JP5620699B2 - Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles - Google Patents

Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles Download PDF

Info

Publication number
JP5620699B2
JP5620699B2 JP2010076583A JP2010076583A JP5620699B2 JP 5620699 B2 JP5620699 B2 JP 5620699B2 JP 2010076583 A JP2010076583 A JP 2010076583A JP 2010076583 A JP2010076583 A JP 2010076583A JP 5620699 B2 JP5620699 B2 JP 5620699B2
Authority
JP
Japan
Prior art keywords
ferrite particles
carrier
particles
fired
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010076583A
Other languages
Japanese (ja)
Other versions
JP2011209475A (en
Inventor
翔 小川
翔 小川
北村 利哉
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2010076583A priority Critical patent/JP5620699B2/en
Publication of JP2011209475A publication Critical patent/JP2011209475A/en
Application granted granted Critical
Publication of JP5620699B2 publication Critical patent/JP5620699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

本発明は、フェライト粒子及びそれを用いた電子写真現像用キャリア、電子写真用現像剤並びにフェライト粒子の製造方法に関するものである。   The present invention relates to ferrite particles, an electrophotographic developer carrier using the same, an electrophotographic developer, and a method for producing ferrite particles.

電子写真方式を用いたファクシミリやプリンタ、複写機などの画像形成装置では、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナー像を所定の用紙等へ転写した後、加熱・加圧して用紙等へ溶融定着させている。ここで、現像剤としては、トナーのみを含む一成分系現像剤を用いる一成分系現像法と、トナーとキャリアとを含む二成分系現像剤を用いる二成分系現像法とに大別される。そして、近年は、ほとんどの場合、トナーの荷電制御が容易で安定した高画質を得ることができ、高速現像が可能であることから二成分系現像法が用いられている。   In image forming apparatuses such as facsimiles, printers, and copiers using an electrophotographic system, powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner image is applied to a predetermined sheet or the like. After being transferred to the sheet, it is heated and pressurized to melt and fix it on a sheet of paper. Here, the developer is roughly classified into a one-component development method using a one-component developer containing only toner and a two-component development method using a two-component developer containing toner and carrier. . In recent years, the two-component development method has been used in most cases because toner charge control is easy, stable image quality can be obtained, and high-speed development is possible.

二成分系現像法では、キャリアは現像スリーブ上でトナーを抱合した磁気ブラシを形成し、当該磁気ブラシを介して、感光体へトナーを移動させる働きをする。ここで、現像スリーブ上でキャリアが磁気ブラシを形成するにあたって、キャリアの磁力が重要となる。キャリアの磁力が低すぎると、キャリア‐現像スリーブ間、キャリア‐キャリア間の結合力が弱くなる。当該結合力が弱いと、磁気ブラシを形成するキャリアが、回転する現像スリーブの遠心力に耐え切れず、キャリアまでがトナーと一緒に感光体に飛散するために、感光体にキャリアが付着する現象(キャリア付着)が起き、画像異常となる。   In the two-component development method, the carrier forms a magnetic brush conjugated with toner on the developing sleeve, and functions to move the toner to the photoreceptor via the magnetic brush. Here, when the carrier forms a magnetic brush on the developing sleeve, the magnetic force of the carrier is important. When the magnetic force of the carrier is too low, the coupling force between the carrier and the developing sleeve and between the carrier and the carrier is weakened. When the coupling force is weak, the carrier forming the magnetic brush cannot withstand the centrifugal force of the rotating developing sleeve, and the carrier is scattered on the photosensitive member together with the toner, so that the carrier adheres to the photosensitive member. (Carrier adhesion) occurs, resulting in image abnormality.

他方、キャリアの磁力が高すぎると、キャリア同士の結合力が強くなり磁気ブラシが硬くなりすぎる。すると、当該磁気ブラシから感光体へトナーが移動する際に、一部に集中して移動するため、バラつきが多くなり、画質が悪くなるという現象が起きる。また、現像トルクが高いため、現像剤の劣化が早く、耐久性が悪くなる。   On the other hand, if the magnetic force of the carrier is too high, the coupling force between the carriers becomes strong and the magnetic brush becomes too hard. Then, when the toner moves from the magnetic brush to the photoconductor, the toner moves in a concentrated manner, resulting in a phenomenon that the variation increases and the image quality deteriorates. Further, since the development torque is high, the developer is rapidly deteriorated and the durability is deteriorated.

そこで、例えば特許文献1では、マグネシウム(以下「Mg」と記すことがある)フェライト粒子の表面を樹脂被覆したキャリアにおいて、Mgの含有量を所定範囲とし、窒素雰囲気、または窒素+酸素共存下で焼成することで所定の磁気特性を備えた電子写真用キャリアが提案されている。   Therefore, for example, in Patent Document 1, in a carrier in which the surface of magnesium (hereinafter sometimes referred to as “Mg”) ferrite particles is resin-coated, the Mg content is set within a predetermined range, and in a nitrogen atmosphere or in the presence of nitrogen + oxygen. An electrophotographic carrier having predetermined magnetic characteristics by firing is proposed.

特開2001-154416号公報JP 2001-154416 A

近年、画像形成装置における画像形成速度の高速化及び高画質化の市場要求に対応するため、キャリアとして使用するフェライト粒子の高電気抵抗化、高帯電化が求められている。   In recent years, in order to meet the market demand for higher image formation speed and higher image quality in image forming apparatuses, it is required to increase the electrical resistance and charge of ferrite particles used as carriers.

ところが、前記提案された電子写真用キャリアでは、飽和磁化は所定範囲に維持されると考えられるが、電気抵抗に関する検討がなされていないため、電気抵抗が低く、電荷のリークが生じ、画質劣化を引き起こすおそれがある。   However, in the proposed electrophotographic carrier, the saturation magnetization is considered to be maintained within a predetermined range. However, since the electrical resistance has not been studied, the electrical resistance is low, charge leakage occurs, and the image quality deteriorates. May cause.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、所望の飽和磁化を有するとともに、高電気抵抗を有するフェライト粒子及びその製造方法を提供することにある。   The present invention has been made in view of such a conventional problem, and an object thereof is to provide a ferrite particle having a desired saturation magnetization and a high electric resistance, and a method for producing the same.

また、本発明の目的は、高速化及び高画質化を満足する電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer that satisfy high speed and high image quality.

本発明者らは、所望の飽和磁化と高い電気抵抗と有するフェライト粒子を得るべく、鋭意検討を重ねた結果、組成としてはMgとFeとを含有するフェライト粒子が適していること、そしてフェライト粒子のスピネル格子の格子定数が変化すると、鉄の価数が変化し、飽和磁化を含む磁力及び電気抵抗が変化することを見出し、本発明をなすに至った。すなわち、本発明に係るフェライト粒子は、MgとFeとを含有し、Mg/Feのモル比xが0〜0.25の範囲であり、格子定数f(x)が下記式(1)を満足することを特徴とする。
0.525x3-0.19x2-0.064x+8.387≦f(x)≦0.525x3-0.19x2-0.064x+8.409 ・・・(1)
(式中、x:Mg/Feモル比)
As a result of intensive investigations to obtain ferrite particles having desired saturation magnetization and high electric resistance, the present inventors have found that ferrite particles containing Mg and Fe are suitable as the composition, and ferrite particles When the lattice constant of the spinel lattice changed, the valence of iron changed, and the magnetic force and electric resistance including saturation magnetization changed, and the present invention was made. That is, the ferrite particles according to the present invention contain Mg and Fe, the Mg / Fe molar ratio x is in the range of 0 to 0.25 , and the lattice constant f (x) satisfies the following formula (1). It is characterized by doing.
0.525x 3 -0.19x 2 -0.064x + 8.387 ≦ f (x) ≦ 0.525x 3 -0.19x 2 -0.064x + 8.409 (1)
(Wherein x: Mg / Fe molar ratio)

また、本発明者等は、フェライト粒子における格子定数は、フェライト相におけるスピネル格子中の酸素量によって変化し、スピネル格子中の酸素量は焼成過程における酸素化学ポテンシャルμO2(以下「μO2」と記載する場合がある)で制御できること、また冷却過程におけるμO2を調整することで、フェライト粒子の内部まで均一に所定の格子定数となることを見出した。ここで、μO2はμO2=RTlnPO2の式で表すことができ、温度と酸素濃度によって変化させることができる。そこで、本発明に係るフェライト粒子の製造方法は、Mg/Feのモル比xが所定値のフェライト粒子が生成するように、成分調整されたFe原料及びMg原料を媒体液中で混合してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を焼成して焼成物を得る工程とを有し、前記焼成を下記式(2)を満たす条件で行うことを特徴とする。
−5000≦T×logPO2≦0 ・・・・・・(2)
(式中、T:温度(℃),PO2=酸素圧力/全体圧力)
Further, the inventors of the present invention have found that the lattice constant of the ferrite particles varies depending on the amount of oxygen in the spinel lattice in the ferrite phase, and the amount of oxygen in the spinel lattice is expressed by the oxygen chemical potential μ O2 (hereinafter referred to as “μ O2 ”) It has been found that the predetermined lattice constant can be uniformly obtained even inside the ferrite particles by adjusting μO 2 in the cooling process. Here, μ O2 can be expressed by an equation of μ O2 = RTlnP O2 and can be changed according to temperature and oxygen concentration. Therefore, the method for producing ferrite particles according to the present invention is a slurry obtained by mixing Fe raw materials and Mg raw materials whose components have been adjusted in a medium liquid so that ferrite particles having an Mg / Fe molar ratio x of a predetermined value are generated. A step of obtaining a granulated product by spray drying the slurry, and a step of obtaining a calcined product by calcining the granulated product, wherein the calcining is performed under a condition satisfying the following formula (2): It is characterized by performing.
−5000 ≦ T × log P O2 ≦ 0 (2)
(Where T: temperature (° C.), P O2 = oxygen pressure / overall pressure)

ここで、フェライト粒子の平均粒子径としては、10μm〜100μmの範囲が好ましい。   Here, the average particle diameter of the ferrite particles is preferably in the range of 10 μm to 100 μm.

また、本発明によれば、前記記載のフェライト粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   In addition, according to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the ferrite particles described above is coated with a resin.

さらに、本発明によれば、前記記載のキャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the carrier described above and a toner.

本発明のフェライト粒子は、フェライト相におけるスピネル格子の格子定数を所定範囲としたので、所望の飽和磁化を有すると同時に高電気抵抗を有する。   The ferrite particles of the present invention have a desired saturation magnetization and a high electrical resistance since the lattice constant of the spinel lattice in the ferrite phase is in a predetermined range.

また、本発明の電子写真現像用キャリア及び電子写真用現像剤は、前記フェライト粒子を用いているので、画像形成の高速化及び高画質化に対応できる。   In addition, since the electrophotographic developer carrier and the electrophotographic developer of the present invention use the ferrite particles, the image forming speed and image quality can be increased.

そしてまた、本発明の製造方法では、式(2)を満たす条件で焼成を行うので、フェライト粒子のスピネル格子中の格子定数を制御できるようになる。   Moreover, in the manufacturing method of the present invention, since the firing is performed under the condition satisfying the formula (2), the lattice constant in the spinel lattice of the ferrite particles can be controlled.

Mg/Feモル比を変化させたときの好適な格子定数の範囲を示すグラフである。It is a graph which shows the range of the suitable lattice constant when changing Mg / Fe molar ratio.

まず、本発明に係るフェライト粒子について説明する。本発明に係るフェライト粒子の大きな特徴は、MgとFeとを含有し、Mg/Feのモル比xが0〜0.25の範囲であり、格子定数f(x)が前記式(1)を満足することにある。これにより、例えば、所定の飽和磁化σを維持しながら、電気抵抗も高く維持できるようになる。 First, the ferrite particles according to the present invention will be described. The major feature of the ferrite particles according to the present invention is that Mg and Fe are contained, the molar ratio x of Mg / Fe is in the range of 0 to 0.25 , and the lattice constant f (x) is the above formula (1). To be satisfied. Thereby, for example, the electric resistance can be maintained high while maintaining the predetermined saturation magnetization σ s .

本発明者等は、後述の実施例で説明するように、Mg/Feのモル比及び格子定数を種々変化させて、所望の飽和磁化と高電気抵抗のフェライト粒子が得られる範囲を調査した。図1に、調査結果を示す。図1は、縦軸として格子定数をとり、横軸としてMg/Feをとり、Mg/Feを変化させたときの好適な格子定数の範囲を示したものである。この調査結果からMg/Feと格子定数f(x)との相関関係式(図1の破線)を求め、この相関関係式に対して±0.011の範囲を、所望の飽和磁化と高電気抵抗のフェライト粒子が得られる範囲として規定した。   As will be described later in the Examples, the present inventors investigated the range in which ferrite particles having desired saturation magnetization and high electrical resistance can be obtained by changing the Mg / Fe molar ratio and the lattice constant in various ways. FIG. 1 shows the survey results. FIG. 1 shows a preferable range of lattice constants when the lattice constant is taken on the vertical axis, Mg / Fe is taken on the horizontal axis, and Mg / Fe is changed. From this investigation result, a correlation equation (broken line in FIG. 1) between Mg / Fe and the lattice constant f (x) is obtained, and within a range of ± 0.011 with respect to this correlation equation, a desired saturation magnetization and high electric power are obtained. It was defined as the range in which ferrite particles with resistance were obtained.

フェライト粒子の格子定数は、フェライト相におけるスピネル格子中の酸素量によって変化する。すなわち、スピネル格子中の酸素が過剰になると格子定数は小さくなり、スピネル格子中の酸素が欠損すると格子定数は大きくなる。一方、スピネル格子中の酸素量は、例えば、フェライト粒子の焼成過程における酸素化学ポテンシャルμO2によって制御できる。そこで、本発明のフェライト粒子の製造方法では、フェライト粒子の焼成過程における酸素化学ポテンシャルμO2を制御することによってフェライト粒子の格子定数を制御する。本発明に係るフェライト粒子の製造方法については後述する。 The lattice constant of the ferrite particles varies depending on the amount of oxygen in the spinel lattice in the ferrite phase. That is, when oxygen in the spinel lattice becomes excessive, the lattice constant decreases, and when oxygen in the spinel lattice is deficient, the lattice constant increases. On the other hand, the amount of oxygen in the spinel lattice can be controlled by, for example, the oxygen chemical potential μ O2 in the firing process of the ferrite particles. Therefore, in the manufacturing method of ferrite particles of the present invention, to control the lattice constants of the ferrite particles by controlling the oxygen chemical potential mu O2 in the firing process of the ferrite particles. The method for producing ferrite particles according to the present invention will be described later.

本発明に係るフェライト粒子の平均粒子径としては10μm〜100μmの範囲が好ましい。平均粒子径が10μm以上あることで、粒子のそれぞれに必要な磁力が確実に付与され、例えば、フェライト粒子を電子写真現像用キャリアとして用いた場合に、感光体へのキャリア付着が抑制されるようになる。一方、平均粒子径が100μm以下であることで、画像特性を良好に保つことができるようになる。フェライト粒子の平均粒子径を上記範囲とするには、フェライト粒子の製造工程中または製造工程後に篩等を用いて分級処理を行えばよい。   The average particle diameter of the ferrite particles according to the present invention is preferably in the range of 10 μm to 100 μm. When the average particle diameter is 10 μm or more, the necessary magnetic force is reliably imparted to each of the particles. For example, when ferrite particles are used as a carrier for electrophotographic development, carrier adhesion to the photoreceptor is suppressed. become. On the other hand, when the average particle diameter is 100 μm or less, the image characteristics can be kept good. In order to set the average particle diameter of the ferrite particles within the above range, classification may be performed using a sieve or the like during the manufacturing process of the ferrite particles or after the manufacturing process.

本発明に係るフェライト粒子の好ましい飽和磁化σは、20〜90emu/gの範囲である。飽和磁化σが20emu/g未満であると、例えば、フェライト粒子を電子写真現像用キャリアとして用いた場合に、感光体へのキャリア付着が頻繁に起きるおそれがある。一方、飽和磁化σが90emu/gを超えると、磁気ブラシの穂が硬くなり、電子写真現像における画質低下を招くおそれがある。フェライト粒子の、より好ましい飽和磁化σは30〜80emu/gの範囲であり、さらに好ましくは40〜70emu/gの範囲である。 The preferred saturation magnetization σ s of the ferrite particles according to the present invention is in the range of 20 to 90 emu / g. When the saturation magnetization σ s is less than 20 emu / g, for example, when ferrite particles are used as a carrier for electrophotographic development, there is a possibility that carrier adhesion to the photoreceptor frequently occurs. On the other hand, when the saturation magnetization σ s exceeds 90 emu / g, the ears of the magnetic brush become hard, and there is a possibility that the image quality is lowered in electrophotographic development. The more preferable saturation magnetization σ s of the ferrite particles is in the range of 30 to 80 emu / g, and more preferably in the range of 40 to 70 emu / g.

本発明に係るフェライト粒子の好ましい電気抵抗は、印加電圧10Vにおいて1×10〜1×1012Ωcmの範囲である。電気抵抗が1×10Ωcm未満であると、電荷のリークが起きるおそれがある一方、電気抵抗が1×1012Ωcmを超えると、エッジ効果が大きくなり画像濃度の低下を招くおそれがある。フェライト粒子の、より好ましい電気抵抗は1×10〜1×1011Ωcmの範囲であり、さらに好ましくは1×10〜1×1010Ωcmの範囲である。 The preferred electrical resistance of the ferrite particles according to the present invention is in the range of 1 × 10 7 to 1 × 10 12 Ωcm at an applied voltage of 10V. If the electrical resistance is less than 1 × 10 7 Ωcm, charge leakage may occur. On the other hand, if the electrical resistance exceeds 1 × 10 12 Ωcm, the edge effect may increase and the image density may decrease. More preferable electrical resistance of the ferrite particles is in the range of 1 × 10 8 to 1 × 10 11 Ωcm, and more preferably in the range of 1 × 10 9 to 1 × 10 10 Ωcm.

本発明のフェライト粒子は各種用途に用いることができ、例えば、電子写真現像用キャリアや電磁波吸収材、電磁波シールド材用材料粉末、ゴム、プラスチック用充填材・補強材、ペンキ、絵具・接着剤用艶消材、充填材、補強材等として用いることができる。これらの中でも特に電子写真現像用キャリアとして好適に用いられる。   The ferrite particles of the present invention can be used in various applications, for example, electrophotographic developer carriers, electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, fillers / reinforcing materials for plastics, paints, paints / adhesives It can be used as a matting material, filler, reinforcing material and the like. Among these, it is particularly preferably used as a carrier for electrophotographic development.

本発明のフェライト粒子の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although the manufacturing method of the ferrite particle of the present invention is not particularly limited, the manufacturing method described below is preferable.

まず、Fe原料とMg原料とを秤量して分散媒中に投入し混合してスラリーを作製する。Fe原料としては、Fe粉、Fe酸化物、Fe水酸化物等が使用でき、Mg原料としては、MgFe仮焼粉、Mg酸化物、Mg水酸化物等が好適に使用できる。スラリーの固形分濃度は50〜90wt%の範囲が望ましい。原料であるFe原料、Mg原料を分散媒に投入する前に、必要により、粉砕混合処理しておいてもよい。 First, an Fe raw material and an Mg raw material are weighed, put into a dispersion medium, and mixed to prepare a slurry. Fe 2 O 3 powder, Fe oxide, Fe hydroxide, etc. can be used as the Fe raw material, and MgFe 2 O 4 calcined powder, Mg oxide, Mg hydroxide, etc. are suitably used as the Mg raw material it can. The solid content concentration of the slurry is desirably in the range of 50 to 90 wt%. If necessary, the raw materials Fe and Mg may be pulverized and mixed before being introduced into the dispersion medium.

本発明で使用する分散媒としては水が好適である。分散媒には、前記Fe原料、Mg原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。   Water is preferred as the dispersion medium used in the present invention. In addition to the Fe raw material and Mg raw material, a binder, a dispersing agent, and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. The blending amount of the binder is preferably about 0.5 to 2 wt% in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2 wt%. In addition, you may mix | blend a lubricant, a sintering accelerator, etc.

次に、以上のようにして作製されたスラリーを必要により湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は50μm以下が好ましく、より好ましくは10μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry prepared as described above is wet-pulverized as necessary. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 50 μm or less, more preferably 10 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100〜300℃の範囲が好ましい。これにより、粒径10〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、得られた造粒物を加熱した炉に投入して焼成し、磁性相を有する焼成物を得る。焼成温度は、目的となる磁性相が生成する温度範囲に設定すればよいが、本発明に係るフェライト粒子を製造する場合には、1000〜1400℃の温度範囲で焼成することが好ましい。より好ましくは、1100℃〜1350℃の温度範囲である。   Next, the obtained granulated product is put into a heated furnace and fired to obtain a fired product having a magnetic phase. The firing temperature may be set to a temperature range in which the target magnetic phase is generated. However, when producing the ferrite particles according to the present invention, firing is preferably performed in a temperature range of 1000 to 1400 ° C. More preferably, it is the temperature range of 1100 degreeC-1350 degreeC.

ここで重要なことは、前記式(2)を満たす条件で焼成を行うことである。これにより、フェライト相におけるスピネル構造中の酸素量を制御でき、その結果、フェライト粒子の格子定数を制御できる。そして、適切な飽和磁化と高い電気抵抗を有するフェライト粒子が得られる。具体的には、例えば、炉内の酸素濃度を0.03%〜20.6%の範囲とし、μO2が1200℃において−100KJ/mоl以上、−19KJ/mоl以下、800℃において−74KJ/mоl以上、−14KJ/mоl以下、400℃において−45KJ/mоl以上、−8KJ/mоl以下の冷却過程を経るようにする。このような範囲となるように炉内の温度T及び酸素圧力PO2を制御することによって、粒子内部まで酸素過剰又は酸素欠損のフェライト粒子が得られる。また、焼成工程における冷却段階において、所望の飽和磁化、電気抵抗になるように制御したμO2のところで、炉内の焼成物を液体窒素や水などの冷却溶媒の中に浸漬させて焼成物を得るようにしてもよい。これにより温度降下中の反応が抑えられ、目的とするμO2での飽和磁化、電気抵抗が得られるようになる。後述の実施例では、冷却段階において急冷するこの方法で所定の格子定数のフェライト粒子を作製した。なお、炉内の酸素圧力の制御は、大気または大気と窒素の混合ガスを炉内にフローさせることにより行えばよい。 What is important here is that the firing is performed under the condition satisfying the above-mentioned formula (2). Thereby, the amount of oxygen in the spinel structure in the ferrite phase can be controlled, and as a result, the lattice constant of the ferrite particles can be controlled. And the ferrite particle which has appropriate saturation magnetization and high electrical resistance is obtained. Specifically, for example, the oxygen concentration in the furnace in a range of 0.03% ~20.6%, μ O2 is -100KJ / mоl or more at 1200 ℃, -19KJ / mоl less, -74KJ at 800 ° C. / A cooling process of not less than −14 KJ / mol and not more than −45 KJ / mol and not more than −45 KJ / mol and not more than −8 KJ / mol at 400 ° C. is performed. By controlling the temperature T and oxygen pressure P O2 in the furnace so as to have such a range, the ferrite particles of the oxygen excess or an oxygen deficiency is obtained to the inside particles. Further, in the cooling stage in the firing process, the fired product in the furnace is immersed in a cooling solvent such as liquid nitrogen or water at the μ O2 controlled to have a desired saturation magnetization and electrical resistance. You may make it obtain. As a result, the reaction during the temperature drop is suppressed, and the intended saturation magnetization and electrical resistance at μ O2 can be obtained. In Examples described later, ferrite particles having a predetermined lattice constant were produced by this method of rapid cooling in the cooling stage. The oxygen pressure in the furnace may be controlled by causing the atmosphere or a mixed gas of air and nitrogen to flow into the furnace.

次に、得られた焼成物を解砕する。具体的には、例えば、ハンマーミル等によって焼成物を解砕する。解砕工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   Next, the obtained fired product is crushed. Specifically, for example, the fired product is crushed by a hammer mill or the like. As a form of a crushing process, any of a continuous type and a batch type may be sufficient. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process.

以上のようにして作製した本発明のフェライト粒子を、電子写真現像用キャリアとして用いる場合、フェライト粒子をそのまま電子写真現像用キャリアとして用いることもできるが、帯電性等の観点からは、フェライト粒子の表面を樹脂で被覆して用いるのが好ましい。   When the ferrite particles of the present invention produced as described above are used as a carrier for electrophotographic development, the ferrite particles can be used as they are as a carrier for electrophotographic development. However, from the viewpoint of chargeability and the like, It is preferable to coat the surface with a resin.

フェライト粒子の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for covering the surface of the ferrite particles, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). Examples thereof include resins, polystyrene, (meth) acrylic resins, polyvinyl alcohol resins, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based thermoplastic elastomers, fluorine silicone-based resins, and the like.

フェライト粒子の表面を樹脂で被覆するには、樹脂の溶液又は分散液をフェライト粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001〜30wt%、特に0.001〜2wt%の範囲内にあるのがよい。   In order to coat the surface of the ferrite particles with a resin, a resin solution or dispersion may be applied to the ferrite particles. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001 to 2 wt%.

フェライト粒子への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method for coating the resin on the ferrite particles, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1〜20wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が20wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3〜15wt%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. In general, the toner concentration in the developer is preferably in the range of 1 to 20 wt%. When the toner density is less than 1 wt%, the image density becomes too low, and when the toner density exceeds 20 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 to 15 wt%.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

(実施例1)
Mg/Feのモル比x=0.25となるように、FeとMgFe仮焼粉とを1:1(モル比)で配合し、分散剤としてポリカルボン酸アンモニウムを、媒体液中濃度が1%となるように添加した純水中に、配合したFeとMgFe仮焼粉を分散させ、混合物とした。この混合物を湿式ボールミル(メディア径2mm)で粉砕処理し、スラリーを得た。
Example 1
Fe 2 O 3 and MgFe 2 O 4 calcined powder are blended at 1: 1 (molar ratio) so that the Mg / Fe molar ratio x = 0.25, and ammonium polycarboxylate as a dispersant. The blended Fe 2 O 3 and MgFe 2 O 4 calcined powders were dispersed in pure water added so that the concentration in the medium liquid was 1% to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a slurry.

得られたスラリーをスプレードライヤーにて約150℃の熱風中に噴霧し、粒径10〜100μmの乾燥造粒物を得た。そして、篩を用いて粒径が100μmを超える造粒物を除去した。得られた乾燥造粒物を、電気炉に投入して、大気フロー雰囲気下にて、1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):1.0×10−2、T×logPO2=−2400)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。なお、フェライト粒子の平均粒子径は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)を用いて測定したものである。 The obtained slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 100 μm. And the granulated material with a particle size exceeding 100 micrometers was removed using the sieve. The obtained dried granulated product was put into an electric furnace and fired at 1200 ° C. for 3 hours in an air flow atmosphere, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen content). Pressure P O2 (oxygen pressure / overall pressure): 1.0 × 10 −2 , T × log P O2 = −2400). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm. The average particle size of the ferrite particles is measured using a laser diffraction particle size distribution measuring device (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.).

得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を下記方法で測定した。また、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。   The lattice constant, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured by the following methods. Further, ferrite particles were coated with a resin and used as a carrier, which was then put into an evaluation machine for image evaluation. The results are summarized in Table 1.

(格子定数の測定)
格子定数は、X線回折装置(リガク製、RINT2000)を用いて測定した。X線源はコバルトを使用し、加速電圧40kV、電流30mAでX線を発生させた。粉末X線の測定条件は走査モード;FT、発散スリット;1/2°、散乱スピード;1/2°、受光スリット;0.15mm、回転速度;5.000rpm、走査範囲;66.000〜68.000°、測定間隔0.01°、計数時間5秒、積算回数3回で測定を行った。得られたXRDパターンから格子定数を算出した。
(Measurement of lattice constant)
The lattice constant was measured using an X-ray diffractometer (manufactured by Rigaku, RINT2000). Cobalt was used as the X-ray source, and X-rays were generated at an acceleration voltage of 40 kV and a current of 30 mA. Measurement conditions of powder X-ray are scanning mode; FT, divergence slit; 1/2 °, scattering speed; 1/2 °, light receiving slit; 0.15 mm, rotation speed: 5.000 rpm, scanning range; 66.000 to 68 The measurement was performed at .000 °, a measurement interval of 0.01 °, a counting time of 5 seconds, and an integration count of 3 times. The lattice constant was calculated from the obtained XRD pattern.

(飽和磁化測定)
フェライトの磁気特性は、VSM(東英工業株式会社製、VSM−P7)を用いて磁化率の測定を行い、印加磁場10kOeにおける飽和磁化σ(emu/g)を測定した。
(Saturation magnetization measurement)
The magnetic properties of the ferrite were measured for magnetic susceptibility using VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7), and the saturation magnetization σ s (emu / g) in an applied magnetic field of 10 kOe was measured.

(電気抵抗測定)
表面を電解研磨した厚さ2mmの電極としての真鍮板2枚を、距離2mm離して対向するように配置した。電極間にフェライト粒子200mgを装入した後、それぞれの電極の背後に、断面積240mmの磁石(表面磁束密度が1500ガウスのフェライト磁石)を配置して、電極間にフェライト粒子のブリッジを形成させた。そして、10Vから1000Vまでの直流電圧を電極間に印加し、フェライト粒子に流れる電流値を測定し、フェライト粒子の電気抵抗を算出した。
(Electrical resistance measurement)
Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm. After inserting 200 mg of ferrite particles between the electrodes, a magnet having a cross-sectional area of 240 mm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) is placed behind each electrode to form a bridge of ferrite particles between the electrodes. I let you. A DC voltage of 10 V to 1000 V was applied between the electrodes, the value of the current flowing through the ferrite particles was measured, and the electrical resistance of the ferrite particles was calculated.

(画像評価)
シリコーン系樹脂(信越化学製、KR251)をトルエンに溶解させて被覆樹脂溶液を作製した。そして、フェライト粒子と被覆樹脂溶液とを重量比で9:1の割合にて撹拌機に投入し、フェライト粒子を樹脂溶液に浸漬しながら150〜250℃で3時間加熱撹拌した。この樹脂被覆されたフェライト粒子を、熱風循環式加熱装置にて250℃で5時間加熱し樹脂被覆層を硬化させてキャリアを得た。
得られたキャリア92重量%と、フルカラー複写機のトナー(シアン)8重量%をV型混合機で混合して電子写真現像剤とした。この電子写真現像剤を、現像バイアス電圧として交流バイアス電圧を印加する、デジタル反転現像方式の20枚/分の画像形成装置をベースにした評価機に投入して、初期、50K枚、100K枚、150K枚時にグレー画像を出力させた。そして、キャリア付着に起因するホワイトスポットの有無に着目して下記基準により画像評価を行った。
「◎」は非常に良好
「○」は良好
「△」は使用可能なレベル
「×」は使用不可
(Image evaluation)
A silicone resin (manufactured by Shin-Etsu Chemical, KR251) was dissolved in toluene to prepare a coating resin solution. Then, the ferrite particles and the coating resin solution were put into a stirrer at a ratio of 9: 1 by weight, and stirred with heating at 150 to 250 ° C. for 3 hours while immersing the ferrite particles in the resin solution. The resin-coated ferrite particles were heated at 250 ° C. for 5 hours with a hot air circulation type heating device to cure the resin coating layer to obtain a carrier.
92% by weight of the obtained carrier and 8% by weight of toner (cyan) of a full color copying machine were mixed with a V-type mixer to obtain an electrophotographic developer. This electrophotographic developer is put into an evaluation machine based on an image forming apparatus of 20 sheets / minute of digital reversal development method, in which an AC bias voltage is applied as a developing bias voltage, and initially, 50K sheets, 100K sheets, A gray image was output at 150K sheets. Then, image evaluation was performed according to the following criteria, paying attention to the presence or absence of white spots due to carrier adhesion.
“◎” is very good “○” is good “△” is usable level “×” is not usable

(実施例2)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−200のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 2)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -200. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例3)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−1600のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
Example 3
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -1600. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例4)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−1200のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
Example 4
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -1200. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例5)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−800のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 5)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × logP. A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -800. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例6)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−50のところで焼成物を得たこと以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 6)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 1 except that a fired product was obtained at O2 = -50. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例7)
Mg/Feのモル比x=0.15となるように、FeとMgFe仮焼粉とを9:4(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.1%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):1.0×10−3、T×logPO2=−3600)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 7)
Except for blending Fe 2 O 3 and MgFe 2 O 4 calcined powder at 9: 4 (molar ratio) so that the Mg / Fe molar ratio x = 0.15, the same procedure as in Example 1 was performed. A granulated product was obtained. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.1%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 1.0 × 10 −3 , T × logP O2 = −3600). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例8)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−3000のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 8)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -3000. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例9)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−2400のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
Example 9
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -2400. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例10)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−1800のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 10)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -1800. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例11)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−1200のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 11)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -1200. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例12)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−75のところで焼成物を得たこと以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 12)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 7 except that a fired product was obtained at O2 = -75. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例13)
Mg/Feのモル比x=0.07となるように、FeとMgFe仮焼粉とを6:1(モル比)で配合し、さらに還元剤としてのカーボンブラックをFe2O3とMgFe2O4仮焼粉の総量に対して0.75wt%配合したこと以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.03%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−4439)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 13)
Fe 2 O 3 and MgFe 2 O 4 calcined powder are blended at 6: 1 (molar ratio) so that the Mg / Fe molar ratio x = 0.07, and carbon black as a reducing agent is further added to Fe 2 O 3. A granulated product was obtained in the same manner as in Example 1 except that 0.75 wt% was blended with respect to the total amount of the MgFe 2 O 4 calcined powder. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.03%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 2.0 × 10 −4 , T × logP O2 = −4439). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例14)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−3699のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 14)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -3699. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例15)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2959のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 15)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -2959. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例16)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2219のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 16)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = 22-219. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例17)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−1480のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 17)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -1480. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例18)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−92のところで焼成物を得たこと以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 18)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 13 except that a fired product was obtained at O2 = -92. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例19)
Feのみを準備し、秤量したこと、さらに還元剤としてのカーボンブラックをFeの総量に対して1wt%配合したこと以外は(Mg/Feのモル比0)、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.03%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−4439)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 19)
Example 1 except that only Fe 2 O 3 was prepared and weighed, and that carbon black as a reducing agent was blended in an amount of 1 wt% with respect to the total amount of Fe 2 O 3 (Molar ratio of Mg / Fe 0). In the same manner, a granulated product was obtained. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.03%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 2.0 × 10 −4 , T × logP O2 = −4439). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例20)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−3699のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 20)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -3699. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例21)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2959のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 21)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -2959. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例22)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2219のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 22)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = 22-219. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例23)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−1480のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 23)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -1480. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(実施例24)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−92のところで焼成物を得たこと以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 24)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that a fired product was obtained at O2 = -92. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

(比較例1)
Mg/Feのモル比x=0.07となるように、FeとMgFe仮焼粉とを6:1(モル比)で配合し、さらに還元剤としてのカーボンブラックを、FeとMgFe仮焼粉の総量に対して1.5wt%配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.03%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−4439)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の格子定数、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Comparative Example 1)
Fe 2 O 3 and MgFe 2 O 4 calcined powder are blended at 6: 1 (molar ratio) so that the Mg / Fe molar ratio x = 0.07, and carbon black as a reducing agent is further added. A granulated product was obtained in the same manner as in Example 1 except that 1.5 wt% was added to the total amount of the Fe 2 O 3 and MgFe 2 O 4 calcined powders. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.03%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 2.0 × 10 −4 , T × logP O2 = −4439). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The obtained ferrite particles were measured for the lattice constant, saturation magnetization σs, and electric resistance in the same manner as in Example 1, and the ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. The results are summarized in Table 1.

実施例1〜24のフェライト粒子は、格子定数が前記式(1)を満足するものであり、所望の飽和磁化及び高い電気抵抗を有していた。また、これらのフェライト粒子を用いたキャリアでは、150Kの耐刷試験後でも、実使用上支障来すようなホワイトスポットは発生しなかった。これに対して、比較例1のフェライト粒子は、格子定数が前記式(1)の範囲よりも大きく、所望の飽和磁化及び電気抵抗が得られなかった。このため、比較例1のフェライト粒子を用いたキャリアでは、実使用上支障を来すようなホワイトスポットが発生した。 The ferrite particles of Examples 1 to 24 had a lattice constant satisfying the formula (1), and had desired saturation magnetization and high electrical resistance. Further, in the carrier using these ferrite particles, a white spot that would hinder actual use was not generated even after a 150 K printing test. On the other hand, the ferrite particles of Comparative Example 1 had a lattice constant larger than the range of the formula (1), and desired saturation magnetization and electric resistance could not be obtained. For this reason, in the carrier using the ferrite particles of Comparative Example 1, white spots that would hinder actual use occurred.

本発明のフェライト粒子は、所望の飽和磁化を有すると同時に高電気抵抗を有するので、例えば、本発明のフェライト粒子を電子写真現像用キャリアとして用いると、画像形成の高速化及び高画質化に対応できるようになる。   The ferrite particles of the present invention have a desired saturation magnetization and at the same time high electrical resistance. For example, when the ferrite particles of the present invention are used as a carrier for electrophotographic development, it corresponds to high-speed image formation and high image quality. become able to.

Claims (5)

MgとFeとを含有し、Mg/Feのモル比xが0〜0.25の範囲のフェライト粒子であって、
格子定数f(x)が下記式(1)を満足することを特徴とするフェライト粒子。
0.525x3-0.19x2-0.064x+8.387≦f(x)≦0.525x3-0.19x2-0.064x+8.409 ・・・(1)
(式中、x:Mg/Feモル比)
Ferrite particles containing Mg and Fe, wherein the molar ratio x of Mg / Fe is in the range of 0 to 0.25 ,
A ferrite particle having a lattice constant f (x) satisfying the following formula (1).
0.525x 3 -0.19x 2 -0.064x + 8.387 ≦ f (x) ≦ 0.525x 3 -0.19x 2 -0.064x + 8.409 (1)
(Wherein x: Mg / Fe molar ratio)
平均粒子径が10μm〜100μmの範囲であることを特徴とする請求項1記載のフェライト粒子。   The ferrite particles according to claim 1, wherein the average particle diameter is in the range of 10 µm to 100 µm. 請求項1又は2記載のフェライト粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   3. A carrier for electrophotographic development, wherein the surface of the ferrite particles according to claim 1 or 2 is coated with a resin. 請求項3記載のキャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier according to claim 3 and a toner. Mg/Feのモル比xが0〜0.25の範囲のフェライト粒子が生成するように成分調整されたFe原料及びMg原料を媒体液中で混合してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を焼成して焼成物を得る工程とを有し、
前記焼成を下記式(2)を満たす条件で行うことを特徴とするフェライト粒子の製造方法。
−5000≦T×logPO2≦0 ・・・・・・(2)
(式中、T:温度(℃),PO2=酸素圧力/全体圧力)
A step of obtaining a slurry by mixing an Fe raw material and an Mg raw material whose components are adjusted so that ferrite particles having a molar ratio x of Mg / Fe in the range of 0 to 0.25 are generated in a medium liquid, and spraying the slurry A step of obtaining a granulated product by drying, and a step of obtaining a fired product by firing the granulated product,
The method for producing ferrite particles, wherein the firing is performed under a condition satisfying the following formula (2).
−5000 ≦ T × log P O2 ≦ 0 (2)
(Where T: temperature (° C.), P O2 = oxygen pressure / overall pressure)
JP2010076583A 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles Active JP5620699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076583A JP5620699B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076583A JP5620699B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Publications (2)

Publication Number Publication Date
JP2011209475A JP2011209475A (en) 2011-10-20
JP5620699B2 true JP5620699B2 (en) 2014-11-05

Family

ID=44940611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076583A Active JP5620699B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Country Status (1)

Country Link
JP (1) JP5620699B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995048B2 (en) * 2012-02-29 2016-09-21 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5822415B1 (en) * 2015-03-10 2015-11-24 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6494453B2 (en) * 2015-07-10 2019-04-03 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7398092B2 (en) * 2019-12-05 2023-12-14 パウダーテック株式会社 Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111041B2 (en) * 2007-09-28 2012-12-26 Dowaエレクトロニクス株式会社 Magnetic carrier core material for electrophotographic development and method for producing the same, magnetic carrier and electrophotographic developer
JP2010002519A (en) * 2008-06-18 2010-01-07 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer

Also Published As

Publication number Publication date
JP2011209475A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5735999B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5735877B2 (en) Method for producing ferrite particles
JP2013035737A (en) Method for manufacturing ferrite particle
JP5839639B1 (en) Carrier core
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP5804656B2 (en) Mn ferrite particles, carrier for electrophotographic developer using the same, developer for electrophotography
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5892689B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP2014149464A (en) Carrier particle
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP2018128619A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP5920973B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5924814B2 (en) Method for producing ferrite particles
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2016118646A (en) Ferrite particles, and carrier for electrophotography and developer for electrophotography using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250