JPS614637A - Driving control method of center rest device in numerically-controlled lathe - Google Patents

Driving control method of center rest device in numerically-controlled lathe

Info

Publication number
JPS614637A
JPS614637A JP12269284A JP12269284A JPS614637A JP S614637 A JPS614637 A JP S614637A JP 12269284 A JP12269284 A JP 12269284A JP 12269284 A JP12269284 A JP 12269284A JP S614637 A JPS614637 A JP S614637A
Authority
JP
Japan
Prior art keywords
rest device
steady rest
workpiece
machining
flat part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12269284A
Other languages
Japanese (ja)
Other versions
JPH0466661B2 (en
Inventor
Shoji Momoi
桃井 昭二
Kazuharu Tomita
富田 和春
Yutaka Matsubara
裕 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Original Assignee
Yamazaki Mazak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp filed Critical Yamazaki Mazak Corp
Priority to JP12269284A priority Critical patent/JPS614637A/en
Publication of JPS614637A publication Critical patent/JPS614637A/en
Publication of JPH0466661B2 publication Critical patent/JPH0466661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/72Auxiliary arrangements; Interconnections between auxiliary tables and movable machine elements
    • B23Q1/76Steadies; Rests

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To aim at automation in application and positioning for a center rest device, by letting the center rest device shift to a flat part judged out of a memory of a work flat part table and positioning it thereat when work's overall length is judged as being more than the specified value to the diameter. CONSTITUTION:In time of machining, a main control part 2 calls a machining program PRO out of a machining program memory 7 and outputs it to a mechanism performance control part 10, while this control part 10 drives and controls a tool rest 13 and a spindle 12, but when such machining as using a center rest device 11 is instructed in a certain machining job, the main control part 2 drives and controls this center rest device 11 and positions this device 11 at the specified position. Next, when use of this center rest device 11 is not instructed, the main control part 10 operates and judges it from a diameter D and overall length L of a work blank, and when L>aD is judged so, the center rest device 11 is used whereby chattering to be produced during operation is effectively restrained so that highly accurate machining is securable.

Description

【発明の詳細な説明】 (a)0発明の技術分野 本発明はワークのビビリ防止を目的として数値制御旋盤
に装着使用される振れ止め装置の駆動制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a drive control method for a steady rest device installed and used in a numerically controlled lathe for the purpose of preventing chatter of a workpiece.

(a)0発明の技術分野 通常、旋盤加工において長い棒状のワークを加工する場
合には、加工に際して発生するビ(゛すを防止して精度
良い加工を行うために、振れ止め装置が用いられる。
(a) Technical Field of the Invention Normally, when machining a long bar-shaped workpiece in lathe machining, a steady rest device is used to prevent the bits that occur during machining and to perform highly accurate machining. .

(C)、従来技術と問題点 従来、数値制御旋盤において振れ止め装置を用いる場合
には、その位置決めをオペレータが手動で行う必要が有
った。しかし、これでは、加工中に振れ止め装置を用い
ようとした場合、振れ止め装置を最適な位置に正しくセ
ットすることは極めて困難であり、実際には加工中の振
れ止め装置の操作は不可能であった。
(C), Prior Art and Problems Conventionally, when a steady rest device is used in a numerically controlled lathe, it has been necessary for an operator to manually position it. However, if you try to use the steady rest device during machining, it is extremely difficult to correctly set the steady rest device in the optimal position, and it is actually impossible to operate the steady rest device during machining. Met.

従って、オペレータは切削条件や工具等を試行錯誤的に
変化させてビビリを解消させるしか方法が無く、極めて
非能率的な作業を強いられていた。
Therefore, operators have no choice but to change cutting conditions, tools, etc. through trial and error to eliminate chatter, and are forced to perform extremely inefficient work.

(d)0発明の目的 本発明は、前述の欠点を解消すべく、揺れ止め装置の所
定位置への位置決めを数値制御旋盤側で適正に行い得る
数値制御旋盤における振れ止め装置の駆動制御方法を提
供することを第1の目的とし、更にオペレータが加工プ
ログラム中で振れ止め装置の使用について何ら特別な指
示をしなくても、振れ止め装置の使用の可否を装置側で
判断し得る数値制御旋盤における揺れ止め装置の駆動制
御方法を提供することを第2の目的とするものである。
(d)0Object of the Invention In order to eliminate the above-mentioned drawbacks, the present invention provides a drive control method for a steady rest device in a numerically controlled lathe, which allows the numerically controlled lathe to properly position the steady rest device at a predetermined position. To provide a numerically controlled lathe whose primary purpose is to provide a numerically controlled lathe in which the machine side can determine whether or not a steady rest device can be used without the operator having to give any special instructions regarding the use of the steady rest device in a machining program. A second object of the present invention is to provide a method for controlling the drive of the anti-sway device in the present invention.

(e)0発明の構成 即ち、本発明は、ワークの加工時における平坦部の位置
を示すワーク平坦部テーブルを格納したメモリを設け、
当該ワーク平坦部テーブルの内容を加工の進行に合わせ
て順次書き換えると共に、加工プログラムに基づく加工
に際して、ワークの全長が当該ワークの径に対して所定
以上の長さが有るか否かを演算判定し、その結果、所定
以上の長さが有ると判定された場合には、前記メモリ中
のワーク平坦部テーブルを検索して、当該加工す。
(e) 0 Configuration of the invention That is, the present invention provides a memory that stores a workpiece flat part table indicating the position of the flat part during processing of the workpiece,
The contents of the workpiece flat part table are sequentially rewritten in accordance with the progress of machining, and during machining based on the machining program, it is calculated and determined whether the total length of the workpiece is longer than a predetermined length with respect to the diameter of the workpiece. As a result, if it is determined that the length is longer than a predetermined length, the workpiece flat part table in the memory is searched and the workpiece is machined.

べきワークの平坦部を判定し、当該判定された平坦部に
振れ止め装置を移動位置決めさせて加工中のワークを支
持するようにして構成される。
The flat part of the workpiece to be machined is determined, and the steady rest device is moved and positioned on the determined flat part to support the workpiece being machined.

(f)0発明の実施例 以下、図面に基づき、本発明の実施例を、具体的に説明
する。
(f) 0 Embodiments of the Invention Hereinafter, embodiments of the present invention will be specifically described based on the drawings.

第1図は本発明による振れ止め装置の駆動制御方法が適
用された数値制御旋盤の一例を示す制御ブロック図、第
2図は三点支持振れ止め装置の一例を示す側面図、第3
図は二点支持振れ止め装置の一例を示す側面図、第4図
はワーク平坦部形状メモリに格納されたワーク平坦部テ
ーブルを示す模式図、第5図乃至第9図は振れ止め装置
の制御態様を示す図、第10図は追従制御における工具
と振れ止め装置の遭遇点を求める際の各寸法関係を示す
図である。
FIG. 1 is a control block diagram showing an example of a numerically controlled lathe to which the drive control method for a steady rest device according to the present invention is applied; FIG. 2 is a side view showing an example of a three-point steady rest device;
The figure is a side view showing an example of a two-point support steady rest device, FIG. 4 is a schematic diagram showing a workpiece flat part table stored in the workpiece flat part shape memory, and FIGS. 5 to 9 are control of the steady rest device. FIG. 10 is a diagram showing the dimensional relationship when determining the encounter point between the tool and the steady rest device in follow-up control.

数値制御旋盤1は、第1図に示すように、主制御部2を
有しており、主制御部2にはパス線3を介してキーボー
ド5、ワーク平坦部形状メモリ6、加工プログラムメモ
リ7、振れ止め制御部9、機構動作制御部10等が接続
している。振れ止め制御部9には2台の振れ止め装置1
1が、振れ止め制御部9により駆動制御自在に接続して
おり、振れ止め装置11はワーク15の支持態様に応じ
て、第2図に示すように、3個の支持ローラ11aによ
りワーク15を支持する、3点支持振れ止め装置と、第
3図に示すように、2個の支持ローラllaによりワー
ク15を支持する、2点支持振れ止め装置とが有る。な
お、それ等振れ止め装置11は必要に応して旋盤のベッ
ド16に装着することにより、適宜選択使用することが
可能である。また、振れ止め装置11は、ベッド16に
治ってZ軸方向、即ち第2図及び第3図中紙面と直角方
向に移動駆動自在に設けられており、そのうち2点支持
振れ止め装置はZ軸方向と直角な方向であるX軸方向に
も駆動自在に設けられている。
As shown in FIG. 1, the numerically controlled lathe 1 has a main control section 2, and the main control section 2 is connected via a path line 3 to a keyboard 5, a workpiece flat part shape memory 6, and a machining program memory 7. , steady rest control section 9, mechanism operation control section 10, etc. are connected. Two steady rest devices 1 are installed in the steady rest control unit 9.
The steady rest device 11 supports the workpiece 15 with three support rollers 11a according to the support mode of the workpiece 15, as shown in FIG. There are a three-point support steady rest device that supports the workpiece 15, and a two-point support steady rest device that supports the workpiece 15 with two support rollers lla, as shown in FIG. It should be noted that these steady rest devices 11 can be selectively used as appropriate by attaching them to the bed 16 of the lathe as necessary. Further, the steady rest device 11 is installed on the bed 16 so as to be movable and driven in the Z-axis direction, that is, in the direction perpendicular to the plane of the paper in FIGS. It is also provided so as to be freely drivable in the X-axis direction, which is a direction perpendicular to the X-axis direction.

なお、3点支持振れ止め装置11には、支持ローラll
aを装着する3本の支持アーム11bが、矢印A、、B
方向に開閉自在に設けられており、支持アーム11bを
開閉させる乙とにより、ワーク15を支持し、また加工
中に接近してきた工具と支持アームllbとの干渉を防
止することが出来る。また、機構動作制御部10には、
第1図に示すように、主軸12、刃物台13等が機構動
作制御部10により駆動制御自在に接続されている。
In addition, the three-point support steady rest device 11 includes a support roller ll.
The three support arms 11b to which a is attached are indicated by arrows A, B
By opening and closing the support arm 11b, it is possible to support the workpiece 15 and prevent interference between the support arm llb and a tool that approaches during machining. Additionally, the mechanism operation control unit 10 includes:
As shown in FIG. 1, a main shaft 12, a tool rest 13, etc. are connected to each other so as to be freely controllable.

数値制御旋盤1は以上のような構成を有するので、加工
に際して、主制御部2は加工プログラムメモリ7から加
工プログラムPROを呼び出して、機構動作制御部10
に出力し、機構動作制御部10は当該用ニブログラムP
ROに基づいて刃物台13、主軸12を駆動制御するが
、加工の進行に伴って、ある加工において振れ止め装置
11を用いた加工が加工プログラムPRO中に、指示さ
れた場合には、主制御部2は加工プログラムPROに基
づいて振れ止め装置11を駆動制御して所定の位置に振
れ止め装置11を位置決めする。
Since the numerically controlled lathe 1 has the above configuration, during machining, the main control section 2 calls the machining program PRO from the machining program memory 7 and executes the mechanism operation control section 10.
The mechanism operation control unit 10 outputs the nib program P for the concerned
The drive of the tool post 13 and the main spindle 12 is controlled based on the RO, but as the machining progresses, if machining using the steady rest device 11 is instructed during the machining program PRO, the main control The unit 2 drives and controls the steady rest device 11 based on the machining program PRO to position the steady rest device 11 at a predetermined position.

即ち、加工プログラムPRO中に、振れ止め装置11を
位置決めすべきZ座標値Z1が指定されていた場合には
、主制御部2は直ちに振れ止め制御部9を介して振れ止
め装置11を所定のZ座標Z1に位置決めしてワーク1
5をその位置で支持させ、加工を開始する。なお、振れ
止め装置11は、第5図に示すように、1台の旋盤1に
ついて2台設けられているので、加工プログラムPRO
中て支持された座標値Z1が、ワーク15の全長りのL
/2より、又は、振れ止め制御部9に予め設定されたパ
ラメータ値よりも大なる場合(従って、座標値Zlがチ
ャック側に位置する場合)は、第5図中チャック17側
の振れ止め装置11Aを座標値Z1にまで移動させ、そ
うでない時(従って、座標値Z1が、テールストック側
に位置する場合)は、テールストック19側の振れ止め
装置11Bを座標値Z1にまで移動させて位置決めを行
う。また、使用する振れ止め装置11は、既に述べたよ
うに、2点支持又は3点支持いずれの支持方式によるも
のでもよいことは勿論である。
That is, if the Z coordinate value Z1 at which the steady rest device 11 should be positioned is specified in the machining program PRO, the main control section 2 immediately moves the steady rest device 11 to a predetermined position via the steady rest control section 9. Position at Z coordinate Z1 and workpiece 1
5 is supported at that position and processing begins. In addition, since two steady rest devices 11 are provided for one lathe 1 as shown in FIG. 5, the machining program PRO
The coordinate value Z1 supported inside is the total length L of the workpiece 15.
/2 or larger than the parameter value preset in the steady rest control unit 9 (therefore, if the coordinate value Zl is located on the chuck side), the steady rest device on the chuck 17 side in FIG. 11A to the coordinate value Z1, and if not (therefore, if the coordinate value Z1 is located on the tailstock side), move the steady rest device 11B on the tailstock 19 side to the coordinate value Z1 and position it. I do. Further, the steady rest device 11 to be used may, of course, be of either a two-point support system or a three-point support system, as described above.

次に、加工プログラムPRO中に、振れ止め装置11を
位置決めすべき座標値Z1が指示されていない場合、な
いしは特に振れ止め装置11を用いた加工を指示してい
ない場合には、主制御部2は、まず、加工プログラムP
RO中のワーク15の素材直径り及び全長しから、当該
加工が振れ止め装置11を用いて加工を行うべきか否か
を、(1)式により演算判定する(即ち、主制御部2は
加工プログラムPRO中に指示された加工の内、振れ止
め装置11の位置決め座標値Z1が指示された以外の全
ての加工について、振れ止め装置11を用いるべきか否
かを、(1)式によ、り判定する。)。
Next, if the coordinate value Z1 for positioning the steady rest device 11 is not specified in the machining program PRO, or if machining using the steady rest device 11 is not specifically instructed, the main control unit 2 First, the machining program P
Based on the material diameter and total length of the workpiece 15 during RO, it is determined by equation (1) whether or not the machining should be performed using the steady rest device 11 (i.e., the main control unit 2 Among the machining operations instructed during the program PRO, whether or not the steady rest device 11 should be used is determined by formula (1) for all operations other than those for which the positioning coordinate value Z1 of the steady rest device 11 is specified. ).

しくaD                  ・・・
 ・・・・・・(1)(αは、予め数値制御旋盤1内に
設定されたパラメータ)L<aDと判定された場合に′
は、全長りに比して素材直径りが十分大きいので、振れ
止め装置11を加工に際して用いる必要が無く、従って
主制御部2は当該用ニブログラムPROに基づく加工に
際して、振れ止め装置11を用いることなく加工を開始
する。
Shikaku aD...
......(1) (α is a parameter set in advance in the numerically controlled lathe 1) When it is determined that L<aD, '
Since the diameter of the material is sufficiently large compared to the overall length, there is no need to use the steady rest device 11 during processing, and therefore the main control unit 2 uses the steady rest device 11 during processing based on the Niprogram PRO for this purpose. Start processing immediately.

L〉aDと判定された場合には、振れ止め装置11を用
いることにより、加工中に生じるビビリを効果的に抑制
することが出来るので、主制御部2は振れ止め制御部9
に、振れ止め装置11の所定位置への位置決めを指令す
る。
If it is determined that L>aD, the main control section 2 uses the steady rest control section 9 to effectively suppress chatter that occurs during machining by using the steady rest device 11.
Then, a command is given to position the steady rest device 11 at a predetermined position.

即ち、振れ止め制御部9の行う振れ止め装置11の、自
動位置決め制御には、振れ止め装置11が加工工具のZ
軸方向の移動に追従して移動してゆく、(1)追従制御
と、単に2台の振れ止め装置11の内のどちらか少なく
とも一方の振れ止め装置11を所定位置に位置決めして
加工を行う、(2)支持位置最適化制御の2通りの制御
が有る。
That is, in the automatic positioning control of the steady rest device 11 performed by the steady rest control section 9, the steady rest device 11 is
(1) Follow-up control that moves by following the movement in the axial direction, and simply positioning at least one of the two steady rest devices 11 at a predetermined position to perform machining. , (2) There are two types of control: support position optimization control.

(1)追従制御は、加工プログラムPROにより指示さ
れた加工が、ネジ切り、溝入れ加工以外の加工で、その
加工領域のZ軸方向の長さが、予め数値制御旋盤1内に
パラメータ設定された値以上の場合に行われる制御方法
で、最も高精度のビビリの少ない加工が得られるもので
ある。
(1) Follow-up control is performed when the machining instructed by the machining program PRO is a machining other than thread cutting or grooving, and the length of the machining area in the Z-axis direction is set in advance as a parameter in the numerically controlled lathe 1. This is a control method that is performed when the value is greater than or equal to the specified value, and provides the most accurate machining with the least chatter.

即ち、追従制御を行う場合には、振れ止め制御部9は、
ワーク平坦部形状メモリ6を検索して、ワーク15の現
時点における平坦部、即ち、平行な棒状部分(例えば、
第9図における、部分SA、SC,SE等)で、揺れ止
め装置11のセットが可能な部分の各座標値を求める。
That is, when performing follow-up control, the steady rest control section 9
The workpiece flat part shape memory 6 is searched to find the current flat part of the workpiece 15, that is, a parallel bar-shaped part (for example,
In FIG. 9, the coordinate values of the parts where the anti-sway device 11 can be set are determined in the parts SA, SC, SE, etc.).

ワーク平坦部形状メモリ6は、第4図に示すように、加
工すべきワーク15において、揺れ止め装置11のセッ
トが可能なZ軸方向の幅を有する平坦部15aの座標値
が、その始点及び終点のZ座標値2,2  、更に当該
部分の直径D (X座標値に相当)として格納された、
ワーク平坦部テーブルTABLを格納しており、従って
、振れ止め制御部9は、ワーク平坦部形状メモリ6のワ
ーク平坦部テーブルTABLを検索することにより、直
ちに加工すべきワーク15に関する揺れ止め装置11の
セットが可能な平坦部15aの分布状況を知ることが出
来る。このワーク平坦部テーブルTABLは、加工プロ
グラムPROによる加工が進行するにつれて、その内容
が書き換えられてゆくので[加工プログラムPROに基
づいて機構動作制御部10により演算される加工の際の
工具経路、即ち工具の軌跡(工具先端の軌跡はその時点
におけるワーク15の外形を示すものに他ならず、従っ
て、当該工具先端の軌跡を演算することにより、X座標
犯変化しない平坦部15aの存在、及び形成状況は直ち
に判明する。)から、ワーク15の平坦部15aの形成
状況は即時に主制御部2により演算され、その結果に基
づいて主制御部2はワーク平坦部テーブルTABLの内
容を書き換えてゆく。]、振れ止め制御部9は爪に常に
最新の平坦部15aの形成状況を知ることが出来る。
As shown in FIG. 4, the workpiece flat part shape memory 6 stores the coordinate values of the flat part 15a of the workpiece 15 to be machined, which has a width in the Z-axis direction that allows the anti-sway device 11 to be set, as the starting point and the coordinate value of the flat part 15a. The Z coordinate value of the end point 2,2 is further stored as the diameter D (corresponding to the X coordinate value) of the part,
The workpiece flat part table TABL is stored, and therefore, the steady rest control unit 9 searches the workpiece flat part table TABL in the workpiece flat part shape memory 6 to immediately control the workpiece 15 related to the workpiece 15 to be machined. It is possible to know the distribution of flat parts 15a that can be set. The contents of this workpiece flat part table TABL are rewritten as the machining by the machining program PRO progresses. The trajectory of the tool (the trajectory of the tool tip is nothing but the one that indicates the outer shape of the workpiece 15 at that point in time; therefore, by calculating the trajectory of the tool tip, it is possible to determine the existence and formation of a flat portion 15a that does not change in the X coordinate. ), the formation status of the flat part 15a of the workpiece 15 is immediately calculated by the main controller 2, and based on the result, the main controller 2 rewrites the contents of the workpiece flat part table TABL. . ], the steady rest control unit 9 can always know the latest formation status of the flat portion 15a on the claw.

(以下余白) なお、ワーク平坦部テーブルTABLには、第4図に示
すように、平坦部15aの長さLlが所定の値以下の場
合、即ち、長さLlが、振れ止め装置11の支持部分の
Z軸方向の寸法ZR(第5図及び第7図参照)に所定の
パラメータ値を足した値よりも小さい場合には、振れ止
め装置11の工具に同期した追従が不可能なものとして
、ワーク平坦部テーブルTABL中の、追従可否フラグ
格納領域FAに、追従が不可、能であることを示す「×
」のフラグFLGを立てる。また、長さLlが、振れ止
め装置11の支持部分のZ軸方向の寸法ZRに所定のパ
ラメータ値を足した値よりも大きい場合には、振れ止め
装置11の工具に同期した追従が可能なものとして、゛
ワーク平坦部テーブルTABL中の、追従可否フラグ格
納領域FAに、追従が可能であることを示す「O」のフ
ラグF L Gを立てる。
(The following is a margin) Note that, as shown in FIG. If it is smaller than the sum of the Z-axis dimension ZR (see Figures 5 and 7) of the part plus the predetermined parameter value, it is assumed that the steady rest device 11 cannot follow the tool in synchronization. , "X" indicating that tracking is not possible or possible is written in the tracking possibility flag storage area FA in the workpiece flat part table TABL.
” flag FLG is set. Further, when the length Ll is larger than the sum of the Z-axis dimension ZR of the support portion of the steady rest device 11 plus a predetermined parameter value, the steady rest device 11 can follow in synchronization with the tool. As such, a flag FLG of "O" indicating that tracking is possible is set in the tracking enable/disable flag storage area FA in the workpiece flat part table TABL.

そこで、振れ止め制御部9は、揺れ止め装置11Bを駆
動して、機構動作制御部10が刃物台13を駆動して、
当該刃物台13に装着された工具20を介してワーク1
5に対する加工プログラムPROに基づく加工を行う際
に、第9図に示すように、例えば矢印C方向に移動制御
される工具20にやや遅れた形で、工具20が加工する
平坦部15aについて、工具20のZ軸方向の送り速度
と等しい送り速度でC方向に、加工中のワーク15を支
持ローラllaにより支持した形で移動させつつ保持さ
せる。これにより、振れ止め装置11Bは、加工動作を
行っている工具20のほぼ反対側で工具20の送りに同
期した形で移動駆動されるので、ワーク15は振れ止め
装置11Bによりビビリを生じること無く確実に支持さ
れ、加工は精度良く行われる。
Therefore, the steady rest control section 9 drives the steadying device 11B, and the mechanism operation control section 10 drives the tool rest 13.
The workpiece 1 is passed through the tool 20 mounted on the tool post 13.
When performing machining based on the machining program PRO for 5, as shown in FIG. The workpiece 15 being machined is moved and held in the C direction at a feed rate equal to the feed rate in the Z-axis direction of 20 while being supported by support rollers lla. As a result, the steady rest device 11B is moved and driven in synchronization with the feed of the tool 20 on the almost opposite side of the tool 20 performing the machining operation, so the workpiece 15 is prevented from chattering due to the steady rest device 11B. It is supported reliably and machining is performed with high precision.

また、第9図における部分SB、、SD等はテーパ加工
部分なので、振れ止め装置11Bの工具20に対向した
形の追従制御は不可能なことから、振れ止め装置11B
によるワーク15の支持を一時中断して、もう一方のチ
ャック17側の振れ止め装置1’lAを、工具20が加
工するワーク15の部分SBに所定距離以上の範囲で最
も近接した部分SEの平坦部15aで、追従可否フラグ
格納領域FAのフラグFLGが「○」となっている部分
の、加工部分SHに最も近い位置ZPに移動させ、その
位置ZPでワーク15を支持させる。この状態で、振れ
止め装置11Bをワーク15から離し、工具20に部分
SBに対する加工を行わせるが、一方で振れ止め制御部
9は振れ止め装置11Bの次の平坦部15aに対する位
置決め動作に入る。即ち、次に工具20が加工する平坦
部15aは部分SCであり、従って、工具20が部分S
BからSCの加工に移る際には、振れ止め装置11Bを
部分SCの所定の位置に位置決めしておく必要がある。
In addition, since the portions SB, SD, etc. in FIG. 9 are tapered portions, it is impossible to perform follow-up control of the steady rest device 11B facing the tool 20.
The support of the workpiece 15 by the tool 20 is temporarily suspended, and the steady rest device 1'lA on the other chuck 17 side is moved to the flat part SE of the workpiece 15 that is closest to the part SB of the workpiece 15 processed by the tool 20 within a predetermined distance or more. In section 15a, the part where the flag FLG in the followability flag storage area FA is set to "O" is moved to the position ZP closest to the machining part SH, and the workpiece 15 is supported at that position ZP. In this state, the steady rest device 11B is separated from the workpiece 15 and the tool 20 is made to process the portion SB, while the steady rest control section 9 starts positioning the steady rest device 11B with respect to the next flat portion 15a. That is, the flat portion 15a that the tool 20 processes next is the portion SC, and therefore the tool 20 processes the portion S.
When moving from machining B to SC, it is necessary to position the steady rest device 11B at a predetermined position in the portion SC.

この振れ止め装置11Bの位置決め位置を、遭遇点MP
と称し、遭遇点MPの座標位置は、第10図に示すよう
に、(2)式から求める。
The positioning position of this steady rest device 11B is set at the encounter point MP.
The coordinate position of the encounter point MP is determined from equation (2) as shown in FIG.

f: 11もペリ献(ν爾/分) F:振れ止め装置の早送り速度(mm7分)11:逃げ
量(定数)(− 42:工具と振れ止め装置間の距離(胴)lV:遭遇点
までの距離(、) l :半径差−クリアランス量(mm)K:工具に対す
る振れ止め装置の追従遅れ量(−゛T一時定数(分) 即ち、工具20から遭遇点MPまでの距#13は、とな
り、距11113により、振れ止め制御部9は、振れ止
め装置11Bを位置決めすべきZ座標値を演算する乙と
が出来る(工具20の距離43演算時点における現在位
置は、判明している。)。これにより、振れ止め装置1
1Bを部分SCの遭遇点MPに位置決めし、工具20が
部分SBの加工を終了させて部分SCの加工に入り、更
に工具20が遭遇点MPに対応するZ座標位置を通過し
所定の遅れ量Kに相当するだけ、第10図左方に進んだ
ところで、振れ止め装置11BreX軸方向にクリアラ
ンス量に相当するだけ移動させてワーク15を支持し、
直ちに工具20のZ軸方向(この場合、矢印C方向)の
送りに連動した追従制御に入る。
f: 11 is also constant (ν/min) F: Rapid traverse speed of steady rest device (mm 7 min) 11: Relief amount (constant) (-42: Distance between tool and steady rest device (body) lV: Encounter point Distance to (,) l: Radial difference - Clearance amount (mm) K: Follow-up delay amount of the steady rest device with respect to the tool (-゛T temporary constant (minutes) In other words, the distance #13 from the tool 20 to the encounter point MP is , and the distance 11113 allows the steady rest control unit 9 to calculate the Z coordinate value for positioning the steady rest device 11B (the current position of the tool 20 at the time of calculating the distance 43 is known). ).Thus, steady rest device 1
1B is positioned at the encounter point MP of the portion SC, the tool 20 finishes machining the portion SB and begins machining the portion SC, and then the tool 20 passes through the Z coordinate position corresponding to the encounter point MP and a predetermined delay amount. When the workpiece 15 has moved to the left in FIG. 10 by an amount corresponding to K, the steady rest device 11B is moved in the X-axis direction by an amount equivalent to the clearance amount, and the workpiece 15 is supported.
Immediately, follow-up control is started in conjunction with the feeding of the tool 20 in the Z-axis direction (in this case, in the direction of arrow C).

なお、距離I13を求める際の、工具と振れ止め装置間
の距fi11  は、距離! 演算時点の距離を採用す
る。また、距I11  の演算時点(即ち、距離l の
サンプリング時点)が、振れ止め装置11Bがワーク1
5から離れる以前であるか否かで、(2)式が変わるこ
とは勿論であり、本実施例の場合は、振れ止め装置11
Bが部分SAから離れる以前に距離13を演算し、その
時点における距離13から、振れ止め装置11Bを位置
決めするZ座標を求めている。
In addition, when calculating the distance I13, the distance fi11 between the tool and the steady rest device is the distance! The distance at the time of calculation is used. Also, the time point when the distance I11 is calculated (that is, the time point when the distance l is sampled) is when the steady rest device 11B is on the workpiece 1.
Of course, equation (2) changes depending on whether or not the steady rest device 11
The distance 13 is calculated before B leaves the portion SA, and the Z coordinate for positioning the steady rest device 11B is determined from the distance 13 at that point.

こうして、振れ止め装置11Bが再度追従制御に入ると
、振れ止め制御部9はそれまでワーク15を支持してい
た振れ止め装置11Aをワーク15から離して、所定の
待機位置に移動待機させる。なお、振れ止め装置11B
の遭遇点MPを求める演算、更には当該遭遇点MPへの
位置決め等の繁雑な制御を避けるために、追従不可能部
分SB、SDに挾まれる平坦部15aが所定の値以下の
場合には、部分SCについても追従不可能部分として処
理し、部分SB、SC,SDについては、全て振れ止め
装置11Aにより支持させるように構成することも当然
可能である。
In this way, when the steady rest device 11B enters the follow-up control again, the steady rest control section 9 separates the steady rest device 11A, which had been supporting the workpiece 15, from the workpiece 15 and moves it to a predetermined standby position to standby. In addition, steady rest device 11B
In order to avoid complicated control such as calculating the encounter point MP and positioning to the encounter point MP, if the flat part 15a sandwiched between the unfollowable parts SB and SD is less than a predetermined value, , it is also possible to treat the portions SC as unfollowable portions, and to configure the portions SB, SC, and SD to be all supported by the steady rest device 11A.

次に、追従制御の採用される場合以外に用いられる、(
2)支持位置最適化制御について述べると、この場合は
振れ止め制御部9はワーク平坦部形状メモリ6中のワー
ク平坦部テーブルTABLを検索し、■これから行う加
工領域に最も近く、■その位置が2個所有る場合には、
ワーク15の中心に近いほうで、■加工中の工具20の
動きを妨害しない平坦部15aを捜し出し、当該発見さ
れた平坦部15aに振れ止め装置11を移動させてワー
ク15を支持し、加工を開始する。
Next, (
2) Regarding the support position optimization control, in this case, the steady rest control unit 9 searches for the workpiece flat part table TABL in the workpiece flat part shape memory 6, and determines the position that is closest to the machining area to be processed, and If you own two,
Find a flat part 15a near the center of the workpiece 15 that does not interfere with the movement of the tool 20 during machining, and move the steady rest device 11 to the found flat part 15a to support the workpiece 15 and start machining. Start.

この際、当該求められた平坦部15aまでの距111d
が、第5図及び第7図に示すように、ワーク15全長し
に対して、dくL/2の場合には、テールストック19
側の振れ止め装置11Bを当該平坦部15aにまで移動
させてワーク15を支持させ、d≧L/2の場合には、
第6図及び第8図に示すように、チャック17側の振れ
止め装置11Aを当該平坦部15aにまで移動させ、そ
の状態でワーク15を支持させて加工を開始する。
At this time, the determined distance 111d to the flat portion 15a
However, as shown in FIGS. 5 and 7, when the total length of the workpiece 15 is d less than L/2, the tail stock 19
Move the side steady rest device 11B to the flat portion 15a to support the workpiece 15, and if d≧L/2,
As shown in FIGS. 6 and 8, the steady rest device 11A on the chuck 17 side is moved to the flat portion 15a, and in this state, the workpiece 15 is supported and machining is started.

なお、第5図及び第6図に示すように、3点支持振れ止
め装置11を用いた場合に、前記■、■、■に示した条
件で求めた平坦部15aに所定の振れ止め装置11A又
は11Bを位置決めし、更にもう一方の振れ止め装置1
1B又はIIAを、振れ止め装置11Aを■、■、■に
示した条件で求めた平坦部15 aにセットした場合に
は、振れ止め装置11Bを、第6図に示すように、チャ
ック17からの距離が4゜がaD以咋で、αDに最も近
い位置の平坦部15aに位置決めし、振れ止め装置11
Bを■、■、■に示した条件で求めた平坦部15aにセ
クトした場合には、振れ止め装置11Aを、第5図に示
すように、テールストック19からの距、gが4tが0
0以内で、αDに最も近い位置の平坦部15aに位置決
めして、ワーク15を2個の振れ止め装置11により支
持するように構成することも可能である。なお、このよ
うな2個の振れ止め装置11による支持は、ワーク15
の全長りが、αD≦L(2aD−1の場合には(lは、
2個の振れ止め装置11A、IIBの最接近した状態で
の、相互のZ軸方向の距離)、即ちそれ程ワーク15の
全長しが長くない場合には、加工精度を上げる上で特に
有効である。
As shown in FIGS. 5 and 6, when the three-point steady rest device 11 is used, a predetermined steady rest device 11A is attached to the flat portion 15a obtained under the conditions shown in (1), (2), and (3) above. Or position 11B, and then position the other steady rest device 1.
1B or IIA, when the steady rest device 11A is set on the flat portion 15a determined under the conditions shown in ■, ■, and ■, the steady rest device 11B is removed from the chuck 17 as shown in FIG. The distance is 4 degrees from aD, and the steady rest device 11 is positioned at the flat part 15a at the position closest to αD.
When B is sected to the flat part 15a obtained under the conditions shown in ■, ■, and ■, the steady rest device 11A is moved so that the distance from the tail stock 19, g is 4t, is 0, as shown in FIG.
It is also possible to configure the workpiece 15 to be supported by the two steady rest devices 11 by positioning the workpiece 15 at the flat portion 15a at the position closest to αD within 0. Note that the workpiece 15 is supported by two such steady rest devices 11.
If the total length of αD≦L(2aD−1, then (l is
This is particularly effective in improving machining accuracy when the two steady rest devices 11A and IIB are closest to each other and the distance in the Z-axis direction from each other, that is, the total length of the workpiece 15 is not that long. .

(g)0発明の効果 以上、説明したように、本発明によれば、ワーク15の
加工時における平坦部15aの位置を示すワーク平坦部
テーブルTABLを格納したワーク平坦部形状メモリ6
等のメモリを設け、当該ワーク平坦部テーブルTABL
の内容を加工の進行に合わせて順次書き換えると共に、
加工プログラムPROに基づく加工に際して、ワーク1
5の全長がその直径り等の径に対して所定以上の長さが
有るか否かを演算判定し、その結果、所定以上の長さが
有ると判定された場合には、前記メモリ中のワーク平坦
部テーブルTABLを検索して、当該加工すべきワーク
15の平坦部゛15aを判定し、当該判定された平坦部
15aに振れ止め装置11を移動位置決めさせて加工中
のワーク15を支持するようにしたので、オペレータが
加工プログラムPRO中で振れ止め装置11の使用を何
ら指示していなくとも、数値制御旋盤1が自動的にその
必要性を判断して振れ止め装置11を駆動制御するので
、ワーク15はビビリを生しることなく精度良く加工さ
れる。さらに、振れ止め装置11は加工の進行と共に書
き換えられてゆくワーク平坦部テーブルTABLに基づ
いて、その位置決め位−置(必ずしも、固定的な位置と
は限らない。
(g) 0 Effects of the Invention As described above, according to the present invention, the workpiece flat part shape memory 6 stores the workpiece flat part table TABL indicating the position of the flat part 15a during processing of the workpiece 15.
etc., and store the flat part table TABL of the work.
In addition to sequentially rewriting the contents according to the progress of processing,
During machining based on the machining program PRO, workpiece 1
It is calculated and determined whether the total length of 5 is longer than a predetermined length with respect to its diameter, etc., and as a result, if it is determined that the length is longer than a predetermined length, the The workpiece flat part table TABL is searched to determine the flat part 15a of the workpiece 15 to be machined, and the steady rest device 11 is moved and positioned to the determined flat part 15a to support the workpiece 15 being machined. As a result, even if the operator does not instruct the use of the steady rest device 11 in the machining program PRO, the numerically controlled lathe 1 automatically determines the necessity and controls the drive of the steady rest device 11. , the workpiece 15 is machined with high precision without causing chatter. Further, the steady rest device 11 is positioned at a position (not necessarily a fixed position) based on the workpiece flat table TABL, which is rewritten as the machining progresses.

既に述べたように、追従制御に際しては、振れ止め装置
11は工具20の移動に同期してZ軸方向に移動駆動さ
れ、従って、その位置決め位置は、ある程度の幅をZ軸
方向に持つことになる。)が決定されるので、振れ止め
装置11は常に適正な位置に位置決めされ、効率のよい
加工を行うことが出来る。
As already mentioned, during follow-up control, the steady rest device 11 is driven to move in the Z-axis direction in synchronization with the movement of the tool 20, and therefore, its positioning position has a certain width in the Z-axis direction. Become. ) is determined, the steady rest device 11 is always positioned at an appropriate position, and efficient machining can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による振れ止め装置の駆動制御方法が適
用された数値制御旋盤の一例を示す制御ブロック図、第
2図は三点支持振れ止め装置の一例を示す側面図、第3
図は二点支持振れ止め装置の一例を示す側面図、第4図
はワーク平坦部形状メモリに格納されたワーク平坦部テ
ーブルを示す模式図、第5図乃至第9図は振れ止め装置
の制御態様を示す図、第10図は追従制御における工具
と振れ止め装置の遭遇点を求める際の各寸法関係を示す
図である。 1 ・数値制御旋盤 6・ メモリ (ワーク平坦部形状メモリ)11、II
A、IIB・・・・・振れ止め装置15   ワーク 15a   ・平坦部 D ・・径(直径) L・ ・全長 PRO・ 加工プログラム T A B L・・ ワーク平坦部テーブル出願人  
株式会社 山崎鉄工所 代理人  弁理士  相1)伸二 (ほか1名) 第1図 ユ 第2図 第3図   ” 第7図 〉
FIG. 1 is a control block diagram showing an example of a numerically controlled lathe to which the drive control method for a steady rest device according to the present invention is applied; FIG. 2 is a side view showing an example of a three-point steady rest device;
The figure is a side view showing an example of a two-point support steady rest device, FIG. 4 is a schematic diagram showing a workpiece flat part table stored in the workpiece flat part shape memory, and FIGS. 5 to 9 are control of the steady rest device. FIG. 10 is a diagram showing the dimensional relationship when determining the encounter point between the tool and the steady rest device in follow-up control. 1 ・Numerical control lathe 6 ・Memory (workpiece flat part shape memory) 11, II
A, IIB... Steady rest device 15 Workpiece 15a - Flat part D - Diameter L - Full length PRO - Machining program T A B L... Workpiece flat part table Applicant
Yamazaki Iron Works Co., Ltd. Agent Patent Attorney Phase 1) Shinji (and 1 other person) Figure 1 U Figure 2 Figure 3 ” Figure 7

Claims (1)

【特許請求の範囲】 1個以上の振れ止め装置が移動駆動自在に 設けられた数値制御旋盤において、ワークの加工時にお
ける平坦部の位置を示すワーク平坦部テーブルを格納し
たメモリを設け、当該ワーク平坦部テーブルの内容を加
工の進行に合わせて順次書き換えると共に、加工プログ
ラムに基づく加工に際して、ワークの全長が当該ワーク
の径に対して所定以上の長さが有るか否かを演算判定し
、その結果、所定以上の長さが有ると判定された場合に
は、前記メモリ中のワーク平坦部テーブルを検索して、
当該加工すべきワークの平坦部を判定し、当該判定され
た平坦部に前記振れ止め装置を移動位置決めさせて加工
中のワークを支持するように構成した数値制御旋盤にお
ける振れ止め装置の駆動制御方法。
[Claims] A numerically controlled lathe in which one or more steady rest devices are movably provided, is provided with a memory storing a workpiece flat part table indicating the position of the flat part during machining of the workpiece, The contents of the flat part table are sequentially rewritten as the machining progresses, and during machining based on the machining program, it is calculated and determined whether the total length of the workpiece is longer than a predetermined length with respect to the diameter of the workpiece. As a result, if it is determined that the length is longer than a predetermined length, search the workpiece flat part table in the memory, and
A drive control method for a steady rest device in a numerically controlled lathe configured to determine a flat portion of the workpiece to be machined, and move and position the steady rest device on the determined flat portion to support the workpiece being machined. .
JP12269284A 1984-06-14 1984-06-14 Driving control method of center rest device in numerically-controlled lathe Granted JPS614637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12269284A JPS614637A (en) 1984-06-14 1984-06-14 Driving control method of center rest device in numerically-controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12269284A JPS614637A (en) 1984-06-14 1984-06-14 Driving control method of center rest device in numerically-controlled lathe

Publications (2)

Publication Number Publication Date
JPS614637A true JPS614637A (en) 1986-01-10
JPH0466661B2 JPH0466661B2 (en) 1992-10-23

Family

ID=14842254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12269284A Granted JPS614637A (en) 1984-06-14 1984-06-14 Driving control method of center rest device in numerically-controlled lathe

Country Status (1)

Country Link
JP (1) JPS614637A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151201U (en) * 1987-03-23 1988-10-05
JPH0282499U (en) * 1988-12-12 1990-06-26
JPH0423204U (en) * 1990-06-12 1992-02-26
JP2009220242A (en) * 2008-03-18 2009-10-01 Ricoh Co Ltd Turning device
JP2009294868A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Numerical control device and control method for machine tool
JP2010005756A (en) * 2008-06-27 2010-01-14 Ricoh Co Ltd Turning device
US9864359B2 (en) 2013-04-05 2018-01-09 Mitsubishi Electric Corporation Numerical control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151201U (en) * 1987-03-23 1988-10-05
JPH0282499U (en) * 1988-12-12 1990-06-26
JPH0423204U (en) * 1990-06-12 1992-02-26
JP2009220242A (en) * 2008-03-18 2009-10-01 Ricoh Co Ltd Turning device
JP2009294868A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Numerical control device and control method for machine tool
JP2010005756A (en) * 2008-06-27 2010-01-14 Ricoh Co Ltd Turning device
US9864359B2 (en) 2013-04-05 2018-01-09 Mitsubishi Electric Corporation Numerical control device

Also Published As

Publication number Publication date
JPH0466661B2 (en) 1992-10-23

Similar Documents

Publication Publication Date Title
US8234958B2 (en) Toolholder
JPH028855B2 (en)
EP0104542B1 (en) Numerically controlled machining method
EP0267288B1 (en) Numerical control apparatus
JPS614637A (en) Driving control method of center rest device in numerically-controlled lathe
JPH01246045A (en) Setting control of machining coordinate system in machine tool
US6163735A (en) Numerically controlled machine tool
KR880001305B1 (en) Numerically controlled working method
JPH11202926A (en) Method and device for feed speed control in numerical control
US5207135A (en) Multispindle lathe and method for machining workpieces
US11215969B2 (en) Numerical control device and machine tool
JPH08263115A (en) Interference evading method for nc machine tool
JPH05177480A (en) Controller of machining center equipped with automatic tool changer
GB2262061A (en) Double spindle type lathe
JP2002341913A (en) Method for machining work in numerically controlled machine tool and its program
JP7425588B2 (en) Machine Tools
US20230060229A1 (en) Machine tool
KR100227183B1 (en) Multiple piston processing machine
JPH10109251A (en) Method for controlling rotation speed of turret
EP0823306B1 (en) Numerically controlled machine tool
JPH0542452A (en) Non-circularity working method by machining and non-circularity nc working machine
JPH04360704A (en) Premachining method for boring
JPS60228056A (en) Method of control for determining tool approach position in milling work
JPH02160402A (en) Cutting feed setting device for machine tool
SU1220916A1 (en) Method of setting part with enclosed floating reference plane in program-controlled lathe