JP2023145902A - Carrier core material, electrophotographic development career using the same and electrophotographic developer - Google Patents

Carrier core material, electrophotographic development career using the same and electrophotographic developer Download PDF

Info

Publication number
JP2023145902A
JP2023145902A JP2022052804A JP2022052804A JP2023145902A JP 2023145902 A JP2023145902 A JP 2023145902A JP 2022052804 A JP2022052804 A JP 2022052804A JP 2022052804 A JP2022052804 A JP 2022052804A JP 2023145902 A JP2023145902 A JP 2023145902A
Authority
JP
Japan
Prior art keywords
core material
carrier core
less
mass
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022052804A
Other languages
Japanese (ja)
Inventor
祥 三輪野
Sho Miwano
優樹 金城
Masaki Kaneshiro
信也 佐々木
Shinya Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2022052804A priority Critical patent/JP2023145902A/en
Publication of JP2023145902A publication Critical patent/JP2023145902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

To provide a carrier core having low apparent density and capable of preventing career scattering from being caused.SOLUTION: A carrier core material constituted of ferrite particles includes a composite oxide of a Ca element of 1.7 mass% or more and 6.5 mass% or less and an Si element of 1.4 mass% or more and 5.2 mass% or less. A magnetization σ1k of the ferrite particles when applying a magnetic field of 79.58×103 A/m (1000 oersteds) is 58Am2/kg or more and 75Am2/kg or less; an apparent density is 1.90 g/cm3 or more and 2.20 g/cm3 or less; and a pore volume is less than 0.010 mL/g.SELECTED DRAWING: Figure 1

Description

本発明はキャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。 The present invention relates to a carrier core material, a carrier for electrophotographic development, and a developer for electrophotography using the same.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。 For example, in image forming devices such as facsimiles, printers, and copiers that use electrophotography, toner is attached to an electrostatic latent image formed on the surface of a photoreceptor to make it visible, and this visible image is transferred to paper. After transferring the image onto a paper, etc., it is fixed by applying heat and pressure. From the viewpoint of high image quality and colorization, so-called two-component developers containing carrier and toner are widely used as developers.

二成分現像剤を用いた現像方式では、キャリアとトナーとが現像装置内で撹拌混合され、摩擦によってトナーが所定量まで帯電される。そして、回転する現像ローラに現像剤が供給され、現像ローラ上で磁気ブラシが形成して、磁気ブラシを介して感光体へトナーが電気的に移動して感光体上の静電潜像が可視像化される。トナー移動後のキャリアは現像ローラ上から剥離され現像装置内で再びトナーと混合される。 In a developing method using a two-component developer, carrier and toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photoreceptor via the magnetic brush, forming an electrostatic latent image on the photoreceptor. Visualized. After the toner has been transferred, the carrier is peeled off from the developing roller and mixed with the toner again in the developing device.

近年、現像装置における撹拌動力の低減による省電力化や、キャリアの表面にトナーを構成する成分が融着する「トナースペント」を抑制して画像品質の安定化を図るため、キャリア芯材の内部に空隙を設けること、さらには内部の空隙に樹脂を充填することによってキャリア芯材の重量を軽くすることが提案されている(特許文献1,2など)。 In recent years, efforts have been made to save power by reducing the stirring power in developing devices, and to stabilize image quality by suppressing "toner spent" in which toner components fuse to the surface of the carrier. It has been proposed to reduce the weight of the carrier core material by providing a void therein and further filling the internal void with resin (Patent Documents 1 and 2, etc.).

しかし、内部に空隙を設けたキャリア芯材は、見掛密度は低くなるものの、キャリア芯材の表面を樹脂被覆する際の、キャリア芯材の内部空隙に滲入する被覆樹脂の制御が難しく、結果的にキャリア芯材表面の被覆樹脂量にバラツキが発生しやすい。被覆樹脂量にバラツキがあると、キャリア特性がばらついてキャリア飛散などの不具合が生じやすい。 However, although the carrier core material with internal voids has a lower apparent density, it is difficult to control the coating resin that seeps into the internal voids of the carrier core material when coating the surface of the carrier core material with resin. Therefore, variations tend to occur in the amount of resin coated on the surface of the carrier core material. If there is variation in the amount of coating resin, carrier properties will vary and problems such as carrier scattering will likely occur.

また、キャリア芯材の見掛密度を低下させ粒子強度を向上させる手法として、キャリア芯材の主成分であるフェライトよりも真密度の小さいSiO(二酸化ケイ素)をキャリア芯材の原料成分として添加する手法もあり得るが、SiOは水分を吸着し易いために高温高湿環境下ではキャリア芯材の帯電特性が低下するなどの実用上の課題が懸念される。 In addition, as a method to reduce the apparent density of the carrier core material and improve particle strength, SiO 2 (silicon dioxide), which has a lower true density than ferrite, which is the main component of the carrier core material, is added as a raw material component of the carrier core material. However, since SiO 2 easily adsorbs moisture, there are concerns about practical problems such as deterioration of the charging characteristics of the carrier core material in a high temperature and high humidity environment.

特開2016-170224号公報JP2016-170224A 特開2009-086093号公報Japanese Patent Application Publication No. 2009-086093

そこで、本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、トナースペントが生じ難く、かつ、キャリア芯材表面の被覆樹脂量がばらつかずキャリア飛散が生じ難いキャリア芯材を提供することにある。 Therefore, the present invention has been made in view of such conventional problems, and its purpose is to provide a carrier in which toner spent is less likely to occur, the amount of coating resin on the surface of the carrier core material is not varied, and carrier scattering is less likely to occur. The purpose is to provide core material.

また本発明の目的は、画像品質の安定性に優れたキャリアおよび現像剤を提供することにある。 Another object of the present invention is to provide a carrier and developer with excellent stability in image quality.

前記目的を達成する本発明に係るキャリア芯材は、フェライト粒子から構成されるキャリア芯材であって、Ca元素とSi元素との複合酸化物(以下、「CaSi複合酸化物」と記すことがある。)を含有し、Ca元素を1.7質量%以上6.5質量%以下含有し、Si元素を1.4質量%以上5.2質量%以下含有し、磁場79.58×10A/m(1000エルステッド)を印加した際の前記フェライト粒子の磁化σ1kが58Am/kg以上75Am/kg以下の範囲であり、見掛密度が1.90g/cm以上2.20g/cm以下の範囲であり、細孔容積が0.010mL/g未満であることを特徴とする。 The carrier core material according to the present invention that achieves the above object is a carrier core material composed of ferrite particles, and is a composite oxide of Ca element and Si element (hereinafter referred to as "CaSi composite oxide"). ), contains Ca element 1.7% by mass or more and 6.5% by mass or less, contains Si element 1.4% by mass or more and 5.2% by mass or less, and has a magnetic field of 79.58×10 3 The magnetization σ 1k of the ferrite particles when A/m (1000 Oe) is applied is in the range of 58 Am 2 /kg or more and 75 Am 2 /kg or less, and the apparent density is 1.90 g/cm 3 or more and 2.20 g/cm 3 or more. cm 3 or less, and is characterized by a pore volume of less than 0.010 mL/g.

前記構成のキャリア芯材において、前記フェライト粒子の真密度が4.00g/cm以上4.75g/cm以下の範囲であるのが好ましい。 In the carrier core material having the above configuration, it is preferable that the true density of the ferrite particles is in a range of 4.00 g/cm 3 or more and 4.75 g/cm 3 or less.

また前記構成のキャリア芯材において、前記フェライト粒子の飽和磁化σが67Am/kg以上90Am/kgの範囲であるのが好ましい。 Further, in the carrier core material having the above configuration, it is preferable that the saturation magnetization σ S of the ferrite particles is in a range of 67 Am 2 /kg or more and 90 Am 2 /kg.

また前記構成のキャリア芯材において、前記フェライト粒子の残留磁化σが2.0Am/kg以下であり、保磁力Hが20エルステッド以下であるのが好ましい。 Further, in the carrier core material having the above configuration, it is preferable that the residual magnetization σ r of the ferrite particles is 2.0 Am 2 /kg or less, and the coercive force H c is 20 Oe or less.

また前記構成のキャリア芯材において、前記フェライト粒子が、一般式(MnFe3-X)O(但し、0<X<3)で表される組成を主成分として有し、Ca元素を2.0質量%以上4.0質量%以下含有し、Si元素を2.0質量%以上4.0質量%以下含有するのが好ましい。 Further, in the carrier core material having the above configuration , the ferrite particles have a composition represented by the general formula ( Mn It is preferable that the content is 2.0% by mass or more and 4.0% by mass or less, and the Si element is contained in 2.0% by mass or more and 4.0% by mass or less.

また前記構成のキャリア芯材において、Ca元素とSi元素との含有質量比Ca/Siが0.5以上2.0以下であるのが好ましい。 Further, in the carrier core material having the above configuration, it is preferable that the content mass ratio Ca/Si of Ca element to Si element is 0.5 or more and 2.0 or less.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリアが提供される。 Further, according to the present invention, there is provided a carrier for electrophotographic development, characterized in that the surface of the carrier core material described above is coated with a resin.

さらに本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。 Further, according to the present invention, there is provided an electrophotographic developer containing the above-described carrier for electrophotographic development and a toner.

なお、磁化σ1k、見掛密度、細孔容積、真密度、飽和磁化σ、残留磁化σ、保磁力Hは後述の実施例における測定方法によって測定した値である。 Note that magnetization σ 1k , apparent density, pore volume, true density, saturation magnetization σ S , residual magnetization σ r , and coercive force H c are values measured by the measurement method in Examples described later.

また、本明細書において「フェライト粒子」、「キャリア芯材」、「電子写真現像用キャリア」、「トナー」は、それぞれ個々の粒子の集合体(粉体)を意味するものである。そして本明細書において示す「~」は、特に断りのない限り、その前後に記載の数値を下限値及び上限値として含む意味で使用する。 Further, in this specification, "ferrite particles", "carrier core material", "carrier for electrophotographic development", and "toner" each mean an aggregate (powder) of individual particles. In this specification, unless otherwise specified, "~" is used to include the numerical values listed before and after it as lower and upper limits.

本発明のキャリア芯材によればトナースペントが抑制される。また、キャリア芯材表面の被覆樹脂量がばらつかずキャリア飛散が抑制される。 According to the carrier core material of the present invention, toner spent is suppressed. Further, the amount of resin coated on the surface of the carrier core material does not vary, and carrier scattering is suppressed.

本発明の電子写真現像用キャリアおよび電子写真用現像剤によればキャリア飛散などの発生が抑制され、長期にわたって安定して良好な画質の画像が得られる。 According to the carrier for electrophotographic development and the developer for electrophotography of the present invention, occurrence of carrier scattering, etc. is suppressed, and images of good image quality can be obtained stably over a long period of time.

実施例7のキャリア芯材についてXRD測定結果である。These are the XRD measurement results for the carrier core material of Example 7. 実施例13のキャリア芯材についてXRD測定結果である。These are the XRD measurement results for the carrier core material of Example 13. 比較例1のキャリア芯材についてXRD測定結果である。These are the XRD measurement results for the carrier core material of Comparative Example 1. 比較例12のキャリア芯材についてXRD測定結果である。These are the XRD measurement results for the carrier core material of Comparative Example 12. 比較例14のキャリア芯材についてXRD測定結果である。These are the XRD measurement results for the carrier core material of Comparative Example 14. 本発明に係るキャリアを用いた現像装置の一例を示す概説図である。FIG. 1 is a schematic diagram showing an example of a developing device using a carrier according to the present invention.

本発明に係るキャリア芯材の大きな特徴の一つは、フェライト粒子から構成されるキャリア芯材であって、キャリア芯材がCaSi複合酸化物を含有し、Ca元素を1.7質量%以上6.5質量%以下含有し、Si元素を1.4質量%以上5.2質量%以下含有することにある。
前述のように、従来、キャリア芯材の見掛密度を低下させるために、キャリア芯材の主成分であるフェライト(真密度:約5g/cm)よりも真密度の小さいSiO(真密度:約2.2g/cm)をキャリア芯材の原料成分として添加することが提案されていたが、SiOは水分を吸着し易いために高温高湿環境下ではキャリア芯材の帯電特性が低下するなどの不具合があった。
そこで本発明者等はSiOの代わりとして、湿度などの使用環境の影響を受けにくくフェライトよりも真密度の小さいキャリア芯材の帯電特性に大きな影響を与えない物質がないか鋭意検討を重ねた。その結果、CaSiO(真密度:約2.9g/cm)などのCaSi複合酸化物が上記条件を満足するとの知見を得て本発明がなされた。
One of the major features of the carrier core material according to the present invention is that the carrier core material is composed of ferrite particles, the carrier core material contains a CaSi composite oxide, and contains 1.7% by mass or more of Ca element. .5% by mass or less, and 1.4% by mass or more and 5.2% by mass or less of Si element.
As mentioned above, conventionally, in order to lower the apparent density of the carrier core material, SiO 2 (true density : It was proposed that SiO 2 (approximately 2.2 g/cm 3 ) be added as a raw material component of the carrier core material, but since SiO 2 easily adsorbs moisture, the charging characteristics of the carrier core material may deteriorate in high temperature and high humidity environments. There were some problems such as a drop in performance.
Therefore, the inventors of the present invention have conducted extensive research to find a material that is less susceptible to the effects of the usage environment such as humidity and has a lower true density than ferrite and does not have a significant effect on the charging characteristics of the carrier core material as a substitute for SiO 2 . . As a result, the present invention was made based on the knowledge that a CaSi composite oxide such as CaSiO 3 (true density: about 2.9 g/cm 3 ) satisfies the above conditions.

本明細書におけるCaSi複合酸化物には、CaSiOなどのCa(カルシウム)、Si(ケイ素)、O(酸素)から構成される狭義の複合酸化物の外、この狭義の複合酸化物に、Fe(鉄)、Mn(マンガン)などのフェライトを構成する金属元素が固溶した複合酸化物も含まれる。 In this specification, the CaSi complex oxide includes complex oxides in the narrow sense composed of Ca (calcium), Si (silicon), and O (oxygen) such as CaSiO3 , as well as complex oxides in the narrow sense that include Fe. Also included are composite oxides in which metal elements constituting ferrite, such as (iron) and Mn (manganese), are solidly dissolved.

CaSi複合酸化物がキャリア芯材に含有されていることは、例えば粉末X線回折(XRD)測定および成分分析によって確認することができる。具体的には、測定されたX線回折パターンにおいて入射角2θが26.60°以上27.30°以下の範囲に回折強度のピークが存在すること、そして後述の成分分析によってキャリア芯材がCa元素とSi元素とが含有されていることから確認できる。 The fact that the CaSi composite oxide is contained in the carrier core material can be confirmed by, for example, powder X-ray diffraction (XRD) measurement and component analysis. Specifically, in the measured X-ray diffraction pattern, a peak of diffraction intensity exists in the range where the incident angle 2θ is 26.60° or more and 27.30° or less, and the component analysis described below shows that the carrier core material is Ca. This can be confirmed from the fact that the element and Si element are contained.

狭義の複合酸化物では入射角2θが26.84°の位置に回折強度のピークが存在する。また狭義の複合酸化物に、例えばFeが固溶した酸化物では入射角2θが27.13°の位置に回折強度のピークが存在する。図2に示す実施例13のキャリア芯材のX線回折パターンでは、入射角2θが26.60°以上27.30°以下の範囲に狭義の複合酸化物(CaSiO)に由来する回折強度のピークと狭義の複合酸化物にFeが固溶した酸化物((Ca,Fe)SiO)に由来する回折強度のピークとが現れている。 In a narrowly defined composite oxide, a peak of diffraction intensity exists at a position where the incident angle 2θ is 26.84°. Further, in a narrowly defined composite oxide, for example, an oxide in which Fe is dissolved in solid solution, a peak of diffraction intensity exists at a position where the incident angle 2θ is 27.13°. The X-ray diffraction pattern of the carrier core material of Example 13 shown in FIG. A peak and a diffraction intensity peak derived from an oxide ((Ca,Fe)SiO 3 ) in which Fe is dissolved in a solid solution in a complex oxide in a narrow sense appear.

なお、XRD測定は次のようにして行われる。
(粉末X線回折(XRD)測定)
リガク社製「UltimaIV」を用いてキャリア芯材の粉末X線回折測定を行う。X線源にはCu管球(Kα)を使用し、加速電圧40kV、電流20mAの条件でX線を発生させる。発散スリット開口角は1°、散乱スリット開口角は1°、受光スリット幅は0.3mm、走査モードはFT、ステップ幅は0.0100°、計数時間は10秒、積算回数は1回、スキャン範囲は26.0≦2θ≦27.5とする。
Note that the XRD measurement is performed as follows.
(Powder X-ray diffraction (XRD) measurement)
Powder X-ray diffraction measurement of the carrier core material is performed using "Ultima IV" manufactured by Rigaku Corporation. A Cu tube (Kα) is used as the X-ray source, and X-rays are generated under the conditions of an accelerating voltage of 40 kV and a current of 20 mA. Diverging slit opening angle is 1°, scattering slit opening angle is 1°, receiving slit width is 0.3 mm, scanning mode is FT, step width is 0.0100°, counting time is 10 seconds, number of integration is 1, scanning The range is 26.0≦2θ≦27.5.

CaSi複合酸化物としてはCaSiO及びCaSiOにFe,Mnなどのフェライト構成金属元素が固溶したものであるのが好ましい。CaSi複合酸化物はフェライトの原料成分と共に初期添加されるのが好ましいが、例えばCaSiOを初期添加した場合であっても、製造工程における反応によって、CaSiOの一部または全部が、フェライトを構成する金属元素(Feなど)が固溶した複合酸化物(例えば(Ca,Fe)SiO)に変化することがある。このようなFeなどが固溶した複合酸化物であっても本発明の効果は奏される。なお、フェライトの原料成分と共にCa原料成分とSi原料成分とを添加し混合して焼成工程においてCaSiOが合成されてフェライト粒子に含有されるようにしてもよいが、CaSiOはフェライトの原料成分と共に初期添加されるのが好ましい。 The CaSi composite oxide is preferably CaSiO 3 and CaSiO 3 in which a ferrite constituent metal element such as Fe or Mn is dissolved as a solid solution. It is preferable that the CaSi composite oxide is initially added together with the raw material components of the ferrite, but even if CaSiO 3 is initially added, some or all of the CaSiO 3 may form the ferrite due to reactions in the manufacturing process. In some cases, a metal element (such as Fe) is transformed into a composite oxide (for example, (Ca, Fe)SiO 3 ) in which a metal element (such as Fe) is dissolved. The effects of the present invention can be achieved even with such a composite oxide containing Fe or the like as a solid solution. Note that Ca and Si raw materials may be added and mixed together with the ferrite raw material components so that CaSiO 3 is synthesized and contained in the ferrite particles in the firing process, but CaSiO 3 is not a ferrite raw material component. It is preferable that it is initially added together with the above.

本発明のキャリア芯材におけるCa元素の含有量は1.7質量%以上6.5質量%以下の範囲である。Ca元素の含有量が1.7質量%よりも少ないと見掛密度が大きくなりトナースペントが発生しやすくなる。一方Ca元素の含有量が6.5質量%よりも多いと磁化σ1kが低くなってキャリア飛散が発生しやすくなる。より好ましいCa元素の含有量は2.0質量%以上4.0質量%以下の範囲である。 The content of Ca element in the carrier core material of the present invention is in the range of 1.7% by mass or more and 6.5% by mass or less. When the content of Ca element is less than 1.7% by mass, the apparent density increases and toner spent tends to occur. On the other hand, if the content of Ca element is more than 6.5% by mass, the magnetization σ 1k becomes low and carrier scattering tends to occur. The content of Ca element is more preferably in the range of 2.0% by mass or more and 4.0% by mass or less.

本発明のキャリア芯材におけるSi元素の含有量は1.4質量%以上5.2質量%以下の範囲である。Si元素の含有量が1.4質量%よりも少ないと見掛密度が大きくなりトナースペントが発生しやすくなる。一方Si元素の含有量が5.2質量%よりも多いと磁化σ1kが低くなってキャリア飛散が発生しやすくなる。より好ましいSi元素の含有量は2.0質量%以上4.0質量%以下の範囲である。 The content of Si element in the carrier core material of the present invention is in the range of 1.4% by mass or more and 5.2% by mass or less. When the content of Si element is less than 1.4% by mass, the apparent density increases and toner spent tends to occur. On the other hand, if the content of the Si element is more than 5.2% by mass, the magnetization σ 1k becomes low and carrier scattering tends to occur. A more preferable content of Si element is in the range of 2.0% by mass or more and 4.0% by mass or less.

本発明のキャリア芯材の磁化σ1kは58Am/kg以上75Am/kg以下の範囲である。磁化σ1kが58Am/kgよりも低いとキャリア飛散が生じやすい。一方、磁化σ1kが75Am/kgよりも高いと現像ローラの外周に形成される磁気ブラシが固くなって磁気ブラシの密度が低くなり現像領域への現像剤の搬送量が不十分となるおそれがある。 The magnetization σ 1k of the carrier core material of the present invention is in the range of 58 Am 2 /kg or more and 75 Am 2 /kg or less. When the magnetization σ 1k is lower than 58 Am 2 /kg, carrier scattering tends to occur. On the other hand, if the magnetization σ 1k is higher than 75 Am 2 /kg, the magnetic brush formed on the outer periphery of the developing roller becomes hard and the density of the magnetic brush becomes low, which may result in an insufficient amount of developer being conveyed to the developing area. There is.

本発明のキャリア芯材の見掛密度は1.90g/cm以上2.20g/cm以下の範囲が好ましい。より好ましいキャリア芯材の見掛密度は1.97g/cm以上2.19g/cm以下の範囲である。 The apparent density of the carrier core material of the present invention is preferably in the range of 1.90 g/cm 3 or more and 2.20 g/cm 3 or less. A more preferable apparent density of the carrier core material is in the range of 1.97 g/cm 3 or more and 2.19 g/cm 3 or less.

本発明のキャリア芯材の細孔容積は0.010mL/g未満である。細孔容積が0.010mL/g以上であるとキャリア芯材を被覆する樹脂量がばらついてキャリア飛散が生じやすくなる。より好ましいキャリア芯材の細孔容積は0.005mL/g以上0.008mL/g以下の範囲である。 The pore volume of the carrier core material of the present invention is less than 0.010 mL/g. If the pore volume is 0.010 mL/g or more, the amount of resin coating the carrier core material will vary and carrier scattering will likely occur. A more preferable pore volume of the carrier core material is in the range of 0.005 mL/g or more and 0.008 mL/g or less.

本発明のキャリア芯材の真密度は4.00g/cm以上4.75g/cm以下の範囲が好ましい。キャリア芯材の真密度が4.00g/cmよりも低いとCaSi複合酸化物の割合が多くて一粒子当たりの磁化が低下しキャリア飛散が生じるおそれがある。一方、真密度が4.75g/cmよりも高いとトナースペントが生じるおそれがある。より好ましいキャリア芯材の真密度は4.56g/cm以上4.69g/cm以下の範囲である。キャリア芯材の真密度は、主としてCaSi複合酸化物の含有量によって調整可能である。またキャリア芯材を構成するフェライト組成によっても調整可能である。 The true density of the carrier core material of the present invention is preferably in the range of 4.00 g/cm 3 or more and 4.75 g/cm 3 or less. If the true density of the carrier core material is lower than 4.00 g/cm 3 , the proportion of CaSi composite oxide is high, and the magnetization per particle is decreased, which may cause carrier scattering. On the other hand, if the true density is higher than 4.75 g/cm 3 , toner spent may occur. A more preferable true density of the carrier core material is in the range of 4.56 g/cm 3 or more and 4.69 g/cm 3 or less. The true density of the carrier core material can be adjusted mainly by the content of CaSi composite oxide. It can also be adjusted by changing the ferrite composition constituting the carrier core material.

本発明のキャリア芯材の飽和磁化σは67Am/kg以上90Am/kg以下の範囲が好ましい。飽和磁化σが67Am/kg未満であると、一粒子あたりの磁化が小さくなる為にキャリア飛散が生じるおそれがある。一方、飽和磁化σが90Am/kgを超えると、現像ローラの外周に形成される磁気ブラシが固くなって磁気ブラシの密度が低くなり現像領域への現像剤の搬送量が不十分となるおそれがある。より好ましい飽和磁化σは70Am/kg以上80Am/kg以下の範囲がより好ましい。 The saturation magnetization σ s of the carrier core material of the present invention is preferably in the range of 67 Am 2 /kg or more and 90 Am 2 /kg or less. If the saturation magnetization σ s is less than 67 Am 2 /kg, the magnetization per particle becomes small, which may cause carrier scattering. On the other hand, when the saturation magnetization σ s exceeds 90 Am 2 /kg, the magnetic brush formed on the outer periphery of the developing roller becomes hard, the density of the magnetic brush becomes low, and the amount of developer conveyed to the developing area becomes insufficient. There is a risk. More preferably, the saturation magnetization σ s is in the range of 70 Am 2 /kg or more and 80 Am 2 /kg or less.

また本発明のキャリア芯材の残留磁化σは2.0Am/kg以下の範囲が好ましい。残留磁化σが2.0Am/kgを超えると現像ローラからのキャリアの剥離が困難になるおそれがある。より好ましい残留磁化σは1.5Am/kg以下の範囲である。 Further, the residual magnetization σ r of the carrier core material of the present invention is preferably in a range of 2.0 Am 2 /kg or less. If the residual magnetization σ r exceeds 2.0 Am 2 /kg, it may become difficult to separate the carrier from the developing roller. A more preferable residual magnetization σ r is in the range of 1.5 Am 2 /kg or less.

また本発明のキャリア芯材の保磁力Hは20エルステッド(20×10/(4π)A/m)以下の範囲が好ましい。保磁力Hが20エルステッドを超えると、キャリアの流動性、帯電付与能力が悪化し、トナー飛散が生じやすくなるおそれがある。より好ましい保磁力Hは15エルステッド以下の範囲である。 Further, the coercive force H c of the carrier core material of the present invention is preferably in the range of 20 Oe (20×10 3 /(4π) A/m) or less. If the coercive force H c exceeds 20 oersteds, carrier fluidity and charge imparting ability may deteriorate, and toner scattering may easily occur. A more preferable coercive force H c is in the range of 15 Oersteds or less.

本発明に係るキャリア芯材を構成するフェライト粒子の組成は、組成式MnFe3-X(但し、0<X<3)で表されるものが好ましい。そして、Caが2.0質量%以上4.0質量%以下の範囲含有され、Siが2.0質量%以上4.0質量%以下の範囲含有されているのが好ましい。 The composition of the ferrite particles constituting the carrier core material according to the present invention is preferably expressed by the compositional formula Mn X Fe 3-X O 4 (0<X<3). Preferably, Ca is contained in a range of 2.0% by mass to 4.0% by mass, and Si is contained in a range of 2.0% by mass to 4.0% by mass.

ここでCa元素とSi元素の含有質量比Ca/Siは0.5以上2.0以下の範囲が好ましい。 Here, the content mass ratio Ca/Si of Ca element and Si element is preferably in the range of 0.5 or more and 2.0 or less.

本発明のキャリア芯材のレーザー回折式粒度分布測定装置で測定される体積平均粒径(以下、「平均粒径」と記すことがある。)D50は30μm以上50μm以下の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。また体積基準の積算粒度分布における粒径22μm以下の累積値は1.5%以下であるのが好ましい。粒径22μm以下の累積値が1.5%を超えるとキャリア飛散が生じるおそれがある。 The volume average particle diameter (hereinafter sometimes referred to as "average particle diameter") D50 measured by a laser diffraction particle size distribution analyzer of the carrier core material of the present invention is preferably in the range of 30 μm or more and 50 μm or less, and more preferably Preferably it is in the range of 30 μm or more and 40 μm or less. Further, the cumulative value of particle diameters of 22 μm or less in the volume-based integrated particle size distribution is preferably 1.5% or less. If the cumulative value of particles with a particle diameter of 22 μm or less exceeds 1.5%, carrier scattering may occur.

(製造方法)
本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。
(Production method)
Although there is no particular limitation on the method for manufacturing the carrier core material of the present invention, the manufacturing method described below is suitable.

まず、フェライトの成分原料と、CaSiOなどのCaSi複合酸化物と、必要により従来公知の添加剤を秤量する。フェライトの成分原料としては、Fe成分原料、Mn成分原料などが挙げられる。Fe成分原料としては、Fe等が好適に使用される。Mn成分原料としてはMnCO、Mn等が使用される。なお、原料中のFe、Mn、Ca、Si量比はほぼそのままキャリア芯材中の各元素の組成比に反映されるので、Fe成分原料、Mn成分原料およびCaSi複合酸化物の各仕込量は、キャリア芯材における狙いの組成比となるように調整すればよい。 First, the raw materials for ferrite, a CaSi composite oxide such as CaSiO 3 , and, if necessary, conventionally known additives are weighed. Examples of raw materials for ferrite include Fe component raw materials and Mn component raw materials. As the Fe component raw material, Fe 2 O 3 and the like are preferably used. MnCO 3 , Mn 3 O 4 and the like are used as raw materials for the Mn component. In addition, since the amount ratio of Fe, Mn, Ca, and Si in the raw materials is almost directly reflected in the composition ratio of each element in the carrier core material, the amounts of each of the Fe component raw material, Mn component raw material, and CaSi composite oxide are , the carrier core material may be adjusted to a desired composition ratio.

次いで、原料を分散媒中に投入しスラリーを作製する。CaSi複合酸化物はこの時点で分散媒中に投入してもよく、後述する湿式粉砕後のスラリーに混合してもよい。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウムやメタクリル酸系ポリマー等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。その他、カーボンブラックなどの還元剤、アンモニアなどのpH調整剤、潤滑剤、焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%~90質量%の範囲が望ましい。より好ましくは60質量%~80質量%である。60質量%以上であれば、造粒物中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。 Next, the raw materials are introduced into a dispersion medium to prepare a slurry. The CaSi composite oxide may be added to the dispersion medium at this point, or may be mixed into the wet-pulverized slurry described later. Water is suitable as the dispersion medium used in the present invention. The dispersion medium may contain a binder, a dispersant, etc., if necessary, in addition to the above-mentioned calcined raw materials. As the binder, for example, polyvinyl alcohol can be suitably used. The amount of binder to be blended is preferably such that the concentration in the slurry is approximately 0.1% by mass to 2% by mass. Further, as the dispersant, for example, ammonium polycarboxylate, methacrylic acid polymer, etc. can be suitably used. The amount of the dispersant to be blended is preferably such that the concentration in the slurry is approximately 0.1% by mass to 2% by mass. In addition, a reducing agent such as carbon black, a pH adjuster such as ammonia, a lubricant, a sintering accelerator, etc. may be added. The solid content concentration of the slurry is preferably in the range of 50% by mass to 90% by mass. More preferably, it is 60% by mass to 80% by mass. When it is 60% by mass or more, there are few intraparticle pores in the granules, and insufficient sintering during firing can be prevented.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃~1000℃の範囲が好ましい。750℃以上であれば、仮焼成による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、1000℃以下であれば、仮焼成による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。一般に、1540℃以下の温度範囲であればCaSiOは溶融・分解することなくその結晶を維持することができる。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。 Note that the weighed raw materials may be mixed, pre-calcined and granulated, and then added to a dispersion medium to produce a slurry. The temperature for pre-firing is preferably in the range of 750°C to 1000°C. If it is 750°C or higher, it is preferable because partial ferrite formation occurs during temporary calcination, the amount of gas generated during calcination is small, and solid-solid reactions proceed sufficiently. On the other hand, if the temperature is 1000° C. or lower, sintering during temporary calcination is weak and the raw material can be sufficiently pulverized in the subsequent slurry pulverization step, which is preferable. Generally, CaSiO 3 can maintain its crystalline state without melting or decomposing in a temperature range of 1540° C. or lower. Furthermore, an atmospheric atmosphere is preferable as the atmosphere during the temporary firing.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは2μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Next, the slurry produced as described above is wet-pulverized. For example, wet pulverization is performed for a predetermined period of time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 5 μm or less, more preferably 2 μm or less. It is preferable that a vibration mill or a ball mill contain media of a predetermined particle size. Examples of media materials include iron-based chromium steel and oxide-based zirconia, titania, and alumina. The form of the pulverization process may be either continuous or batch. The particle size of the pulverized material is adjusted by the pulverization time, rotation speed, material and particle size of the media used, etc.

CaSi複合酸化物の粒度を制御することにより、キャリア芯材の残留磁化σのレベルを制御することも可能である。分散媒およびフェライト成分原料を含むスラリーを湿式粉砕処理に供した後に、平均粒径が12μmであるCaSi複合酸化物を混合したスラリーを得て、さらに後述する噴霧乾燥以下の操作を行うことで、平均粒径が12μm未満であるCaSi複合酸化物を混合した場合と比べてσを低下させることができる。このようにCaSi複合酸化物の粒度を制御することでキャリア芯材のσを制御できるメカニズムは現時点で不明であるが、本発明者等は、キャリア芯材内部に存在するCaSi複合酸化物の平均粒径が小さいと、キャリア芯材一粒子中のCaSi複合酸化物の粒子数が増加して粒界が増加することで磁気スピンの戻りが阻害され残留磁化が増加するのではないかと推測している。CaSi複合酸化物の平均粒径の上限は、粒子内での磁力のばらつきが生じるためキャリア芯材の平均粒子径の50%以下であることが好ましい。より好ましいCaSi複合酸化物の平均粒径はキャリア芯材の平均粒子径の40%以下である。 By controlling the particle size of the CaSi composite oxide, it is also possible to control the level of residual magnetization σ r of the carrier core material. After subjecting the slurry containing the dispersion medium and the ferrite component raw material to wet pulverization treatment, a slurry mixed with CaSi composite oxide having an average particle size of 12 μm is obtained, and further operations including spray drying described below are performed. σ r can be lowered compared to the case where a CaSi composite oxide having an average particle size of less than 12 μm is mixed. Although the mechanism by which σ r of the carrier core material can be controlled by controlling the particle size of the CaSi composite oxide in this way is currently unknown, the present inventors have discovered that the CaSi composite oxide present inside the carrier core material We speculate that if the average particle size is small, the number of CaSi composite oxide particles in one particle of the carrier core material increases and the number of grain boundaries increases, which inhibits the return of magnetic spin and increases residual magnetization. ing. The upper limit of the average particle size of the CaSi composite oxide is preferably 50% or less of the average particle size of the carrier core material because variation in magnetic force occurs within the particles. More preferably, the average particle size of the CaSi composite oxide is 40% or less of the average particle size of the carrier core material.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球形に造粒する。噴霧乾燥時の雰囲気温度は100℃~300℃の範囲が好ましい。これにより、粒径10μm~200μmの球形の造粒物が得られる。次いで、必要により、得られた造粒物を振動篩を用いて分級し所定の粒径範囲の造粒物を作製する。 The pulverized slurry is then spray dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and is sprayed into the atmosphere to form spherical granules. The atmospheric temperature during spray drying is preferably in the range of 100°C to 300°C. As a result, spherical granules with a particle size of 10 μm to 200 μm are obtained. Next, if necessary, the obtained granules are classified using a vibrating sieve to produce granules having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1050℃~1350℃の範囲が好ましい。より好ましくは1100℃~1250℃の範囲である。焼成温度が1050℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1350℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。本発明のフェライト粒子はCaSi複合酸化物を含有するため、昇温速度が速い場合、焼成時の収縮速度差の影響により球形状が保てなくなるおそれがある。特に500℃から前記焼成温度に至るまでの昇温速度としては100℃/h~500℃/hの範囲が好ましい。焼成温度での保持時間は2時間以上が好ましい。昇温・焼成・冷却における酸素濃度は0.05%~21%の範囲に制御するのが好ましい。 Next, the granulated material is placed in a furnace heated to a predetermined temperature and fired using a common method for synthesizing ferrite particles, thereby producing ferrite particles. The firing temperature is preferably in the range of 1050°C to 1350°C. More preferably, the temperature is in the range of 1100°C to 1250°C. When the firing temperature is 1050° C. or lower, phase transformation is less likely to occur and sintering is also less likely to proceed. Furthermore, if the firing temperature exceeds 1350° C., excessive sintering may result in generation of excessive grains. Since the ferrite particles of the present invention contain a CaSi composite oxide, if the temperature increase rate is fast, there is a risk that the particles will not be able to maintain their spherical shape due to the difference in shrinkage rate during firing. In particular, the rate of temperature increase from 500°C to the firing temperature is preferably in the range of 100°C/h to 500°C/h. The holding time at the firing temperature is preferably 2 hours or more. The oxygen concentration during heating, firing, and cooling is preferably controlled within the range of 0.05% to 21%.

このようにして得られた焼成物を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。また解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の体積平均粒子径としては30μm以上50μm未満が好ましい。 The fired product thus obtained is granulated if necessary. Specifically, the fired product is pulverized using, for example, a hammer mill. The form of the granulation process may be either continuous or batch. Further, after the disintegration treatment, classification may be performed, if necessary, in order to align the particle size within a predetermined range. As the classification method, conventionally known methods such as wind classification and sieve classification can be used. Further, after primary classification using an air classifier, the particle size may be adjusted to a predetermined range using a vibrating sieve or an ultrasonic sieve. Furthermore, after the classification step, non-magnetic particles may be removed using a magnetic field separator. The volume average particle diameter of the ferrite particles is preferably 30 μm or more and less than 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は200℃以上800℃以下の範囲が好ましく、360℃以上550℃以下の範囲がさらに好ましい。加熱時間は0.5時間以上5時間以下の範囲が好ましい。なお、フェライト粒子の表面と内部とを均質化する観点からは加熱温度は低温であるのが望ましい。以上のようにして作製したスピネル型フェライト粒子を本発明のキャリア芯材として用いる。 Thereafter, if necessary, the classified ferrite particles may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be an air atmosphere or a mixed atmosphere of oxygen and nitrogen. Further, the heating temperature is preferably in the range of 200°C or more and 800°C or less, and more preferably in the range of 360°C or more and 550°C or less. The heating time is preferably in the range of 0.5 hours or more and 5 hours or less. Note that, from the viewpoint of homogenizing the surface and interior of the ferrite particles, it is desirable that the heating temperature is low. The spinel-type ferrite particles produced as described above are used as the carrier core material of the present invention.

(電子写真現像用キャリア)
本発明に係る電子写真現像用キャリアは、以上のようにして作製されたキャリア芯材の表面が樹脂で被覆されてなる。
(Carrier for electrophotographic development)
The carrier for electrophotographic development according to the present invention is obtained by coating the surface of the carrier core material produced as described above with a resin.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ-4-メチルペンテン-1、ポリ塩化ビニリデン、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 Conventionally known resins can be used to coat the surface of the carrier core material, such as polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene), etc. ) resins, polystyrene, (meth)acrylic resins, polyvinyl alcohol resins, thermoplastic elastomers such as polyvinyl chloride, polyurethane, polyester, polyamide, and polybutadiene, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%以上30質量%以下、特に0.001質量%以上2質量%以下の範囲内にあるのがよい。 In order to coat the surface of the carrier core material with a resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for coating solutions include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol. One or more of alcoholic solvents such as; cellosolve solvents such as ethyl cellosolve and butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; and amide solvents such as dimethylformamide and dimethylacetamide can be used. . The concentration of the resin component in the coating solution is generally in the range of 0.001% by mass to 30% by mass, particularly 0.001% by mass to 2% by mass.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method for coating the carrier core material with the resin, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, a dipping method, etc. can be used. Among these, the fluidized bed method is particularly preferred since it allows efficient coating with a small amount of resin. For example, in the case of a fluidized bed method, the amount of resin coating can be adjusted by adjusting the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で30μm以上50μm以下の範囲、特に30μm以上40μm以下の範囲が好ましい。 The particle diameter of the carrier is generally preferably in the range of 30 μm or more and 50 μm or less, particularly in the range of 30 μm or more and 40 μm or less in volume average particle diameter.

(電子写真用現像剤)
本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%以上15質量%以下の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し装置内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%以上10質量%以下の範囲である。
(electrophotographic developer)
The electrophotographic developer according to the present invention is made by mixing the carrier prepared as described above and a toner. The mixing ratio of carrier and toner is not particularly limited, and may be appropriately determined based on the developing conditions of the developing device used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass or more and 15% by mass or less. If the toner concentration is less than 1% by mass, the image density becomes too thin, while if the toner concentration exceeds 15% by mass, toner scatters in the developing device, causing toner to stain inside the device or to the background areas such as transfer paper. This is because problems such as adhesion may occur. A more preferable toner concentration is in the range of 3% by mass or more and 10% by mass or less.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。 As the toner, those manufactured by conventionally known methods such as polymerization method, crushing classification method, melt granulation method, spray granulation method, etc. can be used. Specifically, a binder resin whose main component is a thermoplastic resin containing a coloring agent, a mold release agent, a charge control agent, etc. can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm以上15μm以下の範囲が好ましく、7μm以上12μm以下の範囲がより好ましい。 Generally, the particle size of the toner is preferably in the range of 5 μm or more and 15 μm or less, more preferably 7 μm or more and 12 μm or less, as measured by a Coulter Counter volume average particle size.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。 A modifier may be added to the toner surface if necessary. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, and polymethyl methacrylate. These can be used alone or in combination of two or more.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。 A conventionally known mixing device can be used to mix the carrier and toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, etc. can be used.

(現像装置)
本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図6に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図6に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。
(Developing device)
Although there are no particular limitations on the developing method using the developer of the present invention, a magnetic brush developing method is suitable. FIG. 6 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 6 includes a rotatable developing roller 3 that includes a plurality of magnetic poles, and a regulating blade 6 that regulates the amount of developer on the developing roller 3 that is conveyed to the developing section, which are arranged in parallel in the horizontal direction. It is formed between two screws 1 and 2 that agitate and convey the developer in opposite directions, and the developer is transferred from one screw to the other at both ends of both screws. The developer is provided with a partition plate 4 that allows the developer to move and prevents the developer from moving at areas other than both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。 The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. Then, the developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer consisting of toner and carrier is constantly circulated and stirred within the device.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3の筒状体が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has a developing magnetic pole N 1 , a conveying magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 as magnetic pole generating means inside a metal cylindrical body with irregularities of several μm on the surface. , a fixed magnet in which five magnetic poles of blade magnetic pole S2 are arranged in sequence. When the cylindrical body of the developing roller 3 rotates in the direction of the arrow, the developer is pumped up from the screw 1 to the developing roller 3 by the magnetic force of the pumping magnetic pole N3 . The developer carried on the surface of the developing roller 3 is layer-regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5kV~5kVの範囲が好ましく、周波数は1kHz~10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。 In the developing region, a bias voltage obtained by superimposing an alternating current voltage on a direct current voltage is applied to the developing roller 3 from a transfer voltage power source 8 . The DC voltage component of the bias voltage has a potential between the background potential and the image potential on the surface of the photosensitive drum 5. Further, the background potential and the image potential are potentials between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 kV to 5 kV, and the frequency is preferably in the range of 1 kHz to 10 kHz. Further, the waveform of the bias voltage may be any one such as a rectangular wave, a sine wave, or a triangular wave. As a result, the toner and carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photoreceptor drum 5 to perform development.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Thereafter, the developer on the developing roller 3 is transported into the apparatus by the transport magnetic pole S1 , peeled off from the developing roller 3 by the peeling electrode N2 , and circulated again within the apparatus by the screws 1 and 2 to be used for development. It is not mixed with developer and stirred. Then, developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N3 .

なお、図6に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。 In the embodiment shown in FIG. 6, the number of magnetic poles built into the developing roller 3 is five, but in order to further increase the amount of movement of the developer in the developing area and to further improve pumping performance, etc. Of course, the number of magnetic poles may be increased to 8, 10, or 12.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

(実施例1)
原料として、Fe(平均粒径:0.6μm)22.13kg、Mn(平均粒径:3.4μm)8.60kg、CaSiO(平均粒径:12μm)3.42kgを純水11.40kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を279.3g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1145℃まで3時間保持することにより焼成を行った。電気炉内の酸素濃度は3000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径35.9μmのキャリア芯材を得た。
(Example 1)
As raw materials, 22.13 kg of Fe 2 O 3 (average particle size: 0.6 μm), 8.60 kg of Mn 3 O 4 (average particle size: 3.4 μm), and 3.42 kg of CaSiO 3 (average particle size: 12 μm) were used. It was dispersed in 11.40 kg of pure water, and 279.3 g of an ammonium polycarboxylate dispersant was added as a dispersant to prepare a mixture. This mixture was pulverized using a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140° C. using a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles with a particle size of 25 μm or less were removed from this granulated product using a sieve.
The granules were placed in an electric furnace and held at 1145° C. for 3 hours to perform firing. The oxygen concentration in the electric furnace was adjusted to be 3000 ppm.
The obtained fired product was granulated using a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 35.9 μm.

得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。 The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450質量部と、(2-アミノエチル)アミノプロピルトリメトキシシラン9質量部とを、溶媒としてのトルエン450質量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000質量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下の実施例及び比較例についても同様にしてキャリアを得た。 Next, the surface of the carrier core material thus obtained was coated with a resin to produce a carrier. Specifically, 450 parts by mass of silicone resin and 9 parts by mass of (2-aminoethyl)aminopropyltrimethoxysilane were dissolved in 450 parts by mass of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50,000 parts by mass of a carrier core material using a fluidized bed coating device, and heated in an electric furnace at a temperature of 300° C. to obtain a carrier. Carriers were obtained in the same manner for the following Examples and Comparative Examples.

得られたキャリアと平均粒子径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの質量/(トナーおよびキャリアの質量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表1及び表2に示す。以下の実施例及び比較例についても同様にして実機評価を行った。評価結果を表2に示す。 The obtained carrier and toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and toner were adjusted so that the mass of toner/(mass of toner and carrier)=5/100. Developers were obtained in the same manner for all Examples and Comparative Examples. The obtained developer was evaluated on an actual machine as described below. The evaluation results are shown in Tables 1 and 2. The following examples and comparative examples were also evaluated on actual equipment in the same manner. The evaluation results are shown in Table 2.

(実施例2)
焼成工程における電気炉温度を1170℃に変更した以外は実施例1と同様にして平均粒子径36.0μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 2)
A carrier core material having an average particle diameter of 36.0 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1170° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例3)
焼成工程における電気炉温度を1200℃に変更した以外は実施例1と同様にして平均粒子径35.6μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 3)
A carrier core material having an average particle diameter of 35.6 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1200° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例4)
実施例3のキャリア芯材を温度420℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 4)
The carrier core material of Example 3 was held in the air at a temperature of 420° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例5)
原料として、平均粒径の異なるCaSiO(平均粒径:5μm)3.42kgを用いた以外は実施例1と同様にして平均粒子径35.7μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 5)
A carrier core material having an average particle diameter of 35.7 μm was obtained in the same manner as in Example 1, except that 3.42 kg of CaSiO 3 (average particle diameter: 5 μm) having different average particle diameters was used as the raw material.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例6)
焼成工程における電気炉温度を1170℃に変更した以外は実施例5と同様にして平均粒子径35.8μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 6)
A carrier core material having an average particle diameter of 35.8 μm was obtained in the same manner as in Example 5 except that the electric furnace temperature in the firing step was changed to 1170° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例7)
実施例6のキャリア芯材を温度420℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。また図1に実施例7のキャリア芯材のXRD測定図を示す。
(Example 7)
The carrier core material of Example 6 was held in the air at a temperature of 420° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2. Further, FIG. 1 shows an XRD measurement diagram of the carrier core material of Example 7.

(実施例8)
焼成工程における電気炉温度を1200℃に変更した以外は実施例5と同様にして平均粒子径34.9μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 8)
A carrier core material having an average particle size of 34.9 μm was obtained in the same manner as in Example 5 except that the electric furnace temperature in the firing step was changed to 1200° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例9)
実施例8のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 9)
The carrier core material of Example 8 was held in the air at a temperature of 400° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例10)
原料として、Fe(平均粒径:0.6μm)22.13kg、Mn(平均粒径:3.4μm)8.64kgを純水11.40kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を279.3g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、CaSiO(平均粒径:12μm)3.42kg添加して混合スラリーを得た以外は実施例1と同様にして平均粒子径35.2μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 10)
As raw materials, 22.13 kg of Fe 2 O 3 (average particle size: 0.6 μm) and 8.64 kg of Mn 3 O 4 (average particle size: 3.4 μm) were dispersed in 11.40 kg of pure water, and as a dispersant. A mixture was prepared by adding 279.3 g of an ammonium polycarboxylate dispersant. This mixture was pulverized using a wet ball mill (media diameter: 2 mm), and 3.42 kg of CaSiO 3 (average particle size: 12 μm) was added to obtain a mixed slurry. A carrier core material was obtained.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例11)
実施例10のキャリア芯材を温度420℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 11)
The carrier core material of Example 10 was subjected to oxidation treatment (high resistance treatment) by holding it in the air at a temperature of 420° C. for 1.5 hours.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例12)
焼成工程における電気炉温度を1170℃に変更した以外は実施例10と同様にして平均粒子径35.9μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 12)
A carrier core material having an average particle diameter of 35.9 μm was obtained in the same manner as in Example 10 except that the electric furnace temperature in the firing step was changed to 1170° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例13)
実施例12のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。また図2に実施例13のキャリア芯材のXRD測定図を示す。
(Example 13)
The carrier core material of Example 12 was subjected to oxidation treatment (high resistance treatment) by holding it in the air at a temperature of 400° C. for 1.5 hours.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2. Further, FIG. 2 shows an XRD measurement diagram of the carrier core material of Example 13.

(実施例14)
原料として、平均粒径の異なるCaSiO(平均粒径:5μm)3.42kgを用いた以外は実施例10と同様にして平均粒子径34.3μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 14)
A carrier core material having an average particle diameter of 34.3 μm was obtained in the same manner as in Example 10, except that 3.42 kg of CaSiO 3 (average particle diameter: 5 μm) having different average particle diameters was used as the raw material.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例15)
焼成工程における電気炉温度を1170℃に変更した以外は実施例14と同様にして平均粒子径35.6μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 15)
A carrier core material having an average particle diameter of 35.6 μm was obtained in the same manner as in Example 14 except that the electric furnace temperature in the firing step was changed to 1170° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例16)
焼成工程における電気炉温度を1200℃に変更した以外は実施例14と同様にして平均粒子径35.1μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 16)
A carrier core material having an average particle diameter of 35.1 μm was obtained in the same manner as in Example 14 except that the electric furnace temperature in the firing step was changed to 1200° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(実施例17)
実施例16のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 17)
The carrier core material of Example 16 was subjected to oxidation treatment (high resistance treatment) by holding it in the air at a temperature of 400° C. for 1.5 hours.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例1)
原料として、Fe(平均粒径:0.6μm)24.59kg、Mn(平均粒径:3.4μm)9.60kgを純水11.40kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を279.3g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し、1110℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は3000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し平均粒子径35.9μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。また図3に比較例1のキャリア芯材のXRD測定図を示す。
(Comparative example 1)
As raw materials, 24.59 kg of Fe 2 O 3 (average particle size: 0.6 μm) and 9.60 kg of Mn 3 O 4 (average particle size: 3.4 μm) were dispersed in 11.40 kg of pure water, and as a dispersant. A mixture was prepared by adding 279.3 g of an ammonium polycarboxylate dispersant. This mixture was pulverized using a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140° C. using a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles with a particle size of 25 μm or less were removed from this granulated product using a sieve.
The granules were placed in an electric furnace and held at 1110° C. for 3 hours to perform firing. The oxygen concentration in the electric furnace was adjusted to be 3000 ppm.
The obtained fired product was granulated using a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 35.9 μm.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2. Further, FIG. 3 shows an XRD measurement diagram of the carrier core material of Comparative Example 1.

(比較例2)
焼成工程における電気炉温度を1200℃に変更した以外は比較例1と同様にして平均粒子径35.9μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 2)
A carrier core material having an average particle diameter of 35.9 μm was obtained in the same manner as in Comparative Example 1 except that the electric furnace temperature in the firing step was changed to 1200° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例3)
焼成工程における電気炉温度を1110℃に変更した以外は実施例1と同様にして平均粒子径35.7μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 3)
A carrier core material having an average particle diameter of 35.7 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1110° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例4)
焼成工程における電気炉温度を1110℃に変更した以外は実施例5と同様にして平均粒子径35.3μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 4)
A carrier core material having an average particle diameter of 35.3 μm was obtained in the same manner as in Example 5 except that the electric furnace temperature in the firing step was changed to 1110° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例5)
焼成工程における電気炉温度を1110℃に変更した以外は実施例10と同様にして平均粒子径35.8μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 5)
A carrier core material having an average particle diameter of 35.8 μm was obtained in the same manner as in Example 10 except that the electric furnace temperature in the firing step was changed to 1110° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例6)
焼成工程における電気炉温度を1110℃に変更した以外は実施例14と同様にして平均粒子径35.3μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 6)
A carrier core material having an average particle diameter of 35.3 μm was obtained in the same manner as in Example 14 except that the electric furnace temperature in the firing step was changed to 1110° C.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例7)
実施例1のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 7)
The carrier core material of Example 1 was held in the air at a temperature of 400° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例8)
実施例1のキャリア芯材を温度420℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 8)
The carrier core material of Example 1 was held in the air at a temperature of 420° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例9)
実施例14のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 9)
The carrier core material of Example 14 was subjected to oxidation treatment (high resistance treatment) by holding it in the air at a temperature of 400° C. for 1.5 hours.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例10)
実施例5のキャリア芯材を温度440℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 10)
The carrier core material of Example 5 was held in the air at a temperature of 440° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例11)
原料として、Fe(平均粒径:0.6μm)34.20kg、Mn(平均粒径:3.4μm)13.35kg、CaSiO(平均粒径:5μm)2.45kgを純水16.70kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を408.0g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し、1145℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は3000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し平均粒子径35.0μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 11)
As raw materials, 34.20 kg of Fe 2 O 3 (average particle size: 0.6 μm), 13.35 kg of Mn 3 O 4 (average particle size: 3.4 μm), and 2.45 kg of CaSiO 3 (average particle size: 5 μm) were used. It was dispersed in 16.70 kg of pure water, and 408.0 g of ammonium polycarboxylate dispersant was added as a dispersant to prepare a mixture. This mixture was pulverized using a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140° C. using a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles with a particle size of 25 μm or less were removed from this granulated product using a sieve.
The granules were placed in an electric furnace and held at 1145° C. for 3 hours to perform firing. The oxygen concentration in the electric furnace was adjusted to be 3000 ppm.
The obtained fired product was granulated using a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 35.0 μm.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例12)
比較例11のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。また図4に比較例12のキャリア芯材のXRD測定図を示す。
(Comparative example 12)
The carrier core material of Comparative Example 11 was held in the air at a temperature of 400° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2. Further, FIG. 4 shows an XRD measurement diagram of the carrier core material of Comparative Example 12.

(比較例13)
原料として、Fe(平均粒径:0.6μm)28.09kg、Mn(平均粒径:3.4μm)10.96kg、CaSiO(平均粒径:5μm)10.95kgを純水16.70kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を408.0g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し、1170℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は3000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し平均粒子径35.8μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative example 13)
As raw materials, 28.09 kg of Fe 2 O 3 (average particle size: 0.6 μm), 10.96 kg of Mn 3 O 4 (average particle size: 3.4 μm), and 10.95 kg of CaSiO 3 (average particle size: 5 μm) were used. It was dispersed in 16.70 kg of pure water, and 408.0 g of ammonium polycarboxylate dispersant was added as a dispersant to prepare a mixture. This mixture was pulverized using a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140° C. using a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles with a particle size of 25 μm or less were removed from this granulated product using a sieve.
The granules were placed in an electric furnace and held at 1170° C. for 3 hours to perform firing. The oxygen concentration in the electric furnace was adjusted to be 3000 ppm.
The obtained fired product was granulated using a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 35.8 μm.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(比較例14)
比較例13のキャリア芯材を温度400℃で1.5時間大気雰囲気下で保持して酸化処理(高抵抗化処理)した。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。また図5に比較例14のキャリア芯材のXRD測定図を示す。
(Comparative example 14)
The carrier core material of Comparative Example 13 was held in the air at a temperature of 400° C. for 1.5 hours to undergo oxidation treatment (high resistance treatment).
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2. Further, FIG. 5 shows an XRD measurement diagram of the carrier core material of Comparative Example 14.

(比較例15)
原料として、Fe(平均粒径:0.6μm)14.43kg、Mn(平均粒径:2μm)4.62kg、MgO1.04kgを混合した。この混合物をローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、温度850℃にてロータリー式の焼成炉で仮焼成を行った。乾式ビーズミルで6時間粉砕し、仮焼原料を得た。得られた仮焼成粉を水7.12kg中に分散し、CaCOを149.5g、メタクリル酸系ポリマー21%含有水溶液を219.7g添加し、湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、乾燥造粒粉を得た。なお、このとき、目的の粒度分布以外の造粒粉は篩により除去した。
この造粒粉を、電気焼成炉に投入し、温度1110℃で保持時間3時間として、本焼成を行った。その後酸素濃度7500ppmで6時間かけて冷却した。得られた焼成物は解粒後に篩を用いて分級し、平均粒径36.2μm、粒径22μm以下の割合が0.9%のキャリア芯材を得た。
得られたキャリア芯材の粉体特性、磁気特性、電気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 15)
As raw materials, 14.43 kg of Fe 2 O 3 (average particle size: 0.6 μm), 4.62 kg of Mn 3 O 4 (average particle size: 2 μm), and 1.04 kg of MgO were mixed. This mixture was pelletized using a roller compactor. The obtained pellets were pre-calcined in a rotary kiln at a temperature of 850° C. under atmospheric conditions. The mixture was ground in a dry bead mill for 6 hours to obtain a calcined raw material. The obtained calcined powder was dispersed in 7.12 kg of water, 149.5 g of CaCO 3 and 219.7 g of an aqueous solution containing 21% methacrylic acid polymer were added, and the mixture was pulverized using a wet ball mill (media diameter 2 mm). A mixed slurry was obtained.
This mixed slurry was sprayed into hot air at about 130° C. using a spray dryer to obtain dry granulated powder. At this time, granulated powder other than the target particle size distribution was removed using a sieve.
This granulated powder was put into an electric firing furnace, and main firing was performed at a temperature of 1110° C. for a holding time of 3 hours. Thereafter, it was cooled for 6 hours at an oxygen concentration of 7500 ppm. The obtained fired product was cracked and classified using a sieve to obtain a carrier core material having an average particle size of 36.2 μm and a proportion of 0.9% having a particle size of 22 μm or less.
The powder properties, magnetic properties, electrical properties, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Tables 1 and 2.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311-1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本明細書に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Caの分析)
キャリア芯材のCa含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本発明に記載したキャリア芯材のCa含有量は、このICPによる定量分析で得られたCa量である。
(Siの分析)
キャリア芯材のSi含有量は、JIS M8214-1995記載の二酸化珪素重量法に準拠して定量分析を行なった。
(composition analysis)
(Analysis of Fe)
A carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After this solution is evaporated to dryness, sulfuric acid water is added to dissolve it again and excess hydrochloric acid and nitric acid are volatilized. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in this solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution, and the titration amount of Fe (Fe 2+ ) was determined.
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed in accordance with the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in this specification is the Mn amount obtained by quantitative analysis using this ferromanganese analysis method (potentiometric titration method).
(Analysis of Ca)
The Ca content of the carrier core material was analyzed using the following method. The carrier core material according to the present invention was dissolved in an acid solution and quantitatively analyzed by ICP. The Ca content of the carrier core material described in the present invention is the Ca amount obtained by this quantitative analysis by ICP.
(Analysis of Si)
The Si content of the carrier core material was quantitatively analyzed in accordance with the silicon dioxide gravimetric method described in JIS M8214-1995.

(見掛密度AD)
キャリア芯材の見掛密度はJIS Z 2504に準拠して測定した。
(apparent density AD)
The apparent density of the carrier core material was measured in accordance with JIS Z 2504.

(流動度FR)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Flow rate FR)
The fluidity of the carrier core material was measured in accordance with JIS Z 2502.

(平均粒子径D50と粒径22μm以下の割合)
キャリア芯材の平均粒子径D50及び粒径22μm以下の体積割合は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320-X100」)を用いて測定した。
(Average particle diameter D50 and ratio of particle diameters of 22 μm or less)
The average particle diameter D 50 of the carrier core material and the volume proportion of particles with a particle diameter of 22 μm or less were measured using a laser diffraction particle size distribution analyzer (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).

(細孔容積)
評価装置は、Quantachrome社製のPOREMASTER-60GTを使用した。具体的測定条件は、
Cell Stem Volume:0.5cm
Headpressure:20PSIA
水銀の表面張力:485.00erg/cm
水銀の接触角:130.00degrees
高圧測定モード:Fixed Rate
Moter Speed:1
高圧測定レンジ:20.00~10000.00PSI
とし、サンプル1.500gを秤量して0.5cmのセルに充填して測定を行った。また、10000PSI時の容積B(cm/g)から60PSI時の容積A(cm/g)を差し引いた値を、細孔容積とした。
(pore volume)
The evaluation device used was POREMASTER-60GT manufactured by Quantachrome. The specific measurement conditions are:
Cell Stem Volume: 0.5cm 3
Headpressure: 20PSIA
Surface tension of mercury: 485.00erg/ cm2
Contact angle of mercury: 130.00 degrees
High pressure measurement mode: Fixed Rate
Motor Speed: 1
High pressure measurement range: 20.00~10000.00PSI
Then, 1.500 g of the sample was weighed and filled into a 0.5 cm 3 cell for measurement. Further, the value obtained by subtracting the volume A (cm 3 /g) at 60 PSI from the volume B (cm 3 /g) at 10,000 PSI was defined as the pore volume.

(BET比表面積)
実施例1~17、比較例1~12、比較例15は、BET一点法比表面積測定装置(株式会社マウンテック製、型式:Macsorb HM model-1208)を用いて評価を行った。具体的には、サンプルは、10.000g(なお、比較例13,14のキャリア芯材についてはセルに10.000g充填できないので8.000gとした。)を秤量して直径15mmのセルに充填し、200℃で、30分間脱気して測定を行った。
(BET specific surface area)
Examples 1 to 17, Comparative Examples 1 to 12, and Comparative Example 15 were evaluated using a BET single point specific surface area measurement device (manufactured by Mountec Co., Ltd., model: Macsorb HM model-1208). Specifically, 10.000 g of the sample was weighed (8.000 g was used for the carrier core materials of Comparative Examples 13 and 14 because 10.000 g could not be filled into the cell) and filled into a cell with a diameter of 15 mm. The measurement was then carried out at 200°C and degassed for 30 minutes.

(真密度)
キャリア芯材の真密度は、Quantachrome社製、「ULTRA PYCNOMETER 1000」を用いて測定を行った。
(true density)
The true density of the carrier core material was measured using "ULTRA PYCNOMETER 1000" manufactured by Quantachrome.

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM-P7」)を用いて、外部磁場を0~79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1k、飽和磁化σ、残留磁化σ、保磁力Hを測定した。
(Magnetic properties)
Using a vibrating sample magnetometer (VSM) dedicated to room temperature (VSM-P7 manufactured by Toei Kogyo Co., Ltd.), an external magnetic field was applied continuously for one cycle in the range of 0 to 79.58 x 10 4 A/m (10,000 Oe). Magnetization σ 1k , saturation magnetization σ s , residual magnetization σ r , and coercive force H c were measured when a magnetic field of 79.58×10 3 A/m (1000 Oe) was applied.

(静的電気抵抗)
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に100V,500V,1000V直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmからキャリア芯材の電気抵抗を算出した。
(static electrical resistance)
Two 2 mm thick brass plates with electrolytically polished surfaces were arranged as electrodes so that the distance between the electrodes was 2 mm, and 200 mg of carrier core material was inserted into the gap between the two electrode plates. A magnet with a cross-sectional area of 240 mm 2 is placed behind the electrode to form a bridge of the powder to be measured between the electrodes, and a DC voltage of 100 V, 500 V, and 1000 V is applied between the electrodes to determine the value of the current flowing through the carrier core material. It was measured by the 4-terminal method. The electrical resistance of the carrier core material was calculated from the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm.

(トナースペントの評価)
図6に示した構造の現像装置(現像ローラの周速度v:259mm/sec,感光体ドラムの周速度v:131mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に作製した二成分現像剤を投入し、A4ヨコ用紙100k枚の印刷に要する時間に相当する時間(100k枚印刷相当時間)現像装置を駆動させた後、現像剤からキャリアを抜き取り、走査型電子顕微鏡(JSM-6510LA型 日本電子株式会社製)で観察すると共に、表面にトナーが融着したキャリアの個数割合を測定した。
「◎」:トナーの融着したキャリア個数割合が0.5%未満であった。
「○」:トナーの融着したキャリア個数割合が0.5%以上1.0%未満であった。
「△」:トナーの融着したキャリア個数割合が1.0%以上5.0%未満であった。
「×」:トナーの融着したキャリア個数割合が5.0%以上であった。
(Evaluation of Toner Spent)
A developing device having the structure shown in FIG. 6 was manufactured (peripheral speed v 1 of the developing roller: 259 mm/sec, circumferential speed v 2 of the photoreceptor drum: 131 mm/sec, distance between the photoreceptor drum and the developing roller: 0.3 mm). After putting in the two-component developer and driving the developing device for a time equivalent to the time required to print 100k sheets of A4 landscape paper (equivalent time to print 100k sheets), the carrier was extracted from the developer, and it was exposed to a scanning electron microscope ( JSM-6510LA model (manufactured by JEOL Ltd.)), and the number ratio of carriers to which toner was fused to the surface was measured.
"◎": The ratio of the number of carriers to which the toner was fused was less than 0.5%.
"Good": The ratio of the number of carriers to which the toner was fused was 0.5% or more and less than 1.0%.
"Δ": The ratio of the number of carriers to which the toner was fused was 1.0% or more and less than 5.0%.
"x": The ratio of the number of carriers to which the toner was fused was 5.0% or more.

(キャリア飛散の評価)
図6に示した構造の現像装置(現像ローラの周速度v:259mm/sec,感光体ドラムの周速度v:131mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に作製した二成分現像剤を投入し、A4ヨコ用紙100k枚の印刷に要する時間に相当する時間(100k枚印刷相当時間)現像装置を駆動させた後の画像部にて発見された黒点の数をα、背景部にて発見された黒点の数をβとし、下記基準でキャリア飛散を評価した。
「○」:0≦α+β≦6個
「×」:7個≦α+β
(Evaluation of carrier scattering)
A developing device having the structure shown in FIG. 6 was manufactured (peripheral speed v 1 of the developing roller: 259 mm/sec, circumferential speed v 2 of the photoreceptor drum: 131 mm/sec, distance between the photoreceptor drum and the developing roller: 0.3 mm). The number of black spots found in the image area after charging the two-component developer and driving the developing device for a time equivalent to the time required to print 100k sheets of A4 horizontal paper (time equivalent to printing 100k sheets) is α. The number of sunspots found in the background area was set as β, and carrier scattering was evaluated according to the following criteria.
“○”: 0≦α+β≦6 pieces “×”: 7 pieces≦α+β

図1のXRD測定結果によれば、平均粒径5μmのCaSiOを初期添加した実施例7のキャリア芯材では、回折強度のピークが、CaSiOの回折強度のピーク位置と(Ca,Fe)SiOの回折強度のピーク位置との間に1つ存在している。これはキャリア芯材の焼成などの製造工程においてCaSiOの一部(表層部)にFeが固溶して(Ca,Fe)SiOが生成して回折強度のピーク位置が高角側に移動したものと考えられる。
また図2のXRD測定結果によれば、実施例7で使用したものよりも平均粒径が大きいCaSiO(平均粒径12μm)を初期添加した実施例13のキャリア芯材では、回折強度のピークが、CaSiOの回折強度のピーク位置と(Ca,Fe)SiOの回折強度のピーク位置との間に2つ存在している。これは実施例7のキャリア芯材と同様に、CaSiOの一部(表層部)にFeは固溶するものの、CaSiOの平均粒径が大きいため粒子内部にCaSiOが残存し、結果的にCaSiOと(Ca,Fe)SiOに由来する2つの回折強度ピークを有するものと考えられる。
According to the XRD measurement results in FIG. 1, in the carrier core material of Example 7 to which CaSiO 3 with an average particle size of 5 μm was initially added, the peak of the diffraction intensity was the same as the peak position of the diffraction intensity of CaSiO 3 (Ca, Fe). One exists between the peak position of the diffraction intensity of SiO 3 . This is because during the manufacturing process such as firing of the carrier core material, Fe is dissolved in a part (surface layer) of CaSiO 3 to form (Ca,Fe)SiO 3 and the peak position of the diffraction intensity shifts to the higher angle side. considered to be a thing.
Furthermore, according to the XRD measurement results in FIG. 2, the carrier core material of Example 13 to which CaSiO 3 (average particle size 12 μm) having a larger average particle size than that used in Example 7 was initially added had a peak in diffraction intensity. There are two positions between the peak position of the diffraction intensity of CaSiO 3 and the peak position of the diffraction intensity of (Ca,Fe)SiO 3 . This is similar to the carrier core material of Example 7, although Fe is dissolved in a solid solution in a part (surface layer) of CaSiO 3 , since the average particle size of CaSiO 3 is large, CaSiO 3 remains inside the particles, resulting in It is considered that the two diffraction intensity peaks are derived from CaSiO 3 and (Ca,Fe)SiO 3 .

このようにXRD測定結果から、実施例7,13のキャリア芯材が、CaSiOや(Ca,Fe)SiOといったCaSi複合酸化物を含有していることがわかる。また、実施例7,13以外の実施例のキャリア芯材のXRD測定結果も同様であった。 As described above, the XRD measurement results show that the carrier core materials of Examples 7 and 13 contain CaSi composite oxides such as CaSiO 3 and (Ca,Fe)SiO 3 . Moreover, the XRD measurement results of the carrier core materials of Examples other than Examples 7 and 13 were also similar.

一方、図3に示すXRD測定結果によれば、原料成分としてCa成分原料、Si成分原料を添加しなかった比較例1のキャリア芯材では、入射角2θが26.60°以上27.30°以下の範囲に回折強度のピークが現れなかった。換言すれば、入射角2θが26.60°以上27.30°以下の範囲に回折強度のピークを有さないことでキャリア芯材がCaSi複合酸化物を含有していないことがわかる。 On the other hand, according to the XRD measurement results shown in FIG. 3, in the carrier core material of Comparative Example 1 in which no Ca component raw material or Si component raw material was added as raw material components, the incident angle 2θ was 26.60° or more and 27.30°. No peak of diffraction intensity appeared in the following range. In other words, it can be seen that the carrier core material does not contain CaSi composite oxide because the diffraction intensity does not have a peak in the range of the incident angle 2θ of 26.60° or more and 27.30° or less.

図4に示すXRD測定結果によれば、原料成分としてのCaSiOの添加量が少ない比較例12のキャリア芯材では、入射角2θが26.60°以上27.30°以下の範囲に回折強度のピークは現れるもののピーク強度値は低く、ピーク位置は(Ca,Fe)SiOのピーク位置側にシフトすることがわかる。また図5に示すXRD測定結果によれば、原料成分としてのCaSiOの添加量が多い比較例14のキャリア芯材では、入射角2θが26.60°以上27.30°以下の範囲に回折強度のピークが現れ、そのピーク強度値は高くなることがわかる。 According to the XRD measurement results shown in FIG. 4, in the carrier core material of Comparative Example 12 in which the amount of CaSiO 3 added as a raw material component is small, the diffraction intensity falls within the range of incident angle 2θ from 26.60° to 27.30°. Although a peak appears, the peak intensity value is low, and it can be seen that the peak position shifts toward the peak position of (Ca,Fe)SiO 3 . Furthermore, according to the XRD measurement results shown in FIG. 5, the carrier core material of Comparative Example 14, which has a large amount of CaSiO 3 added as a raw material component, diffracts at an incident angle 2θ in the range of 26.60° to 27.30°. It can be seen that an intensity peak appears and the peak intensity value becomes high.

表1及び表2から明らかなように、本発明の構成を具備する実施例1~17のキャリア芯材は、トナースペントの評価において、トナーの融着したキャリア個数割合は5.0%未満と実使用上問題はなく、またキャリア飛散の評価においても画像部および背景部で発見された黒点の数は6個以下と実使用上問題はないものであった。 As is clear from Tables 1 and 2, in the evaluation of toner spent, the carrier core materials of Examples 1 to 17 having the structure of the present invention had a ratio of less than 5.0% of carriers to which toner was fused. There was no problem in actual use, and in the evaluation of carrier scattering, the number of black spots found in the image area and background area was 6 or less, which caused no problem in actual use.

これに対して、CaSi複合酸化物を含有しない比較例1,2のキャリア芯材では、見掛密度が2.39g/cmと高くトナースペントが多く発生した。 On the other hand, in the carrier core materials of Comparative Examples 1 and 2 that did not contain CaSi composite oxide, the apparent density was as high as 2.39 g/cm 3 and a large amount of toner spent was generated.

焼成温度が1100℃と低かった比較例3~6のキャリア芯材では細孔容積が大きくキャリア芯材表面の被覆樹脂量がばらついてキャリア飛散が発生した。 In the carrier core materials of Comparative Examples 3 to 6, in which the firing temperature was as low as 1100° C., the pore volume was large and the amount of resin coated on the surface of the carrier core material varied, causing carrier scattering.

高抵抗化処理を行った比較例7~10のキャリア芯材では見掛密度が高くトナースペントが発生した。加えて比較例10のキャリア芯材では磁化σ1kが低くキャリア飛散も発生した。 The carrier core materials of Comparative Examples 7 to 10, which were subjected to high resistance treatment, had high apparent densities and caused toner spent. In addition, the carrier core material of Comparative Example 10 had a low magnetization σ 1k and carrier scattering occurred.

CaSi複合酸化物の含有量が少ない比較例11,12のキャリア芯材では、見掛密度が高くトナースペントが多く発生した。一方、CaSi複合酸化物の含有量が多い比較例13,14のキャリア芯材では、磁化σ1kが低くキャリア飛散が発生した。 The carrier core materials of Comparative Examples 11 and 12, which had a small content of CaSi composite oxide, had a high apparent density and generated a large amount of toner spent. On the other hand, in the carrier core materials of Comparative Examples 13 and 14, which had a high content of CaSi composite oxide, the magnetization σ 1k was low and carrier scattering occurred.

キャリア芯材の組成がMnMgフェライトでCaSi複合酸化物を含有しない比較例15のキャリア芯材では、細孔容積が大きく、磁化σ1kが低くキャリア飛散が発生した。 In the carrier core material of Comparative Example 15 in which the composition of the carrier core material was MnMg ferrite and did not contain CaSi composite oxide, the pore volume was large, the magnetization σ 1k was low, and carrier scattering occurred.

本発明のキャリア芯材によればトナースペントが抑制され、かつキャリア飛散も抑制される。 According to the carrier core material of the present invention, toner spent is suppressed and carrier scattering is also suppressed.

3 現像ローラ
5 感光体ドラム
3 Developing roller 5 Photosensitive drum

Claims (8)

フェライト粒子から構成されるキャリア芯材であって、
Ca元素とSi元素との複合酸化物を含有し、
Ca元素を1.7質量%以上6.5質量%以下含有し、
Si元素を1.4質量%以上5.2質量%以下含有し、
磁場79.58×10A/m(1000エルステッド)を印加した際の前記フェライト粒子の磁化σ1kが58Am/kg以上75Am/kg以下の範囲であり、
見掛密度が1.90g/cm以上2.20g/cm以下の範囲であり、
細孔容積が0.010mL/g未満である
ことを特徴とするキャリア芯材。
A carrier core material composed of ferrite particles,
Contains a composite oxide of Ca element and Si element,
Contains Ca element from 1.7% by mass to 6.5% by mass,
Contains Si element from 1.4% by mass to 5.2% by mass,
The magnetization σ 1k of the ferrite particles when a magnetic field of 79.58×10 3 A/m (1000 Oe) is applied is in the range of 58 Am 2 /kg or more and 75 Am 2 /kg or less,
The apparent density is in the range of 1.90 g/cm 3 or more and 2.20 g/cm 3 or less,
A carrier core material having a pore volume of less than 0.010 mL/g.
前記フェライト粒子の真密度が4.00g/cm以上4.75g/cm以下の範囲である請求項1記載のキャリア芯材。 The carrier core material according to claim 1, wherein the true density of the ferrite particles is in the range of 4.00 g/cm 3 or more and 4.75 g/cm 3 or less. 前記フェライト粒子の飽和磁化σが67Am/kg以上90Am/kg以下の範囲である請求項1又は2記載のキャリア芯材。 The carrier core material according to claim 1 or 2, wherein the ferrite particles have a saturation magnetization σ S of 67 Am 2 /kg or more and 90 Am 2 /kg or less. 前記フェライト粒子の残留磁化σが2.0Am/kg以下であり、
保磁力Hが20エルステッド以下である請求項1~3のいずれかに記載のキャリア芯材。
The residual magnetization σ r of the ferrite particles is 2.0 Am 2 /kg or less,
The carrier core material according to any one of claims 1 to 3, which has a coercive force H c of 20 Oe or less.
前記フェライト粒子が、一般式(MnFe3-X)O(但し、0<X<3)で表される組成を主成分として有し、
Ca元素を2.0質量%以上4.0質量%以下含有し、
Si元素を2.0質量%以上4.0質量%以下含有する
請求項1~4のいずれかに記載のキャリア芯材。
The ferrite particles have a composition represented by the general formula (Mn x Fe 3-X )O 4 (where 0<X<3) as a main component,
Contains Ca element from 2.0% by mass to 4.0% by mass,
The carrier core material according to any one of claims 1 to 4, containing 2.0% by mass or more and 4.0% by mass or less of Si element.
Ca元素とSi元素との含有質量比Ca/Siが0.5以上2.0以下である
請求項1~5のいずれかに記載のキャリア芯材。
The carrier core material according to any one of claims 1 to 5, wherein the content mass ratio Ca/Si of Ca element and Si element is 0.5 or more and 2.0 or less.
請求項1~6のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア。 A carrier for electrophotographic development, characterized in that the surface of the carrier core material according to any one of claims 1 to 6 is coated with a resin. 請求項7記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。 An electrophotographic developer comprising the carrier for electrophotographic development according to claim 7 and a toner.
JP2022052804A 2022-03-29 2022-03-29 Carrier core material, electrophotographic development career using the same and electrophotographic developer Pending JP2023145902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022052804A JP2023145902A (en) 2022-03-29 2022-03-29 Carrier core material, electrophotographic development career using the same and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022052804A JP2023145902A (en) 2022-03-29 2022-03-29 Carrier core material, electrophotographic development career using the same and electrophotographic developer

Publications (1)

Publication Number Publication Date
JP2023145902A true JP2023145902A (en) 2023-10-12

Family

ID=88286466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022052804A Pending JP2023145902A (en) 2022-03-29 2022-03-29 Carrier core material, electrophotographic development career using the same and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP2023145902A (en)

Similar Documents

Publication Publication Date Title
KR101411110B1 (en) Carrier core material for electrophotographic developer, production method for same, carrier for electrophotographic developer, and electrophotographic developer
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2012132759A1 (en) Method for producing carrier core for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic carrier, and electrophotographic developer
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
WO2013014969A1 (en) Ferrite particle production method
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP2023145902A (en) Carrier core material, electrophotographic development career using the same and electrophotographic developer
WO2022244573A1 (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer employing same
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP7433090B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP7075913B2 (en) Carrier core material
JP7486889B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6924885B1 (en) Carrier core material
JP7481159B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP2023020082A (en) Carrier core
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2022090791A (en) Carrier core material
JP5854541B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same