WO2013014969A1 - Ferrite particle production method - Google Patents

Ferrite particle production method Download PDF

Info

Publication number
WO2013014969A1
WO2013014969A1 PCT/JP2012/056956 JP2012056956W WO2013014969A1 WO 2013014969 A1 WO2013014969 A1 WO 2013014969A1 JP 2012056956 W JP2012056956 W JP 2012056956W WO 2013014969 A1 WO2013014969 A1 WO 2013014969A1
Authority
WO
WIPO (PCT)
Prior art keywords
firing
ferrite particles
precursor
firing step
slurry
Prior art date
Application number
PCT/JP2012/056956
Other languages
French (fr)
Japanese (ja)
Inventor
智英 飯田
翔 小川
Original Assignee
Dowaエレクトロニクス株式会社
Dowa Ipクリエイション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社, Dowa Ipクリエイション株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2013014969A1 publication Critical patent/WO2013014969A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/108Ferrite carrier, e.g. magnetite
    • G03G9/1085Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure

Definitions

  • the present invention relates to a method for producing ferrite particles, and more particularly to a method for producing ferrite particles having a concavo-convex surface and predetermined magnetic properties.
  • an electrostatic latent image formed on the surface of an electrostatic latent image carrier (hereinafter sometimes referred to as “photosensitive member”). Is visualized with a developer, and the visible image is transferred onto paper or the like, and then fixed by heating and pressing.
  • a so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.
  • a developer carrier (hereinafter sometimes referred to as a “development sleeve”) that carries the developer on the surface and a photosensitive member are spaced at a predetermined interval.
  • a developing region a region where the photosensitive member and the developing sleeve face each other.
  • a developing bias voltage is applied between the photosensitive member and the developing sleeve, and toner is attached to the electrostatic latent image on the surface of the photosensitive member.
  • Patent Document 1 In order to improve the image quality, for example, in Patent Document 1, an alternating electric field is formed between the developing sleeve and the photosensitive member, and the electrostatic toner is held by the toner held on the magnetic brush and the toner carried on the developing sleeve. It has been proposed to develop the latent image. Further, Patent Document 2 proposes developing an electrostatic latent image using a carrier having a small particle diameter and low magnetization.
  • the rotational speed of the developing sleeve is increased to increase the supply amount of the developer per unit time to the developing region.
  • an object of the present invention is to provide a method capable of stably producing ferrite particles having a concavo-convex surface and having predetermined magnetic characteristics and resistance characteristics.
  • an Fe component raw material and a Mn component raw material whose components are adjusted so that ferrite particles having a composition represented by Mn X Fe 3-X O 4 (where 0 ⁇ X ⁇ 1) are generated are used as a medium liquid
  • a second firing step in which the precursor is further fired in a reducing atmosphere at a firing temperature in the range of 1050 ° C. to 1300 ° C. to obtain a fired product.
  • the firing temperature in the first firing step is preferably in the range of 1150 ° C. to 1300 ° C.
  • the firing time is preferably 1.5 hours or longer.
  • the firing time in the second firing step is preferably 0.5 hours or more.
  • the oxygen concentration in the second firing step is preferably 1% or less.
  • the surface can be formed into an uneven shape, and predetermined magnetic characteristics and resistance characteristics can be imparted.
  • a firing temperature in the second firing step is a graph showing the relationship between magnetization ⁇ 1k (Am 2 / kg) .
  • 2 is a SEM photograph of ferrite particles of Example 1.
  • 4 is a SEM photograph of ferrite particles of Example 2.
  • 4 is a SEM photograph of ferrite particles of Example 3.
  • 4 is a SEM photograph of ferrite particles of Example 4.
  • 6 is a SEM photograph of ferrite particles of Example 5.
  • 4 is a SEM photograph of ferrite particles of Example 6.
  • the inventors have baked the granulated material containing raw materials in an oxidizing atmosphere. Although the granulated product is once ferritized, it reacts with oxygen in the cooling process and decomposes into Fe oxide and Mn oxide. At this time, the crystal structure changes, and a plurality of angular grains are formed on the particle surface. The surface of the fired product was found to be uneven. However, desired magnetic characteristics such as saturation magnetization and coercive force cannot be obtained by firing in an oxidizing atmosphere.
  • the precursor having a concavo-convex shape which is fired in an oxidizing atmosphere, is sintered again in a reducing atmosphere to impart magnetic properties while maintaining the concavo-convex shape of the surface.
  • the manufacturing method of this invention is demonstrated in order for every process.
  • a Fe component raw material and a Mn component raw material are weighed, put into a dispersion medium, and mixed to prepare a slurry.
  • Fe 2 O 3 or the like is preferably used as the Fe component raw material.
  • Mn component raw material MnCO 3 , Mn 3 O 4 or the like can be suitably used.
  • Water is preferred as the dispersion medium used in the present invention.
  • a binder, a dispersant and the like may be blended in the dispersion medium as necessary.
  • polyvinyl alcohol can be suitably used as the binder.
  • the binder content is preferably about 0.5 to 2 wt% in the slurry.
  • a dispersing agent polycarboxylate ammonium etc. can be used conveniently, for example.
  • the blending amount of the dispersant is preferably about 0.5 to 2 wt% in the slurry.
  • the solid content concentration of the slurry is desirably in the range of 50 to 90 wt%.
  • pulverization and mixing may be performed before introducing the Fe component raw material and the Mn component raw material into the dispersion medium.
  • the slurry prepared as described above is wet-pulverized as necessary.
  • wet grinding is performed for a predetermined time using a ball mill or a vibration mill.
  • the average particle size of the raw material after pulverization is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the vibration mill or ball mill preferably contains a medium having a predetermined particle diameter.
  • the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina.
  • any of a continuous type and a batch type may be sufficient.
  • the particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.
  • the pulverized slurry is spray-dried and granulated.
  • the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere.
  • the atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C.
  • a spherical granulated product having a particle size of 10 to 200 ⁇ m is obtained.
  • the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.
  • the granulated material is put into a furnace heated to a predetermined temperature or higher and fired to produce a precursor (first firing step).
  • the granulated product is fired in an oxidizing atmosphere.
  • the granulated material may be fired in an air atmosphere.
  • the granulated material becomes ferrite and becomes Mn ferrite particles, but reacts with oxygen and decomposes into iron oxide and manganese oxide in the cooling process.
  • the firing temperature in the first firing step is preferably in the range of 1150 ° C. to 1300 ° C., and the firing time is preferably 1.5 hours or more.
  • FIG. 1 shows SEM photographs and peak count map images by EDS analysis of particles before, during and after firing in the first firing step.
  • FIG. 2 shows a diagram showing an XDR pattern.
  • FIGS. 1 and 2 it can be seen that by heating the granulated product, Fe and Mn dispersed in the particles react and ferritization proceeds. In addition, grains are exposed as they become ferritic and are exposed on the surface at the same time, and irregularities are formed on the surface of the particles.
  • the formed ferrite reacts with oxygen and decomposes into iron oxide ( ⁇ -Fe 2 O 3 ) and manganese oxide (Mn 3 O 4 ).
  • the crystal structure of the particles changes from the spinel structure of Mn ferrite to the trigonal system of iron oxide ( ⁇ -Fe 2 O 3 ), and the grain angulation on the particle surface further develops.
  • the precursor thus obtained is agglomerated by sintering, it may be pulverized if necessary.
  • the pulverization of the precursor can be performed by, for example, a hammer mill.
  • the form of the granulation step may be either a continuous type or a batch type.
  • pulverization of the precursor is sufficient to eliminate adhesion between particles, and it is important that the particles themselves are not pulverized.
  • this precursor is put into a furnace heated to a temperature of 1050 ° C. to 1300 ° C. and fired again (second firing step).
  • the precursor can be made ferrite while maintaining the uneven shape on the surface, and predetermined magnetic properties can be imparted.
  • FIG. 3 the SEM photograph of the particle
  • FIG. 4 is a diagram showing XDR patterns of particles before firing and after firing when firing at a temperature of 1200 ° C. in a nitrogen atmosphere in the second firing step.
  • the fired product after the second firing step had spinel structure Mn ferrite particles with an uneven surface.
  • the oxygen concentration in the reducing atmosphere is preferably 1% or less.
  • FIG. 5 shows the relationship between the firing temperature in the second firing step and the magnetization ⁇ 1k (Am 2 / kg) in a magnetic field of 1000 / (4 ⁇ ) kA / m (1 k Oersted).
  • the firing time was unified at 6 hours.
  • the magnetization ⁇ 1k is desirably larger than 50 Am 2 / kg from the viewpoint of preventing carrier scattering from the developing sleeve. Therefore, when Mn ferrite particles are used as a carrier for the developer, the firing temperature in the second firing step is preferably 1050 ° C. or higher.
  • the firing temperature is increased, the desired magnetic properties can be obtained, but the uneven shape on the surface disappears, so the upper limit of the firing temperature is preferably 1300 ° C.
  • the firing time is preferably 0.5 hours or more.
  • the obtained fired product is pulverized.
  • the fired product is pulverized by a hammer mill or the like.
  • the form of the granulation step may be either a continuous type or a batch type.
  • classification may be performed in order to make the particle diameter in a predetermined range.
  • a classification method a conventionally known method such as air classification or sieve classification can be used.
  • the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve.
  • the Mn ferrite particles produced as described above can be used for various applications, for example, electrophotographic developing carriers and electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, plastic fillers / reinforcing materials, paints, It can be used as a matting material, filler, reinforcing material, etc. for paints and adhesives. Among these, it is particularly preferably used as a carrier for electrophotographic development.
  • the ferrite particles of the present invention prepared as described above are used as a carrier for electrophotographic development
  • the ferrite particles can be used as they are as a carrier for electrophotographic development.
  • the ferrite particles It is preferable that the surface is coated with a resin.
  • resins for coating the surface of the ferrite particles conventionally known resins can be used.
  • silicone resin polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene) -Styrene) resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, fluorosilicone resins, etc. .
  • Solvents for coating solutions include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol 1 type, or 2 or more types, such as alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide can be used. .
  • the concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001
  • a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used.
  • the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin.
  • the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.
  • the particle diameter of the carrier is generally 10 to 110 ⁇ m, particularly 10 to 50 ⁇ m in terms of volume average particle diameter.
  • the apparent density of the carrier when mainly composed of a magnetic material, varies depending on the composition of the magnetic material, the surface structure, etc., but is generally preferably in the range of 1.0 to 2.5 g / cm 3 .
  • the electrophotographic developer is obtained by mixing the carrier prepared as described above and a toner.
  • the mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used.
  • the toner concentration in the developer is preferably in the range of 1 wt% to 15 wt%.
  • the toner density is less than 1 wt%, the image density becomes too thin, and when the toner density exceeds 15 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as in-machine dirt or transfer paper. This is because there is a risk of occurrence.
  • a more preferable toner concentration is in the range of 3 to 10 wt%.
  • the toner to be used can be produced by a method known per se such as a polymerization method, a pulverization classification method, a melt granulation method, a spray granulation method, and the like in a binder resin mainly composed of a thermoplastic resin. , A colorant, a release agent, a charge control agent, and the like.
  • the volume average particle diameter measured by a Coulter counter is in the range of 5 to 15 ⁇ m, particularly 7 to 12 ⁇ m.
  • a modifier can be added to the surface of the toner particles.
  • the modifier include silica, aluminum oxide, zinc oxide, titanium oxide, magnesium oxide, calcium carbonate, polymethyl methacrylate, and the like. These 1 type (s) or 2 or more types can be used in combination.
  • a known mixing device can be used for mixing the carrier and the toner.
  • a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.
  • Example 1 Mn ferrite particles were produced by the following method. As starting materials, Fe 2 O 3 (average particle size 0.6 ⁇ m) 10.75 kg (67.3 mol), Mn 3 O 4 (average particle size: 2 ⁇ m) 4.25 kg (19.0 mol), water Dispersed in 5.0 kg, 90 g of ammonium polycarboxylate dispersant as dispersant, 45 g of carbon black as reducing agent, 30 g (0.25 mol) of colloidal silica (solid content concentration 50%) as SiO 2 raw material added To make a mixture. The solid content concentration of this mixture was 75% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
  • This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer (disk rotation speed: 17500 rpm) to obtain a dry granulated product having a particle size of 10 to 200 ⁇ m. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 54 ⁇ m, and fine particles were separated using a sieve mesh having a mesh size of 33 ⁇ m.
  • This granulated powder was put into an electric furnace in an air atmosphere and fired at 1150 ° C. for 3 hours.
  • the magnetic properties, resistance properties, and circularity of the obtained precursor were measured by the methods shown below. Table 1 summarizes the measurement results.
  • the obtained precursor was further put into an electric furnace in a nitrogen atmosphere and baked at 1050 ° C. for 6 hours.
  • the fired product obtained was pulverized with a hammer mill and then classified using a vibration sieve to obtain ferrite particles having an average particle size of 35 ⁇ m.
  • the magnetic properties, resistance properties, apparent density, and circularity of the obtained ferrite particles were measured in the same manner as described above. Table 2 summarizes the measurement results.
  • FIG. 6 shows an SEM photograph of the produced ferrite particles.
  • VSM-P7 vibration sample type magnetometer
  • Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm.
  • a magnet having a cross-sectional area of 240 mm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) is arranged behind each electrode to form a bridge of ferrite particles between the electrodes. It was. Then, a DC voltage of 50 V was applied between the electrodes, the current value flowing through the ferrite particles was measured, and the resistance value of the ferrite particles was calculated.
  • Example 2 A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing time in the first firing step was 1.5 hours, the firing temperature in the second firing step was 1100 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 7 shows an SEM photograph of the produced ferrite particles.
  • Example 3 A precursor and ferrite particles were prepared in the same manner as in Example 1 except that the firing temperature in the second firing step was 1125 ° C. and the firing time was 1 hour. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 8 shows an SEM photograph of the produced ferrite particles.
  • Example 4 A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the second firing step was 1200 ° C. and the firing time was 0.5 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 9 shows an SEM photograph of the produced ferrite particles.
  • Example 5 A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the first firing step was 1200 ° C., the firing temperature in the second firing step was 1150 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 10 shows an SEM photograph of the produced ferrite particles.
  • Example 6 A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the first firing step was 1275 ° C., the firing temperature in the second firing step was 1150 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 11 shows an SEM photograph of the produced ferrite particles.
  • Comparative Example 1 The granulated powder produced in the same manner as in Example 1 was put into an electric furnace in a nitrogen atmosphere and fired at 1150 ° C. for 3 hours. The obtained fired product was pulverized with a hammer mill and then classified using a vibration sieve to obtain ferrite particles having an average particle size of 35 ⁇ m. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained ferrite particles were measured in the same manner as in Example 1. The measurement results are shown in Table 2.
  • FIG. 12 shows an SEM photograph of the produced ferrite particles.
  • the Mn ferrite particles of Examples 1 to 6 prepared by the production method according to the present invention have a circularity of 0.58 or less, an uneven surface, and as a carrier for electrophotographic development. Even when it was used, it had magnetic properties that did not cause problems such as carrier scattering.
  • the surface can be formed into an uneven shape, and predetermined magnetic characteristics and resistance characteristics can be imparted, which is useful.

Abstract

This ferrite particle production method is characterized by involving: a step for obtaining a slurry by injecting into a medium solution an Mn component raw material and an Fe component raw material adjusted so as to generate ferrite particles having a composition expressed by MnxFe3-XO4 (wherein 0≦X≦1); a step for obtaining granules by spray-drying said slurry; a first firing step for obtaining a precursor by firing said granules in an oxidizing atmosphere; and a second firing step for obtaining a fired product by further firing the obtained precursor within a firing temperature range of 1050-1300°C in a reducing atmosphere. Here, from the viewpoint of further promote roughening of the surface shape of the ferrite particles, the firing temperature in the first firing step is ideally in the range 1150-1300°C, and the firing time is ideally at least 1.5 hours.

Description

フェライト粒子の製造方法Method for producing ferrite particles

 本発明はフェライト粒子の製造方法に関し、より詳細には表面が凹凸形状で所定の磁気特性を有するフェライト粒子の製造方法に関するものである。

The present invention relates to a method for producing ferrite particles, and more particularly to a method for producing ferrite particles having a concavo-convex surface and predetermined magnetic properties.

 例えば、電子写真方式を用いたファクシミリやプリンタ、複写機などの画像形成装置では、静電潜像担持体(以下、「感光体」と記すことがある)の表面に形成された静電潜像を現像剤で可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。

For example, in an image forming apparatus such as a facsimile, printer, or copier using an electrophotographic method, an electrostatic latent image formed on the surface of an electrostatic latent image carrier (hereinafter sometimes referred to as “photosensitive member”). Is visualized with a developer, and the visible image is transferred onto paper or the like, and then fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

 この二成分現像剤を用いた現像は、複数の磁極を内蔵し、現像剤を表面に担持する現像剤担持体(以下、「現像スリーブ」と記すことがある)と、感光体とを所定間隔を隔てて略平行に対向配置し、感光体と現像スリーブとが対向する領域(以下、「現像領域」と記すことがある)において、キャリアが集合して穂立ちした磁気ブラシを現像スリーブ上に形成させると共に、感光体と現像スリーブとの間に現像バイアス電圧を印加し、感光体表面の静電潜像にトナーを付着させることにより行われる。

In the development using the two-component developer, a plurality of magnetic poles are built in, and a developer carrier (hereinafter sometimes referred to as a “development sleeve”) that carries the developer on the surface and a photosensitive member are spaced at a predetermined interval. In a region where the photosensitive member and the developing sleeve face each other (hereinafter referred to as a “developing region”), a magnetic brush that gathers and stands up is placed on the developing sleeve. In addition to the formation, a developing bias voltage is applied between the photosensitive member and the developing sleeve, and toner is attached to the electrostatic latent image on the surface of the photosensitive member.

 また、高画質化を図るため、例えば特許文献1では、現像スリーブと感光体との間に交番電界を形成して、磁気ブラシに保持されたトナー及び現像スリーブ上に担持されたトナーにより静電潜像を現像することが提案されている。さらに、特許文献2では、小粒径で低磁化のキャリアを用いて静電潜像を現像することが提案されている。

In order to improve the image quality, for example, in Patent Document 1, an alternating electric field is formed between the developing sleeve and the photosensitive member, and the electrostatic toner is held by the toner held on the magnetic brush and the toner carried on the developing sleeve. It has been proposed to develop the latent image. Further, Patent Document 2 proposes developing an electrostatic latent image using a carrier having a small particle diameter and low magnetization.

特開昭62-63970号公報JP-A 62-63970 特開2010-66490号公報JP 2010-66490 JP

 ところで、近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像スリーブの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。

By the way, in recent years, in order to respond to the market demand for increasing the image forming speed in the image forming apparatus, the rotational speed of the developing sleeve is increased to increase the supply amount of the developer per unit time to the developing region. .

 しかし、50μm以下の小粒径のキャリアを用いた場合、現像スリーブの回転速度を速めて現像領域への現像剤供給量を増加させても、十分な画像濃度が得られないことがある。これは、現像領域において磁気ブラシ先端部のキャリアのみが循環移動して、根元部のキャリアが循環移動せず、根元部のキャリアに保持されたトナーが現像に寄与していないことが原因の一つと考えられている。

However, when a carrier having a small particle diameter of 50 μm or less is used, a sufficient image density may not be obtained even if the rotation speed of the developing sleeve is increased to increase the amount of developer supplied to the developing area. One reason for this is that only the carrier at the tip of the magnetic brush circulates and moves in the developing region, the carrier at the root does not circulate and the toner held on the carrier at the root does not contribute to development. It is considered one.

 現像領域において磁気ブラシ先端部のキャリアと根元部のキャリアとを大きく循環移動させるには、キャリアの表面を凹凸形状として、感光体表面との摩擦抵抗及びキャリア同士の摩擦抵抗を大きくすることが考えられる。

In order to greatly circulate and move the carrier at the tip of the magnetic brush and the carrier at the base in the development area, it is considered to make the surface of the carrier uneven and increase the frictional resistance with the surface of the photoreceptor and the frictional resistance between the carriers. It is done.

 そこで、本発明は、表面が凹凸形状でしかも所定の磁気特性と抵抗特性とを有するフェライト粒子を安定して製造できる方法を提供することをその目的とするものである。

Accordingly, an object of the present invention is to provide a method capable of stably producing ferrite particles having a concavo-convex surface and having predetermined magnetic characteristics and resistance characteristics.

 本発明によれば、MnFe3-X(但し、0≦X≦1)で表される組成のフェライト粒子が生成するように成分調整されたFe成分原料及びMn成分原料を媒体液中に投入してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を酸化雰囲気下で焼成して前駆体を得る第1焼成工程と、得られた前駆体を還元雰囲気下で焼成温度1050℃~1300℃の範囲でさらに焼成して焼成物を得る第2焼成工程とを有することを特徴とするフェライト粒子の製造方法が提供される。

According to the present invention, an Fe component raw material and a Mn component raw material whose components are adjusted so that ferrite particles having a composition represented by Mn X Fe 3-X O 4 (where 0 ≦ X ≦ 1) are generated are used as a medium liquid A step of obtaining a slurry by charging the slurry, a step of obtaining a granulated product by spray drying the slurry, and a first firing step of obtaining a precursor by firing the granulated product in an oxidizing atmosphere. And a second firing step in which the precursor is further fired in a reducing atmosphere at a firing temperature in the range of 1050 ° C. to 1300 ° C. to obtain a fired product.

 ここで、フェライト粒子の表面形状の凹凸化をより促進させる観点からは、第1焼成工程における焼成温度は1150℃~1300℃の範囲が好ましい。また、焼成時間は1.5時間以上が好ましい。

Here, from the viewpoint of further promoting the unevenness of the surface shape of the ferrite particles, the firing temperature in the first firing step is preferably in the range of 1150 ° C. to 1300 ° C. The firing time is preferably 1.5 hours or longer.

 また、フェライト粒子の表面凹凸形状を維持しながら、所望の磁気特性を付与する観点からは、第2焼成工程における焼成時間は0.5時間以上が好ましい。

Further, from the viewpoint of imparting desired magnetic properties while maintaining the surface irregularity shape of the ferrite particles, the firing time in the second firing step is preferably 0.5 hours or more.

 そしてまた、第2焼成工程における酸素濃度は1%以下が好ましい。

In addition, the oxygen concentration in the second firing step is preferably 1% or less.

 本発明に係るフェライト粒子の製造方法によれば、表面を凹凸形状にすることができ、しかも所定の磁気特性と抵抗特性とを付与することができる。

According to the method for producing ferrite particles according to the present invention, the surface can be formed into an uneven shape, and predetermined magnetic characteristics and resistance characteristics can be imparted.

第1焼成工程における焼成前、焼成中、焼成後の、粒子のSEM写真及びピークカウントマップ画像である。It is the SEM photograph and peak count map image of particle | grains before baking during baking in a 1st baking process, and after baking. 第1焼成工程における焼成前、焼成中、焼成後の、粒子のXDRパターンを示す図である。It is a figure which shows the XDR pattern of particle | grains before baking during baking in a 1st baking process, and after baking. 第2焼成後の粒子のSEM写真及びピークカウントマップ画像である。It is the SEM photograph and peak count map image of the particle | grains after 2nd baking. 第2焼成工程における焼成前と焼成後の、粒子のXDRパターンを示す図である。It is a figure which shows the XDR pattern of the particle | grains before baking after baking in a 2nd baking process. 第2焼成工程における焼成温度と、磁化σ1k(Am/kg)との関係を示すグラフである。A firing temperature in the second firing step is a graph showing the relationship between magnetization σ 1k (Am 2 / kg) . 実施例1のフェライト粒子のSEM写真である。2 is a SEM photograph of ferrite particles of Example 1. 実施例2のフェライト粒子のSEM写真である。4 is a SEM photograph of ferrite particles of Example 2. 実施例3のフェライト粒子のSEM写真である。4 is a SEM photograph of ferrite particles of Example 3. 実施例4のフェライト粒子のSEM写真である。4 is a SEM photograph of ferrite particles of Example 4. 実施例5のフェライト粒子のSEM写真である。6 is a SEM photograph of ferrite particles of Example 5. 実施例6のフェライト粒子のSEM写真である。4 is a SEM photograph of ferrite particles of Example 6. 比較例1のフェライト粒子のSEM写真である。4 is a SEM photograph of ferrite particles of Comparative Example 1.

 本発明者等は、表面が凹凸形状で且つ所定の磁気特性と抵抗特性とを有するフェライト粒子を製造すべく鋭意検討を重ねた結果、原料を含んだ造粒物を酸化雰囲気下で焼成すると、造粒物は一旦はフェライト化するものの、冷却工程において酸素と反応してFe酸化物とMn酸化物とに分解し、このとき結晶構造が変わって、粒子表面に角張った複数のグレインが形成され、焼成物の表面が凹凸形状となることを突き止めた。しかし、酸化雰囲気下での焼成では飽和磁化や保磁力など所望の磁気特性が得られない。そこで、本発明では、酸化雰囲気下で焼成した、表面が凹凸形状の前駆体を還元雰囲気下で再度焼結し、表面の凹凸形状を維持させながら磁気特性を付与するようにした。以下、本発明の製造方法について各工程ごとに順に説明する。

As a result of intensive investigations to produce ferrite particles having irregularities on the surface and predetermined magnetic properties and resistance properties, the inventors have baked the granulated material containing raw materials in an oxidizing atmosphere. Although the granulated product is once ferritized, it reacts with oxygen in the cooling process and decomposes into Fe oxide and Mn oxide. At this time, the crystal structure changes, and a plurality of angular grains are formed on the particle surface. The surface of the fired product was found to be uneven. However, desired magnetic characteristics such as saturation magnetization and coercive force cannot be obtained by firing in an oxidizing atmosphere. Therefore, in the present invention, the precursor having a concavo-convex shape, which is fired in an oxidizing atmosphere, is sintered again in a reducing atmosphere to impart magnetic properties while maintaining the concavo-convex shape of the surface. Hereafter, the manufacturing method of this invention is demonstrated in order for every process.

 まず、Fe成分原料とMn成分原料とを秤量して分散媒中に投入し混合してスラリーを作製する。Fe成分原料としてはFe等が好適に使用される。Mn成分原料としてはMnCO、Mn等が好適に使用できる。

First, a Fe component raw material and a Mn component raw material are weighed, put into a dispersion medium, and mixed to prepare a slurry. Fe 2 O 3 or the like is preferably used as the Fe component raw material. As the Mn component raw material, MnCO 3 , Mn 3 O 4 or the like can be suitably used.

 本発明で使用する分散媒としては水が好適である。分散媒には、前記Fe成分原料、Mn成分原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5~2wt%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5~2wt%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。

Water is preferred as the dispersion medium used in the present invention. In addition to the Fe component raw material and the Mn component raw material, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. The binder content is preferably about 0.5 to 2 wt% in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersant is preferably about 0.5 to 2 wt% in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc.

 スラリーの固形分濃度は50~90wt%の範囲が望ましい。なお、Fe成分原料、Mn成分原料を分散媒に投入する前に、必要により、粉砕混合の処理をしておいてもよい。

The solid content concentration of the slurry is desirably in the range of 50 to 90 wt%. In addition, before introducing the Fe component raw material and the Mn component raw material into the dispersion medium, if necessary, pulverization and mixing may be performed.

 次に、以上のようにして作製されたスラリーを必要により湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は3μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。

Next, the slurry prepared as described above is wet-pulverized as necessary. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 3 μm or less, more preferably 1 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

 そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100~300℃の範囲が好ましい。これにより、粒径10~200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。

Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

 次いで、所定温度以上に加熱した炉に造粒物を投入して焼成し前駆体を作製する(第1焼成工程)。ここで重要なことは、酸化雰囲気下で造粒物を焼成することにある。具体的には大気雰囲気下で造粒物を焼成すればよい。所定温度以上の加熱炉に造粒物を投入することによって、造粒物はフェライト化してMnフェライト粒子になるが、冷却過程において酸素と反応して酸化鉄と酸化マンガンとに分解する。このとき、結晶構造がスピネル型から三方晶系に変化することに伴って、角張った複数のグレインが粒子表面に形成される。第1焼成工程における焼成温度としては、1150℃~1300℃の範囲が好ましく、焼成時間としては1.5時間以上が好ましい。

Next, the granulated material is put into a furnace heated to a predetermined temperature or higher and fired to produce a precursor (first firing step). What is important here is that the granulated product is fired in an oxidizing atmosphere. Specifically, the granulated material may be fired in an air atmosphere. By putting the granulated material into a heating furnace at a predetermined temperature or more, the granulated material becomes ferrite and becomes Mn ferrite particles, but reacts with oxygen and decomposes into iron oxide and manganese oxide in the cooling process. At this time, as the crystal structure changes from the spinel type to the trigonal system, a plurality of angular grains are formed on the particle surface. The firing temperature in the first firing step is preferably in the range of 1150 ° C. to 1300 ° C., and the firing time is preferably 1.5 hours or more.

 図1に、第1焼成工程における焼成前、焼成中、焼成後の粒子のSEM写真およびEDS分析によるピークカウントマップ画像をそれぞれ示す。合わせて、図2に、XDRパターンを示す図を示す。図1及び図2から理解されるように、造粒物を加熱することによって、粒子中に分散していたFeとMnとが反応しフェライト化が進むことがわかる。また、フェライト化が進むにしたがってグレインが形成されると同時に表面に露出し、粒子の表面に凹凸が形成される。次いで、大気雰囲気(酸化雰囲気)のままで粒子を冷却すると、形成されたフェライトが酸素と反応して酸化鉄(α-Fe)と酸化マンガン(Mn)とに分解する。この分解反応によって粒子の結晶構造が、Mnフェライトのスピネル構造から酸化鉄(α-Fe)の三方晶系に変わり、粒子表面のグレインの角張りが一層発達する。

FIG. 1 shows SEM photographs and peak count map images by EDS analysis of particles before, during and after firing in the first firing step. In addition, FIG. 2 shows a diagram showing an XDR pattern. As understood from FIGS. 1 and 2, it can be seen that by heating the granulated product, Fe and Mn dispersed in the particles react and ferritization proceeds. In addition, grains are exposed as they become ferritic and are exposed on the surface at the same time, and irregularities are formed on the surface of the particles. Next, when the particles are cooled in the atmosphere (oxidizing atmosphere), the formed ferrite reacts with oxygen and decomposes into iron oxide (α-Fe 2 O 3 ) and manganese oxide (Mn 3 O 4 ). By this decomposition reaction, the crystal structure of the particles changes from the spinel structure of Mn ferrite to the trigonal system of iron oxide (α-Fe 2 O 3 ), and the grain angulation on the particle surface further develops.

 このようにして得られた前駆体が焼結によって塊状になっている場合には、必要により解粒してもよい。前駆体の解粒は、例えば、ハンマーミル等によって行うことができる。解粒工程の形態としては連続式及び回分式のいずれであってもよい。ただし、前駆体の解粒は、粒子同士の固着を解消する程度で足り、粒子そのものは粉砕しないようにすることが重要である。

In the case where the precursor thus obtained is agglomerated by sintering, it may be pulverized if necessary. The pulverization of the precursor can be performed by, for example, a hammer mill. The form of the granulation step may be either a continuous type or a batch type. However, pulverization of the precursor is sufficient to eliminate adhesion between particles, and it is important that the particles themselves are not pulverized.

 次に、この前駆体を温度1050℃~1300℃に加熱した炉に投入して再び焼成する(第2焼成工程)。ここで重要なことは、還元雰囲気下で造粒物を焼成することにある。これによって、表面の凹凸形状を維持させながら前駆体をフェライト化させて所定の磁気特性を付与できる。図3に、第2焼成工程後の粒子のSEM写真およびEDS分析によるピークカウントマップ画像をそれぞれ示す。また図4に、第2焼成工程において、窒素雰囲気下で温度1200℃で焼成したときの、焼成前と焼成後の粒子のXDRパターンを示す図を示す。これらの図から明らかなように、第2焼成工程後の焼成物は表面が凹凸形状のスピネル構造のMnフェライト粒子となっていた。還元雰囲気における酸素濃度としては1%以下が好ましい。

Next, this precursor is put into a furnace heated to a temperature of 1050 ° C. to 1300 ° C. and fired again (second firing step). What is important here is that the granulated product is fired in a reducing atmosphere. Accordingly, the precursor can be made ferrite while maintaining the uneven shape on the surface, and predetermined magnetic properties can be imparted. In FIG. 3, the SEM photograph of the particle | grains after a 2nd baking process and the peak count map image by EDS analysis are each shown. FIG. 4 is a diagram showing XDR patterns of particles before firing and after firing when firing at a temperature of 1200 ° C. in a nitrogen atmosphere in the second firing step. As is clear from these figures, the fired product after the second firing step had spinel structure Mn ferrite particles with an uneven surface. The oxygen concentration in the reducing atmosphere is preferably 1% or less.

 図5に、第2焼成工程における焼成温度と、1000/(4π)kA/m(1kエルステッド)の磁場における磁化σ1k(Am/kg)との関係を示す。なお、焼成時間は6時間で統一した。Mnフェライト粒子を現像剤のキャリアとして用いる場合には、現像スリーブからのキャリアの飛散を防止する観点から、磁化σ1kは50Am/kgよりも大きいのが望ましい。したがって、Mnフェライト粒子を現像剤のキャリアとして用いる場合には、第2焼成工程の焼成温度は1050℃以上とするのが好ましい。一方、焼成温度を高くすると、所望の磁気特性は得られるが、表面の凹凸形状が消失するので、焼成温度の上限値としては1300℃が好ましい。焼成時間は0.5時間以上が好ましい。

FIG. 5 shows the relationship between the firing temperature in the second firing step and the magnetization σ 1k (Am 2 / kg) in a magnetic field of 1000 / (4π) kA / m (1 k Oersted). The firing time was unified at 6 hours. When Mn ferrite particles are used as a carrier for the developer, the magnetization σ 1k is desirably larger than 50 Am 2 / kg from the viewpoint of preventing carrier scattering from the developing sleeve. Therefore, when Mn ferrite particles are used as a carrier for the developer, the firing temperature in the second firing step is preferably 1050 ° C. or higher. On the other hand, when the firing temperature is increased, the desired magnetic properties can be obtained, but the uneven shape on the surface disappears, so the upper limit of the firing temperature is preferably 1300 ° C. The firing time is preferably 0.5 hours or more.

 そして必要により、得られた焼成物を解粒する。例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。さらに、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。

And if necessary, the obtained fired product is pulverized. For example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. Further, if necessary, classification may be performed in order to make the particle diameter in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve.

 以上のようにして製造したMnフェライト粒子は各種用途に用いることができ、例えば、電子写真現像用キャリアや電磁波吸収材、電磁波シールド材用材料粉末、ゴム、プラスチック用充填材・補強材、ペンキ、絵具・接着剤用艶消材、充填材、補強材等として用いることができる。これらの中でも特に電子写真現像用キャリアとして好適に用いられる。

The Mn ferrite particles produced as described above can be used for various applications, for example, electrophotographic developing carriers and electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, plastic fillers / reinforcing materials, paints, It can be used as a matting material, filler, reinforcing material, etc. for paints and adhesives. Among these, it is particularly preferably used as a carrier for electrophotographic development.

 以上のようにして作製した本発明のMnフェライト粒子を、電子写真現像用キャリアとして用いる場合、フェライト粒子をそのまま電子写真現像用キャリアとして用いることもできるが、帯電性等の観点からは、フェライト粒子の表面を樹脂で被覆して用いるのが好ましい。

When the Mn ferrite particles of the present invention prepared as described above are used as a carrier for electrophotographic development, the ferrite particles can be used as they are as a carrier for electrophotographic development. However, from the viewpoint of chargeability, the ferrite particles It is preferable that the surface is coated with a resin.

 フェライト粒子の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、シリコーン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ-4-メチルペンテン-1、ポリ塩化ビニリデン、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。

As the resin for coating the surface of the ferrite particles, conventionally known resins can be used. For example, silicone resin, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene) -Styrene) resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, fluorosilicone resins, etc. .

 フェライト粒子の表面を樹脂で被覆するには、樹脂の溶液又は分散液をフェライト粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001~30wt%、特に0.001~2wt%の範囲内にあるのがよい。

In order to coat the surface of the ferrite particles with a resin, a resin solution or dispersion may be applied to the ferrite particles. Solvents for coating solutions include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol 1 type, or 2 or more types, such as alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide can be used. . The concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001 to 2 wt%.

 フェライト粒子への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。

As a method for coating the resin on the ferrite particles, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

 キャリアの粒子径は、一般に体積平均粒子径で10~110μm、特に10~50μmのものが好ましい。また、キャリアの見掛け密度は、磁性材料を主体とする場合は磁性体の組成や表面構造等によっても相違するが、一般に1.0~2.5g/cmの範囲が好ましい。

The particle diameter of the carrier is generally 10 to 110 μm, particularly 10 to 50 μm in terms of volume average particle diameter. The apparent density of the carrier, when mainly composed of a magnetic material, varies depending on the composition of the magnetic material, the surface structure, etc., but is generally preferably in the range of 1.0 to 2.5 g / cm 3 .

 電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1wt%~15wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3~10wt%の範囲である。

The electrophotographic developer is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. In general, the toner concentration in the developer is preferably in the range of 1 wt% to 15 wt%. When the toner density is less than 1 wt%, the image density becomes too thin, and when the toner density exceeds 15 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as in-machine dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 to 10 wt%.

 使用するトナーは、重合法、粉砕分級法、溶融造粒法、スプレー造粒法等のそれ自体公知の方法で製造し得るものであって、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものである。

The toner to be used can be produced by a method known per se such as a polymerization method, a pulverization classification method, a melt granulation method, a spray granulation method, and the like in a binder resin mainly composed of a thermoplastic resin. , A colorant, a release agent, a charge control agent, and the like.

 トナーの粒径は、一般にコールターカウンターによる体積平均粒子径が5~15μm、特に7~12μmの範囲内にあるのがよい。

As for the particle diameter of the toner, it is generally preferable that the volume average particle diameter measured by a Coulter counter is in the range of 5 to 15 μm, particularly 7 to 12 μm.

 トナー粒子の表面には、必要により改質剤を添加することができる。改質剤としては、例えば、シリカ、酸化アルミニウム、酸化亜鉛、酸化チタン、酸化マグネシウム、炭酸カルシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用することができる。

If necessary, a modifier can be added to the surface of the toner particles. Examples of the modifier include silica, aluminum oxide, zinc oxide, titanium oxide, magnesium oxide, calcium carbonate, polymethyl methacrylate, and the like. These 1 type (s) or 2 or more types can be used in combination.

 キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。

A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

 以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。

EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1

 Mnフェライト粒子を下記方法で作製した。出発原料として、Fe(平均粒径0.6μm)を10.75kg(67.3mol)と、Mn(平均粒径:2μm)を4.25kg(19.0mol)と、水5.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を90g、還元剤としてカーボンブラックを45g、SiO原料としてコロイダルシリカ(固形分濃度50%)を30g(0.25mol)添加して混合物とした。この混合物の固形分濃度は75重量%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。

Example 1

Mn ferrite particles were produced by the following method. As starting materials, Fe 2 O 3 (average particle size 0.6 μm) 10.75 kg (67.3 mol), Mn 3 O 4 (average particle size: 2 μm) 4.25 kg (19.0 mol), water Dispersed in 5.0 kg, 90 g of ammonium polycarboxylate dispersant as dispersant, 45 g of carbon black as reducing agent, 30 g (0.25 mol) of colloidal silica (solid content concentration 50%) as SiO 2 raw material added To make a mixture. The solid content concentration of this mixture was 75% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.

 この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し(ディスク回転数17500rpm)、粒径10~200μmの乾燥造粒物を得た。この造粒物から、網目54μmの篩網を用いて粗粒を分離し、網目33μmの篩網を用いて微粒を分離した。

This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer (disk rotation speed: 17500 rpm) to obtain a dry granulated product having a particle size of 10 to 200 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 54 μm, and fine particles were separated using a sieve mesh having a mesh size of 33 μm.

 この造粒粉を、大気雰囲気下の電気炉に投入し1150℃で3時間焼成した。得られた前駆体の磁気特性、抵抗特性、円形度を下記に示す方法でそれぞれ測定した。表1に測定結果をまとめて示す。

This granulated powder was put into an electric furnace in an air atmosphere and fired at 1150 ° C. for 3 hours. The magnetic properties, resistance properties, and circularity of the obtained precursor were measured by the methods shown below. Table 1 summarizes the measurement results.

 次いで、得られた前駆体をさらに窒素雰囲気下の電気炉に投入し1050℃で6時間焼成した。そして、得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級し、平均粒径35μmのフェライト粒子を得た。
 得られたフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を前記と同様にして測定した。表2に測定結果をまとめて示す。また、図6に、作製したフェライト粒子のSEM写真を示す。

Next, the obtained precursor was further put into an electric furnace in a nitrogen atmosphere and baked at 1050 ° C. for 6 hours. The fired product obtained was pulverized with a hammer mill and then classified using a vibration sieve to obtain ferrite particles having an average particle size of 35 μm.
The magnetic properties, resistance properties, apparent density, and circularity of the obtained ferrite particles were measured in the same manner as described above. Table 2 summarizes the measurement results. FIG. 6 shows an SEM photograph of the produced ferrite particles.

(磁気特性)

 室温専用振動試料型磁力計(VSM)(東英工業社製「VSM-P7」)を用いて、外部磁場0~10000/(4π)kA/m(10000エルステッド)の範囲で1サイクル連続的に印加して、飽和磁化σs(A・m/kg)、残留磁化σr(A・m/kg)、保磁力Hc(A/m×10/(4π))、磁化σ1k(Am/kg)及び磁化σ500(Am/kg)を測定した。

(Magnetic properties)

Using a vibration sample type magnetometer (VSM) dedicated to room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), one cycle continuously in the external magnetic field range of 0 to 10000 / (4π) kA / m (10000 Oersted) When applied, saturation magnetization σs (A · m 2 / kg), residual magnetization σr (A · m 2 / kg), coercive force Hc (A / m × 10 3 / (4π)), magnetization σ 1k (Am 2 / Kg) and magnetization σ 500 (Am 2 / kg).

(抵抗特性)

 表面を電解研磨した厚さ2mmの電極としての真鍮板2枚を、距離2mm離して対向するように配置した。電極間にフェライト粒子200mgを装入した後、それぞれの電極の背後に断面積240mmの磁石(表面磁束密度が1500ガウスのフェライト磁石)を配置して、電極間にフェライト粒子のブリッジを形成させた。そして、直流電圧50Vを電極間に印加し、フェライト粒子に流れる電流値を測定し、フェライト粒子の抵抗値を算出した。

(Resistance characteristics)

Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm. After inserting 200 mg of ferrite particles between the electrodes, a magnet having a cross-sectional area of 240 mm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) is arranged behind each electrode to form a bridge of ferrite particles between the electrodes. It was. Then, a DC voltage of 50 V was applied between the electrodes, the current value flowing through the ferrite particles was measured, and the resistance value of the ferrite particles was calculated.

(見掛け密度)

 フェライト粒子の見掛け密度はJIS Z 2504に準拠して測定した。

(Apparent density)

The apparent density of the ferrite particles was measured according to JIS Z 2504.

(円形度)

 クロスセクションポリッシャー(SM-09019(JEOL) 電圧:6kV、時間:4h)を用いてキャリア粒子をカットし、その断面を走査型電子顕微鏡(JSM-6510LA型 加速電圧:5kV、スポットサイズ:45、倍率:1000倍)で撮影し、その画像を画像解析装置(LEXT-OLS3000 analySIS(OLYMPUS))で解析して、下記式からフェライト粒子の円形度を算出した。
円形度=(粒子の投影面積と同じ面積を有する円の周長)/(粒子投影図の輪郭の長さ)

(Roundness)

Carrier particles were cut using a cross-section polisher (SM-09019 (JEOL) voltage: 6 kV, time: 4 h), and the cross section was scanned with a scanning electron microscope (JSM-6510LA type acceleration voltage: 5 kV, spot size: 45, magnification) : 1000 times), the image was analyzed with an image analyzer (LEXT-OLS3000 analSIS (OLYMPUS)), and the circularity of the ferrite particles was calculated from the following equation.
Circularity = (circumference of a circle having the same area as the projected area of the particle) 2 / (length of the contour of the particle projection) 2

実施例2

 第1焼成工程における焼成時間を1.5時間とし、第2焼成工程における焼成温度を1100℃、焼成時間を3時間とした以外は実施例1と同様にして前駆体及びフェライト粒子を作製した。そして、得られた前駆体及びフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。前駆体の測定結果を表1に示し、フェライト粒子の測定結果を表2に示す。また、図7に、作製したフェライト粒子のSEM写真を示す。

Example 2

A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing time in the first firing step was 1.5 hours, the firing temperature in the second firing step was 1100 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 7 shows an SEM photograph of the produced ferrite particles.

実施例3

 第2焼成工程における焼成温度を1125℃、焼成時間を1時間とした以外は実施例1と同様にして前駆体及びフェライト粒子を作製した。そして、得られた前駆体及びフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。前駆体の測定結果を表1に示し、フェライト粒子の測定結果を表2に示す。また、図8に、作製したフェライト粒子のSEM写真を示す。

Example 3

A precursor and ferrite particles were prepared in the same manner as in Example 1 except that the firing temperature in the second firing step was 1125 ° C. and the firing time was 1 hour. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 8 shows an SEM photograph of the produced ferrite particles.

実施例4

 第2焼成工程における焼成温度を1200℃、焼成時間を0.5時間とした以外は実施例1と同様にして前駆体及びフェライト粒子を作製した。そして、得られた前駆体及びフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。前駆体の測定結果を表1に示し、フェライト粒子の測定結果を表2に示す。また、図9に、作製したフェライト粒子のSEM写真を示す。

Example 4

A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the second firing step was 1200 ° C. and the firing time was 0.5 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 9 shows an SEM photograph of the produced ferrite particles.

実施例5

 第1焼成工程における焼成温度を1200℃とし、第2焼成工程における焼成温度を1150℃、焼成時間を3時間とした以外は実施例1と同様にして前駆体及びフェライト粒子を作製した。そして、得られた前駆体及びフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。前駆体の測定結果を表1に示し、フェライト粒子の測定結果を表2に示す。また、図10に、作製したフェライト粒子のSEM写真を示す。

Example 5

A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the first firing step was 1200 ° C., the firing temperature in the second firing step was 1150 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 10 shows an SEM photograph of the produced ferrite particles.

実施例6

 第1焼成工程における焼成温度を1275℃とし、第2焼成工程における焼成温度を1150℃、焼成時間を3時間とした以外は実施例1と同様にして前駆体及びフェライト粒子を作製した。そして、得られた前駆体及びフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。前駆体の測定結果を表1に示し、フェライト粒子の測定結果を表2に示す。また、図11に、作製したフェライト粒子のSEM写真を示す。

Example 6

A precursor and ferrite particles were produced in the same manner as in Example 1 except that the firing temperature in the first firing step was 1275 ° C., the firing temperature in the second firing step was 1150 ° C., and the firing time was 3 hours. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained precursor and ferrite particles were measured in the same manner as in Example 1. Table 1 shows the measurement results of the precursor, and Table 2 shows the measurement results of the ferrite particles. FIG. 11 shows an SEM photograph of the produced ferrite particles.

比較例1

 実施例1と同様にして作製した造粒粉を、窒素雰囲気下の電気炉に投入し1150℃で3時間焼成した。得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級し、平均粒径35μmのフェライト粒子を得た。そして、得られたフェライト粒子の磁気特性、抵抗特性、見掛け密度、円形度を実施例1と同様にそれぞれ測定した。測定結果を表2に合わせて示す。また、図12に、作製したフェライト粒子のSEM写真を示す。

Comparative Example 1

The granulated powder produced in the same manner as in Example 1 was put into an electric furnace in a nitrogen atmosphere and fired at 1150 ° C. for 3 hours. The obtained fired product was pulverized with a hammer mill and then classified using a vibration sieve to obtain ferrite particles having an average particle size of 35 μm. Then, the magnetic properties, resistance properties, apparent density, and circularity of the obtained ferrite particles were measured in the same manner as in Example 1. The measurement results are shown in Table 2. FIG. 12 shows an SEM photograph of the produced ferrite particles.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2から理解されるように、本発明に係る製造方法で作成した実施例1~6のMnフェライト粒子は、円形度が0.58以下と表面が凹凸形状で、しかも電子写真現像用キャリアとして用いた場合であってもキャリア飛散などの不具合を生じない磁気特性を有していた。

As can be seen from Table 2, the Mn ferrite particles of Examples 1 to 6 prepared by the production method according to the present invention have a circularity of 0.58 or less, an uneven surface, and as a carrier for electrophotographic development. Even when it was used, it had magnetic properties that did not cause problems such as carrier scattering.

 これに対して還元雰囲気下で一度だけ焼成を行った比較例1のMnフェライト粒子は、所定の磁気特性及び抵抗特性は有していたものの、図12から明らかなように、円形度が0.64と凹凸度合いが小さかった。

On the other hand, although the Mn ferrite particles of Comparative Example 1 fired only once in a reducing atmosphere had predetermined magnetic characteristics and resistance characteristics, as is apparent from FIG. 64 and the degree of unevenness was small.

 本発明に係るフェライト粒子の製造方法によれば、表面を凹凸形状にすることができ、しかも所定の磁気特性と抵抗特性とを付与することができ有用である。

According to the method for producing ferrite particles according to the present invention, the surface can be formed into an uneven shape, and predetermined magnetic characteristics and resistance characteristics can be imparted, which is useful.

Claims (5)


  1.  MnFe3-X(但し、0≦X≦1)で表される組成のフェライト粒子が生成するように成分調整されたFe成分原料及びMn成分原料を媒体液中に投入してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を酸化雰囲気下で焼成して前駆体を得る第1焼成工程と、得られた前駆体を還元雰囲気下で焼成温度1050℃~1300℃の範囲でさらに焼成して焼成物を得る第2焼成工程とを有することを特徴とするフェライト粒子の製造方法。

    A slurry in which an Fe component raw material and an Mn component raw material whose components have been adjusted so that ferrite particles having a composition represented by Mn X Fe 3-X O 4 (where 0 ≦ X ≦ 1) are generated are added to the medium liquid A step of obtaining a granulated product by spray drying the slurry, a first firing step of calcining the granulated product in an oxidizing atmosphere to obtain a precursor, and reducing the obtained precursor to a reducing atmosphere. And a second firing step of further firing at a firing temperature in the range of 1050 ° C. to 1300 ° C. to obtain a fired product.

  2.  第1焼成工程における焼成温度が1150℃~1300℃の範囲である請求項1記載のフェライト粒子の製造方法。

    The method for producing ferrite particles according to claim 1, wherein the firing temperature in the first firing step is in the range of 1150 ° C to 1300 ° C.

  3.  第1焼成工程における焼成時間が1.5時間以上である請求項1又は2記載のフェライト粒子の製造方法。

    The method for producing ferrite particles according to claim 1 or 2, wherein the firing time in the first firing step is 1.5 hours or more.

  4.  第2焼成工程における焼成時間が0.5時間以上である請求項1~3のいずれかに記載のフェライト粒子の製造方法。

    The method for producing ferrite particles according to any one of claims 1 to 3, wherein a firing time in the second firing step is 0.5 hours or more.

  5.  第2焼成工程における酸素濃度が1%以下である請求項1~4のいずれかに記載のフェライト粒子の製造方法。

    The method for producing ferrite particles according to any one of claims 1 to 4, wherein the oxygen concentration in the second firing step is 1% or less.
PCT/JP2012/056956 2011-07-23 2012-03-19 Ferrite particle production method WO2013014969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-161421 2011-07-23
JP2011161421A JP5735877B2 (en) 2011-07-23 2011-07-23 Method for producing ferrite particles

Publications (1)

Publication Number Publication Date
WO2013014969A1 true WO2013014969A1 (en) 2013-01-31

Family

ID=47600829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056956 WO2013014969A1 (en) 2011-07-23 2012-03-19 Ferrite particle production method

Country Status (2)

Country Link
JP (1) JP5735877B2 (en)
WO (1) WO2013014969A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149464A (en) * 2013-02-02 2014-08-21 Dowa Electronics Materials Co Ltd Carrier particle
JP2015093817A (en) * 2013-11-13 2015-05-18 Dowaエレクトロニクス株式会社 Mn FERRITE PARTICLE AND DEVELOPER CARRIER FOR ELECTROPHOTOGRAPHY USING THE SAME, DEVELOPER FOR ELECTROPHOTOGRAPHY
JP2016170224A (en) * 2015-03-11 2016-09-23 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751688B1 (en) 2015-03-02 2015-07-22 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
US11072537B2 (en) 2016-05-06 2021-07-27 Powdertech Co., Ltd. Ferrite powder, resin composition, and molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148430A (en) * 1984-08-13 1986-03-10 Fuji Elelctrochem Co Ltd Manufacture of ferrite carrier for electrostatic copying
JPH09269613A (en) * 1996-03-29 1997-10-14 Fuji Elelctrochem Co Ltd Production of carrier having low electric resistivity
JP2009086545A (en) * 2007-10-02 2009-04-23 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP2010108006A (en) * 2010-02-15 2010-05-13 Dowa Holdings Co Ltd Carrier for electrophotographic development, preparation method of the same, and electrophotographic developer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148430A (en) * 1984-08-13 1986-03-10 Fuji Elelctrochem Co Ltd Manufacture of ferrite carrier for electrostatic copying
JPH09269613A (en) * 1996-03-29 1997-10-14 Fuji Elelctrochem Co Ltd Production of carrier having low electric resistivity
JP2009086545A (en) * 2007-10-02 2009-04-23 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP2010108006A (en) * 2010-02-15 2010-05-13 Dowa Holdings Co Ltd Carrier for electrophotographic development, preparation method of the same, and electrophotographic developer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149464A (en) * 2013-02-02 2014-08-21 Dowa Electronics Materials Co Ltd Carrier particle
JP2015093817A (en) * 2013-11-13 2015-05-18 Dowaエレクトロニクス株式会社 Mn FERRITE PARTICLE AND DEVELOPER CARRIER FOR ELECTROPHOTOGRAPHY USING THE SAME, DEVELOPER FOR ELECTROPHOTOGRAPHY
JP2016170224A (en) * 2015-03-11 2016-09-23 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer and method for producing the same

Also Published As

Publication number Publication date
JP5735877B2 (en) 2015-06-17
JP2013025204A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP5735999B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5735877B2 (en) Method for producing ferrite particles
JP5567396B2 (en) Ferrite particles for charging a magnetic brush and method for producing the same
JP2013035737A (en) Method for manufacturing ferrite particle
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2016033655A (en) Carrier core material
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5804656B2 (en) Mn ferrite particles, carrier for electrophotographic developer using the same, developer for electrophotography
JP2014149464A (en) Carrier particle
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5924814B2 (en) Method for producing ferrite particles
JP2012144401A (en) Ferrite particle, and carrier for developing electrophotograph using it, and developer for electrophotograph
JP2018128619A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817992

Country of ref document: EP

Kind code of ref document: A1