JP5326380B2 - Turning device - Google Patents

Turning device Download PDF

Info

Publication number
JP5326380B2
JP5326380B2 JP2008169206A JP2008169206A JP5326380B2 JP 5326380 B2 JP5326380 B2 JP 5326380B2 JP 2008169206 A JP2008169206 A JP 2008169206A JP 2008169206 A JP2008169206 A JP 2008169206A JP 5326380 B2 JP5326380 B2 JP 5326380B2
Authority
JP
Japan
Prior art keywords
workpiece
tool
vibration
cutting
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008169206A
Other languages
Japanese (ja)
Other versions
JP2010005756A (en
Inventor
泰輔 徳脇
豊 成田
誠 中村
忠幸 大島
宏基 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008169206A priority Critical patent/JP5326380B2/en
Publication of JP2010005756A publication Critical patent/JP2010005756A/en
Application granted granted Critical
Publication of JP5326380B2 publication Critical patent/JP5326380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turning device capable of stabilizing quality and preventing occurrence of failures and abnormalities by monitoring the cutting state of a turning tool side and the abutting state of a support side, and carrying out state management and abnormality detection. <P>SOLUTION: The turning device 1 holds a columnar or cylindrical workpiece 1 by holding both ends 1a of the workpiece 1 respectively with a holding part 2 and performs lathe turning by abutting the turning tool 3 on the surface of the workpiece 1 while rotating the workpiece 1 on its axis. The turning device includes a workpiece abutting support part 4 supporting the workpiece 1 by abutting on the surface of the workpiece 1 in the vicinity of a position opposing to the turning tool 3 with the workpiece 1 in between, a vibration detection means 6 having a sensor ring function detecting the vibration of the workpiece abutting support part 4, and a transmitting means 8 transmitting an abnormality alarm when the magnitude of vibration detected by the vibration detection means 6 exceeds a predetermined range. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、長尺の軸物部品(電子写真用のロール部材など)の外形形状を精密に加工する加工装置に関するものである。   The present invention relates to a processing apparatus that precisely processes the outer shape of a long shaft component (such as a roll member for electrophotography).

エレクトロニクス分野などの大量、高効率生産の切削分野においては、加工品質の信頼性の向上が要求されるとともに、異常や不良品発生の未然防止が求められている。また、夜間無人運転をはじめ、省人化も図られている。
切削加工における品質管理方法としては、形状測定(外径/内径/全長、面精度)、外観状態の検査があるが、検査工数の負荷が多く、抜き取り検査などで保証することが多い。また、外観検査については、感応検査であるために基準サンプルに対して、検出バラツキが生じ、場合によっては複数の基準サンプルを用意する必要がある。
また、切削工程での異常原因の多くは刃具(バイト、ドリル)の磨耗、欠損による切削品質の変化であり、一般的には加工実績に基づき、安全率を見込んで刃具寿命を設定し、交換を行う方法が多く用いられてきた。
ただし、刃具の状態にバラツキがあり、使用本数を設定できない場合や未だ使用可能な刃具を交換するケースもあり、一概に適用できるとは限らない。このため、従来から、工具の状態管理を行う各種技術が提案されている(例えば、特許文献1及び2参照)。
In the cutting field of mass production and high-efficiency production such as the electronics field, it is required to improve the reliability of machining quality and to prevent the occurrence of abnormalities and defective products. In addition, unmanned driving at night and other labor saving efforts are being made.
As quality control methods in cutting, there are shape measurement (outer diameter / inner diameter / full length, surface accuracy) and appearance inspection, but there are many inspection man-hours and are often guaranteed by sampling inspection. In addition, since the appearance inspection is a sensitive inspection, detection variation occurs with respect to the reference sample, and in some cases, it is necessary to prepare a plurality of reference samples.
In addition, most of the causes of abnormalities in the cutting process are changes in cutting quality due to wear and breakage of the cutting tool (bite, drill). Generally, based on the processing results, the cutting tool life is set in consideration of the safety factor and replaced. Many methods have been used.
However, there are variations in the state of the blades, and there are cases where the number of blades used cannot be set or there are cases where blades that are still usable can be replaced, and this is not always applicable. For this reason, conventionally, various techniques for managing the state of a tool have been proposed (see, for example, Patent Documents 1 and 2).

従来、工具の状態管理をするに当たっては、(1)主軸動力モータの負荷電流を検出し、刃具の劣化による切削抵抗増加が起因する主軸トルクの増加を監視する方法。(2)工作機械の機械振動の変化を検出する方法。(3)工具に作用する力の変化をひずみゲージ等で検出する方法。(4)工具より発生するAE(Acoustic Emission:音波)の増加を検出する方法などが知られている。
特許文献1には、バイト振動の利得がしきい値を超えた際にバイト寿命(磨耗、損傷)と判定し、バイトの交換時期を知らせ、振動データについても周波数解析により、バイトの固有振動数のスペクトルを判定する技術が開示されている。
特許文献2には、工具異常監視方法の信頼性を向上するために、切削時に工具から発生するAEにより、工具の損傷レベルを検知する技術が開示されている。検出しきい値は、工具交換毎にサンプリングデータより設定するため、工具差によるエラーはなく、信頼性の高い検出装置となる。
また、導電性部材の外径を切削加工で仕上る場合、面精度やバリなどにより帯電特性のバラツキが生じるため、均一な面精度、波面が要求される。このため、切削加工面(帯電ローラの電気抵抗調整層)での切削送りによるバリやピッチムラを防止する目的で、バイトの対向側に振れ止め面(サポート面)を当接させ、外径加工面を当接しながら送り機構を設けることも研究されている。
さらに、小径、長尺ローラの高精度切削を行うために、外径を旋削加工する加工機が切削加工面をバイト(工具)の対向側からサポートする面を有する構成も研究されている。
しかし、上述した(1)〜(4)に関連して述べれば、(1)は切削抵抗が駆動トルクに対して小さい場合、検出精度/能力の点で劣る。(2)は切削工程以外の振動、例えば、ワーク搬送機械の動作など加工以外の振動も検出し、ノイズなど誤差要因が大きい。
また、(3)、(4)についてはひずみゲージの温度保証や切削中の切り屑の絡まりなど、突発的な現象に対する対処は必要であるが、通常切削で発生する振動の周波数領域の選定、刃具を交換した際の異常しきい値の設定方法に対応を取ることで異常検知方法として適用されている。
ローラ、シャフトなど部品特性の中で高精度な回転精度を求められる部品、小径、長尺ワークの加工(外径加工)については、素材の部品の外径を機械加工(切削、研削)することが必要となり、とくに、複写機、印刷機などの作像機能、搬送部品などはフレ精度0.01mmレベルとなっている。
Conventionally, in managing the state of the tool, (1) a method of detecting the load current of the main shaft power motor and monitoring the increase in main shaft torque caused by an increase in cutting resistance due to the deterioration of the cutting tool. (2) A method of detecting a change in machine vibration of a machine tool. (3) A method of detecting a change in force acting on the tool with a strain gauge or the like. (4) A method for detecting an increase in AE (Acoustic Emission) generated from a tool is known.
In Patent Document 1, when the tool vibration gain exceeds a threshold value, it is determined that the tool life (wear, damage), the tool replacement time is notified, and the vibration data is also analyzed by frequency analysis. A technique for determining the spectrum of an image is disclosed.
Patent Document 2 discloses a technique for detecting the damage level of a tool by AE generated from the tool at the time of cutting in order to improve the reliability of the tool abnormality monitoring method. Since the detection threshold is set from sampling data every time the tool is changed, there is no error due to a tool difference, and the detection device is highly reliable.
Further, when the outer diameter of the conductive member is finished by cutting, charging characteristics vary due to surface accuracy, burrs, and the like, so that uniform surface accuracy and wavefront are required. For this reason, in order to prevent burrs and pitch unevenness due to cutting feed on the machined surface (electrical resistance adjustment layer of the charging roller), a steady surface (support surface) is brought into contact with the opposite side of the cutting tool and the outer diameter machined surface It has also been studied to provide a feeding mechanism while abutting the two.
Furthermore, in order to perform high-precision cutting of a small-diameter and long roller, a configuration in which a processing machine for turning an outer diameter has a surface that supports a cutting surface from an opposite side of a tool (tool) has been studied.
However, as described in relation to the above (1) to (4), (1) is inferior in detection accuracy / ability when the cutting resistance is small with respect to the driving torque. (2) detects vibrations other than the cutting process, for example, vibrations other than machining such as the operation of the workpiece transfer machine, and causes large error factors such as noise.
For (3) and (4), it is necessary to deal with sudden phenomena such as temperature guarantee of the strain gauge and entanglement of chips during cutting. It is applied as an abnormality detection method by taking measures corresponding to the setting method of the abnormality threshold when the blade is replaced.
For parts that require high rotational accuracy, such as rollers and shafts, and for machining small diameter and long workpieces (outer diameter machining), machining the outer diameter of the material parts (cutting, grinding) In particular, image forming functions such as copying machines and printing machines, conveyance parts, etc. have a flare accuracy of 0.01 mm level.

また、これらのローラ、シャフト部品が組み合わせで使用される場合は、各部品の干渉、当接位置、隙間(ギャップ)のバラツキ精度も求められるため、軸幅全域の外径差(円筒度)も高精度が求められ、精度レベルとしては0.010mm以下で計測単位としては0.1μm単位まで必要なレベルとなっている。
さらに、高精度化だけでなく、同時に省スペース化、軽量化により、部品の大きさは、機能上軸長を変えられないため、小径化、薄肉化となっている。従って、これらのローラ、シャフト部品の外径加工に対しては、高精度化と小径、薄肉化が課題となっており、さらに量産工程においては、バラツキの低減、高効率生産(生産タクトの短縮)、自動化が求められている。
しかし、小径化、薄肉化により以下の課題がある。すなわち、(1)チャック変形が生じ易くなる。(2)ワークに対して、加工力(抵抗)が作用した際、ワーク中央部では加工力に対してワーク剛性の釣り合いが取れず、ワーク変形が大きくなり、両端部の外径に対して中央の外径が大きくなる(真直精度が大きくなる)。また、びびり、フレの増加などの加工精度の悪化が懸念される。(3)加工回転に対してねじれ剛性も小さくなり、ねじれ変形、若しくは保持部でのスリップによるキズなどの不具合がある。
これらはすべてワーク剛性の低下による不具合であり、加工方法の検討が必要となっている。これらの課題に対応するため、機械加工機はワークの両端を保持(チャッキング)する際に発生するワーク変形を極力小さくし、いわゆるチャック変形によるワーク精度の悪化を小さくすること、切削加工であれば、交換バイトの固体差を小さくするための検討が行われている。
実開平5−2862号公報 実開平6−218655号公報
In addition, when these rollers and shaft parts are used in combination, the accuracy of variation in the interference, contact position, and gap (gap) of each part is also required. High accuracy is required. The accuracy level is 0.010 mm or less, and the measurement unit is a required level up to 0.1 μm.
Furthermore, not only high precision but also space saving and light weight at the same time, the size of the parts can not be changed functionally, so the diameter is reduced and the wall thickness is reduced. Therefore, high precision, small diameter, and thin wall have become issues for the outside diameter processing of these rollers and shaft parts. Furthermore, in mass production processes, variation is reduced and high-efficiency production (reduction of production tact) is achieved. ), Automation is required.
However, there are the following problems due to the reduction in diameter and thickness. That is, (1) chuck deformation is likely to occur. (2) When the machining force (resistance) is applied to the workpiece, the workpiece rigidity cannot be balanced against the machining force at the workpiece center, and the workpiece deformation increases, and the workpiece is deformed at the center with respect to the outer diameter of both ends. The outer diameter of the is increased (straightness accuracy is increased). Moreover, there is a concern about deterioration of processing accuracy such as chatter and increased flare. (3) The torsional rigidity is reduced with respect to the processing rotation, and there are problems such as torsional deformation or scratches due to slipping at the holding portion.
These are all problems due to a decrease in workpiece rigidity, and it is necessary to examine the processing method. In order to cope with these problems, the machining machine minimizes the deformation of the workpiece that occurs when holding both ends of the workpiece (chucking) as much as possible, reduces the deterioration of workpiece accuracy due to so-called chuck deformation, For example, studies have been made to reduce the difference between individual exchange tools.
Japanese Utility Model Publication No. 5-2862 Japanese Utility Model Publication No. 6-218655

しかしながら、上述した特許文献等では、切削状態の把握を、振動計、AEセンサを用い、バイトの劣化、寿命を判断している。また、それらの課題は加工面のバリや切り屑の残留を除去するものである。さらに、加工装置の概要、加工方法は同じであるが、工具異常と判定されない外径変動による不具合対策について、サポート側、バイト側両方でモニタリングすることで可能とすること、サポート、バイトのセンサリング機能については記載していない。
また、本発明の課題として、これらの切削工法における高効率生産のための加工品質の信頼性の向上、異常や不良品発生の未然防止に対して、連続加工時の状態管理が求められる。
従来技術の説明で工具異常監視手段について記述したが、工具が刃具(バイト)とサポートの併用による切削の場合には、刃具のみのでなく、サポート機構の状態監視も必要となる。
However, in the above-mentioned patent documents and the like, the cutting state is grasped by using a vibrometer and an AE sensor to determine the deterioration and the life of the cutting tool. Moreover, those subjects are removing the burr | flash of a process surface, and the residue of a chip. In addition, the outline of the processing equipment and the processing method are the same, but it is possible to monitor the trouble on both the support side and the tool side by taking measures against troubles caused by fluctuations in the outer diameter that are not judged as a tool abnormality. The function is not described.
Further, as an object of the present invention, state management during continuous machining is required for improving the reliability of machining quality for high-efficiency production in these cutting methods and preventing the occurrence of abnormalities and defective products.
In the description of the prior art, the tool abnormality monitoring means has been described. However, when the tool is cut by using both a cutting tool and a support, it is necessary to monitor not only the cutting tool but also the state of the support mechanism.

例えば、バイトが磨耗することによりワーク仕上げ外径が大きくなる場合では、対向側のサポート面への加工ワークの当接力も外径増加分大きくなり、加工ワークに許容以上の当接力が作用した場合には加工ワークに振動が生じ、びびり不良が発生することになる。
仕上げ面に当接させるサポート面も加工ワークに近接しすぎ、当接力が適正範囲を超えることで同様のびびり不良が発生する。これまでは工具側の異常について多くの提案がされてきたが、工具異常とは認知されない外径変動についてもサポート当接力異常で発生する懸念がある。
そこで、本発明の目的は、上述した実情を考慮して、バイト側の切削状態とサポート側の当接状態をモニタリングし、状態管理、異常検知を実施することで、品質の安定化と不良、異常発生の未然防止を行う旋削加工装置を提供することにある。
For example, when the workpiece finish outer diameter increases due to wear of the tool, the contact force of the workpiece to the opposite support surface also increases by the increase in the outer diameter, and an excessive contact force acts on the workpiece. In this case, the workpiece is vibrated and a chatter failure occurs.
The support surface that comes into contact with the finished surface is too close to the workpiece, and the same chatter failure occurs when the contact force exceeds the appropriate range. Up to now, many proposals have been made for abnormalities on the tool side, but there is a concern that outer diameter fluctuations that are not recognized as tool abnormalities may occur due to abnormal support contact force.
Therefore, the purpose of the present invention is to monitor the cutting state on the cutting tool side and the contact state on the support side in consideration of the above-described situation, and to perform state management and abnormality detection, thereby stabilizing the quality and failure. An object of the present invention is to provide a turning device that prevents the occurrence of abnormalities.

上記の課題を解決するために、請求項1に記載の発明は、円柱状又は円筒状の被加工物を、該被加工物の両端をそれぞれ保持部によって保持し、かつ、該被加工物の軸を中心に回転させながら、該被加工物の表面にバイトを当接させて旋削加工する旋削加工装置において、前記バイトと前記被加工物を挟んで対向する位置付近に、前記被加工物の表面に当接して該被加工物を支持し、前記被加工物の回転軸方向に移動する前記バイトに同期して前記回転軸方向に移動する被加工物当接支持部、前記被加工物当接支持部の振動を検出するセンサリング機能を有する被加工物当接部材振動検出手段、及び前記被加工物当接部材振動検出手段により検出された振動の大きさが所定の範囲を超えた時に異常警報を発信する発信手段が備えられている旋削加工装置を特徴とする。
また、請求項2に記載の発明は、前記被加工物当接部材振動検出手段のセンサリング方向が前記被加工物の切削の背分力方向である請求項1記載の旋削加工装置を特徴とする。
また、請求項3に記載の発明は、前記バイトの振動を検出するセンサリング機能を有するバイト振動検出手段を前記バイト側に備え、前記バイト振動検出手段により検出された振動の大きさが一定のしきい値を超えた際に異常警報を発信する発信手段が備えられている請求項1記載の旋削加工装置を特徴とする。
In order to solve the above-described problems, the invention according to claim 1 is directed to a columnar or cylindrical workpiece, wherein both ends of the workpiece are held by holding portions, and the workpiece is In a turning apparatus that performs turning by bringing a cutting tool into contact with the surface of the workpiece while rotating about an axis, the position of the workpiece is near a position facing the cutting tool and the workpiece. A workpiece contact support portion that contacts the surface to support the workpiece and moves in the direction of the rotation axis in synchronization with the cutting tool that moves in the direction of the rotation axis of the workpiece. Workpiece contact member vibration detection means having a sensoring function for detecting vibration of the contact support portion, and when the magnitude of vibration detected by the workpiece contact member vibration detection means exceeds a predetermined range Rotation provided with a transmission means for transmitting an abnormality alarm The processing apparatus characterized.
According to a second aspect of the present invention, there is provided the turning apparatus according to the first aspect, wherein a sensoring direction of the workpiece contact member vibration detecting means is a back component force direction of cutting of the workpiece. To do.
According to a third aspect of the present invention, a tool vibration detecting means having a sensoring function for detecting the vibration of the tool is provided on the tool side, and the magnitude of vibration detected by the tool vibration detecting means is constant. The turning apparatus according to claim 1, further comprising a transmission means for transmitting an abnormality alarm when a threshold value is exceeded.

また、請求項4に記載の発明は、前記バイト振動検出手段のセンサリング方向が前記被加工物の切削の主分力方向である請求項3記載の旋削加工装置を特徴とする。
また、請求項5に記載の発明は、加工中に前記被加工物当接部材振動検出手段と前記バイト振動検出手段が同時にセンサ出力し、加工中の出力値を個別、時系列に監視する請求項乃至4のいずれか1項記載の旋削加工装置を特徴とする。
また、請求項6に記載の発明は、加工中に異常値を感知した際には、発生した異常項目を時系列で表示、出力する請求項1乃至5のいずれか1項記載の旋削加工装置を特徴とする。
また、請求項7に記載の発明は、異常発生の組み合わせ、発生のタイミングにより予め異常要因を登録させることで異常内容、調整内容を表示、出力する請求項1乃至6のいずれか1項記載の旋削加工装置を特徴とする。
また、請求項8に記載の発明は、センサリングのタイミング、センサリング時間はNC加工機のプログラムに組み込む請求項1乃至7のいずれか1項記載の旋削加工装置を特徴とする。
According to a fourth aspect of the present invention, there is provided the turning apparatus according to the third aspect, wherein a sensoring direction of the tool vibration detecting means is a main component force direction of cutting of the workpiece.
According to a fifth aspect of the present invention, the workpiece contact member vibration detecting means and the bite vibration detecting means simultaneously output a sensor during processing, and output values during processing are individually and time-sequentially monitored. Item 5. A turning device according to any one of Items 3 to 4.
According to a sixth aspect of the present invention, when an abnormal value is detected during machining, the generated abnormal item is displayed and output in time series. It is characterized by.
The invention according to claim 7 displays and outputs the abnormality content and the adjustment content by registering the abnormality factor in advance according to the combination and occurrence timing of the abnormality occurrence. Features a turning device.
The invention described in claim 8 is characterized in that the turning processing device according to any one of claims 1 to 7 is incorporated in the program of the NC machine with the timing of sensoring and the sensoring time.

本発明によれば、バイトの対向側に設けた、バイトの送りと同期移動しながら、加工面を当接させるササポート側での振動計測により、適正範囲である一定のしきい値を越えた際に異常警報を発信するので、工具異常検知のみでは判断できない外径の変動によるサポート当接圧異常を検知でき、不良発生の未然防止ができる。   According to the present invention, a certain threshold value, which is an appropriate range, is exceeded by vibration measurement on the support side that contacts the processing surface while moving synchronously with the feed of the tool provided on the opposite side of the tool. In this case, an abnormality alarm is transmitted, so that it is possible to detect a support contact pressure abnormality due to a change in outer diameter that cannot be determined only by detecting a tool abnormality, and it is possible to prevent occurrence of defects.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明を実施する旋削加工装置の実施の形態を示す図である。図1(a)はこの旋削加工装置Aの正面図であり、そして図1(b)はバイト付近での断面図である。
この旋削加工装置Aは、円柱状又は円筒状の被加工物(加工ワーク)1を、その両端1aをそれぞれ保持部としてチャック装置2等で保持して、被加工物1の軸を中心に図示していないモータなどで回転駆動させながら、被加工物1の表面に刃具(バイト)3を当接させて旋削加工する構成である。
この実施の形態では、バイト3とともに被加工物1を挟んで対向する位置付近に、被加工物1の旋削加工済み部分の表面(加工済み面)1bに接して被加工物1を支持する被加工物当接支持部(サポート)4と、バイト3の軸方向の移動(図中左矢印)に従って、バイト3と同方向(図中左矢印)に被加工物当接支持部4を移動させる被加工物当接支持部移動手段(図示してないアクチュエータ等)と、を備えている。
図1(b)のバイト3付近での断面図において、被加工物1は被加工物当接支持部4の円弧状凹面(サポート面)4aとバイト3との間に支持され、旋削加工され、符号5は旋削された切り屑を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a turning apparatus for carrying out the present invention. FIG. 1A is a front view of the turning apparatus A, and FIG. 1B is a sectional view in the vicinity of the cutting tool.
This turning device A holds a columnar or cylindrical workpiece (workpiece) 1 with a chuck device 2 or the like with both ends 1a as holding portions, respectively, and the axis of the workpiece 1 is the center. In this configuration, a cutting tool (tool) 3 is brought into contact with the surface of the workpiece 1 while being rotated by a motor not shown.
In this embodiment, a workpiece that supports the workpiece 1 in contact with the surface (machined surface) 1b of the turned portion of the workpiece 1 in the vicinity of the position facing the workpiece 1 together with the cutting tool 3. The workpiece contact support 4 is moved in the same direction as the cutting tool 3 (left arrow in the figure) according to the workpiece contact support part (support) 4 and the movement of the cutting tool 3 in the axial direction (left arrow in the figure). And a workpiece contact support part moving means (an actuator or the like not shown).
1B, the workpiece 1 is supported between the arcuate concave surface (support surface) 4a of the workpiece contact support portion 4 and the cutting tool 3 and is turned. Reference numeral 5 denotes the turned chips.

図2はバイト及び被加工物当接支持部側のモニタリング装置を示す概略図である。サポート4側には振動計6を設置し、バイト3側には振動計又は切削動力計7のどちらかの設置が必要である。この場合、切削動力計の方が切削力の変動をベクトル方向でモニタリングできるため、適用範囲が広がる。
加工工程を説明すると、被加工物1が供給され、チャッキング後、両軸が同期して回転する。切削力は主分力と背分力との合力(ベクトル)であり、切削代、送り、バイト仕様、バイトの劣化、被加工物のバラツキなどにより、これら主分力と背分力とは変動することがある。
FIG. 2 is a schematic view showing a monitoring device on the tool and workpiece contact support side. A vibration meter 6 is installed on the support 4 side, and either a vibration meter or a cutting dynamometer 7 is installed on the bit 3 side. In this case, the cutting dynamometer can monitor the variation of the cutting force in the vector direction, so the applicable range is expanded.
Explaining the machining process, the workpiece 1 is supplied, and after chucking, both axes rotate in synchronization. The cutting force is the resultant force (vector) of the main component force and the back component force. The main component force and the back component force fluctuate due to cutting allowance, feed, tool specifications, tool deterioration, workpiece variation, etc. There are things to do.

図3は本発明の旋削加工装置における振動検出手段を示す概略図である。ここで、本発明の旋削加工装置には、被加工物当接支持部4の振動を検出する振動検出手段(振動計)6、及びこの振動検出手段6により検出された振動の大きさが所定の範囲を超えた時に異常警報を発信する発信手段8が備えられている。
振動検出手段としては図3に示すように振動計(振動センサ)6を、例えば被加工物当接支持部4の背面部付近に取り付ける。この振動計6からの振動信号は発信手段としての機能を有するマイクロコンピュータ8に入力され、その振動の大きさがマイクロコンピュータ8の図示してないメモリに格納された所定の範囲を超えた時にマイクロコンピュータ8は異常警報を発信する。
また、本発明の旋削加工装置には、バイト3の振動を検出する振動計又は切削動力計が振動検出手段(ここでは切削動力計)7としてバイト3の側部に配置され、切削動力計7からの振動信号はマイクロコンピュータ8に入力される。その振動信号の大きさがマイクロコンピュータ8の図示してないメモリに格納された所定の範囲を超えた時にマイクロコンピュータ8は異常警報を発信する。
FIG. 3 is a schematic view showing vibration detecting means in the turning apparatus of the present invention. Here, in the turning apparatus of the present invention, the vibration detecting means (vibrometer) 6 for detecting the vibration of the workpiece contact support portion 4 and the magnitude of the vibration detected by the vibration detecting means 6 are predetermined. A transmission means 8 for transmitting an abnormality alarm when the range is exceeded is provided.
As a vibration detecting means, as shown in FIG. 3, a vibrometer (vibration sensor) 6 is attached, for example, in the vicinity of the back surface of the workpiece contact support portion 4. The vibration signal from the vibrometer 6 is input to a microcomputer 8 having a function as a transmission means, and when the magnitude of the vibration exceeds a predetermined range stored in a memory (not shown) of the microcomputer 8, The computer 8 transmits an abnormality alarm.
In the turning apparatus of the present invention, a vibration meter or cutting dynamometer for detecting the vibration of the cutting tool 3 is arranged on the side of the cutting tool 3 as vibration detecting means (here, cutting dynamometer) 7. Is input to the microcomputer 8. When the magnitude of the vibration signal exceeds a predetermined range stored in a memory (not shown) of the microcomputer 8, the microcomputer 8 issues an abnormality alarm.

この構成により、被加工物当接支持部4側の振動計測により、適正範囲を超える当接力については異常警報を出力するので、被加工物の変形を抑えることができ、その結果、真直度精度の良い加工が可能となるとともに、加工効率を高め、不良品の多発やバイトの破損を防止しながら、真直度精度の良い加工が可能となる。
加工は荒加工と仕上げ加工に分け、荒加工ではサポート4は動作させず、荒加工寸法に外径加工する。荒加工終了後、仕上げ加工を行い、バイト3が通過した後(仕上げ面)をサポート面4a(図2)で当接させ、バイト3の送りと同速度で送り移動させる。
サポート面4aは、被加工物端部への当接時には加工ワーク外径が小さいため当接力は小さいが、被加工物軸中央では、加工ワーク剛性が小さいため切削力(背分力)の影響で外径が増加する。
よってサポート面4aと被加工物の当接の距離も近づくために当接力が大きくなり、バイト3の背分力に対向する力が生じるため、外径の増加が抑えられる。バイト切削による加工力は軸中央に対して対称となるため、中央を通過していくと切削力(背分力)による外径増加が押さえられ、サポート面4aとの当接力も小さくなる。
サポート面4aは仕上げ面に当接しながら送り方向に進行するがその際の当接力には適正範囲があり、当接力が小さい場合(被加工物仕上げ面とサポート面位置が離れている)は、被加工物中央部の押さえが小さく、中央部の外径が大きくなる。当接力が大きい場合(被加工物仕上げ面とサポート面位置が近づいている)は、被加工物に過負荷が作用し、振動が発生し、びびり面が仕上げ面に現れる場合がある。
With this configuration, the vibration measurement on the workpiece contact support 4 side outputs an abnormality alarm for the contact force exceeding the appropriate range, so that deformation of the workpiece can be suppressed, and as a result, the straightness accuracy Machining with high straightness accuracy is possible while improving machining efficiency and preventing frequent defective products and breakage of the cutting tool.
The machining is divided into rough machining and finishing machining. In rough machining, the support 4 is not operated, and the outer diameter is machined to the rough machining dimension. After the roughing is finished, finishing is performed, and after the cutting tool 3 has passed (finished surface) is brought into contact with the support surface 4a (FIG. 2), the feed is moved at the same speed as that of the cutting tool 3.
The support surface 4a has a small work workpiece outer diameter at the time of contact with the workpiece end, so the contact force is small. However, at the center of the workpiece axis, the work workpiece rigidity is small, so the influence of cutting force (back force) is exerted. Increases the outer diameter.
Therefore, since the contact distance between the support surface 4a and the work piece is also shortened, the contact force is increased, and a force that opposes the back force of the cutting tool 3 is generated, so that an increase in the outer diameter can be suppressed. Since the machining force by the cutting tool is symmetric with respect to the center of the shaft, an increase in the outer diameter due to the cutting force (back force) is suppressed when passing through the center, and the contact force with the support surface 4a is also reduced.
The support surface 4a advances in the feed direction while contacting the finish surface, but the contact force at that time has an appropriate range, and when the contact force is small (the workpiece finish surface and the support surface position are separated), The press at the center of the workpiece is small and the outer diameter of the center is large. When the contact force is large (the workpiece finish surface and the support surface position are close to each other), an overload acts on the workpiece, vibration may occur, and a chatter surface may appear on the finish surface.

被加工物外径はバイト3が磨耗することにより刃先位置が被加工物中心から離れるため、仕上げ外径が増加する。また、チッピングなどの欠損により切削抵抗が大きくなり、面精度の悪化の他に被加工物軸方向中央部の外径が大きくなる。これは背分力の増加が要因であり、背分力をモニタリングすることで確認できる。
旋削加工装置(NC加工機)においてはサポート側、バイト側とも移動機構としてボールネジを使用している場合が多く、連続運転時のボールネジの熱膨張/収縮はボールネジのリードピッチにもよるが、2〜3μmを見込む必要があり、バイト側では外径変動、サポート側では当接位置の変動要因となる。
上記のようにバイト3の切削力とその凹面によるサポート4の当接力のバランスを適正範囲に制御することで、全フレ精度0.01mmレベルの高精度加工が可能となる。
As the work piece outer diameter is worn away by the cutting tool 3, the position of the cutting edge is separated from the center of the work piece, so that the finished outer diameter increases. Further, cutting resistance increases due to chipping and other defects, and the outer diameter of the central part in the axial direction of the workpiece increases in addition to the deterioration of surface accuracy. This is due to an increase in the back force, which can be confirmed by monitoring the back force.
In a turning machine (NC machine), a ball screw is often used as a moving mechanism on both the support side and the tool side, and the thermal expansion / contraction of the ball screw during continuous operation depends on the lead pitch of the ball screw. It is necessary to expect ˜3 μm, which causes fluctuations in the outer diameter on the tool side and fluctuations in the contact position on the support side.
As described above, by controlling the balance between the cutting force of the cutting tool 3 and the contact force of the support 4 by the concave surface within an appropriate range, high-precision machining with a total flare accuracy of 0.01 mm can be achieved.

図4は本発明による加工装置における加工モニタリング装置の構成を示す概略図である。図4において、バイト側の振動計又は切削動力計7からの電圧信号はアンプ9、コンパレータ10を経てNC加工機の制御部13に送られる。バイトの劣化によって変動する切削力は、主に背分力、主分力であるため、その方向の振動、切削力の異常警報を出力する。
一方、サポート側の振動計6からの電圧信号はアンプ11、コンパレータ12を経てNC加工機の制御部13に送られる。ここで異常が発生すると所定の処理を行って異常を解除する。このように、サポート側、バイト側の振動、切削の推移を同時に出力する。
FIG. 4 is a schematic diagram showing a configuration of a processing monitoring device in the processing device according to the present invention. In FIG. 4, the voltage signal from the vibration meter or cutting dynamometer 7 on the bite side is sent to the control unit 13 of the NC machine through the amplifier 9 and the comparator 10. Since the cutting force that fluctuates due to the deterioration of the tool is mainly a back component force and a main component force, vibrations in that direction and abnormal alarms on the cutting force are output.
On the other hand, the voltage signal from the vibrometer 6 on the support side is sent to the control unit 13 of the NC processing machine via the amplifier 11 and the comparator 12. If an abnormality occurs here, a predetermined process is performed to cancel the abnormality. In this way, vibrations on the support side and the tool side and transitions of cutting are simultaneously output.

図5は旋削加工装置の制御部における異常発生時の対応を示すフローチャートである。図3及び図5において、NC加工機の制御部において異常が発生すると、加工サイクル終了後加工作業を停止する(S1)。次いで、異常内容(発生タイミング)を検知する(S2)。
次に、サポート4に当接しない状態で加工品質を確認する(S3)。切削状態を確認し(S4)、端部外径:φ12.660±0.005、外径差φ0.015〜0.030、加工面びびりなしを確認し(S5)、次いで、サポート当接し、外径差(円筒度)をφ0.010以下に調整し(S6)、加工を再開(異常解除)する(S7)。
ステップ(S4)において、同時に異常内容がバイト3側の場合に外径差(円筒度)が0.015〜0.030以内でのびびり発生かどうかを判断し(S9)、0.015〜0.030以内での加工面のびびり発生ならば、バイトを交換する(S10)。バイトの磨耗、欠けによる切削異常が発生している懸念が大きく、バイトの交換が必要となる。
ステップ(S9)において、0.015〜0.030以外での加工面のびびり発生ならば、バイト芯高さを調整する(S11)。この場合、外径差φ0.03以上ならば、芯高さを下げ、外径差φ0.015以下の時は芯高さを挙げる。芯高さの調整範囲は±0.1mm以内、±0.1mmを越える調整範囲となった場合には芯高さ調整を止め、バイト交換を実施する。
ステップ(S4)において、異常内容がサポート4側の場合(S12)に外径差(円筒度)が0.030以上の場合かどうかを判断し(S13)、0.030以上の場合にはバイト芯高さを調整する(S14)。
ステップ(S9)において、0.030以上でなく、端部分の外径増加分がφ0.005以上の場合には(S15)、外径調整を行う。この外径調整は、NC加工機に工具補正値を入力するか、又はサポート4の位置を調整し、加工面から離す。
異常発生の組み合わせ、発生のタイミングにより予め異常要因を登録させるので異常内容、調整内容を表示、出力により工程担当者に調整方法の情報を提供することができる。
FIG. 5 is a flowchart showing a response when an abnormality occurs in the control unit of the turning apparatus. 3 and 5, when an abnormality occurs in the control unit of the NC machine, the machining operation is stopped after the machining cycle is completed (S1). Next, the abnormal content (occurrence timing) is detected (S2).
Next, the processing quality is confirmed without contacting the support 4 (S3). Check the cutting state (S4), end outer diameter: φ12.660 ± 0.005, outer diameter difference φ0.015 to 0.030, check for no chatter on the processed surface (S5), then support abutment, The outer diameter difference (cylindricity) is adjusted to φ0.010 or less (S6), and the processing is resumed (abnormal cancellation) (S7).
In step (S4), if the abnormal content is on the bit 3 side at the same time, it is determined whether or not chattering occurs when the outer diameter difference (cylindricity) is within 0.015 to 0.030 (S9). If chatter occurs on the processed surface within .030, the tool is replaced (S10). There is a great concern that cutting abnormalities occur due to wear and chipping of the cutting tool, and it is necessary to replace the cutting tool.
In step (S9), if chatter occurs on the processed surface other than 0.015 to 0.030, the bite core height is adjusted (S11). In this case, if the outer diameter difference is φ0.03 or more, the core height is lowered, and if the outer diameter difference is φ0.015 or less, the core height is raised. If the adjustment range of the lead height is within ± 0.1 mm or exceeds ± 0.1 mm, the lead height adjustment is stopped and the tool is replaced.
In step (S4), if the abnormal content is on the support 4 side (S12), it is determined whether the outer diameter difference (cylindricity) is 0.030 or more (S13). The core height is adjusted (S14).
In step (S9), if the increase in the outer diameter of the end portion is not more than 0.030 and φ0.005 or more (S15), the outer diameter is adjusted. In this outer diameter adjustment, a tool correction value is input to the NC processing machine, or the position of the support 4 is adjusted to move away from the processing surface.
Since the cause of abnormality is registered in advance according to the combination of the occurrence of abnormality and the timing of occurrence, information on the adjustment method can be provided to the person in charge of the process by displaying and outputting the abnormality content and adjustment content.

図6は本発明による加工装置で作製した複写機内作像用部品の帯電ローラを示す概略図である。
図7は本発明による加工装置における加工に使用する被加工物の比較例の詳細を表の形で示す図である。
図8は本発明による加工装置における加工に使用する被加工物の実施例の詳細を表の形で示す図である。図9は初期時点での被加工物当接支持部側当接振動をグラフで示す図である。図10はびびり発生時の被加工物当接支持部側振動をグラフで示す図である。
以下に実施例、比較例について説明する。図6に示すように、被加工物(加工ワーク)は複写機内作像用部品の帯電ローラ14である。この帯電ローラ14の形状、構成は、金属性のシャフト(=芯金)15に帯電機能を有する電気抵抗調整層としての樹脂層16が被覆されている。
芯金15はSUM(Niメッキ)からなる芯軸(外径φ10mm、形層段部領域φ8mm、ジャーナル部φ6mm、全長350mm)上に射出成形により円筒形状φ14に成形した。次に、切削加工によって電気抵抗調整層16の外径部を切削加工した。抵抗調整部の外径をφ14成形品はφ12.6mmに仕上げを行った。
FIG. 6 is a schematic view showing a charging roller of an image forming part in a copying machine manufactured by a processing apparatus according to the present invention.
FIG. 7 is a table showing details of a comparative example of a workpiece used for machining in the machining apparatus according to the present invention.
FIG. 8 is a diagram showing details of an embodiment of a workpiece used for machining in the machining apparatus according to the present invention in the form of a table. FIG. 9 is a graph showing the workpiece contact support portion side contact vibration at the initial time point. FIG. 10 is a graph showing vibration on the workpiece contact support portion side when chatter occurs.
Examples and comparative examples will be described below. As shown in FIG. 6, the workpiece (processed workpiece) is a charging roller 14 that is an image forming component in the copying machine. The charging roller 14 has a shape and configuration in which a metallic shaft (= core) 15 is covered with a resin layer 16 as an electric resistance adjusting layer having a charging function.
The core metal 15 was formed into a cylindrical shape φ14 by injection molding on a core shaft (outer diameter φ10 mm, shape layer step region φ8 mm, journal portion φ6 mm, total length 350 mm) made of SUM (Ni plating). Next, the outer diameter portion of the electric resistance adjusting layer 16 was cut by cutting. The outer diameter of the resistance adjusting portion was finished to φ12.6 mm for the φ14 molded product.

電気抵抗調整層としてABS樹脂(デンカABS GR−3000、電気化学工業製)50重量%、ポリエーテルエステルアミド(IRGASTAT P18、チバスペシャリティケミカルズ社製)50重量%、ポリカーボネート−グリシジルメタクリレート−スチレン−アクリロニトリル共重合体(モディパーCL440−G、日本油脂株式会社製)をポリエーテルエステルアミドとABS樹脂の合計100重量部に対して5重量部を混合の後、溶融混練した樹脂組成物をからなる樹脂組成物である。
上記加工ワークの剛性は両端ジャーナル支持で中央部に集中加重500gfを作用した際にたわみ量が0.04mmとなり、低加工力においてもワークが変形(弾性変形)し易い状態である。
As an electric resistance adjusting layer, ABS resin (Denka ABS GR-3000, manufactured by Denki Kagaku Kogyo) 50% by weight, polyether ester amide (IRGASTAT P18, manufactured by Ciba Specialty Chemicals) 50% by weight, polycarbonate-glycidyl methacrylate-styrene-acrylonitrile A resin composition comprising a resin composition obtained by mixing 5 parts by weight of a polymer (Modiper CL440-G, manufactured by NOF Corporation) with 100 parts by weight of polyether ester amide and ABS resin, and then melt-kneading the mixture. It is.
The rigidity of the work piece is such that the deflection amount is 0.04 mm when the central load is applied to the center portion with journals supported at both ends, and the work is easily deformed (elastically deformed) even at a low working force.

また、この帯電ローラ14は全長に渡る樹脂層16の両端部に幅8mm程の絶縁性の樹脂材料を配置し、画像潜像機能ローラである感光体との隙間を常時一定幅に保つ必要があるため、帯電ローラ14の全フレ精度としては0.02mm以内が要求される。また、成形(被削材)の全フレ精度は0.1〜0.3mmのため、切削は荒加工、仕上げ加工の2工程に分けた。
荒加工
回転数:5000rpm 送り:0.25mm/rev 切削代:φ0.7
被加工物当接支持部の使用:なし
仕上げ加工
回転数:3000rpm 送り:0.25mm/rev 切削代:φ0.7
被加工物当接支持部の使用:あり(被加工物の加工済み面への当接)
図3を参照して、バイト3は焼結ダイヤモンド材で、ノーズR3、すくい角25°、逃げ角3°の形状とした。サポート4の治具形状は仕上げ切削工程のみバイト3の対向側から加工面に当接し、バイト3と同じ送り速度で移動させた。サポート4の凹面形状(サポート面)はr6.40の半円(180°)とし、仕上げ外径に対して外径でφ0.1〜0.2(片側0.05〜0.1mm)の隙間を設けた。
In addition, the charging roller 14 must be provided with an insulating resin material having a width of about 8 mm at both ends of the resin layer 16 over the entire length, and the gap between the charging roller 14 and the photosensitive member, which is an image latent image function roller, must always be kept constant. Therefore, the total flare accuracy of the charging roller 14 is required to be within 0.02 mm. Further, since the total flare accuracy of the molding (work material) is 0.1 to 0.3 mm, the cutting is divided into two steps of roughing and finishing.
Roughing rotation speed: 5000 rpm Feed: 0.25 mm / rev Cutting allowance: φ0.7
Use of workpiece contact support: None Finishing processing rotation speed: 3000 rpm Feed: 0.25 mm / rev Cutting allowance: φ0.7
Use of work piece abutment support: Yes (contact of work piece to machined surface)
Referring to FIG. 3, bit 3 is a sintered diamond material having a nose R3, a rake angle of 25 °, and a relief angle of 3 °. The jig shape of the support 4 was brought into contact with the machining surface from the opposite side of the cutting tool 3 only in the finish cutting process and moved at the same feed speed as the cutting tool 3. The concave shape (support surface) of the support 4 is a semicircle (180 °) of r6.40, and a clearance of φ0.1 to 0.2 (one side 0.05 to 0.1 mm) with respect to the finished outer diameter. Was provided.

サポート4の半円中心と被加工物(主軸)1の中心は一致させ、隙間はローラ上下で同じに設定した。サポート4の半円形状は仕上げをラッピング処理することで半鏡面状態の面精度まで仕上げ、当接による摩擦負荷を低減し、当接による発熱を抑制した。
サポート4、バイト3はNC制御により、各軸単独に起動、NC制御をし、サポート4については、図示してないが、バイト3対向側のNC軸の上にエアテーブル、その上にサポート4を設置し、エアシリンダテーブルを前進させた状態で加工面に当接する位置にサポート面をNC制御で位置移動させた。
サポート4はエアシリンダテーブルを介在しているため、過負荷の場合にはエアシリンダが緩衝の役割となる構造となる。加工装置は、両軸をジャーナルφ6の内径チャックタイプの6爪バルーンチャックを用い、回転駆動は両軸同期回転をする機構になっている。
切削中央部では背分力が作用するために被加工物がたわみ、中央部の外径が大きくなる、所謂、太鼓形状となるため、中央部ではサポートの当接力が大きくなる。適正範囲としては、サポート4を当てさせない(後退)切削状態で外径差φ0.015〜0.030であり、外径差が大きい場合には芯高さを下げ、小さい場合は芯高さを上げて調整をする。
そしてサポート4の当接面位置を調整することにより外径差φ0.010以下になるように当接させる。中央部の外径値を小さくしたい場合には、帯電ローラ(加工ワーク)14面に近づけ、大きくしたい場合や当接力が大きく、びびりなど面精度異常が発生する場合には帯電ローラ14面から遠ざける方向に位置制御する。
The center of the semicircle of the support 4 and the center of the workpiece (main shaft) 1 were made to coincide with each other, and the gap was set to be the same between the upper and lower sides of the roller. The semicircular shape of the support 4 was finished to a surface accuracy in a semi-mirror surface state by lapping the finish, reducing the frictional load due to contact, and suppressing heat generation due to contact.
The support 4 and the tool 3 are activated and controlled by each axis independently by NC control. Although the support 4 is not shown, an air table is provided on the NC axis on the opposite side of the tool 3, and the support 4 is provided thereon. The support surface was moved by NC control to a position where it abuts the machining surface with the air cylinder table moved forward.
Since the support 4 includes an air cylinder table, the air cylinder serves as a buffer in the event of an overload. The processing apparatus uses a 6-claw balloon chuck of an inner diameter chuck type with a journal φ6 on both axes, and the rotational drive is a mechanism that rotates both axes synchronously.
Since the back component force acts at the central portion of the cutting, the work piece bends and the outer diameter of the central portion increases, so that a so-called drum shape is formed. Therefore, the contact force of the support increases at the central portion. As an appropriate range, the outer diameter difference φ0.015 to 0.030 in the cutting state in which the support 4 is not applied (retracted), the core height is decreased when the outer diameter difference is large, and the core height is decreased when the outer diameter difference is small. Raise and adjust.
And it is made to contact | abut by adjusting the contact surface position of the support 4 so that it may become the outer diameter difference (phi) 0.010 or less. If you want to reduce the outer diameter value of the central part, move it closer to the surface of the charging roller (workpiece) 14, and if you want to increase it or move it away from the surface of the charging roller 14 if the contact force is large and abnormal surface accuracy such as chatter occurs. Position control in the direction.

本実施の形態では、サポート4を当接させない切削状態で端部外径φ12.660/中央部外径φ12.680、外径差φ0.020の状態であった。サポート4を仕上げ面にφ0.010以下になるように当接させた際、中央部の振動値(加速度のピーク対ピーク値)の最大は約0.5m/s^2(図9)、主分力約500gf/背分力約120gfであった。外径は両端φ12.66で中央部ではφ12.67(外径差φ0.010)となった。
バイト3側には切削動力計(キスラー社製 type9257B)7を設置し、サポート4側にはアンプ内蔵型一軸振動計(加速度ピックアップ IMV社製 NP−3331)6を取り付け、データ取得のタイミング、データ取得時間についてはNC加工機の加工プログラム内で制御し、データについてはNC加工機にシーケンス機能を付加し、送信させ、規定値(しきい値)を超えるものに関しては、警報処理をするようにした。
このようにバイト3側の切削動力計及びサポート4側の振動計のセンサリングのタイミング、センサリング時間はNC加工機のプログラムに組み込むので、モニタリングデータの信頼性を向上し、センサリングの状態を常に再現性のある状態にできる。
In the present embodiment, the end portion outer diameter φ12.660 / center portion outer diameter φ12.680 and the outer diameter difference φ0.020 are in a cutting state in which the support 4 is not brought into contact. When the support 4 is brought into contact with the finished surface to have a diameter of 0.010 or less, the maximum vibration value (peak to peak acceleration) is about 0.5 m / s ^ 2 (FIG. 9). The component force was about 500 gf / back component force was about 120 gf. The outer diameter was φ12.66 at both ends and φ12.67 at the center (outer diameter difference φ0.010).
A cutting dynamometer (type 9257B made by Kistler) 7 is installed on the bit 3 side, and an uniaxial vibration meter with built-in amplifier (NP-3331 made by accelerometer IMV) is attached on the support 4 side. The acquisition time is controlled within the machining program of the NC machine, and a sequence function is added to the NC machine and transmitted for data, and alarm processing is performed for data exceeding the specified value (threshold value). did.
In this way, the timing and sensoring time of the cutting dynamometer on the cutting tool 3 side and the vibration meter on the support 4 side are incorporated into the NC machine program, so the reliability of the monitoring data is improved and the sensoring state is changed. It can always be reproducible.

[比較例]
仕上げ加工時にバイト側の切削力のみを切削動力計でモニタリングした場合について記載する。加工は被加工物自動供給の定サイクル連続加工であり、品質の確認として切削面の外観を目視判定している。
図7を参照して説明すると、約10,000本加工時に加工サンプルを確認したところ外観検査で仕上げ面に不良品となるびびりが確認された。切削力には異常は確認できなかった。そこで加工機を停止したが、既に不良発生から約50本の被加工物が加工済みとなっており、選別の結果35本がびびり不良となった。
びびりの原因を特定するために、外径の変化(変動)を確認したところ、初期に対して約φ0.010増加し、サポート4を当接させない切削状態での被加工物外径差はφ0.020(端部でφ12.670、中央部でφ12.690)で変化がなかった。
初期に対して外径増加分の1/2分サポート面に仕上げ面が近接するため、加工ワーク中央部の外径変化はφ12.680⇒φ12.690(φ0.010の増加)であるため、仕上げ面はサポート面に対して0.005mm近づく(食い込む)状態であり、サポート当接力の増加がびびりの要因であると推定した(図9)。
よってサポート位置を0.005mmだけ被加工物仕上げ面より離す方向に移動し、びびりの発生を抑え、外径も端部φ12.670/中央部φ12.680となった。調整方法としてはバイト3側の切り込みをφ0.005増加し、端部外径φ12.660/中央部外径φ12.670とすることも可能である。
[Comparative example]
The case where only the cutting force on the bite side is monitored with a cutting dynamometer during finishing is described. The machining is a constant cycle continuous machining with automatic workpiece supply, and the appearance of the cut surface is visually judged as a quality check.
Referring to FIG. 7, when processing samples were confirmed at the time of processing about 10,000, chatter that was a defective product on the finished surface was confirmed by appearance inspection. No abnormality was found in the cutting force. Therefore, the processing machine was stopped, but about 50 workpieces have already been processed since the occurrence of defects, and 35 pieces of chatter became defective as a result of sorting.
In order to identify the cause of chatter, a change (fluctuation) in the outer diameter was confirmed. As a result, the difference in the outer diameter of the workpiece in the cutting state in which the support 4 was not brought into contact with the support 4 increased by about φ0.010. .020 (φ12.670 at the end, φ12.690 at the center), there was no change.
Since the finished surface is close to the support surface by 1/2 of the increase in outer diameter from the initial stage, the outer diameter change at the center of the workpiece is φ12.680⇒φ12.690 (increase in φ0.010). The finished surface was in a state approaching (intruding into) 0.005 mm with respect to the support surface, and it was estimated that an increase in the support contact force was a cause of chatter (FIG. 9).
Therefore, the support position was moved by 0.005 mm away from the workpiece finish surface, the occurrence of chatter was suppressed, and the outer diameter was also the end portion φ12.670 / center portion φ12.680. As an adjustment method, the cutting on the cutting tool 3 side can be increased by φ0.005 so that the outer diameter of the end portion is φ12.660 / the outer diameter of the central portion is φ12.670.

[実施例1]
切削加工時の切削動力計7でモニタリングした場合とサポート4側に振動計6を設置した場合について図2及び図8を参照して記載する。約5,000本目の加工時にサポート4側の加速度が約1m/sec^2に増加していることが確認されたが、仕上げ面にとくに異常は見られなかった。
約9000本目の加工時にサポート4側の加速度が通常より大きな箇所が発生したため、加工サンプルを確認したところ若干のびびりが確認された。その際サポート4側の振動(加速度)はびびりと一致している箇所で4m/sec^2が検出された(図10)。びびりの状態として不良ではないが、このまま加工すると不良が発生する懸念があるため、加工装置を停止し、加工調整を実施した。
サポート面4aを当接させないで加工すると外径差はφ0.020と変動はなく、切削力の変化も確認できなかった。しかし、φ0.005外径が増加していたため、サポート面4aへの仕上げ面の当接が大きくなり、若干のびびりが発生した可能性が考えられる。
この時点でサポート4側の振動を検知することでサポート面4aへの当接力の異常を検知し、サポート4の位置を仕上げ面からφ0.005下げることでびびりを解消することができ、不良の発生を未然に防止することが可能となった。
このように、加工中に異常値を感知した際には、発生した異常項目を時系列で表示、出力するので、異常発生の状況を確認することができ、要因の特定にも活用できる。
[Example 1]
The case where monitoring is performed with the cutting dynamometer 7 at the time of cutting and the case where the vibrometer 6 is installed on the support 4 side will be described with reference to FIGS. Although it was confirmed that the acceleration on the support 4 side increased to about 1 m / sec ^ 2 at the time of machining about 5,000th, no abnormality was found on the finished surface.
Since a portion where the acceleration on the support 4 side was larger than usual occurred at the time of machining of about 9000th, a slight chatter was confirmed when the machining sample was confirmed. At that time, the vibration (acceleration) on the side of the support 4 was detected as 4 m / sec ^ 2 at the position where it coincided with chatter (FIG. 10). Although it is not defective as a state of chatter, since there is a concern that a defect may occur if it is processed as it is, the processing apparatus was stopped and processing adjustment was performed.
When machining was performed without bringing the support surface 4a into contact, the difference in outer diameter was not changed to φ0.020, and no change in cutting force could be confirmed. However, since the outer diameter of φ0.005 has increased, the contact of the finished surface with the support surface 4a is increased, and there is a possibility that slight chatter has occurred.
At this time, by detecting vibration on the support 4 side, an abnormality in the contact force to the support surface 4a is detected, and chatter can be eliminated by lowering the position of the support 4 by φ0.005 from the finished surface. Occurrence can be prevented in advance.
In this way, when an abnormal value is detected during processing, the abnormal items that have occurred are displayed and output in time series, so that the status of the occurrence of the abnormality can be confirmed and can be used to identify the cause.

[実施例2]
切削力背分力の異常しきい値を150gf、サポート4側の加速度しきい値を4[m/sec^2]に設定し、切削力に異常がある場合にはバイト3の芯高さ調整、バイト交換を実施し、サポート4側の加速度に異常が発生した際には、サポート4の位置調整を実施する。また、サポート4側の当接力が大きくなりびびりが発生したことが起因して切削力が増加することもあり、どの異常が先に発生したかを加工工程内で時系列に検知することで判定をすることとする。
このように、加工中にサポート側、バイト側同時にセンサ出力し、加工中の出力値を個別、時系列に監視するので、両方の異常が発生した場合でも、異常内容が加工サイクル内で順序立てて確認することができる。
[Example 2]
Set the abnormal threshold of the cutting force back component force to 150 gf, the acceleration threshold on the support 4 side to 4 [m / sec ^ 2], and adjust the core height of the cutting tool 3 when the cutting force is abnormal When the tool is exchanged and an abnormality occurs in the acceleration on the support 4 side, the position of the support 4 is adjusted. Also, the contact force on the support 4 side becomes large and the cutting force may increase due to the occurrence of chatter, and it is determined by detecting which abnormality occurred first in time in the machining process. I will do it.
In this way, sensor output is performed simultaneously on the support side and the bite side during machining, and the output values during machining are monitored individually and in time series, so even if both abnormalities occur, the abnormal content is ordered within the machining cycle. Can be confirmed.

本発明を実施する旋削加工装置の実施の形態を示す図である。It is a figure which shows embodiment of the turning apparatus which implements this invention. バイト及び被加工物当接支持部側のモニタリング装置を示す概略図である。It is the schematic which shows the monitoring apparatus by the cutting tool and the workpiece contact support part side. 本発明の旋削加工装置における振動検出手段を示す概略図である。It is the schematic which shows the vibration detection means in the turning processing apparatus of this invention. 本発明による加工装置における加工モニタリング装置の構成を示す概略図である。It is the schematic which shows the structure of the process monitoring apparatus in the processing apparatus by this invention. 旋削加工装置の制御部における異常発生時の対応を示すフローチャートである。It is a flowchart which shows the response | compatibility at the time of abnormality generation | occurrence | production in the control part of a turning processing apparatus. 本発明による加工装置で作製した複写機内作像用部品の帯電ローラを示す概略図である。It is the schematic which shows the charging roller of the components for image formation in a copying machine produced with the processing apparatus by this invention. 本発明による加工装置における加工に使用する被加工物の比較例の詳細を表の形で示す図である。It is a figure which shows the detail of the comparative example of the workpiece used for the process in the processing apparatus by this invention in the form of a table | surface. 本発明による加工装置における加工に使用する被加工物の実施例の詳細を表の形で示す図である。It is a figure which shows the detail of the Example of the workpiece used for the process in the processing apparatus by this invention in the form of a table | surface. 初期時点での被加工物当接支持部側当接振動をグラフで示す図である。It is a figure which shows the workpiece contact support part side contact vibration in an initial stage with a graph. びびり発生時の被加工物当接支持部側振動をグラフで示す図である。It is a figure which shows the workpiece contact support part side vibration at the time of chattering with a graph.

符号の説明Explanation of symbols

1 被加工物(加工ワーク)、1a 両端軸、1b 加工済み部分、2 保持部(チャック)、3 バイト(刃具)、4 被加工物当接支持部(サポート)、4a 円弧状凹面(サポート面)、6 振動検出手段(振動計)、7 振動検出手段(切削動力計又は振動計)、8 発信手段(コンピュータ)、13 NC加工機の制御部   1 Workpiece (workpiece), 1a End shaft, 1b Machined part, 2 Holding part (chuck), 3 Byte (blade), 4 Workpiece contact support part (support), 4a Arc-shaped concave surface (support surface) ), 6 Vibration detecting means (vibrometer), 7 Vibration detecting means (cutting dynamometer or vibrometer), 8 Transmitting means (computer), 13 NC machine control unit

Claims (8)

円柱状又は円筒状の被加工物を、該被加工物の両端をそれぞれ保持部によって保持し、かつ、該被加工物の軸を中心に回転させながら、該被加工物の表面にバイトを当接させて旋削加工する旋削加工装置において、
前記バイトと前記被加工物を挟んで対向する位置付近に、前記被加工物の表面に当接して該被加工物を支持し、前記被加工物の回転軸方向に移動する前記バイトに同期して前記回転軸方向に移動する被加工物当接支持部、
前記被加工物当接支持部の振動を検出するセンサリング機能を有する被加工物当接部材振動検出手段、
及び前記被加工物当接部材振動検出手段により検出された振動の大きさが所定の範囲を超えた時に異常警報を発信する発信手段が備えられていることを特徴とする旋削加工装置。
A cylindrical or cylindrical workpiece is held by the holding portions at both ends of the workpiece, and a bit is applied to the surface of the workpiece while rotating about the axis of the workpiece. In the lathe turning machine that makes contact and turn,
Near the position facing the tool and the workpiece, the surface of the workpiece is contacted to support the workpiece and is synchronized with the tool moving in the direction of the rotation axis of the workpiece. A workpiece contact support that moves in the direction of the rotation axis
A workpiece contact member vibration detecting means having a sensoring function for detecting vibration of the workpiece contact support portion;
And a turning device characterized by comprising a sending means for sending an abnormal alarm when the magnitude of vibration detected by the workpiece contact member vibration detecting means exceeds a predetermined range.
前記被加工物当接部材振動検出手段のセンサリング方向が前記被加工物の切削の背分力方向であることを特徴とする請求項1記載の旋削加工装置。 The turning apparatus according to claim 1, wherein a sensoring direction of the workpiece contact member vibration detecting means is a back component force direction of cutting of the workpiece. 前記バイトの振動を検出するセンサリング機能を有するバイト振動検出手段を前記バイト側に備え、前記バイト振動検出手段により検出された振動の大きさが一定のしきい値を超えた際に異常警報を発信する発信手段が備えられていることを特徴とする請求項1記載の旋削加工装置。 A tool vibration detecting means having a sensoring function for detecting the vibration of the tool is provided on the tool side, and an abnormality alarm is issued when the magnitude of vibration detected by the tool vibration detecting means exceeds a certain threshold value. The turning apparatus according to claim 1, further comprising a transmitting means for transmitting. 前記バイト振動検出手段のセンサリング方向が前記被加工物の切削の主分力方向であることを特徴とする請求項3記載の旋削加工装置。 4. The turning apparatus according to claim 3, wherein a sensoring direction of the cutting tool vibration detecting means is a main component force direction of cutting of the workpiece. 加工中に前記被加工物当接部材振動検出手段と前記バイト振動検出手段が同時にセンサ出力し、加工中の出力値を個別、時系列に監視することを特徴とする請求項乃至4のいずれか1項記載の旋削加工装置。 Wherein during machining the workpiece abutting member vibration detecting means and said byte vibration detecting means is a sensor output at the same time, the individual output values during processing, one of the claims 3 to 4, characterized in that to monitor the time series The turning processing apparatus according to claim 1. 加工中に異常値を感知した際には、発生した異常項目を時系列で表示、出力することを特徴とする請求項1乃至5のいずれか1項記載の旋削加工装置。   The turning apparatus according to any one of claims 1 to 5, wherein when an abnormal value is detected during machining, the generated abnormal items are displayed and output in time series. 異常発生の組み合わせ、発生のタイミングにより予め異常要因を登録させることで異常内容、調整内容を表示、出力することを特徴とする請求項1乃至6のいずれか1項記載の旋削加工装置。   The turning apparatus according to any one of claims 1 to 6, wherein the abnormality content and the adjustment content are displayed and output by registering an abnormality factor in advance according to the combination of occurrence of abnormality and the timing of occurrence. センサリングのタイミング、センサリング時間はNC加工機のプログラムに組み込むことを特徴とする請求項1乃至7のいずれか1項記載の旋削加工装置。   The turning processing apparatus according to any one of claims 1 to 7, wherein the sensoring timing and the sensoring time are incorporated in a program of the NC processing machine.
JP2008169206A 2008-06-27 2008-06-27 Turning device Expired - Fee Related JP5326380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169206A JP5326380B2 (en) 2008-06-27 2008-06-27 Turning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169206A JP5326380B2 (en) 2008-06-27 2008-06-27 Turning device

Publications (2)

Publication Number Publication Date
JP2010005756A JP2010005756A (en) 2010-01-14
JP5326380B2 true JP5326380B2 (en) 2013-10-30

Family

ID=41586815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169206A Expired - Fee Related JP5326380B2 (en) 2008-06-27 2008-06-27 Turning device

Country Status (1)

Country Link
JP (1) JP5326380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7126902B2 (en) 2018-08-21 2022-08-29 大日本印刷株式会社 Composite container and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290435A (en) * 2015-11-11 2016-02-03 无为县鑫发盛汽车零部件有限公司 Meter lathe
CN109746465A (en) * 2018-09-26 2019-05-14 江苏师范大学 A kind of turning vibration-turning deformation-turning temperature real time monitoring and analyzing system
KR101941642B1 (en) * 2018-11-13 2019-01-24 한두철강 주식회사 A pipe length inspection device mounted on the chamfering machine
EP3954481B1 (en) * 2019-04-11 2023-09-13 Citizen Watch Co., Ltd. Machine tool and detecting method
KR102168360B1 (en) * 2020-03-04 2020-10-21 이종갑 Carving Apparatus for Ice Ball

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614637A (en) * 1984-06-14 1986-01-10 Yamazaki Mazak Corp Driving control method of center rest device in numerically-controlled lathe
JPS62176724A (en) * 1986-01-28 1987-08-03 Hitachi Seiki Co Ltd Automatically centering device of workpiece holding means
JP2818784B2 (en) * 1988-12-28 1998-10-30 株式会社ナガセインテグレックス Whetstone management device
JPH02145902U (en) * 1989-05-16 1990-12-11
JPH0413251U (en) * 1990-05-18 1992-02-03
JP3639071B2 (en) * 1996-12-18 2005-04-13 三菱原子燃料株式会社 Anomaly detection method in centerless grinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7126902B2 (en) 2018-08-21 2022-08-29 大日本印刷株式会社 Composite container and its manufacturing method

Also Published As

Publication number Publication date
JP2010005756A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5326380B2 (en) Turning device
CN109799784B (en) Tool wear detection device, detection method thereof and tool wear compensation method
JP5376435B2 (en) Apparatus and method for controlling workpiece cutting using a transducer made of piezoelectric ceramics
JP5411055B2 (en) Tool life detection method and tool life detection device
US20050154488A1 (en) Real-time measurement of tool forces and machining process model parameters
EP1300738A2 (en) Offset apparatus for NC machine tool
CN105500113B (en) Machine tool chief axis folder bits warning device and method based on non-contact displacement sensor
BRPI0707680A2 (en) apparatus and method for controlling workpiece machining using piezoceramic transducers
JP2006062081A (en) Die processing device
JP2009220242A (en) Turning device
CN105364633A (en) Tool abnormity detection method
US20210101241A1 (en) Main spindle monitoring device and main spindle monitoring method of machine tool
JP2009226551A (en) Tool service life detecting method and tool service life detecting device
Navarro-Devia et al. Chatter detection in milling processes—a review on signal processing and condition classification
KR102102331B1 (en) Apparatus for manufacturing screw and method for monitoring cutting tool
JP2007283461A (en) Machine tool, and method for detecting foreign matter
JP6407810B2 (en) Machining system that adjusts machining tool rotation speed and workpiece feed speed
JP2016175147A (en) Surface processing device
KR20180136056A (en) Tool breakage detection system and method for detecting Tool breakage
KR101997356B1 (en) 2-axis compliance device with force sensing capability
JP2010069540A (en) Abnormality detection device for drilling, machine tool equipped with the abnormality detection device, abnormality detection method
JP6807997B1 (en) Tool holder and machining method
Gouarir et al. In-process tool wear detection of uncoated square end mill based on electrical contact resistance
EP3146220B1 (en) Gas bearing spindles
JP6501155B2 (en) Tool abnormality detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees