JPH0542452A - Non-circularity working method by machining and non-circularity nc working machine - Google Patents
Non-circularity working method by machining and non-circularity nc working machineInfo
- Publication number
- JPH0542452A JPH0542452A JP3226599A JP22659991A JPH0542452A JP H0542452 A JPH0542452 A JP H0542452A JP 3226599 A JP3226599 A JP 3226599A JP 22659991 A JP22659991 A JP 22659991A JP H0542452 A JPH0542452 A JP H0542452A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- tool
- turret
- control
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Turning (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は特に軸物外径の非真円加
工の場合に好適な加工方法及びNC加工機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining method and an NC machining machine suitable especially for non-round machining of the outer diameter of a shaft.
【0002】[0002]
【従来の技術】非真円加工方法として出願人が先に提案
した特開平2−262901号がある。このものは図5〜図7
に示すようにC軸制御機能を有する主軸1のチャック2
に把持した工作物に対し、X軸,Z軸位置制御されるタ
レット刃物台3のZ軸方向の軸で軸承され旋回割出し可
能なタレット4にコレット5を有する回転工具軸5をZ
軸方向に回転可能に設け、加工位置に割出される回転工
具軸5のコレットには柄部6を有し頭部をL形としたバ
イトホルダ7に柄部軸中心線上に切刃線を有するバイト
T1を半径方向にL形頭部に固定したものを取付ける。
そしてNC制御により工作物のC軸制御の回転とバイト
T1のX軸制御の進退との合成運動と、バイトT1のす
くい角αが切削点の接線に対して一定角度になるように
回転工具軸(Ma軸)の制御がなされて外周に所定の非
真円形状が加工されるものである。2. Description of the Related Art As a non-round processing method, there is Japanese Patent Application Laid-Open No. 2-262901 previously proposed by the applicant. This is shown in Figs.
The chuck 2 of the spindle 1 having the C-axis control function as shown in FIG.
A rotary tool shaft 5 having a collet 5 on a turret 4 which can be swivel indexed is supported by the Z-axis direction axis of a turret tool post 3 whose X-axis and Z-axis positions are controlled with respect to the workpiece gripped by the Z-axis.
The collet of the rotary tool shaft 5 which is rotatably provided in the axial direction and which is indexed to the machining position has a handle 6 and an L-shaped tool holder 7 having a cutting edge line on the shaft center line of the handle. Mount the tool with the bite T1 fixed to the L-shaped head in the radial direction.
Then, by the NC control, the combined movement of the rotation of the workpiece on the C-axis control and the movement of the cutting tool T1 on the X-axis control and the rotary tool axis so that the rake angle α of the cutting tool T1 becomes a constant angle with respect to the tangent line of the cutting point. (Ma axis) is controlled and a predetermined non-round shape is machined on the outer circumference.
【0003】[0003]
【発明が解決しようとする課題】このものでは工具刃先
を回転工具軸の中心に位置させるように取付けなければ
ならないが、刃先を回転中心に合わせることが困難であ
ってそのずれが工作物の加工形状誤差となる問題があ
る。またL形工具ホルダを用いるため軸物加工において
は干渉して加工が困難或いは不可能となる問題がある。
本発明は従来の技術の有するこのような問題点に鑑みな
されたもので、その目的とするところは工具の取付誤差
が補正可能で加工精度の高い旋削による非真円加工方法
及びNC加工機を提供しようとするものである。In this case, the tool cutting edge must be mounted so as to be located at the center of the rotary tool axis, but it is difficult to align the cutting edge with the rotation center, and the deviation thereof causes machining of the workpiece. There is a problem of shape error. Further, since the L-shaped tool holder is used, there is a problem that the machining becomes difficult or impossible due to interference in machining the shaft.
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a non-round machining method and an NC machining machine by turning which can correct a mounting error of a tool and have high machining accuracy. It is the one we are trying to provide.
【0004】[0004]
【課題を解決するための手段】上述の目的を達成するた
めに本発明は、主軸の回転制御軸C軸と、タレット刃物
台の主軸直角方向の制御軸X軸と、タレット刃物台の前
記C軸及び前記X軸とに直角な方向の制御軸Y軸と、前
記C軸と平行に配置され工具を装着するタレットの旋回
角度制御軸Ct軸との同時制御による合成運動で工具刃
先がX軸上に位置され且工具切刃のすくい角が切削面の
切削点における接線に対し一定の角度となるように制御
しながら切削するものである。In order to achieve the above-mentioned object, the present invention provides a rotation control axis C axis of a spindle, a control axis X axis in a direction perpendicular to the spindle of a turret tool post, and the C of the turret tool post. Axis and the control axis Y-axis perpendicular to the X-axis, and the turning angle control axis Ct-axis of the turret which is arranged in parallel with the C-axis and is used to mount the tool, are combined to make the tool edge X-axis. The cutting is performed while being controlled so that the rake angle of the tool cutting edge located above is a constant angle with respect to the tangent line at the cutting point on the cutting surface.
【0005】またC軸旋回制御可能な主軸と、主軸直角
方向のX軸制御可能で且該X軸と前記C軸と直角方向の
Y軸制御可能なタレット刃物台と、該タレット刃物台に
前記C軸と平行なCt軸で旋回制御可能に軸承されたタ
レットと、該タレットの半径方向に装着された工具と、
切削中工具刃先がX軸上に位置し且工具切刃のすくい角
が切削面の切削点における接線に対し一定の角度となる
ように前記制御軸を同期制御して合成運動させる制御部
を含むものである。Further, a main shaft capable of controlling C-axis rotation, a turret tool post capable of controlling an X axis in a direction perpendicular to the main axis and a Y axis control in a direction perpendicular to the X axis and the C axis, and the turret tool post having A turret which is pivotally supported by a Ct axis parallel to the C axis, and a tool mounted in a radial direction of the turret;
It includes a control unit for synchronously controlling the control axes so that the tool cutting edge is located on the X-axis during cutting and the rake angle of the tool cutting edge is a constant angle with respect to the tangent line at the cutting point of the cutting surface. It is a waste.
【0006】また主軸の回転制御軸C軸と、タレット刃
物台の主軸直角方向の制御軸X軸と、前記C軸と平行に
配置され工具を装着するタレットの旋回角度制御軸Ct
軸と、該Ct軸と平行な工具の旋回制御軸Ma軸との同
時制御による合成運動で工具刃先がX軸上に位置され且
工具切刃のすくい角が切削面の切削点における接線に対
し一定の角度となるように制御しながら切削するもので
あって、Further, the rotation control axis C axis of the main shaft, the control axis X axis of the turret tool post in the direction orthogonal to the main axis, and the turning angle control axis Ct of the turret which is arranged in parallel with the C axis and is equipped with a tool.
Axis and the turning control axis Ma axis of the tool parallel to the Ct axis, the tool edge is located on the X axis by the combined movement by simultaneous control, and the rake angle of the tool cutting edge is relative to the tangent line at the cutting point of the cutting surface. Cutting while controlling so as to have a constant angle,
【0007】さらにC軸旋回制可能な主軸と、主軸直角
方向のX軸制御可能なタレット刃物台と該タレット刃物
台に前記C軸と平行なCt軸で旋回制御可能に軸承され
たタレットと、該タレットにCt軸と平行なMa軸で回
転制御される回転工具軸と、該回転工具軸にタレットの
半径方向に取付けられた工具と、切削中工具刃先がX軸
上に位置し且工具切刃のすくい角が切削面の切削点にお
ける接線に対し一定の角度となるように全制御軸を同期
制御して合成運動させる制御部を含むものである。Further, there is provided a spindle capable of controlling C-axis rotation, a turret tool post capable of controlling X-axis in a direction perpendicular to the main axis, and a turret which is pivotally supported by the turret tool post at a Ct axis parallel to the C-axis. A rotary tool shaft that is rotationally controlled by a Ma axis parallel to the Ct axis on the turret, a tool that is mounted on the rotary tool shaft in the radial direction of the turret, and a tool edge during cutting is located on the X axis and a tool cutting The control unit synchronously controls all the control axes so that the rake angle of the blade becomes a constant angle with respect to the tangent line at the cutting point of the cutting surface, and includes a control unit.
【0008】[0008]
【作用】請求項1,2のものでは主軸をC軸制御し工具
をX,Y,Ct軸制御してX軸角θにおいて工作物加工
点の半径R,工具角度θ1,Ct軸から工具刃先迄の距離
L1 として θ2 =θ1 , Y=L1 sin θ1 , X=R+L1(1−cos
θ1 )なる制御式を満足するように各軸を制御しその合
成運動で工具刃先をX軸上に位置させすくい角を一定と
して非真円を旋削加工する。According to the first and second aspects of the present invention, the main axis is controlled by the C axis, the tool is controlled by the X, Y, Ct axes, and the radius R of the workpiece machining point at the X axis angle θ, the tool angle θ 1, and the Ct axis are used. Θ 2 = θ 1, Y = L 1 sin θ 1, X = R + L 1 (1-cos as the distance L 1 to the cutting edge)
Each axis is controlled so as to satisfy the control formula of θ 1 ), and the tool movement edge is positioned on the X-axis by the combined motion, and the non-round circle is turned with a constant rake angle.
【0009】請求項3,4のものは、主軸をC軸制御,
工具をX,Ct,Ma軸制御してC軸角度θにおいて工
作物の加工点の半径をR、工具角度θ1 においてCt軸
角度θ3,Ma軸角度θ2,Ct軸からMa軸までの距離L
1 ,Ma軸から工具刃先までの距離L2 として θ3 =sin -1{(L2 /L1)・sin θ1 } θ2 =π−θ1 −θ3 X=R+L1 (1−cos θ3 )+L2 (1−cos θ3 ) なる制御式を満足するように各軸を制御してその合成運
動で工具刃先をX軸上に位置させすくい角を一定として
非真円を旋削加工する。According to the third and fourth aspects, the spindle is controlled by the C-axis,
The tool is controlled by X, Ct, and Ma axes, the radius of the machining point of the workpiece is R at the C axis angle θ, and at the tool angle θ 1 , the Ct axis angle θ 3, the Ma axis angle θ 2, and the Ct axis to the Ma axis. Distance L
1 , as the distance L 2 from the Ma axis to the tool edge, θ 3 = sin −1 {(L 2 / L 1 ) · sin θ 1 } θ 2 = π−θ 1 −θ 3 X = R + L 1 (1-cos θ 3 ) + L 2 (1-cos θ 3 ) Each axis is controlled so as to satisfy the control formula, and the combined motion makes the tool cutting edge position on the X-axis, and the rake angle is constant. To do.
【0010】[0010]
【実施例】以下本発明の実施例を図1にもとづき説明す
る。周知のNC旋盤において主軸台10にはチャック1
2を嵌着したC軸旋回制御可能な主軸11が回転可能に
軸承されている。図示しないベッド上Z軸方向に移動位
置決め制御可能なスライド13には主軸11(C軸)と
直角方向(Y軸)の案内面14が形成されており、主軸
11とY軸方向とに直角となる切込方向(X軸)の案内
面15を上面に削設した中台16が案内面14に嵌装さ
れている。そして中台16はNCで制御されサドル13
に設けたエンコーダ18付のサーボモータ19で回転さ
れる送りねじ20によって雌ねじを介してY軸方向に移
動位置決め制御される。中台16の案内面15にはタレ
ット刃物台22が載置され、タレット23がC軸と平行
な軸(Ct軸)で旋回可能に設けられている。Embodiment An embodiment of the present invention will be described below with reference to FIG. In the well-known NC lathe, the chuck 1 is attached to the headstock 10.
A C-axis turning controllable main shaft 11 fitted with 2 is rotatably supported. A guide surface 14 in a direction perpendicular to the main shaft 11 (C axis) (Y axis) is formed on a slide 13 (not shown) which can be controlled to move and position in the Z axis direction, and is perpendicular to the main shaft 11 and the Y axis direction. An intermediate stand 16 having a guide surface 15 in the cutting direction (X axis) cut on the upper surface is fitted to the guide surface 14. The middle stand 16 is controlled by NC and the saddle 13
A feed screw 20 rotated by a servo motor 19 provided with an encoder 18 is provided to control the movement and positioning in the Y-axis direction via a female screw. A turret tool post 22 is placed on the guide surface 15 of the intermediate stand 16, and a turret 23 is provided so as to be rotatable about an axis (Ct axis) parallel to the C axis.
【0011】タレット23の中心軸31には歯車32が
固定されており、エンコーダ34付サーボモータ35か
ら歯車群36を介して旋回される。また刃物台22は中
台16に設けたエンコーダ38付サーボモータ39によ
り回転される送りねじ40で雌ねじを介してX軸方向に
移動位置決めされる。さらにタレット23には工具ホル
ダ43によりバイトT2がタレットの半径方向に固定さ
れている。次に制御ブロック図を示す図2において、5
1は加工プログラムを予め記憶する加工プログラムメモ
リ、52は後述の制御データ部で演算されたデータを記
憶する制御データメモリ、53は非真円形状加工用のX
軸及びC軸のデータからなる加工データを予め記憶する
ための加工データメモリ、54は加工プログラムメモリ
よりプログラムを読み出し指令するプログラム読み出し
部、55は加工データから非真円加工時のC軸,X軸,
Ct軸,Y軸用制御データを演算する制御データ演算
部、A gear 32 is fixed to a central shaft 31 of the turret 23, and is rotated by a servomotor 35 with an encoder 34 via a gear group 36. Further, the tool rest 22 is moved and positioned in the X-axis direction via a female screw by a feed screw 40 rotated by a servo motor 39 with an encoder 38 provided on the middle stand 16. Further, a tool holder 43 fixes a bite T2 to the turret 23 in the radial direction of the turret. Next, in FIG. 2 showing a control block diagram, 5
1 is a machining program memory for storing a machining program in advance, 52 is a control data memory for storing data calculated by a control data section described later, and 53 is an X for non-round shape machining.
Machining data memory for storing machining data consisting of axis and C axis data in advance, 54 is a program reading section for reading out a command from the machining program memory, 55 is a C axis for non-round machining from machining data, X axis,
A control data calculation unit for calculating control data for Ct axis and Y axis,
【0012】56は読み出したプログラムを解釈し制御
データ演算指令を出したり、非真円加工モードUC−M
Dか、真円加工モードC−MDかの判別をし真円加工モ
ードで軸移動指令の場合にはその軸の指令値COMAを
非真円加工モードの場合には制御データを読み出し部5
9に制御データ読み出し指令を出力するプログラム解釈
部、57はプログラム解釈部からの軸移動指令COMA
をもとにZ軸指令CONZを演算出力するZ軸関数発生
部、58はX,C,Ct,Y軸指令CONZを演算出力
するX,C,Ct,Y軸関数発生部、59は制御データ
を制御データメモリ52から読み出し指令する制御デー
タ読み出し部、60はアンド回路,オア回路を内蔵しプ
ログラム解釈部56からのモード信号UC−MD或いは
C−MDによりZ,X,C,Ct,Y軸への指令を切り
換える切換部、61はZ軸駆動部、62はX軸駆動部、
63はC軸駆動部、64はCt軸駆動部、65はY軸駆
動部である。Reference numeral 56 interprets the read program and issues a control data calculation command, and a non-round machining mode UC-M.
Whether it is D or the true circle machining mode C-MD is discriminated, and in the case of the axis movement command in the true circle machining mode, the command value COMA of the axis is read out and the control data is read out in the case of the non-round machining mode.
9 is a program interpreting section for outputting a control data read command, and 57 is an axis movement command COMA from the program interpreting section.
Z-axis function generating section for calculating and outputting Z-axis command CONZ based on, 58, X, C, Ct, Y-axis function generating section for calculating and outputting X, C, Ct, Y-axis command CONZ, 59 is control data A control data reading unit for issuing a read command from the control data memory 52, 60 includes an AND circuit and an OR circuit, and Z, X, C, Ct, and Y axes according to the mode signal UC-MD or C-MD from the program interpreting unit 56. A switching unit for switching commands to the Z axis driving unit, a Z axis driving unit 61, an X axis driving unit 62,
63 is a C-axis drive unit, 64 is a Ct-axis drive unit, and 65 is a Y-axis drive unit.
【0013】このような構成になる本発明の動作をフロ
ーチャートの図4にもとづき説明する。先ず本発明の加
工方法は図3に示すようにタレット旋回軸Ct軸と刃物
台22の主軸軸心C軸に直角なX軸と、C軸及びX軸に
直角な刃物台22の移動軸Y軸の3軸の合成運動により
工具の加工面に対するすくい角αが一定となるように制
御する。即ちC軸角度θ0 における工作物の半径をR、
すくい角を一定に保つEめの工具角度をθ1 とするとC
t軸角度θ2,Y軸位置Y,X軸位置Xとしたときの制御
式は θ2 =θ1 Y=L1 ×sin θ1 X=R+L1 (1−cos θ1)である。 但し、L1 はタレット旋回軸中心から工具刃先までの距
離である。そして工具のセットによって異なってくるの
で工具セット時にθ1 =0,Y=0として通常の工具オ
フセットの方法により求め加工データメモリ53に入力
しておくものである。The operation of the present invention having such a configuration will be described with reference to the flowchart of FIG. First, as shown in FIG. 3, the machining method of the present invention is such that, as shown in FIG. 3, the turret rotation axis Ct axis, the main axis of the tool rest 22, the X axis perpendicular to the C axis, and the movement axis Y of the tool rest 22 perpendicular to the C axis and the X axis. The rake angle α with respect to the machining surface of the tool is controlled to be constant by the combined movement of the three axes. That is, the radius of the workpiece at the C-axis angle θ 0 is R,
If the tool angle for E that keeps the rake angle constant is θ 1 , then C
When the t-axis angle θ 2, the Y-axis position Y, and the X-axis position X are set, the control equation is θ 2 = θ 1 Y = L 1 × sin θ 1 X = R + L 1 (1-cos θ 1 ). However, L 1 is the distance from the center of the turret rotation axis to the tool edge. Since the value varies depending on the tool set, θ 1 = 0 and Y = 0 are set when the tool is set, and the value is found in the machining data memory 53 by the usual tool offset method.
【0014】そこで加工指令が出されるとステップS1
において加工プログラムメモリ51よりプログラム読み
出し部54でプログラムを1ブロック読み出す。ステッ
プS2において、プログラム解釈部56でプログラム内
容を解釈し、ステップS3において制御データ演算指令
かを判断する。YESであればステップS5において加
工データメモリ53より加工データを読み出す。ステッ
プS6において制御データ演算部55によりX,C,C
t,Y軸の制御データを演算する。ステップS7におい
て制御データメモリ52に演算したデータを書き込みス
テップS13に移行する。ステップS3においてNOで
あればステップS4において非真円加工モードUC−M
Dかどうかを判断する。NOで真円加工C−MDであれ
ばステップS10においてその他の軸移動指令COMA
か否かを判断する。When a machining command is issued there, step S1
At 1, the program reading unit 54 reads one block of the program from the machining program memory 51. In step S2, the program interpreter 56 interprets the program contents, and in step S3 it is determined whether the command is a control data operation command. If YES, the processed data is read from the processed data memory 53 in step S5. In step S6, the control data calculation unit 55 causes X, C, C
The control data for the t and Y axes are calculated. The data calculated in the control data memory 52 in step S7 is written, and the process proceeds to step S13. If NO in step S3, non-round machining mode UC-M in step S4
Judge whether it is D or not. If NO in the case of perfect circle machining C-MD, in step S10, other axis movement commands COMA
Determine whether or not.
【0015】YESであればステップS11においてZ
軸関数発生部57によりZ軸指令CONZを演算しX,
C,Ct,Y軸関数発生部58によりX,C,Ct,Y
軸指令CONAを演算し指令値を関数発生して指令す
る。ステップS10でNOであればステップS13に移
行する。ステップS4においてYESであれば制御デー
タ読み出し部59でX,C,Ct,Y軸の制御データを
制御データメモリ52より読み出しステップS9におい
て切換部60でタイムシエアリングでX,C,Ct,Y
軸の各駆動部62,63,64,65に出力する。ステ
ップS12において制御データの終わりか否かを判断し
NOであればステップS8に戻る。YESであればステ
ップS13において加工プログラム終わりかを判断し、
NOであればステップS1に戻り、YESであればすべ
ての処理を終了する。If YES, then in step S11 Z
The Z-axis command CONZ is calculated by the axis function generator 57, and X,
The C, Ct, Y-axis function generator 58 causes X, C, Ct, Y
The axis command CONA is calculated, and a command value is generated as a function to issue a command. If NO in step S10, the process proceeds to step S13. If YES in step S4, the control data reading unit 59 reads the control data for the X, C, Ct, and Y axes from the control data memory 52, and in step S9, the switching unit 60 performs X, C, Ct, Y by time sharing.
It outputs to each drive unit 62, 63, 64, 65 of the shaft. In step S12, it is determined whether or not the control data ends, and if NO, the process returns to step S8. If YES, it is determined in step S13 whether the machining program is over,
If NO, the process returns to step S1, and if YES, all the processes are ended.
【0016】[0016]
【実施例第2】以下図11にもとづいて説明する。周知
のNC旋盤のベッド上でX,Z軸方向に移動位置決め可
能に設けられた刃物台71は主軸11の中心軸C軸と平
行な軸心(Ct軸)を中心として旋回軸73が軸承され
旋回可能にタレット72が設けられている。そしてこの
タレット72はエンコーダ74付のサーボモータ75の
出力軸より歯車群76を介して旋回軸73に固定の歯車
77に回転が伝達され旋回制御される。またタレット7
2には半径方向に複数個の工具が取付けられているが、
その中の少なくとも1個はCt軸と平行な回転工具軸7
9(Ma軸)が軸受で回転可能に軸承されており、先端
のチャックにバイトTを半径方向に取付けた工具ホルダ
80が装着されている。また回転工具軸79の後端に取
付けられた傘歯車81はタレット72の半径方向に回転
可能に軸承された中間軸82の傘歯車83と噛合ってい
る。さらに旋回軸73の中心穴には回転軸85が挿通さ
れ軸受で旋回可能に軸承され、タレット72内の端に傘
歯車86が取付けられており、中間軸82端に取付けた
傘歯車87と噛合っている。旋回軸85は後端に歯車8
8が取付けられており、この歯車はエンコーダ89付の
サーボモータ90の出力軸の歯車91と噛合っている。Second Embodiment A second embodiment will be described below with reference to FIG. On a bed of a well-known NC lathe, a tool rest 71 provided so as to be movable and positioned in the X and Z axis directions is provided with a swivel axis 73 about an axis (Ct axis) parallel to the central axis C axis of the main spindle 11. A turret 72 is provided so as to be rotatable. The rotation of the turret 72 is controlled by the rotation of the output shaft of a servo motor 75 with an encoder 74, which is transmitted through a gear group 76 to a gear 77 which is fixed to a rotation shaft 73. Turret 7
2 has a plurality of tools attached in the radial direction,
At least one of them is a rotary tool shaft 7 parallel to the Ct axis.
9 (Ma axis) is rotatably supported by a bearing, and a tool holder 80 having a bite T mounted in a radial direction is attached to a chuck at a tip end. A bevel gear 81 attached to the rear end of the rotary tool shaft 79 meshes with a bevel gear 83 of an intermediate shaft 82 rotatably supported in the radial direction of the turret 72. Further, a rotary shaft 85 is inserted through a center hole of the swivel shaft 73, is rotatably supported by a bearing, and a bevel gear 86 is attached to an end inside the turret 72 and meshes with a bevel gear 87 attached to an end of the intermediate shaft 82. ing. The swivel shaft 85 has a gear 8 at the rear end.
8 is attached, and this gear meshes with the gear 91 of the output shaft of the servomotor 90 with the encoder 89.
【0017】この制御ブロック線図の要素は図2に示さ
れたものと同じであるが、Y軸に関係する部がMa軸と
なる。即ち制御データメモリのY番地はMa番地、軸関
数発生部58のYがMa、切換部60のYのアンド・オ
ア回路がMaのアンド・オア回路、Y軸駆動部65がM
aの駆動部となるので図2を上述のように読み替えるも
のとする。このように構成された本発明はタレット旋回
軸Ct軸と工具ホルダ旋回軸Ma軸と刃物台の主軸軸線
C軸と直角な移動制御軸X軸の3軸の合成運動により工
具Tの加工面に対するすくい角が一定となるように制御
される。The elements of this control block diagram are the same as those shown in FIG. 2, but the part related to the Y axis is the Ma axis. That is, the Y address of the control data memory is Ma, the Y of the axis function generating unit 58 is Ma, the Y and OR circuit of the switching unit 60 is Ma, and the OR circuit, and the Y axis drive unit 65 is M.
2 will be read as described above because it becomes the drive unit of a. According to the present invention configured as described above, the turret rotation axis Ct axis, the tool holder rotation axis Ma axis, and the main axis axis C axis of the tool rest are combined with the movement control axis X axis at right angles to the machined surface of the tool T. The rake angle is controlled to be constant.
【0018】C軸角度θ0 における工作物の半径をR,
すくい角を一定に保つために工具角度をθ1 とすると、
Ct軸角度θ3 ,Ma軸角度θ2 ,X軸の位置Xの制御
式は θ3 =sin -1{( L2 /L1)・sin θ1 } θ2 =π−θ1 −θ3 X=R+L1 (1−cos θ3)+L2(1−cos θ3) となる。但しL1 はタレット旋回軸中心Ct軸から工具
旋回軸中心Ma軸までの距離、L2 はホルダ旋回軸中心
Ma軸から工具刃先までの距離であって、工具セット時
θ1 =θ2 =θ3 =0として通常の工具オフセットの方
法により求める。この求められたデータは加工データメ
モリ53に入力されている。この方法の制御のフローチ
ャートは図4と同じであるが、ブロック線図に対応しス
テップにおいてY軸とあるをMa軸と読み加えるもので
あって,フローチャート及び説明を省略する。The radius of the workpiece at the C-axis angle θ 0 is R,
If the tool angle is θ 1 in order to keep the rake angle constant,
The control expressions for the Ct-axis angle θ 3 , the Ma-axis angle θ 2 , and the X-axis position X are θ 3 = sin −1 {(L 2 / L 1 ) · sin θ 1 } θ 2 = π−θ 1 −θ 3 X = R + L 1 (1-cos θ 3 ) + L 2 (1-cos θ 3 ). However, L 1 is the distance from the turret rotation axis center Ct axis to the tool rotation axis center Ma axis, L 2 is the distance from the holder rotation axis center Ma axis to the tool cutting edge, and when the tool is set θ 1 = θ 2 = θ It is calculated by a normal tool offset method with 3 = 0. The obtained data is input to the processed data memory 53. The flowchart of the control of this method is the same as that of FIG. 4, but the Y axis and the Ma axis are read in the step corresponding to the block diagram, and the flowchart and description are omitted.
【0019】[0019]
【発明の効果】上述のように構成されたので本発明は以
下の効果を奏する。工具の逃げ角を小さくでき充分な刃
先角度が確保できて工具の剛性が増し重切削が可能とな
る。また工作物に対する工具のすくい角を一定にするこ
とがてきて製品品質の良い非真円加工面が得られる。さ
らに通常の工具オフセット方法により刃先を工具旋回中
心に合わせることが可能となるため工具のセットが容易
となる。Since the present invention is constructed as described above, the present invention has the following effects. The clearance angle of the tool can be reduced, a sufficient edge angle can be secured, the rigidity of the tool is increased, and heavy cutting is possible. Further, the rake angle of the tool with respect to the workpiece can be made constant, and a non-round working surface with good product quality can be obtained. Further, since it is possible to align the cutting edge with the center of tool rotation by a normal tool offset method, it becomes easy to set the tool.
【図1】本発明の刃物台構造の説明図である。FIG. 1 is an explanatory view of a tool post structure of the present invention.
【図2】同制御ブロック図である。FIG. 2 is a control block diagram of the same.
【図3】加工データの説明図である。FIG. 3 is an explanatory diagram of processed data.
【図4】制御のフロー図である。FIG. 4 is a flow chart of control.
【図5】従来の刃物台構造の説明図である。FIG. 5 is an explanatory view of a conventional tool rest structure.
【図6】同じく回転工具に外径切削工具を取付けた図で
ある。FIG. 6 is a view in which an outer diameter cutting tool is similarly attached to a rotary tool.
【図7】Ma軸と工具刃先との位置関係を示す図であ
る。FIG. 7 is a diagram showing a positional relationship between a Ma axis and a tool edge.
【図8】従来の工作物と工具との位置関係を示す図であ
る。FIG. 8 is a diagram showing a positional relationship between a conventional workpiece and a tool.
【図9】従来の工作物と工具との位置関係を示す図であ
る。FIG. 9 is a diagram showing a positional relationship between a conventional workpiece and a tool.
【図10】従来の工作物と工具との位置関係を示す図で
ある。FIG. 10 is a diagram showing a positional relationship between a conventional workpiece and a tool.
【図11】本発明の他の実施例の刃物台の構造の説明図
である。FIG. 11 is an explanatory view of a structure of a tool rest according to another embodiment of the present invention.
【図12】本発明の他の実施例の加工データの説明図で
ある。FIG. 12 is an explanatory diagram of processed data according to another embodiment of the present invention.
【符号の説明】 13 サドル 16 中台 22,71 刃物台 23,72
タレット 31,73 旋回軸 43,80
ホルダ 79 回転工具軸 T1,T
2,T3 バイト[Explanation of Codes] 13 Saddle 16 Middle stand 22,71 Turret stand 23,72
Turret 31,73 Swivel axis 43,80
Holder 79 Rotating tool axis T1, T
2, T3 byte
Claims (4)
台の主軸直角方向の制御軸X軸と、タレット刃物台の前
記C軸及び前記X軸とに直角な方向の制御軸Y軸と、前
記C軸と平行に配置され工具を装着するタレットの旋回
角度制御軸Ct軸との同時制御による合成運動で工具刃
先がX軸上に位置され且工具切刃のすくい角が切削面の
切削点における接線に対し一定の角度となるように制御
しながら切削することを特徴とする旋削による非真円加
工方法。1. A rotation control axis C axis of a spindle, a control axis X axis perpendicular to the spindle of a turret tool post, and a control axis Y axis perpendicular to the C axis and the X axis of the turret tool post. , The tool cutting edge is located on the X-axis and the rake angle of the tool cutting edge is cut on the cutting surface by the combined movement by the simultaneous control of the turning angle control axis Ct axis of the turret which is arranged in parallel with the C-axis and which mounts the tool. A non-round machining method by turning, which is characterized in that cutting is performed while controlling the angle to a tangent line at a point.
向のX軸制御可能で且該X軸と前記C軸と直角方向のY
軸制御可能なタレット刃物台と、該タレット刃物台に前
記C軸と平行なCt軸で旋回制御可能に軸承されたタレ
ットと、該タレットの半径方向に装着された工具と、切
削中工具刃先がX軸上に位置し且工具切刃のすくい角が
切削面の切削点における接線に対し一定の角度となるよ
うに前記制御軸を同期制御して合成運動させる制御部を
含むことを特徴とする旋削による非真円NC加工機。2. A C-axis controllable spindle, and a Y-axis controllable in the direction perpendicular to the C-axis and in a direction perpendicular to the X-axis and the C-axis.
A turret tool post capable of axis control, a turret supported by the turret tool post so as to be pivotally controllable by a Ct axis parallel to the C axis, a tool mounted in the radial direction of the turret, and a tool tip during cutting. It is characterized in that it includes a control unit located on the X-axis and synchronously controlling the control axis so that the rake angle of the tool cutting edge becomes a constant angle with respect to the tangent line at the cutting point of the cutting surface. Non-round NC processing machine by turning.
台の主軸直角方向の制御軸X軸と、前記C軸と平行に配
置され工具を装着するタレットの旋回角度制御軸Ct軸
と、該Ct軸と平行な工具の旋回制御軸Ma軸との同時
制御による合成運動で工具刃先がX軸上に位置され且工
具切刃のすくい角が切削面の切削点における接線に対し
一定の角度となるように制御しながら切削することを特
徴とする旋削により非真円加工方法。3. A rotation control axis C axis of a spindle, a control axis X axis in a direction orthogonal to the spindle of a turret tool post, a turning angle control axis Ct axis of a turret which is arranged in parallel with the C axis and on which a tool is mounted, The tool cutting edge is positioned on the X-axis by the combined movement by simultaneous control of the tool turning control axis Ma axis parallel to the Ct axis, and the rake angle of the tool cutting edge is a constant angle with respect to the tangent line at the cutting point of the cutting surface. A non-round machining method by turning, which is characterized by cutting while controlling so that
向のX軸制御可能なタレット刃物台と、該タレット刃物
台に前記C軸と平行なCt軸で旋回制御可能に軸承され
たタレットと、該タレットにCt軸と平行な制御軸Ma
軸で回転制御される回転工具軸と、該回転工具軸にタレ
ットの半径方向に取付けられた工具と、切削中工具刃先
がX軸上に位置し且工具切刃のすくい角が切削面の切削
点における接線に対し一定の角度となるように全制御軸
を同期制御して合成運動させる制御部を含むことを特徴
とする旋削による非真円NC加工機。4. A turret in which a C-axis turning control is possible, an X-axis controllable turret in a direction orthogonal to the main axis, and a turret rotatably supported by the turret turret by a Ct axis parallel to the C-axis. And a control axis Ma parallel to the Ct axis on the turret
A rotary tool axis controlled by a shaft, a tool mounted on the rotary tool axis in the radial direction of the turret, the tool edge during cutting is located on the X axis, and the rake angle of the tool cutting edge is for cutting the cutting surface. A non-round NC processing machine by turning, which includes a control unit for synchronously controlling all control axes so as to form a constant angle with respect to a tangent at a point, and performing a synthetic motion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3226599A JP3070990B2 (en) | 1991-08-12 | 1991-08-12 | Non-roundness processing method by turning and non-roundness NC processing machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3226599A JP3070990B2 (en) | 1991-08-12 | 1991-08-12 | Non-roundness processing method by turning and non-roundness NC processing machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0542452A true JPH0542452A (en) | 1993-02-23 |
JP3070990B2 JP3070990B2 (en) | 2000-07-31 |
Family
ID=16847721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3226599A Expired - Fee Related JP3070990B2 (en) | 1991-08-12 | 1991-08-12 | Non-roundness processing method by turning and non-roundness NC processing machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3070990B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5396821A (en) * | 1992-04-30 | 1995-03-14 | Okuma Corporation | Apparatus and method of machining article of eccentric configuration |
JP2005059200A (en) * | 2003-07-31 | 2005-03-10 | New Industry Research Organization | Machining device and machining method |
JP2019089167A (en) * | 2017-11-15 | 2019-06-13 | 株式会社ジェイテクト | Cutting device and cutting processing method |
JP7340126B1 (en) * | 2023-01-27 | 2023-09-06 | ヤマザキマザック株式会社 | LATHE, LATHE MACHINING SYSTEM, AND LATHE EDGE POSITION ESTIMATION METHOD |
US12090593B2 (en) | 2020-10-05 | 2024-09-17 | Fanuc Corporation | Control device |
-
1991
- 1991-08-12 JP JP3226599A patent/JP3070990B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5396821A (en) * | 1992-04-30 | 1995-03-14 | Okuma Corporation | Apparatus and method of machining article of eccentric configuration |
JP2005059200A (en) * | 2003-07-31 | 2005-03-10 | New Industry Research Organization | Machining device and machining method |
JP2019089167A (en) * | 2017-11-15 | 2019-06-13 | 株式会社ジェイテクト | Cutting device and cutting processing method |
US12090593B2 (en) | 2020-10-05 | 2024-09-17 | Fanuc Corporation | Control device |
JP7340126B1 (en) * | 2023-01-27 | 2023-09-06 | ヤマザキマザック株式会社 | LATHE, LATHE MACHINING SYSTEM, AND LATHE EDGE POSITION ESTIMATION METHOD |
WO2024157463A1 (en) * | 2023-01-27 | 2024-08-02 | ヤマザキマザック株式会社 | Lathe, turning system, and method for estimating position of lathe edge |
Also Published As
Publication number | Publication date |
---|---|
JP3070990B2 (en) | 2000-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5396821A (en) | Apparatus and method of machining article of eccentric configuration | |
JP4316850B2 (en) | Machining method in complex machine tool | |
US3710466A (en) | Machine tools and more particularly to data-controlled machine tools | |
US20080307935A1 (en) | Method and apparatus for machining roll surface | |
JPWO2002024386A1 (en) | Automatic lathe | |
CA1046807A (en) | Machine tool with counterposed rotary toolheads carrying cross-feed tool slides | |
Madison | CNC machining handbook: basic theory, production data, and machining procedures | |
US4713747A (en) | Numerically controlled machining method using primary and compensating cutters | |
JPH0542452A (en) | Non-circularity working method by machining and non-circularity nc working machine | |
JP3171298B2 (en) | Numerically controlled machine tools | |
JPH10286720A (en) | Screw part working method of screw rotor | |
JPH0651241B2 (en) | Y-axis processing method | |
JP3644068B2 (en) | Non-circular workpiece grinder | |
JP3085339B2 (en) | Machining method | |
JPH05162002A (en) | Combined machine tool with detector for dimension and position of work to be machined | |
JP2772450B2 (en) | Non-circular workpiece machining method | |
KR100227183B1 (en) | Multiple piston processing machine | |
JP2001129701A (en) | Numerically controlled automatic lathe and method of machining workpiece by numerically controlled automatic lathe | |
JPH04129645A (en) | Simultaneous processing method for numerical control lathe | |
JPH0542477A (en) | Feed quantity control device of grinding wheel for composite working machine | |
JPH08118203A (en) | Control method of nc lathe and device thereof | |
JPS6157125B2 (en) | ||
JP3010328B2 (en) | 6-axis control machine tool | |
US20230115138A1 (en) | Machine tool and method of deciding tool moving path | |
JP2769252B2 (en) | Thread cutting equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |