multi-edge tools), and fixed tools (typically turning tools) also have high efficiency and static/dynamic displacement reduction (also known as balance cutting, etc.). ), multi-edged tools are sometimes applied for chatter vibration stabilization. In the embodiment, a method is proposed in which the cutting edges of a multi-edged tool are insulated and the machining state is monitored from the difference in thermoelectromotive force generated at a plurality of contact points (cutting points) during machining.

制御部100の機能ブロックとして記載される各要素は、ハードウェア的には、回路ブロック、メモリ、その他のLSI、CPU等で構成することができ、ソフトウェア的には、システムソフトウェアや、メモリにロードされたアプリケーションプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。 Each element described as a functional block of the control unit 100 can be composed of a circuit block, a memory, another LSI, a CPU, etc. in terms of hardware, and can be composed of system software or a system loaded into memory. This is realized by an application program, etc. Therefore, those skilled in the art will understand that these functional blocks can be implemented in various ways using only hardware, only software, or a combination thereof, and are not limited to either.

測定部45は、切れ刃23aと被削材30の間の切削温度に起因して発生する熱起電力Vと、切れ刃23bと被削材30の間の切削温度に起因して発生する熱起電力Vの差分V(=V-V)を測定する。取得部103は、測定部45が測定した電圧Vを取得して、監視部104は、電圧Vを用いて、切削加工の状態を監視する。 The measurement unit 45 measures a thermoelectromotive force VA generated due to the cutting temperature between the cutting edge 23a and the workpiece 30, and a thermoelectromotive force generated due to the cutting temperature between the cutting edge 23b and the workpiece 30. The difference V (=V A −V B ) in thermoelectromotive force V B is measured. The acquisition unit 103 acquires the voltage V measured by the measurement unit 45, and the monitoring unit 104 uses the voltage V to monitor the cutting state.

図2(a)は、切削工具20の別の例を示す。図2(a)に示す切削工具20は主軸10に取り付けられ、導電性のホルダ26と、複数の導電性の切れ刃23a、23bと、切れ刃23aと切れ刃23bの間を絶縁する絶縁部材25とを備える。ホルダ26は、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23a、23bは、ホルダ26に固定される。図2(a)に示す切削工具20は中ぐり多刃工具であり、径の異なる位置に2つの切れ刃23a、23bを有する。切削工具20がN個の切れ刃23を有する場合、隣り合う切れ刃同士は、(360°/N)離れた回転角度位置に配置されることが好ましい。この例で、絶縁部材25は、切れ刃23aとホルダ26の間に設けられて、切れ刃23aと切れ刃23bの間を絶縁しているが、切れ刃23bとホルダ26の間に設けられてもよい。 FIG. 2(a) shows another example of the cutting tool 20. The cutting tool 20 shown in FIG. 2(a) is attached to the main shaft 10, and includes a conductive holder 26, a plurality of conductive cutting edges 23a and 23b, and an insulating member that insulates between the cutting edges 23a and 23b. 25. The holder 26 is a fixing member that fixes a tip (blade portion) having a cutting edge, and the cutting edges 23a and 23b are fixed to the holder 26. The cutting tool 20 shown in FIG. 2(a) is a boring multi-edge tool, and has two cutting edges 23a and 23b at positions with different diameters. When the cutting tool 20 has N cutting edges 23, it is preferable that adjacent cutting edges are arranged at rotational angle positions separated by (360°/N). In this example, the insulating member 25 is provided between the cutting edge 23a and the holder 26 to insulate the cutting edge 23a and the cutting edge 23b, but the insulating member 25 is provided between the cutting edge 23b and the holder 26. Good too.

導電部材42aは、切れ刃23aと測定部45を電気的に接続し、導電部材42bは、切れ刃23bと測定部45を電気的に接続する。導電部材42aおよび導電部材42bは、外部を絶縁体で被覆した導線であってよく、それぞれホルダ26の内部に配置されてよい。測定部45は、切れ刃23aと被削材30の間に生じた熱起電力と、切れ刃23bと被削材30の間に生じた熱起電力の差分を測定する。測定部45は切削工具20の内部に設けられてよく、または切削工具20の外部に設けられてもよい。 The conductive member 42a electrically connects the cutting edge 23a and the measurement section 45, and the conductive member 42b electrically connects the cutting edge 23b and the measurement section 45. The conductive member 42a and the conductive member 42b may be conductive wires whose exteriors are coated with an insulator, and may be placed inside the holder 26, respectively. The measurement unit 45 measures the difference between the thermoelectromotive force generated between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23b and the workpiece 30. The measurement unit 45 may be provided inside the cutting tool 20 or may be provided outside the cutting tool 20.

図2(b)は、切削工具20の別の例を示す。図2(b)に示す切削工具20は主軸10に取り付けられ、導電性のホルダ26と、複数の導電性の切れ刃23a、23bと、切れ刃23aと切れ刃23bの間を絶縁する絶縁部材25とを備える。ホルダ26は、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23a、23bは、ホルダ26に固定される。図2(b)に示す切削工具20において、切れ刃23aは座ぐり刃であり、切れ刃23bはドリルであって、切れ刃23aは、異なる回転角度位置に複数設けられてもよい。絶縁部材25は、切れ刃23aとホルダ26の間に設けられてよいが、切れ刃23bとホルダ26の間に設けられてもよい。 FIG. 2(b) shows another example of the cutting tool 20. The cutting tool 20 shown in FIG. 2(b) is attached to the main shaft 10, and includes a conductive holder 26, a plurality of conductive cutting edges 23a and 23b, and an insulating member that insulates between the cutting edges 23a and 23b. 25. The holder 26 is a fixing member that fixes a tip (blade portion) having a cutting edge, and the cutting edges 23a and 23b are fixed to the holder 26. In the cutting tool 20 shown in FIG. 2(b), the cutting edge 23a is a countersinking edge, the cutting edge 23b is a drill, and a plurality of cutting edges 23a may be provided at different rotation angle positions. The insulating member 25 may be provided between the cutting edge 23a and the holder 26, but may also be provided between the cutting edge 23b and the holder 26.

導電部材42aは、切れ刃23aと測定部45を電気的に接続し、導電部材42bは、切れ刃23bと測定部45を電気的に接続する。導電部材42aおよび導電部材42bは、外部を絶縁体で被覆した導線であってよく、それぞれホルダ26の内部に配置されてよい。測定部45は、切れ刃23aと被削材30の間に生じた熱起電力と、切れ刃23bと被削材30の間に生じた熱起電力の差分を測定する。測定部45は切削工具20の内部に設けられてよく、または切削工具20の外部に設けられてもよい。 The conductive member 42a electrically connects the cutting edge 23a and the measurement section 45, and the conductive member 42b electrically connects the cutting edge 23b and the measurement section 45. The conductive member 42a and the conductive member 42b may be conductive wires whose exteriors are coated with an insulator, and may be placed inside the holder 26, respectively. The measurement unit 45 measures the difference between the thermoelectromotive force generated between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23b and the workpiece 30. The measurement unit 45 may be provided inside the cutting tool 20 or may be provided outside the cutting tool 20.

以下の図3、図4は、切削速度と切取り厚さが、切削温度に与える影響を測定した実験結果を示す。
図3(a)は、複数の切削速度で切削したときの切削温度と工具角度の関係を示す。この実験の切削条件は、以下のとおりである。
・切削様式:ダウンカット、ドライ加工
・被削材:S45C
・工具材料:超硬合金
・ねじれ角:0度
・工具径:20mm
・送り量:0.1mm/刃
・軸方向切込み:6mm
・半径方向切込みRd:0.5mm
ダウンカットで切れ刃が最も被削材側に位置する角度を360度としたとき、切れ刃が被削材を加工する角度範囲(工具角度範囲)は、約340度~約360度であった。
図3(a)の実験結果は、切削速度が高いほど、切削温度が高くなることを示す。
3 and 4 below show the results of an experiment in which the effects of cutting speed and cutting thickness on cutting temperature were measured.
FIG. 3(a) shows the relationship between cutting temperature and tool angle when cutting at a plurality of cutting speeds. The cutting conditions for this experiment are as follows.
・Cutting style: Down cut, dry processing ・Work material: S45C
・Tool material: Cemented carbide ・Helix angle: 0 degrees ・Tool diameter: 20mm
・Feed amount: 0.1mm/blade/axial depth of cut: 6mm
・Radial depth of cut Rd: 0.5mm
When the angle at which the cutting edge is closest to the workpiece in down cutting is 360 degrees, the angle range at which the cutting edge processes the workpiece (tool angle range) is approximately 340 degrees to approximately 360 degrees. .
The experimental results in FIG. 3(a) show that the higher the cutting speed, the higher the cutting temperature.

図3(b)は、複数の半径方向切込みで切削したときの切削温度と切削速度の関係を示す。図3(b)に示すように、切削温度と切削速度の関係は、べき乗則にしたがっている。 FIG. 3(b) shows the relationship between cutting temperature and cutting speed when cutting with a plurality of radial depths of cut. As shown in FIG. 3(b), the relationship between cutting temperature and cutting speed follows a power law.

図4(a)は、複数の送り量で切削したときの切削温度と工具角度の関係を示す。送り量は切取り厚さに相関し、送り量が大きくなると、切取り厚さは大きくなり、送り量が小さくなると、切取り厚さも小さくなる。
この実験の切削条件は、以下のとおりである。
・切削様式:ダウンカット、ドライ加工
・被削材:S45C
・工具材料:超硬合金
・ねじれ角:0度
・工具径:20mm
・切削速度:314.2m/分
・軸方向切込み:6mm
・半径方向切込みRd:0.5mm
図4(a)の実験結果は、切取り厚さに相関をもつ送り量が大きいほど、切削温度が高くなることを示す。
FIG. 4(a) shows the relationship between cutting temperature and tool angle when cutting with a plurality of feed rates. The feed rate is correlated with the cut thickness; as the feed rate increases, the cut thickness increases, and as the feed rate decreases, the cut thickness also decreases.
The cutting conditions for this experiment are as follows.
・Cutting style: Down cut, dry processing ・Work material: S45C
・Tool material: Cemented carbide ・Helix angle: 0 degrees ・Tool diameter: 20mm
・Cutting speed: 314.2m/min ・Axial depth of cut: 6mm
・Radial depth of cut Rd: 0.5mm
The experimental results shown in FIG. 4(a) show that the larger the feed rate, which is correlated with the cutting thickness, the higher the cutting temperature.

図4(b)は、切削温度と送り量の関係を示す。図4(b)に示すように、切削温度と送り量の関係は、べき乗則にしたがっており、切削温度と切取り厚さの関係も、べき乗則にしたがうことが分かる。 FIG. 4(b) shows the relationship between cutting temperature and feed rate. As shown in FIG. 4(b), it can be seen that the relationship between cutting temperature and feed amount follows a power law, and the relationship between cutting temperature and cutting thickness also follows a power law.

以上の図3,図4に示す実験結果から、切削温度は、切削速度のべき乗に比例し、また切取り厚さのべき乗に比例することが確認される。図1に示す加工プロセスにおいて、接触点50aと接触点50bの切削速度を比べると、接触点50aは、接触点50bよりも径方向外側に位置するため、接触点50aにおける切削速度の方が速い。また切取り厚さは、切れ刃形状や径方向切込み等に依存するため、一般に、接触点50aと接触点50bにおける切取り厚さは異なる。そのため図1に示す加工プロセスにおいて、接触点50aにおける切削温度と接触点50bにおける切削温度は異なり、測定部45は、その温度差を測定する。 From the experimental results shown in FIGS. 3 and 4 above, it is confirmed that the cutting temperature is proportional to the power of the cutting speed and proportional to the power of the cutting thickness. In the machining process shown in FIG. 1, when the cutting speeds at the contact point 50a and the contact point 50b are compared, the cutting speed at the contact point 50a is faster because the contact point 50a is located on the outer side in the radial direction than the contact point 50b. . Further, since the cutting thickness depends on the shape of the cutting edge, the radial cutting depth, etc., the cutting thickness at the contact point 50a and the contact point 50b is generally different. Therefore, in the machining process shown in FIG. 1, the cutting temperature at the contact point 50a and the cutting temperature at the contact point 50b are different, and the measurement unit 45 measures the temperature difference.

図1に示す切削工具20において、切れ刃23bが振動し、その切取り厚さが増減すると、それに伴って切削温度も増減する。測定部45は、切れ刃23aと被削材30の間の切削温度に起因する熱起電力と、切れ刃23bと被削材30の間の切削温度に起因する熱起電力の差分を測定するため、その測定電圧Vは、切れ刃23bと被削材30の間の切削温度の増減により振動する。監視部104は、測定電圧Vの時間変化にもとづいて、測定電圧Vが振動していることを検出すると、切れ刃23aまたは切れ刃23bの少なくとも一方が振動していることを判定する。 In the cutting tool 20 shown in FIG. 1, when the cutting edge 23b vibrates and the cutting thickness increases or decreases, the cutting temperature also increases or decreases accordingly. The measurement unit 45 measures the difference between the thermoelectromotive force caused by the cutting temperature between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force caused by the cutting temperature between the cutting edge 23b and the workpiece 30. Therefore, the measured voltage V oscillates due to an increase or decrease in the cutting temperature between the cutting edge 23b and the workpiece 30. When the monitoring unit 104 detects that the measured voltage V is vibrating based on the temporal change in the measured voltage V, it determines that at least one of the cutting edge 23a and the cutting edge 23b is vibrating.

また図2(a)に示す切削工具20において、ホルダ26と被削材30の間に振動が生じると、切れ刃23aによる切取り厚さと、切れ刃23bによる切取り厚さのそれぞれが増減する。このとき、切れ刃23aと切れ刃23bが取り付けられている回転角度位置が異なるため、切れ刃23aによる切取り厚さ変動と切れ刃23bによる切取り厚さ変動の位相が異なり、その結果、接触点50aと接触点50bにおける切削温度の差分の振幅が大きくなる。監視部104は、振動する電圧Vから、切れ刃23aまたは切れ刃23bの少なくとも一方が被削材30に対して振動していることを判定する。なお電圧Vの振動振幅(最大値と最小値の差の絶対値)に対して所定の閾値Athを設定して、監視部104は、電圧Vの振動振幅が所定の閾値Ath以上であれば、切れ刃23aおよび切れ刃23bが被削材30に対して振動していること、つまり振動問題が発生していることを判定してもよい。
以上のように、監視部104は、複数の接触点で発生する熱起電力の差分(測定電圧V)の時間変化にもとづいて、複数の切れ刃23の少なくとも1つが被削材30に対して振動していることを判定できる。
Further, in the cutting tool 20 shown in FIG. 2A, when vibration occurs between the holder 26 and the workpiece 30, the cutting thickness by the cutting edge 23a and the cutting thickness by the cutting edge 23b each increase or decrease. At this time, since the rotation angle positions at which the cutting edge 23a and the cutting edge 23b are attached are different, the phases of the cutting thickness variation due to the cutting edge 23a and the cutting thickness variation due to the cutting edge 23b are different, and as a result, the contact point 50a The amplitude of the difference in cutting temperature at the contact point 50b increases. The monitoring unit 104 determines from the vibrating voltage V that at least one of the cutting edge 23a and the cutting edge 23b is vibrating with respect to the workpiece 30. Note that a predetermined threshold value Ath is set for the vibration amplitude of the voltage V (the absolute value of the difference between the maximum value and the minimum value), and the monitoring unit 104 determines that if the vibration amplitude of the voltage V is equal to or greater than the predetermined threshold value Ath, It may be determined that the cutting edge 23a and the cutting edge 23b are vibrating relative to the workpiece 30, that is, that a vibration problem is occurring.
As described above, the monitoring unit 104 determines whether at least one of the plurality of cutting edges 23 is against the workpiece 30 based on the time change of the difference in thermoelectromotive force (measured voltage V) generated at a plurality of contact points. It can be determined that it is vibrating.

図1に示す切削工具20において、切れ刃23aがRバイトである場合、切込み量が減少すると平均的な切取り厚さが減少する。そのため、被削材30の外径が理想値(予定値)より小さいと、切れ刃23aにおける切削温度(工具と被削材間の熱起電力は、それらの間の接触領域の平均的な温度に対応する)は本来予定されている温度よりも低下する。監視部104は、理想的な形状の被削材30に対して切削が行われたときに測定されるべき基準値Vrefを保持しており、(測定電圧V-基準値Vref)の絶対値が所定値を超えると、被削材30の外径の誤差が許容値より大きいことを判定してよい。あるいは監視部104は、(測定電圧V-基準値Vref)が第1の所定値を超えると被削材30の外径が許容範囲の上限より大きいことを判定し、第2の所定値を下回ると被削材30の外径が許容範囲の下限より小さいことを判定してよい(このとき、基準値Vref>0であり、第1の所定値は正の閾値、第2の所定値は負の閾値である)。なお被削材30の外径が偏心している場合、主軸回転に同期して、切れ刃23aの切込み量に相関する切取り厚さが増減するため、監視部104は、測定電圧Vの回転に同期する振動成分から、外径が偏心していることを判定してよい。 In the cutting tool 20 shown in FIG. 1, when the cutting edge 23a is an R-bit, when the depth of cut decreases, the average cutting thickness decreases. Therefore, if the outer diameter of the workpiece 30 is smaller than the ideal value (planned value), the cutting temperature at the cutting edge 23a (the thermoelectromotive force between the tool and the workpiece is the average temperature of the contact area between them). ) is lower than the originally planned temperature. The monitoring unit 104 holds a reference value Vref that should be measured when cutting is performed on the ideally shaped workpiece 30, and the absolute value of (measured voltage V - reference value Vref) is If the predetermined value is exceeded, it may be determined that the error in the outer diameter of the workpiece 30 is larger than the allowable value. Alternatively, the monitoring unit 104 determines that the outer diameter of the workpiece 30 is larger than the upper limit of the allowable range when (measured voltage V - reference value Vref) exceeds the first predetermined value, and falls below the second predetermined value. It may be determined that the outer diameter of the workpiece 30 is smaller than the lower limit of the allowable range (at this time, the reference value Vref>0, the first predetermined value is a positive threshold, and the second predetermined value is a negative threshold). ). Note that when the outer diameter of the workpiece 30 is eccentric, the cutting thickness, which correlates to the depth of cut of the cutting edge 23a, increases or decreases in synchronization with the rotation of the main shaft. It may be determined from the vibration component that the outer diameter is eccentric.

図2(b)に示す切削工具20において、切れ刃23aに欠損が生じたり、または切れ刃23bよりも大きな摩耗が生じている場合、切れ刃23aの鋭利さが劣化したことにより、切れ刃23aにおける切削温度が上昇する。この場合、監視部104は、測定電圧Vが大きくなったことを検出することで、切れ刃23aに異常が生じていることを判定できる。特に欠損に関して、監視部104は、監視中の測定電圧Vが一瞬低下(欠損による一時的な切取り厚さの減少による)し、その直後に大きくなったことを検出することで、切れ刃23aに欠損が生じたことを推定してよい。 In the cutting tool 20 shown in FIG. 2(b), if the cutting edge 23a is damaged or has greater wear than the cutting edge 23b, the sharpness of the cutting edge 23a has deteriorated. The cutting temperature at increases. In this case, the monitoring unit 104 can determine that an abnormality has occurred in the cutting edge 23a by detecting that the measured voltage V has increased. In particular, regarding defects, the monitoring unit 104 detects that the measured voltage V during monitoring drops momentarily (due to a temporary decrease in the cutting thickness due to the defect) and then increases immediately thereafter, so that the monitoring unit 104 It may be assumed that a defect has occurred.

図5は、切削工具20の別の例を示す。図5に示す切削工具20は主軸10に取り付けられ、導電性のホルダ26と、複数の導電性の切れ刃23a、23b、23cと、切れ刃23a、23b、23cの間を互いに絶縁する絶縁部材25a、25bとを備える。ホルダ26は、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23a、23b、23cは、ホルダ26に固定される。図5に示す切削工具20は正面フライス工具であって、複数の切れ刃23a、23b、23cが、同じ径方向位置であって且つ異なる回転角度位置に設けられる。この例では絶縁部材25aが、切れ刃23aとホルダ26の間に設けられ、絶縁部材25bが、切れ刃23bとホルダ26の間に設けられているが、絶縁部は、切れ刃23cとホルダ26の間に設けられてもよい。 FIG. 5 shows another example of the cutting tool 20. A cutting tool 20 shown in FIG. 5 is attached to a main shaft 10, and an insulating member insulates a conductive holder 26, a plurality of conductive cutting edges 23a, 23b, 23c, and the cutting edges 23a, 23b, 23c from each other. 25a and 25b. The holder 26 is a fixing member that fixes a tip (blade portion) having a cutting edge, and the cutting edges 23a, 23b, and 23c are fixed to the holder 26. The cutting tool 20 shown in FIG. 5 is a face milling tool, and a plurality of cutting edges 23a, 23b, 23c are provided at the same radial position but at different rotation angle positions. In this example, the insulating member 25a is provided between the cutting edge 23a and the holder 26, and the insulating member 25b is provided between the cutting edge 23b and the holder 26. It may be provided between.

導電部材42aは、切れ刃23aと測定部45aを電気的に接続し、導電部材42bは、切れ刃23cと測定部45aを電気的に接続する。測定部45aは、切れ刃23aと被削材30の間に生じた熱起電力と、切れ刃23cと被削材30の間に生じた熱起電力の差分を測定する。導電部材42cは、切れ刃23cと測定部45bを電気的に接続し、導電部材42dは、切れ刃23bと測定部45bを電気的に接続する。測定部45bは、切れ刃23cと被削材30の間に生じた熱起電力と、切れ刃23bと被削材30の間に生じた熱起電力の差分を測定する。導電部材42a、42b、42c、42dは、外部を絶縁体で被覆した導線であってよく、それぞれホルダ26の内部に配置されてよい。なお、別の測定部45が、切れ刃23aと被削材30の間に生じた熱起電力と、切れ刃23bと被削材30の間に生じた熱起電力の差分を測定してもよい。また別の切れ刃23が、切れ刃23cから180度ずれた位置に設けられてもよい。 The conductive member 42a electrically connects the cutting edge 23a and the measuring section 45a, and the conductive member 42b electrically connects the cutting edge 23c and the measuring section 45a. The measurement unit 45a measures the difference between the thermoelectromotive force generated between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23c and the workpiece 30. The conductive member 42c electrically connects the cutting edge 23c and the measuring section 45b, and the conductive member 42d electrically connects the cutting edge 23b and the measuring section 45b. The measurement unit 45b measures the difference between the thermoelectromotive force generated between the cutting edge 23c and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23b and the workpiece 30. The conductive members 42a, 42b, 42c, and 42d may be conductive wires whose exteriors are coated with an insulator, and may be arranged inside the holder 26, respectively. Note that even if another measurement unit 45 measures the difference between the thermoelectromotive force generated between the cutting edge 23a and the workpiece 30 and the thermoelectromotive force generated between the cutting edge 23b and the workpiece 30, good. Further, another cutting edge 23 may be provided at a position shifted by 180 degrees from the cutting edge 23c.

監視部104は、測定部45aが測定した測定電圧Vaと、測定部45bが測定した測定電圧Vbから、加工の状態を監視する。図5に示す切削工具20において、複数の切れ刃23a、23b、23cの形状が同一であり、複数の切れ刃23a、23b、23cの径方向の位置が同一であれば、各切れ刃は同じ条件で加工を行うため、切削温度は等しくなる。そのため監視部104は、測定電圧Vaが概ねゼロでなければ、切れ刃23aまたは切れ刃23cのいずれかに異常が生じていることを判定し、測定電圧Vbが概ねゼロでなければ、切れ刃23cまたは切れ刃23bのいずれかに異常が生じていることを判定してよい。このように監視部104は、複数の接触点で発生する熱起電力の差分の大きさにもとづいて、加工の状態を監視してよい。 The monitoring unit 104 monitors the processing state based on the measurement voltage Va measured by the measurement unit 45a and the measurement voltage Vb measured by the measurement unit 45b. In the cutting tool 20 shown in FIG. 5, if the shapes of the plurality of cutting edges 23a, 23b, 23c are the same, and the radial positions of the plurality of cutting edges 23a, 23b, 23c are the same, each cutting edge is the same. Since machining is performed under these conditions, the cutting temperatures are the same. Therefore, if the measured voltage Va is not approximately zero, the monitoring unit 104 determines that an abnormality has occurred in either the cutting edge 23a or the cutting edge 23c, and if the measured voltage Vb is not approximately zero, the monitoring unit 104 determines that an abnormality has occurred in the cutting edge 23c. Alternatively, it may be determined that an abnormality has occurred in any of the cutting edges 23b. In this way, the monitoring unit 104 may monitor the processing state based on the magnitude of the difference in thermoelectromotive force generated at a plurality of contact points.

なお図5に示すフライス加工において、実際には各切れ刃の取付け誤差や形状誤差等によって切取り厚さが異なり、接触点間で温度差は発生する。そのため監視部104は、測定電圧Va、Vbを監視して、切れ刃が偏心していることを判定してもよい。このとき監視部104は、隣り合う切れ刃の熱起電力の差分から、切取り厚さの差を推定し、周方向に配置されている切れ刃同士の切取り厚さの差の推定値を積算することで周方向に配置された各切れ刃の出入り(各偏心量)を推定してよい。 In the milling process shown in FIG. 5, the cutting thickness actually differs due to installation errors and shape errors of each cutting edge, and a temperature difference occurs between the contact points. Therefore, the monitoring unit 104 may determine that the cutting edge is eccentric by monitoring the measured voltages Va and Vb. At this time, the monitoring unit 104 estimates the difference in cutting thickness from the difference in thermoelectromotive force between adjacent cutting edges, and integrates the estimated value of the difference in cutting thickness between cutting edges arranged in the circumferential direction. By doing this, it is possible to estimate the comings and goings (each amount of eccentricity) of each cutting edge arranged in the circumferential direction.

なお図2(a)に示した中ぐり工具が、3つ以上の異なる径方向位置に切れ刃23を備えてもよい。監視部104は、1つの切れ刃23を基準刃として、それ以外の切れ刃23との熱起電力の差分を監視してもよいし、たとえば任意の2つの切れ刃23における熱起電力の差分を監視してもよい。監視部104は、異なる切れ刃23の組み合わせの熱起電力の差分を同時に監視してもよく、マルチプレクサ等で時間的に切り替えて一つずつ監視してもよい。 Note that the boring tool shown in FIG. 2(a) may be provided with cutting edges 23 at three or more different radial positions. The monitoring unit 104 may use one cutting edge 23 as a reference edge and monitor the difference in thermoelectromotive force with other cutting edges 23, or monitor the difference in thermoelectromotive force between any two cutting edges 23, for example. may be monitored. The monitoring unit 104 may monitor the difference in thermoelectromotive force of different combinations of cutting edges 23 simultaneously, or may monitor them one by one by switching over time using a multiplexer or the like.

図6は、5つの接触点における電圧を測定する回路の例を示す。なお接触点の数は例示であり、5つ以外の数であってよい。この例では、各接触点で生じる熱起電力と抵抗の直列回路を並列に接続し、5つの接触点を2つのグループに分割して、各グループにおける熱起電力の重み付き平均VとVの差を測定する。図6に示す例では、電圧Eは接触点Aにおける熱起電力、電圧Eは接触点Bにおける熱起電力、電圧Eは接触点Cにおける熱起電力、電圧Eは接触点Mにおける熱起電力、電圧Eは接触点Nにおける熱起電力を示し、接触点A、B、Cが第1グループ、接触点M、Nが第2グループに区分されている。 FIG. 6 shows an example of a circuit that measures voltages at five contact points. Note that the number of contact points is an example, and may be a number other than five. In this example, the thermoelectromotive force generated at each contact point and the series circuit of the resistance are connected in parallel, the five contact points are divided into two groups, and the weighted averages of the thermoelectromotive force in each group are V 1 and V Measure the difference between the two . In the example shown in FIG. 6, the voltage E A is the thermoelectromotive force at the contact point A, the voltage E B is the thermoelectromotive force at the contact point B, the voltage E C is the thermoelectromotive force at the contact point C, and the voltage E M is the thermoelectromotive force at the contact point M. Thermoelectromotive force and voltage E N indicate the thermoelectromotive force at contact point N, and contact points A, B, and C are divided into a first group, and contact points M and N are divided into a second group.

第1グループにおける熱起電力の重み付き平均Vは、以下の式1により導出される。

Figure 2023147596000002
第2グループにおける熱起電力の重み付き平均Vは、以下の式2により導出される。
Figure 2023147596000003
測定部45は、差分の電圧V(=V-V2)を測定し、監視部104は、電圧Vを監視して、加工の状態を判定する。 The weighted average V 1 of the thermoelectromotive force in the first group is derived by Equation 1 below.
Figure 2023147596000002
The weighted average V 2 of the thermoelectromotive force in the second group is derived by Equation 2 below.
Figure 2023147596000003
The measuring unit 45 measures the voltage difference V (=V 1 −V 2) , and the monitoring unit 104 monitors the voltage V to determine the state of machining.

たとえば、複数の切れ刃のうち、加工における重要度の高い切れ刃が1つ存在する場合に、第1グループを当該切れ刃のみで構成し、第2グループを他の複数の切れ刃で構成することで、監視部104は、重要な切れ刃における異常発生の有無を、高精度に監視することが可能となる。 For example, if there is one cutting edge with high importance in machining among multiple cutting edges, the first group is made up of only that cutting edge, and the second group is made up of other plurality of cutting edges. This makes it possible for the monitoring unit 104 to monitor with high accuracy whether or not an abnormality has occurred at an important cutting edge.

図7は、切削工具20の別の例を示す。図7に示す切削工具20は主軸10に取り付けられ、導電性のホルダ26と、導電性の切れ刃23aと、導電性のガイドパッド27と、切れ刃23aとガイドパッド27の間を絶縁する絶縁部材25とを備える。ホルダ26は、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23aは、ホルダ26に固定される。ガイドパッド27は、深穴加工時の真直度を高めることを目的として設けられ、切れ刃23aが加工した加工面を擦過する。この例において、切れ刃23aおよびガイドパッド27は、加工中に被削材30に接触する接触部材であり、被削材30に同時に接触する。絶縁部材25は、ガイドパッド27とホルダ26の間に設けられて、切れ刃23aとガイドパッド27の間を絶縁しているが、切れ刃23aとホルダ26の間に設けられてもよい。 FIG. 7 shows another example of the cutting tool 20. The cutting tool 20 shown in FIG. 7 is attached to the main shaft 10, and includes a conductive holder 26, a conductive cutting edge 23a, a conductive guide pad 27, and an insulation between the cutting edge 23a and the guide pad 27. member 25. The holder 26 is a fixing member that fixes a tip (blade portion) having a cutting edge, and the cutting edge 23a is fixed to the holder 26. The guide pad 27 is provided for the purpose of increasing straightness during deep hole machining, and scrapes the machined surface processed by the cutting edge 23a. In this example, the cutting edge 23a and the guide pad 27 are contact members that contact the workpiece 30 during machining, and contact the workpiece 30 at the same time. The insulating member 25 is provided between the guide pad 27 and the holder 26 to insulate the cutting edge 23a and the guide pad 27, but may be provided between the cutting edge 23a and the holder 26.

導電部材42aは、切れ刃23aと測定部45を電気的に接続し、導電部材42bは、ガイドパッド27と測定部45を電気的に接続する。導電部材42aおよび導電部材42bは、外部を絶縁体で被覆した導線であってよく、それぞれホルダ26の内部に配置されてよい。測定部45は、切れ刃23aが被削材30を切削する切削点における切削温度に起因する熱起電力と、ガイドパッド27が被削材30を擦過する擦過点における擦過温度に起因する熱起電力の差分を測定する。測定部45は切削工具20の内部に設けられてよく、または切削工具20の外部に設けられてもよい。 The conductive member 42a electrically connects the cutting edge 23a and the measuring section 45, and the conductive member 42b electrically connects the guide pad 27 and the measuring section 45. The conductive member 42a and the conductive member 42b may be conductive wires whose exteriors are coated with an insulator, and may be placed inside the holder 26, respectively. The measurement unit 45 measures thermal electromotive force caused by the cutting temperature at the cutting point where the cutting edge 23a cuts the workpiece 30, and thermal electromotive force caused by the friction temperature at the friction point where the guide pad 27 rubs the workpiece 30. Measure the power difference. The measurement unit 45 may be provided inside the cutting tool 20 or may be provided outside the cutting tool 20.

図8は、切削工具20の別の例を示す。図8に示す切削工具20は主軸10に取り付けられ、導電性のホルダ26と、導電性の切れ刃23aと、導電性のブラシ28と、切れ刃23aとブラシ28の間を絶縁する絶縁部材25とを備える。ホルダ26は、切れ刃を有するチップ(刃部)を固定する固定部材であり、切れ刃23aは、ホルダ26に固定される。ブラシ28は、切れ刃23aが加工した加工面を擦過する。この例において、切れ刃23aおよびブラシ28は、加工中に被削材30に接触する接触部材であり、被削材30に同時に接触する。絶縁部材25は、ブラシ28とホルダ26の間に設けられて、切れ刃23aとブラシ28の間を絶縁しているが、切れ刃23aとホルダ26の間に設けられてもよい。 FIG. 8 shows another example of the cutting tool 20. The cutting tool 20 shown in FIG. 8 is attached to the main shaft 10, and includes a conductive holder 26, a conductive cutting edge 23a, a conductive brush 28, and an insulating member 25 that insulates between the cutting edge 23a and the brush 28. Equipped with. The holder 26 is a fixing member that fixes a tip (blade portion) having a cutting edge, and the cutting edge 23a is fixed to the holder 26. The brush 28 rubs the machined surface processed by the cutting edge 23a. In this example, the cutting edge 23a and the brush 28 are contact members that contact the workpiece 30 during machining, and contact the workpiece 30 at the same time. The insulating member 25 is provided between the brush 28 and the holder 26 to insulate the cutting edge 23a and the brush 28, but may be provided between the cutting edge 23a and the holder 26.

導電部材42aは、切れ刃23aと測定部45を電気的に接続し、導電部材42bは、ブラシ28と測定部45を電気的に接続する。導電部材42aおよび導電部材42bは、外部を絶縁体で被覆した導線であってよく、それぞれホルダ26の内部に配置されてよい。測定部45は、切れ刃23aが被削材30を切削する切削点における切削温度に起因する熱起電力と、ブラシ28が被削材30を擦過する擦過点における擦過温度に起因する熱起電力の差分を測定する。擦過温度は、主として擦過速度と擦過方向の幅によって定まることが知られており、切削中に大きく変化することはなく、また一般には切削温度に比べて大分低い。そのため測定部45は、切削温度に起因する熱起電力と、擦過温度に起因する熱起電力の差分を測定することで、実質的に切れ刃23aにおける切削温度を測定できる。 The conductive member 42a electrically connects the cutting edge 23a and the measuring section 45, and the conductive member 42b electrically connects the brush 28 and the measuring section 45. The conductive member 42a and the conductive member 42b may be conductive wires whose exteriors are coated with an insulator, and may be placed inside the holder 26, respectively. The measurement unit 45 measures a thermoelectromotive force caused by the cutting temperature at the cutting point where the cutting edge 23a cuts the workpiece 30, and a thermoelectromotive force caused by the friction temperature at the friction point where the brush 28 scrapes the workpiece 30. Measure the difference between. It is known that the rubbing temperature is determined mainly by the rubbing speed and the width in the rubbing direction, does not change significantly during cutting, and is generally much lower than the cutting temperature. Therefore, the measurement unit 45 can substantially measure the cutting temperature at the cutting edge 23a by measuring the difference between the thermoelectromotive force caused by the cutting temperature and the thermoelectromotive force caused by the abrasion temperature.

実施形態において、切れ刃23を固定するホルダ26が回転する場合、ホルダ26は、測定部45が測定した電圧を加工装置1に送信する送信部を備えてよい。送信部は、たとえばBluetooth(登録商標)プロトコルやIEEE802.11プロトコルなどの通信プロトコルを用いた無線通信機能を有してよく、測定部45が測定した電圧をAD変換して、リアルタイムに加工装置1に送信してよい。またAD変換の前に、増幅部やアンチエリアシングフィルタ部を有してよく、それらのための電源部(例えばバッテリ、無線給電装置)を有してよい。なおホルダ26は、測定部45が測定した電圧を時間情報とともに記憶するメモリを有し、加工終了後に、メモリから電圧および時間情報が読み出されてもよい。 In the embodiment, when the holder 26 that fixes the cutting edge 23 rotates, the holder 26 may include a transmitting section that transmits the voltage measured by the measuring section 45 to the processing device 1. The transmitting unit may have a wireless communication function using a communication protocol such as the Bluetooth (registered trademark) protocol or the IEEE802.11 protocol, and converts the voltage measured by the measuring unit 45 from AD to the processing device 1 in real time. You may send it to Further, before AD conversion, an amplification section and an anti-aliasing filter section may be provided, and a power supply section (for example, a battery, a wireless power supply device) for these sections may be provided. Note that the holder 26 has a memory that stores the voltage measured by the measurement unit 45 together with time information, and the voltage and time information may be read from the memory after processing is completed.

以上、本開示を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the embodiments. Those skilled in the art will understand that this embodiment is merely an example, and that various modifications are possible to the combinations of these components and processing processes, and that such modifications are also within the scope of the present disclosure. .

本開示の態様の概要は、次の通りである。
本開示のある態様の加工装置は、切削工具または被削材が取り付けられた主軸を回転させる回転機構と、被削材に対する切削工具の相対的な移動を制御する移動制御部と、主軸回転中に、切削工具と被削材とが接触する複数の接触点で発生する熱起電力を用いて、加工の状態を監視する監視部とを備える。
A summary of aspects of the disclosure is as follows.
A processing device according to an aspect of the present disclosure includes: a rotation mechanism that rotates a main shaft to which a cutting tool or a workpiece is attached; a movement control unit that controls relative movement of the cutting tool with respect to the workpiece; The apparatus further includes a monitoring unit that monitors the state of machining using thermoelectromotive force generated at a plurality of contact points where the cutting tool and the workpiece come into contact.

この態様によると、主軸に接点構造を設けることなく、加工の状態を監視することが可能となる。 According to this aspect, it is possible to monitor the machining state without providing a contact structure on the main shaft.

監視部は、複数の接触点で発生する熱起電力の差分を用いて、加工の状態を監視してよい。このとき監視部は、複数の接触点で発生する熱起電力の差分の時間変化にもとづいて、加工の状態を監視してよい。また監視部は、複数の接触点で発生する熱起電力の差分の大きさにもとづいて、加工の状態を監視してよい。 The monitoring unit may monitor the processing state using the difference in thermoelectromotive force generated at a plurality of contact points. At this time, the monitoring unit may monitor the processing state based on the time change of the difference in thermoelectromotive force generated at the plurality of contact points. Further, the monitoring unit may monitor the processing state based on the magnitude of the difference in thermoelectromotive force generated at a plurality of contact points.

本開示の別の態様の加工状態監視方法は、切削工具と被削材とが接触する複数の接触点で発生する熱起電力の差分を測定するステップと、複数の接触点で発生する熱起電力の差分を用いて、加工の状態を監視するステップとを有する。 A machining state monitoring method according to another aspect of the present disclosure includes a step of measuring a difference in thermoelectromotive force generated at a plurality of contact points where a cutting tool and a workpiece come into contact; and monitoring the machining state using the power difference.

この態様によると、複数の接触点で発生する熱起電力を利用して、加工の状態を監視することが可能となる。 According to this aspect, it becomes possible to monitor the processing state by using thermoelectromotive force generated at a plurality of contact points.

本開示の別の態様の切削工具は、被削材を加工するとき被削材に接触する複数の導電性の接触部材と、複数の接触部材が固定される固定部材と、複数の接触部材の間を絶縁する絶縁部材と、少なくとも1つの接触部材に接続する導電部材とを備える。 A cutting tool according to another aspect of the present disclosure includes a plurality of conductive contact members that come into contact with a workpiece when processing the workpiece, a fixing member to which the plurality of contact members are fixed, and a plurality of contact members that are connected to each other. The contact member includes an insulating member that insulates the contact member, and a conductive member that connects to at least one contact member.

この態様の切削工具を利用することで、加工装置は、切削工具が被削材に接触する複数の接触点で発生する熱起電力を用いて、加工状態の監視を容易に実現できるようになる。 By using the cutting tool of this aspect, the processing device can easily monitor the processing state using thermoelectromotive force generated at multiple contact points where the cutting tool contacts the workpiece. .

切削工具は導電部材に接続して、加工時に複数の接触部材において生じる熱起電力の差分を測定する測定部を備えてよい。切削工具は、測定した熱起電力の差分を送信する送信部を備えてよい。なお測定部および/または送信部は、切削工具におけるホルダまたはシャンクに設けられてよい。 The cutting tool may include a measuring section that is connected to the conductive member and measures the difference in thermoelectromotive force generated in the plurality of contact members during machining. The cutting tool may include a transmitter that transmits the measured thermoelectromotive force difference. Note that the measuring section and/or the transmitting section may be provided in the holder or shank of the cutting tool.

切削工具は、導電部材に接続する端子であって、当該切削工具が加工装置に取り付けられたときに、加工装置における電圧測定部が接続する端子を備えてよい。また導電部材は固定部材の内部に設けられてよい。 The cutting tool may include a terminal connected to the conductive member and connected to a voltage measuring section in the processing device when the cutting tool is attached to the processing device. Further, the conductive member may be provided inside the fixing member.

1・・・加工装置、10・・・主軸、11・・・回転機構、20・・・切削工具、21・・・送り機構、23a,23b,23c・・・切れ刃、24a,24b・・・シャンク、25,25a,25b・・・絶縁部材、26・・・ホルダ、27・・・ガイドパッド、28・・・ブラシ、30・・・被削材、31・・・チャック、42a,42b,42c,42d・・・導電部材、45,45a,45b・・・測定部、50a,50b・・・接触点、100・・・制御部、101・・・主軸制御部、102・・・移動制御部、103・・・取得部、104・・・監視部。 DESCRIPTION OF SYMBOLS 1... Processing device, 10... Main spindle, 11... Rotating mechanism, 20... Cutting tool, 21... Feeding mechanism, 23a, 23b, 23c... Cutting edge, 24a, 24b... -Shank, 25, 25a, 25b... Insulating member, 26... Holder, 27... Guide pad, 28... Brush, 30... Work material, 31... Chuck, 42a, 42b , 42c, 42d... Conductive member, 45, 45a, 45b... Measuring section, 50a, 50b... Contact point, 100... Control section, 101... Spindle control section, 102... Movement Control unit, 103... acquisition unit, 104... monitoring unit.

Claims (10)

切削工具または被削材が取り付けられた主軸を回転させる回転機構と、
被削材に対する切削工具の相対的な移動を制御する移動制御部と、
主軸回転中に、切削工具と被削材とが接触する複数の接触点で発生する熱起電力を用いて、加工の状態を監視する監視部と、
を備える加工装置。
a rotation mechanism that rotates a main shaft to which a cutting tool or a workpiece is attached;
a movement control unit that controls relative movement of the cutting tool with respect to the workpiece;
a monitoring unit that monitors the machining state using thermoelectromotive force generated at multiple contact points where the cutting tool and the workpiece come into contact while the spindle is rotating;
A processing device equipped with.
前記監視部は、複数の接触点で発生する熱起電力の差分を用いて、加工の状態を監視する、
ことを特徴とする請求項1に記載の加工装置。
The monitoring unit monitors the processing state using a difference in thermoelectromotive force generated at a plurality of contact points.
The processing apparatus according to claim 1, characterized in that:
前記監視部は、複数の接触点で発生する熱起電力の差分の時間変化にもとづいて、加工の状態を監視する、
ことを特徴とする請求項2に記載の加工装置。
The monitoring unit monitors the processing state based on a time change in a difference in thermoelectromotive force generated at a plurality of contact points.
The processing apparatus according to claim 2, characterized in that:
前記監視部は、複数の接触点で発生する熱起電力の差分の大きさにもとづいて、加工の状態を監視する、
ことを特徴とする請求項2に記載の加工装置。
The monitoring unit monitors the processing state based on the magnitude of the difference in thermoelectromotive force generated at the plurality of contact points.
The processing apparatus according to claim 2, characterized in that:
加工の状態を監視する方法であって、
切削工具と被削材とが接触する複数の接触点で発生する熱起電力の差分を測定するステップと、
複数の接触点で発生する熱起電力の差分を用いて、加工の状態を監視するステップと、
を有することを特徴とする加工状態監視方法。
A method for monitoring processing conditions, the method comprising:
measuring the difference in thermoelectromotive force generated at a plurality of contact points where the cutting tool and the workpiece come into contact;
monitoring the processing state using the difference in thermoelectromotive force generated at multiple contact points;
A method for monitoring machining conditions, comprising:
切削工具であって、
被削材を加工するとき、被削材に接触する複数の導電性の接触部材と、
複数の接触部材が固定される固定部材と、
複数の接触部材の間を絶縁する絶縁部材と、
少なくとも1つの接触部材に接続する導電部材と、
を備えることと特徴とする切削工具。
A cutting tool,
a plurality of conductive contact members that come into contact with the workpiece when processing the workpiece;
a fixing member to which a plurality of contact members are fixed;
an insulating member that insulates between the plurality of contact members;
a conductive member connected to at least one contact member;
A cutting tool characterized by comprising:
前記導電部材に接続して、加工時に複数の接触部材において生じる熱起電力の差分を測定する測定部を備えることを特徴とする請求項6に記載の切削工具。 The cutting tool according to claim 6, further comprising a measuring section connected to the conductive member to measure a difference in thermoelectromotive force generated in a plurality of contact members during machining. 測定した熱起電力の差分を送信する送信部を備えることを特徴とする請求項7に記載の切削工具。 The cutting tool according to claim 7, further comprising a transmitter that transmits the difference in the measured thermoelectromotive force. 前記導電部材に接続する端子であって、前記切削工具が加工装置に取り付けられたときに、加工装置における電圧測定部が接続する前記端子を備えることを特徴とする請求項6に記載の切削工具。 The cutting tool according to claim 6, further comprising a terminal connected to the conductive member, the terminal being connected to a voltage measuring section in the processing device when the cutting tool is attached to the processing device. . 前記導電部材は、前記固定部材の内部に設けられる、
ことを特徴とする請求項6から9のいずれかに記載の切削工具。
The conductive member is provided inside the fixing member,
The cutting tool according to any one of claims 6 to 9.
JP2022055179A 2022-03-30 2022-03-30 Processing device, processing state monitoring method and cutting tool Pending JP2023147596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022055179A JP2023147596A (en) 2022-03-30 2022-03-30 Processing device, processing state monitoring method and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055179A JP2023147596A (en) 2022-03-30 2022-03-30 Processing device, processing state monitoring method and cutting tool

Publications (1)

Publication Number Publication Date
JP2023147596A true JP2023147596A (en) 2023-10-13

Family

ID=88289061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055179A Pending JP2023147596A (en) 2022-03-30 2022-03-30 Processing device, processing state monitoring method and cutting tool

Country Status (1)

Country Link
JP (1) JP2023147596A (en)

Similar Documents

Publication Publication Date Title
US4786220A (en) Cutting tool wear monitor
JP6472162B2 (en) Apparatus for controlling the process of rotary chip removal machining of work material and cutting tool for rotary chip removal machining
JP4777960B2 (en) Vibration suppression device
KR101436234B1 (en) Measurement method of cutting machine temperature
JP4433422B2 (en) Vibration suppression device
US20180243873A1 (en) Temperature measurement device
JP2008290186A (en) Vibration suppressing apparatus of machine tool
EP3715048B1 (en) Machine tool control device, machine tool, and machine tool control method
EP0165745A2 (en) Cutting tool wear monitor
JP2013188831A (en) Control device of machine tool and machine tool equipped with the same
JP4891150B2 (en) Vibration suppressor for machine tools
JP5326380B2 (en) Turning device
Junge et al. Measurement system based on the Seebeck effect for the determination of temperature and tool wear during turning of aluminum alloys
JP2023147596A (en) Processing device, processing state monitoring method and cutting tool
US7071834B2 (en) Device for monitoring the operating conditions of rolling bearing
JP2001341052A (en) Work machining method, tool breakage detection method, and machining device
WO2022049719A1 (en) Cutting device
KR20190133888A (en) Method and system for detecting chatter using acceleration sensor
JP2002178240A (en) Measuring method and device of tool edge temperature in cutting cutting workpiece
JP3948301B2 (en) Processing device, method for detecting deflection of rotary tool mounted on processing device, and method for checking detection circuit of processing device
WO2023181264A1 (en) Cutting device and method for identifying positional relationship
GB2526340A (en) Gas bearing spindles
Harun et al. Cutting Mechanics of turning with actively driven rotary tool
JP6049476B2 (en) Cutting temperature measurement method
JP3968413B2 (en) Electric discharge machining method for forming holes in a workpiece