JP2023144211A - Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same - Google Patents

Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same Download PDF

Info

Publication number
JP2023144211A
JP2023144211A JP2022051079A JP2022051079A JP2023144211A JP 2023144211 A JP2023144211 A JP 2023144211A JP 2022051079 A JP2022051079 A JP 2022051079A JP 2022051079 A JP2022051079 A JP 2022051079A JP 2023144211 A JP2023144211 A JP 2023144211A
Authority
JP
Japan
Prior art keywords
mass
pigment
dispersion solution
pigment dispersion
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022051079A
Other languages
Japanese (ja)
Inventor
直彦 竹山
Naohiko Takeyama
直也 小宮
Naoya Komiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2022051079A priority Critical patent/JP2023144211A/en
Publication of JP2023144211A publication Critical patent/JP2023144211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

To provide a spun-dyed meta-type wholly aromatic polyamide fiber colored in a bright, dark and deep color, which also possesses performance as a protective clothing.SOLUTION: An organic pigment is dispersed in an amide-based solvent at a pigment concentration of 10-50 mass% such that a particle diameter D90% is 2.0 μm or smaller, to obtain a pigment dispersion solution. After forming at least one type of an organic pigment dispersion solution, in which a viscosity η when a shear of 1 (1/s) is applied to the pigment dispersion solution is 7,000 mPa s or less, and the viscosity η when the shear of 1,000 (1/s) is applied to the pigment dispersion solution is 50 mPa s or less, the organic pigment dispersion solution is continuously mixed and agitated with a solution obtained by dissolving a meta-type wholly aromatic polyamide in an amide-based solvent, to produce a spinning dope. Then, the same is spun such that the organic pigment is contained in the fiber at a total of 2.0-10.0 mass% based on the total mass of the fiber.SELECTED DRAWING: None

Description

本発明は、着色された原着メタ型全芳香族ポリアミド繊維に関するものであり、さらに詳しくは、鮮やかで濃く深みのある色に着色された原着メタ型全芳香族ポリアミド繊維及びその製造方法に関するものである。 The present invention relates to a colored spun-dyed meta-type wholly aromatic polyamide fiber, and more particularly to a sprue-dyed meta-type wholly aromatic polyamide fiber colored in a vivid, dark and deep color, and a method for producing the same. It is something.

芳香族ジアミンと芳香族ジカルボン酸ジハライドとから製造される全芳香族ポリアミド繊維が、耐熱性および難燃性に優れていることは公知であり、かかる全芳香族ポリアミド繊維のうち、ポリメタフェニレンイソフタルアミドに代表されるメタ型全芳香族ポリアミド繊維は、耐熱性および難燃性繊維として特に有用であることが知られている。そして、メタ型全芳香族ポリアミド繊維は、これらの特徴を活かし、例えば、消防服、耐熱性作業服などの防護衣料分野で好適に使用されている(特許文献1参照)。 It is well known that fully aromatic polyamide fibers produced from aromatic diamines and aromatic dicarboxylic acid dihalides have excellent heat resistance and flame retardancy. Meta-type wholly aromatic polyamide fibers represented by amide are known to be particularly useful as heat-resistant and flame-retardant fibers. Taking advantage of these characteristics, meta-type wholly aromatic polyamide fibers are suitably used, for example, in the field of protective clothing such as firefighting suits and heat-resistant work clothes (see Patent Document 1).

このような衣料分野での使用においては、着色した繊維を用いるのが一般的であり、特に屋外で使用されることが多い防護衣料においては、汚れなどが目立ちにくい、繊維の明度Lが40以下の濃い色のデザインが主流となっている。このような、濃い色に着色した繊維を得る方法としては、繊維化後、染料を用いて染色する後染色法、あるいは紡糸ドープに顔料を添加した後に繊維化する原着法が知られている。 For use in the clothing field, it is common to use colored fibers, and especially for protective clothing that is often used outdoors, the lightness L of the fiber is 40 or less, so that stains are less noticeable. Dark-colored designs have become mainstream. Known methods for obtaining such darkly colored fibers include a post-dyeing method in which fibers are made and then dyed using dyes, and a dope dyeing method in which pigments are added to spinning dope and then made into fibers. .

しかしながら、繊維化後、染料を用いて染色する後染色によって着色されたメタ型全芳香族ポリアミド繊維は、光照射により変色や褪色を起こすという欠点を有しており、また洗濯による色素の脱落による変色や褪色を起こすという欠点も有している。 However, meta-type wholly aromatic polyamide fibers that are colored by post-dying using dyes after fiberization have the disadvantage of causing discoloration or fading when exposed to light, and also due to the dyes coming off during washing. It also has the disadvantage of causing discoloration and fading.

そこで、長期間屋外で使用される消防服、耐熱性作業服などの防護衣料においては、紡糸原液に顔料を添加した後に繊維化する原着法での着色が行われている。しかしながら染料より粒子が大きい顔料は、繊維中に添加すると強度が低下することが一般的にしられている。特に濃色にするために添加量を多くする場合、繊維強度の低下をいかに抑えるかが課題となっている。 Therefore, for protective clothing such as firefighting suits and heat-resistant work clothes that are used outdoors for long periods of time, coloring is carried out using a dope dyeing method in which a pigment is added to a spinning dope and then turned into fibers. However, it is generally known that when pigments whose particles are larger than dyes are added to fibers, the strength decreases. In particular, when adding a large amount to make a dark color, the problem is how to suppress the decrease in fiber strength.

高強度繊維で知られるパラ系アラミド繊維の着色においても同様の課題が生じており、例えば、パラ系アラミド繊維の着色において、黒色無機顔料を繊維中に顔料濃度2.0質量%添加すると満足のいく濃さの繊維が得られるが、強度が低下するという問題があった。 A similar problem occurs in the coloring of para-aramid fibers, which are known to be high-strength fibers. For example, when coloring para-aramid fibers, adding a black inorganic pigment to the fiber at a pigment concentration of 2.0% by mass results in a satisfactory result. Although fibers with a certain density can be obtained, there is a problem in that the strength decreases.

そこで赤・黄・青の有機顔料を少なくとも1種類、繊維質量に対し1~6質量%、及び黒色無機顔料を1質量%以下となるバランスで添加することによって強度を維持しながら明度L値が30.2~33.5となる黒色に着色されたパラ系アラミド繊維の着色方法が提案されており、黒色無機顔料を有機顔料と併用することで強度を維持しながら明度L値を下げた黒色パラ系アラミド繊維が得られている(特許文献2参照)。 Therefore, by adding at least one kind of red, yellow, and blue organic pigments in a balance of 1 to 6% by mass based on the fiber mass, and a black inorganic pigment in a balance of 1% by mass or less, the lightness L value can be maintained while maintaining the strength. 30.2 to 33.5 has been proposed, and a method for coloring para-aramid fibers that is colored black has been proposed, and by using a black inorganic pigment in combination with an organic pigment, a black color with a lower lightness L value while maintaining strength has been proposed. Para-aramid fibers have been obtained (see Patent Document 2).

しかしながら、この方法は、パラ系アラミド繊維を黒色に着色することを目的としており、鮮やかで濃い色に着色されたメタ型全芳香族ポリアミド繊維を得るには、十分な解決策に至っていなかった。 However, this method was aimed at coloring para-aramid fibers black, and did not provide a sufficient solution to obtain meta-type wholly aromatic polyamide fibers that were colored in bright and deep colors. .

一方、400℃の空気中に15秒暴露しても変色しない、耐熱性のある顔料を、平均粒径0.4μm以下となるように、繊維中に0.1質量%以上15質量%以下で含有させた全芳香族ポリアミド繊維が提案されており、顔料の添加量を増やすことで濃色にすることが可能であるが、この方法で採用されている乾式による紡糸方法においては、紡糸口金より紡出された繊維状のポリマー溶液は、形成される繊維状物の表面付近から溶媒が揮発・乾燥するので、繊維表面に緻密で、強固なスキン層を生じる。このため、顔料添加量を増やしても強度を維持できるが、紡糸後の繊維状物内に残存する溶媒を水洗等により洗浄を行っても、十分に溶媒を除去することが困難である。かくして、この方法で得られた繊維は繊維中に残存する溶媒により、高温の雰囲気下における使用時に、黄変が生じたり、残存する溶媒が揮発あるいは分解することにより有機ガスが発生したりするという問題があった。 On the other hand, heat-resistant pigments that do not discolor even when exposed to air at 400°C for 15 seconds are added to the fibers in an amount of 0.1% by mass to 15% by mass so that the average particle size is 0.4μm or less. Fully aromatic polyamide fibers have been proposed, and it is possible to make them darker by increasing the amount of pigment added, but in the dry spinning method used in this method, In the spun fibrous polymer solution, the solvent evaporates and dries from near the surface of the formed fibrous material, resulting in a dense and strong skin layer on the fiber surface. Therefore, the strength can be maintained even if the amount of pigment added is increased, but it is difficult to sufficiently remove the solvent remaining in the fibrous material after spinning even if the solvent is washed with water or the like. Therefore, when the fibers obtained by this method are used in a high temperature atmosphere due to the solvent remaining in the fibers, yellowing may occur, and organic gas may be generated due to volatilization or decomposition of the remaining solvent. There was a problem.

一方、この方法では、乾式による紡糸方法だけでなく、水溶性有機溶剤中に溶解されたポリマーに顔料を添加した紡糸ドープを、水性凝固浴あるいは高濃度の無機塩を含有する水性凝固浴に導入する湿式による紡糸方法も提案されている。この方法では、紡糸段階で溶媒の揮発は生じないものの、水性凝固浴あるいは高濃度の無機塩を含有する水性凝固浴に導入した際に、繊維状になったポリマー溶液の表面近傍から溶媒が水性凝固浴内へ脱離すると同時に、水が凝固した繊維状物の表面近傍から内部へ浸入することにより強固なスキン層が生じる。このため、乾式紡糸法による繊維と同様に、顔料添加量を増やしても強度を維持できるが、繊維中に残存する溶媒によって黄変や有機ガスの問題が生じることは避けられない(特許文献3参照)。 On the other hand, in this method, in addition to the dry spinning method, a spinning dope in which a pigment is added to a polymer dissolved in a water-soluble organic solvent is introduced into an aqueous coagulation bath or an aqueous coagulation bath containing a high concentration of inorganic salts. A wet spinning method has also been proposed. In this method, the solvent does not volatilize during the spinning step, but when introduced into an aqueous coagulation bath or an aqueous coagulation bath containing a high concentration of inorganic salts, the solvent evaporates from near the surface of the fibrous polymer solution. At the same time as water is desorbed into the coagulation bath, water infiltrates from near the surface of the coagulated fibrous material to form a strong skin layer. For this reason, like fibers produced by dry spinning, strength can be maintained even if the amount of pigment added is increased, but problems such as yellowing and organic gas due to the solvent remaining in the fibers cannot be avoided (Patent Document 3). reference).

さらに、環境意識の高まりから、繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節し、かつ、特定倍率で可塑延伸する原着メタ型全芳香族ポリアミド繊維の製造方法が提案されている(特許文献4参照)。しかしながらこの製造方法では、強度に寄与するスキン層が存在しないため、特に顔料を多く含有させると強度が低下するという問題があり、濃く深みのある色に着色されながら防護衣料として十分な強度を持ったものが得られなかった。 Furthermore, due to increasing environmental awareness, in the fiber manufacturing process, we have adjusted the components or conditions of the coagulation bath so that the coagulation form does not have a skin core, and we have made spruce-dyed meta-type fully aromatic polyamide fibers that are plastically stretched at a specific ratio. A manufacturing method has been proposed (see Patent Document 4). However, with this manufacturing method, there is no skin layer that contributes to strength, so there is a problem that strength decreases especially when a large amount of pigment is contained. I couldn't get what I wanted.

特開2006-016709号公報Japanese Patent Application Publication No. 2006-016709 KR20160011865AKR20160011865A 特開平1-139814号公報Japanese Patent Application Publication No. 1-139814 特許第5852127号公報Patent No. 5852127

本発明の目的は、かかる従来技術における課題を解消し、残存溶媒量が低く、鮮やかで濃く深みのある色に着色されながら防護衣料としての性能も有した原着メタ型全芳香族ポリアミド繊維とその製造方法を提供することにある。 The purpose of the present invention is to solve the problems in the prior art, and to create a process-dyed meta-type wholly aromatic polyamide fiber that has a low amount of residual solvent, is colored in a vivid, dark, and deep color, and also has the performance as protective clothing. The object of the present invention is to provide a manufacturing method thereof.

発明者は、上記の課題を解決するため鋭意検討を重ねた結果、特定の粒径分布を有する有機顔料を、繊維中に所定量含有させ、さらに好ましくは、黒色無機顔料を少量含有させるとき、上記目的が達成できることを見出し本発明に到達した。 As a result of intensive studies to solve the above problems, the inventors found that when a fiber contains a predetermined amount of an organic pigment having a specific particle size distribution, and more preferably a small amount of a black inorganic pigment, The inventors have discovered that the above object can be achieved and have arrived at the present invention.

すなわち本発明によれば、
1.残存溶媒量が全繊維質量に対して0.1質量%以下である原着メタ型全芳香族ポリアミド繊維であって、該繊維には少なくとも1種類の有機顔料が合計2.0~10.0質量%含有されており、かつ該繊維の明度Lが40以下、引張強度が3.5cN/dtex以上であることを特徴とする原着メタ型全芳香族ポリアミド繊維、
2.黒色無機顔料が全繊維質量全体に対して0.1~0.5質量%含有されている上記1記載の原着メタ型全芳香族ポリアミド繊維、
3.アミド系溶媒中に、有機顔料を、下記方法により測定した粒径D90%が2.0μm以下となるように、顔料濃度10~50質量%で分散させて顔料分散溶液とし、該顔料分散溶液に剪断が1(1/s)かかった時の粘度ηが7000mPa・s以下であり、かつ該顔料分散溶液に剪断が1000(1/s)かかった時の粘度ηが50mPa・s以下である有機顔料分散溶液を少なくとも1種類以上作成した後、該有機顔料分散溶液を、メタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液と連続的に混合撹拌して紡糸ドープを作成し、次いで該有機顔料が、繊維中に全繊維質量に対して合計2.0~10.0質量%含有されるよう紡糸することを特徴とする請求項1に記載の原着メタ型全芳香族ポリアミド繊維の製造方法、
<粒径D90%の測定方法>
粒子の粒径をJIS Z 8825に従って測定し、頻度(%)を算出し累積頻度が90%である粒径D90%を得た。具体的には、マイクロトラック・ベル株式会社のMicrotrac MT3000を使用し、レーザー波長:780nmm、測定時間:30sec、測定回数:2回、透過性:反射、溶媒:イオン交換水、溶媒屈折率:1.33でレーザー回折・散乱法にて測定した、
が提供される。
That is, according to the present invention,
1. A spun-dyed meta-type wholly aromatic polyamide fiber in which the amount of residual solvent is 0.1% by mass or less based on the total fiber mass, and the fiber contains at least one type of organic pigment in a total amount of 2.0 to 10.0% by mass. % by mass, and the fiber has a lightness L of 40 or less and a tensile strength of 3.5 cN/dtex or more,
2. The spun-dyed meta-type wholly aromatic polyamide fiber according to 1 above, wherein the black inorganic pigment is contained in an amount of 0.1 to 0.5% by mass based on the total fiber mass;
3. An organic pigment is dispersed in an amide solvent at a pigment concentration of 10 to 50% by mass so that the particle size D90% measured by the following method is 2.0 μm or less, and a pigment dispersion solution is prepared. An organic material having a viscosity η of 7,000 mPa·s or less when sheared at 1 (1/s), and a viscosity η of 50 mPa·s or less when the pigment dispersion solution is subjected to 1,000 (1/s) shear. After creating at least one type of pigment dispersion solution, the organic pigment dispersion solution is continuously mixed and stirred with a solution of meta-type wholly aromatic polyamide dissolved in an amide solvent to create a spinning dope, and then the organic The production of the spun-dyed meta-type wholly aromatic polyamide fiber according to claim 1, wherein the fiber is spun so that the pigment is contained in the fiber in a total amount of 2.0 to 10.0% by mass based on the total fiber mass. Method,
<Measurement method of particle size D90%>
The particle size of the particles was measured according to JIS Z 8825, the frequency (%) was calculated, and the particle size D90% with a cumulative frequency of 90% was obtained. Specifically, Microtrac MT3000 from Microtrac Bell Co., Ltd. was used, laser wavelength: 780 nm, measurement time: 30 sec, number of measurements: 2, transparency: reflection, solvent: ion exchange water, solvent refractive index: 1. Measured by laser diffraction/scattering method at .33,
is provided.

本発明によれば、残存溶媒量が低く、鮮やかで濃く深みのある色に着色されながら防護衣料としての性能も有した原着メタ型全芳香族ポリアミド繊維が得られるため、これを用いた防護衣料において汚れの目立ちにくい濃い色でありながら暗くくすんだ黒色でなく、鮮やかな色味を持ったデザインで仕上げることが可能となる。 According to the present invention, it is possible to obtain a spun-dyed meta-type wholly aromatic polyamide fiber that has a low amount of residual solvent, is colored in a vivid, dark, and deep color, and also has the performance as protective clothing. It is possible to finish clothing with a design that has a bright color, rather than a dark and dull black color, even though it is a dark color that makes it difficult to see dirt.

以下、本発明について詳細を説明する。
本発明におけるメタ型全芳香族ポリアミドは、メタ型芳香族ジアミンとメタ型芳香族ジカルボン酸ハライドとを原料として、例えば溶液重合や界面重合させることにより製造されるポリアミドであるが、本発明の目的を阻害しない範囲内で、例えばパラ型等の他の共重合成分を共重合したものであってもよい。
The present invention will be explained in detail below.
The meta-type fully aromatic polyamide in the present invention is a polyamide produced by, for example, solution polymerization or interfacial polymerization using a meta-type aromatic diamine and a meta-type aromatic dicarboxylic acid halide as raw materials. For example, it may be copolymerized with other copolymerization components such as para-type, within a range that does not inhibit.

上記メタ型芳香族ジアミンとしては、メタフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン等及びこれらの芳香環にハロゲン、炭素数1~3のアルキル基等の置換基を有する誘導体、例えば2,4-トルイレンジアミン、2,6-トルイレンジアミン、2,4-ジアミノクロルベンゼン、2,6-ジアミノクロルベンゼン等を使用することができる。なかでも、メタフェニレンジアミン又はメタフェニレンジアミンを70モル%以上含有する上記の混合ジアミンが好ましい。 The above-mentioned meta-type aromatic diamines include meta-phenylene diamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylsulfone, etc., and substituents such as halogens and alkyl groups having 1 to 3 carbon atoms on their aromatic rings. For example, 2,4-tolylenediamine, 2,6-tolylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene, etc. can be used. Among these, meta-phenylene diamine or the above-mentioned mixed diamine containing 70 mol% or more of meta-phenylene diamine is preferred.

また、上記メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、及びこれらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば3-クロルイソフタル酸クロライド、3-メトキシイソフタル酸クロライドを使用することができる。なかでも、イソフタル酸クロライド又はイソフタル酸クロライドを70モル%以上含有する上記の混合カルボン酸ハライドが好ましい。 In addition, the meta-aromatic dicarboxylic acid halides include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives thereof having a substituent such as a halogen or an alkoxy group having 1 to 3 carbon atoms on the aromatic ring; For example, 3-chloroisophthalic acid chloride and 3-methoxyisophthalic acid chloride can be used. Among these, the above-mentioned mixed carboxylic acid halides containing isophthalic acid chloride or isophthalic acid chloride in an amount of 70 mol % or more are preferred.

上記のジアミンとジカルボン酸ハライド以外で使用し得る共重合成分としては、芳香族ジアミンとして、パラフェニレンジアミン、2,5-ジアミノクロルベンゼン、2,5-ジアミノブロムベンゼン、アミノアニシジン等のベンゼン誘導体、1,5-ナフチレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルメタン等が挙げられ、一方、芳香族ジカルボン酸ハライドとして、テレフタル酸クロライド、1,4-ナフタレンジカルボン酸クロライド、2,6-ナフタレンジカルボン酸クロライド、4,4’-ビフェニルジカルボン酸クロライド、4,4’-ジフェニルエーテルジカルボン酸クロライド等が挙げられる。 Copolymerization components that can be used in addition to the diamines and dicarboxylic acid halides mentioned above include aromatic diamines such as paraphenylene diamine, 2,5-diaminochlorobenzene, 2,5-diaminobrobenzene, and benzene derivatives such as aminoanisidine. , 1,5-naphthylene diamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylmethane, etc.; Examples of dicarboxylic acid halides include terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4'-biphenyldicarboxylic acid chloride, 4,4'-diphenyl etherdicarboxylic acid chloride, etc. .

これらの共重合成分の共重合比は、あまりに多くなりすぎるとメタ型全芳香族ポリアミドの特性が低下しやすいので、ポリアミドの全酸成分を基準として20モル%以下が好ましい。特に、好適なメタ型全芳香族ポリアミドは、全繰返し単位の80モル%以上がメタフェニレンイソフタルアミド単位からなるポリアミドであり、なかでもポリメタフェニレンイソフタルアミドが好ましい。
かようなメタ型全芳香族ポリアミドの重合度は、30℃において97質量%濃硫酸を溶媒として測定した固有粘度(IV)が1.3~3.0の範囲が適当である。
The copolymerization ratio of these copolymerization components is preferably 20 mol % or less based on the total acid components of the polyamide, since the properties of the meta-type wholly aromatic polyamide tend to deteriorate if the copolymerization ratio becomes too large. Particularly suitable meta-type wholly aromatic polyamides are polyamides in which 80 mol % or more of all repeating units are metaphenylene isophthalamide units, and among them, polymetaphenylene isophthalamide is preferred.
The degree of polymerization of such a meta-type wholly aromatic polyamide is suitably such that the intrinsic viscosity (IV) measured at 30° C. using 97% by mass concentrated sulfuric acid as a solvent is in the range of 1.3 to 3.0.

次にここで得られたメタ型全芳香族ポリアミドを溶解する溶媒に溶解して紡糸ドープを調整するが、重合後メタ型全芳香族ポリアミドを単離せずそのまま紡糸ドープとすることも可能である。ここで用いる溶媒としてアミド系溶媒を一般的に用いることができ、主なアミド系溶媒としては、N-メチル-2-ピロリドン(以下、NMPと称する場合がある)、ジメチルホルムアミド(以下、DMFと称する場合がある)、ジメチルアセトアミド(以下、DMAcと称する場合がある)等を例示することができる。これらのなかでは溶解性と取り扱い安全性の観点から、NMPまたはDMAcを用いることが好ましい。 Next, a spinning dope is prepared by dissolving the meta-type fully aromatic polyamide obtained here in a dissolving solvent, but it is also possible to use the meta-type fully aromatic polyamide as it is as a spinning dope without isolating it after polymerization. . An amide solvent can generally be used as the solvent used here, and the main amide solvents include N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP) and dimethylformamide (hereinafter referred to as DMF). (hereinafter sometimes referred to as DMAc), dimethylacetamide (hereinafter sometimes referred to as DMAc), and the like. Among these, NMP or DMAc is preferably used from the viewpoint of solubility and handling safety.

溶液濃度としては、次工程である紡糸・凝固工程での凝固速度および重合体の溶解性の観点から、適当な濃度を適宜選択すればよく、例えば、ポリマーがポリメタフェニレンイソフタルアミドで溶媒がNMPの場合には、通常は10~30質量%の範囲とすることが好ましい。 The solution concentration may be appropriately selected from the viewpoint of the coagulation rate in the next spinning/coagulation step and the solubility of the polymer. For example, when the polymer is polymetaphenylene isophthalamide and the solvent is NMP. In this case, it is usually preferably within the range of 10 to 30% by mass.

本発明においては、市場が要求する鮮やかで濃い色に着色された原着繊維得るために、この紡糸ドープに、有機顔料をポリマー質量に対して2.0~10.0質量%となるよう添加する。添加濃度が高いほど明度L値が小さくなり濃く鮮やかな色相となるとなることから、2.3~9.5質量%の添加が好ましく、さらに6.0~9.0質量%の添加がより好ましい。 In the present invention, an organic pigment is added to the spinning dope in an amount of 2.0 to 10.0% by mass based on the mass of the polymer in order to obtain spun-dyed fibers colored in the vivid and deep colors demanded by the market. do. The higher the addition concentration, the smaller the lightness L value and the darker and brighter the hue. Therefore, addition is preferably from 2.3 to 9.5% by mass, and more preferably from 6.0 to 9.0% by mass. .

該有機顔料の添加量が2.0質量%未満の場合、目標の明度より高く、十分な濃さを有さない。一方、有機顔料の添加量が10.0質量%を越える場合、繊維物性が著しく低下し、防護衣料に用いるには不十分な物性になる。 When the amount of the organic pigment added is less than 2.0% by mass, the brightness is higher than the target brightness and does not have sufficient density. On the other hand, if the amount of organic pigment added exceeds 10.0% by mass, the physical properties of the fiber will be significantly reduced, resulting in physical properties insufficient for use in protective clothing.

また、この際、顔料トータルの添加量を抑えながら濃い色にするために黒色無機顔料をポリマー成分あたり0.1~0.5質量%となるよう添加することが好ましい。しかしながら、0.5質量%より多くの黒色無機顔料を添加すると明度L値は小さくなり、濃い色が得られるが、鮮やかでなく暗く黒くくすんだ色となってしまい。市場で要求される鮮やかで濃い色の繊維を提供することができなってしまうので好ましくない。 Further, at this time, in order to obtain a deep color while suppressing the total amount of pigment added, it is preferable to add a black inorganic pigment in an amount of 0.1 to 0.5% by mass based on the polymer component. However, when more than 0.5% by mass of the black inorganic pigment is added, the lightness L value decreases, and although a deep color can be obtained, the color is not vivid but dark and dull. This is undesirable because it will not be possible to provide fibers with the bright, dark colors required by the market.

本発明においては、繊維を濃い色に着色するため、繊維内部に顔料粒子を多く存在させることとなり、一般的に繊維強度が低下することが考えられる。そこで、あらかじめ添加に必要な有機顔料をポリマー溶液に使用しているアミド系溶媒に、粒径D90%が2.0μm以下となるように、顔料濃度10~50質量%で分散させて顔料分散溶液とし、該顔料分散溶液をメタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液と連続的に混合撹拌し紡糸ドープを作成しながら紡糸を行うことが必要となる。ここで、繊維強度を低下させないように顔料を添加するため、アミド系溶媒中にあらかじめ顔料濃度10~50質量%となるよう十分に分散させたものを添加することが必要となる。この際、水分が混入すると紡糸性が悪化するため、乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のアミド系溶媒を秤量し、0℃に冷却した後、その中へ高速撹拌しながら有機顔料を少しずつ添加し、粒径D90%が2.0μm以下となるように分散させる。ここで粒径D90%が2.0μmより大きくなるなど分散が不十分な場合、繊維強度の低下が著しく起こり防護衣料に用いるのに不十分な強度となってしまう。 In the present invention, since the fibers are colored in a dark color, a large number of pigment particles are present inside the fibers, which generally reduces the fiber strength. Therefore, in advance, the organic pigment required for addition is dispersed in the amide solvent used in the polymer solution at a pigment concentration of 10 to 50% by mass so that the particle size D90% is 2.0 μm or less. It is necessary to perform spinning while continuously mixing and stirring the pigment dispersion solution with a solution of a meta-type wholly aromatic polyamide dissolved in an amide solvent to prepare a spinning dope. Here, in order to add the pigment so as not to reduce the fiber strength, it is necessary to add the pigment sufficiently dispersed in the amide solvent so that the pigment concentration is 10 to 50% by mass. At this time, if moisture is mixed in, the spinnability will deteriorate, so weigh out an amide solvent with a moisture content of 100 ppm or less in a container that can be stirred at high speed under a dry nitrogen atmosphere, cool it to 0°C, and then pour it into the container. While stirring at high speed, the organic pigment is added little by little and dispersed so that the particle size D90% is 2.0 μm or less. If the dispersion is insufficient, such as when the particle size D90% is larger than 2.0 μm, the fiber strength decreases significantly, resulting in insufficient strength for use in protective clothing.

尚、粒径D90%とは、小さい粒径から頻度を積算し、累積頻度が全体の90%である粒径をいう。
ここで準備する顔料分散溶液は、目標色を得るために少なくとも1種類の必要な数の顔料の分散溶液を作成し、得られる原綿の目標の濃さと色味に合うように調整し、メタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液と連続的に混合撹拌させる。
Note that the particle size D90% refers to a particle size at which the cumulative frequency is 90% of the total by integrating the frequencies starting from the smallest particle size.
The pigment dispersion solution prepared here is prepared by creating a dispersion solution of at least one type of pigment and the required number of pigments to obtain the target color, adjusting it to match the target density and color of the raw cotton obtained, and meta-type. The mixture is continuously mixed and stirred with a solution in which a wholly aromatic polyamide is dissolved in an amide solvent.

尚、濃色の繊維を得るためには、顔料分散溶液をメタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液に連続的に混合するために、配管を通して大量に顔料分散溶液を送液する必要が出てくるが、タンクからの距離が長い場合など配管中の圧力損失により送液できなくなる場合がある。このため、ここで用いられる顔料分散溶液に剪断が1(1/s)かかった時の粘度ηは7000mPa・s以下であり、かつ該顔料分散溶液に剪断が1000(1/s)かかった時の粘度ηは50mPa・s以下であることが必要である。 In addition, in order to obtain dark-colored fibers, a large amount of the pigment dispersion solution is fed through piping in order to continuously mix the pigment dispersion solution with a solution of meta-type wholly aromatic polyamide dissolved in an amide solvent. However, if the distance from the tank is long, pressure loss in the piping may make it impossible to send the liquid. Therefore, the viscosity η when a shear of 1 (1/s) is applied to the pigment dispersion solution used here is 7000 mPa・s or less, and when a shear of 1000 (1/s) is applied to the pigment dispersion solution, It is necessary that the viscosity η is 50 mPa·s or less.

顔料分散溶液にかかる剪断が1(1/s)の時の粘度ηが7000mPa・sを越える場合、高粘度のため配管内での圧力損失が大きくなり顔料分散溶液を送液することが困難となりやすい。一方、溶液にかかる剪断が1000(1/s)の時の粘度ηが50mPa・sを越える場合、同様に圧力損失が大きくなり顔料分散溶液を安定して送液できなくなるなどの問題が生じてくる。 If the viscosity η when the shear applied to the pigment dispersion solution is 1 (1/s) exceeds 7000 mPa・s, the pressure loss in the piping will increase due to the high viscosity, making it difficult to pump the pigment dispersion solution. Cheap. On the other hand, if the viscosity η when the shear applied to the solution is 1000 (1/s) exceeds 50 mPa・s, the pressure loss will similarly increase, causing problems such as the inability to stably feed the pigment dispersion solution. come.

また、本発明において、鮮やかで濃い色に着色するために黒色無機顔料以外の、群青、ベンガラ、酸化チタン、酸化鉄等など有色の無機顔料を用いた場合、あらかじめ溶剤に分散しておいてもその添加量が多くなると繊維強度が低下してしまうため望ましくない。
ここで使用される有機顔料としては、アゾ系、フタロシアニン系、ペリノン系、ペリレン系、アンスラキノン系等の顔料が挙げられるが、これらに限定されるものではない。
In addition, in the present invention, when colored inorganic pigments other than black inorganic pigments, such as ultramarine, red iron oxide, titanium oxide, iron oxide, etc., are used in order to give a vivid and deep color, they may be dispersed in a solvent in advance. If the amount added is too large, the fiber strength will decrease, which is not desirable.
The organic pigments used here include, but are not limited to, azo-based, phthalocyanine-based, perinone-based, perylene-based, and anthraquinone-based pigments.

次に、上記のとおり顔料分散体溶液と連続的に混合されて作成された紡糸ドープを凝固液中へ紡出し凝固させる。紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。また、安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態、孔形状等は特に制限する必要はなく、例えば、孔数が500~30000個、紡糸孔径が0.05~0.2mmのスフ用の多ホール紡糸口金等を用いてもよい。また、紡糸口金から紡出する際の紡糸ドープの温度は、10~90℃の範囲が適当である。 Next, the spinning dope prepared by being continuously mixed with the pigment dispersion solution as described above is spun into a coagulating liquid and coagulated. The spinning device is not particularly limited, and conventionally known wet spinning devices can be used. Further, as long as stable wet spinning can be performed, there is no need to particularly limit the number of spinning holes, arrangement state, hole shape, etc. of the spinneret. For example, the number of holes is 500 to 30,000, and the diameter of the spinning holes is 0.05. A multi-hole spinneret for yarns of ~0.2 mm may also be used. Further, the temperature of the spinning dope during spinning from the spinneret is suitably in the range of 10 to 90°C.

本発明の繊維を得るために用いる凝固浴の例としては、無機塩を含まないアミド系溶媒の濃度45~60質量%の水溶液を、浴液の温度10~35℃の範囲で用いる。アミド系溶媒の濃度が45質量%未満ではスキンが厚い構造となってしまい、洗浄工程における洗浄効率が低下し、最終繊維に溶媒が残存することとなる。また、アミド系溶媒の濃度が60質量%を超える場合には、繊維内部に至るまで均一な凝固を行うことができず、このため、繊維成形加工時に単糸が切断するなどの不具合が多く発生する。なお、凝固浴中への繊維の浸漬時間は、0.1~30秒の範囲が適当である。 As an example of the coagulation bath used to obtain the fibers of the present invention, an aqueous solution of an amide solvent containing no inorganic salt with a concentration of 45 to 60% by mass is used at a bath liquid temperature in the range of 10 to 35°C. If the concentration of the amide solvent is less than 45% by mass, the skin will have a thick structure, the cleaning efficiency in the cleaning process will decrease, and the solvent will remain in the final fiber. Additionally, if the concentration of the amide solvent exceeds 60% by mass, it will not be possible to coagulate uniformly all the way to the inside of the fiber, resulting in many problems such as single filament breakage during fiber molding. do. It should be noted that the immersion time of the fibers in the coagulation bath is suitably in the range of 0.1 to 30 seconds.

次に凝固浴にて凝固して得られた繊維が可塑状態にあるうちに、可塑延伸浴中にて繊維を延伸処理する。可塑延伸浴液としては特に限定されるものではなく、従来公知の浴液を採用することができる。 Next, while the fibers obtained by coagulation in a coagulation bath are in a plastic state, the fibers are stretched in a plastic drawing bath. The plastic stretching bath liquid is not particularly limited, and conventionally known bath liquids can be employed.

本発明の繊維を得るためには、可塑延伸浴中の延伸倍率を、3.5~5.0倍の範囲とする必要があり、さらに好ましくは3.7~4.5倍の範囲とする。本発明の繊維の製造においては、可塑延伸浴中にて特定倍率の範囲で可塑延伸することにより、凝固糸中からの脱溶剤を促進することができる。 In order to obtain the fibers of the present invention, the stretching ratio in the plastic drawing bath must be in the range of 3.5 to 5.0 times, more preferably in the range of 3.7 to 4.5 times. . In the production of the fibers of the present invention, removal of the solvent from the coagulated yarn can be promoted by plastically drawing the fibers within a specific range of magnification in a plastic drawing bath.

可塑延伸浴中での延伸倍率が3.5倍未満である場合には、凝固糸中からの脱溶剤が不十分となる。また、破断強度が不十分となり、紡績工程等の加工工程における取り扱いが困難となる。一方で、延伸倍率が5.0倍を超える場合には、単糸切れが発生するため、工程安定性が悪くなる。
可塑延伸浴の温度は、10~90℃の範囲が好ましい。好ましくは温度20~90℃の範囲にあると、工程安定性がよい。
When the stretching ratio in the plastic stretching bath is less than 3.5 times, solvent removal from the coagulated thread becomes insufficient. Moreover, the breaking strength becomes insufficient, making it difficult to handle in processing steps such as spinning steps. On the other hand, if the stretching ratio exceeds 5.0 times, single yarn breakage occurs, resulting in poor process stability.
The temperature of the plastic stretching bath is preferably in the range of 10 to 90°C. Preferably, when the temperature is in the range of 20 to 90°C, process stability is good.

次に、繊維中に残留している溶剤を洗浄する。この工程においては、可塑延伸浴にて延伸された繊維を、十分に洗浄する。洗浄は、得られる繊維の品質面に影響を及ぼすことから、多段で行うことが好ましい。特に、洗浄工程における洗浄浴の温度および洗浄浴液中のアミド系溶媒の濃度は、繊維からのアミド系溶媒の抽出状態および洗浄浴からの水の繊維中への浸入状態に影響を与える。このため、これらを最適な状態とする目的においても、洗浄工程を多段とし、温度条件およびアミド系溶媒の濃度条件を制御することが好ましい。 Next, the solvent remaining in the fibers is washed away. In this step, the fibers drawn in the plastic drawing bath are thoroughly washed. Since washing affects the quality of the fibers obtained, it is preferable to perform the washing in multiple stages. In particular, the temperature of the washing bath in the washing process and the concentration of the amide solvent in the washing bath liquid affect the state of extraction of the amide solvent from the fibers and the state of infiltration of water from the washing bath into the fibers. Therefore, for the purpose of optimizing these conditions, it is preferable to conduct the washing step in multiple stages and to control the temperature conditions and the concentration conditions of the amide solvent.

洗浄の温度条件およびアミド系溶媒の濃度条件については、最終的に得られる繊維の品質を満足できるものであれば、特に限定されるものではない。ただし、最初の洗浄浴を60℃以上の高温とすると、水の繊維中への浸入が一気に起こるため、繊維中に巨大なボイドが生成し、品質の劣化を招く。このため、最初の洗浄浴は、30℃以下の低温とすることが好ましい。 The temperature conditions for washing and the concentration conditions of the amide solvent are not particularly limited as long as they can satisfy the quality of the fibers finally obtained. However, if the initial cleaning bath is heated to a high temperature of 60° C. or higher, water will immediately penetrate into the fibers, creating huge voids in the fibers and causing quality deterioration. For this reason, the initial cleaning bath is preferably kept at a low temperature of 30° C. or lower.

繊維中に溶媒が残っている場合、該繊維の難燃性を低下させる上に、該繊維を用いた製品の加工、および当該繊維を用いて形成された製品の使用における環境安全性においても好ましくない。このため、本発明に用いられる繊維に含まれる残存溶媒量は0.1質量%以下であることが必要であり、0.08質量%以下であることが好ましい。 If a solvent remains in the fiber, it not only reduces the flame retardance of the fiber, but also improves the environmental safety in processing products using the fiber and using products formed using the fiber. do not have. Therefore, the amount of residual solvent contained in the fiber used in the present invention needs to be 0.1% by mass or less, and preferably 0.08% by mass or less.

次に、乾熱処理工程においては、洗浄工程を経た繊維を、乾燥・熱処理する。乾熱処理の方法としては特に限定されるものではないが、例えば、熱ローラー、熱板等を用いる方法を挙げることができる。乾熱処理を経ることにより、最終的に、本発明に用いられるメタ型全芳香族ポリアミド繊維を得ることができる。 Next, in the dry heat treatment step, the fibers that have undergone the washing step are dried and heat treated. The dry heat treatment method is not particularly limited, but examples include methods using a heated roller, hot plate, etc. By passing through the dry heat treatment, the meta-type wholly aromatic polyamide fiber used in the present invention can finally be obtained.

本発明の、鮮やかで濃く深みのある色に着色されたながら防護衣料としての性能も有したメタ型全芳香族ポリアミド繊維を得るためには、乾燥のために100℃での乾熱処理を実施した後に、280~310℃の範囲で1回につき5秒以下で少なくとも2回以上繰り返し乾熱処理する必要があり、290~300℃の範囲で実施することがさらに好ましい。熱処理温度が280℃未満の場合には、繊維の結晶化が不十分となり、繊維の収縮性が高くなる。一方で、310℃を越える場合や1回につき5秒以上の処理を行った場合、黄色系蛍光顔料が熱エネルギーを過剰に吸収し、励起状態にとどまらず構造変化を起こしてしまい色相が変わってしまう問題が発生する。ここで280~310℃の範囲で行う乾熱処理は、得られる繊維の破断強度の向上に寄与する。 In order to obtain the meta-type wholly aromatic polyamide fiber of the present invention, which is colored in a bright, dark and deep color and has the performance as protective clothing, a dry heat treatment at 100°C was carried out for drying. Afterwards, it is necessary to repeat the dry heat treatment at least twice in the range of 280 to 310°C for 5 seconds or less each time, and it is more preferable to carry out the dry heat treatment in the range of 290 to 300°C. If the heat treatment temperature is less than 280°C, the crystallization of the fibers will be insufficient and the shrinkability of the fibers will increase. On the other hand, if the temperature exceeds 310℃ or if the treatment is carried out for more than 5 seconds at a time, the yellow fluorescent pigment absorbs too much thermal energy, causing a structural change instead of remaining in the excited state, resulting in a change in hue. A problem arises. The dry heat treatment carried out in the range of 280 to 310°C contributes to improving the breaking strength of the resulting fibers.

乾熱処理が施されたメタ型全芳香族ポリアミド繊維には、必要に応じて、さらに捲縮加工を施してもよい。さらに、捲縮加工後は、適当な繊維長に切断し、次工程に提供してもよい。また、場合によっては、マルチフィラメントヤーンとして巻き取ってもよい。 The meta-type wholly aromatic polyamide fiber that has been subjected to the dry heat treatment may be further crimped if necessary. Furthermore, after the crimping process, the fibers may be cut into appropriate fiber lengths and provided to the next process. In some cases, it may also be wound up as a multifilament yarn.

かくして得られた、本発明のメタ型全芳香族ポリアミド繊維には少なくとも1種類の有機顔料が合計2.0~10.0質量%含有されており、かつ該繊維の明度Lが40以下、引張強度が3.5cN/dtex以上であることが肝要である。繊維の明度Lが40を越える場合は、鮮やかで濃く深みのある色に着色することは不可能であり、一方、引張強度が3.5cN/dtex未満の場合は、強度が低すぎて、防護衣料としての性能が発揮できない。 The thus obtained meta-type wholly aromatic polyamide fiber of the present invention contains at least one type of organic pigment in a total of 2.0 to 10.0% by mass, and has a lightness L of 40 or less and a tensile strength. It is important that the strength is 3.5 cN/dtex or higher. If the lightness L of the fiber exceeds 40, it is impossible to dye it with a bright, dark and deep color.On the other hand, if the tensile strength is less than 3.5 cN/dtex, the strength is too low and the protective The performance as clothing cannot be demonstrated.

以下、実施例および比較例により、本発明を詳細に説明するが、本発明の範囲は、以下の実施例及び比較例に制限されるものではない。
なお、実施例中の「部」および「%」は特に断らない限りすべて質量基準に基づく値であり、量比は特に断らない限り質量比を示す。実施例および比較例における各物性値は下記の方法で測定した。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following Examples and Comparative Examples.
In addition, "parts" and "%" in the examples are all values based on mass unless otherwise specified, and quantitative ratios indicate mass ratios unless otherwise specified. Each physical property value in Examples and Comparative Examples was measured by the following method.

<固有粘度(I.V.)>
ポリマーを97%濃硫酸に溶解し、オストワルド粘度計を用い30℃で測定した。
<Intrinsic viscosity (I.V.)>
The polymer was dissolved in 97% concentrated sulfuric acid and measured at 30°C using an Ostwald viscometer.

<繊度>
JIS L1015に基づき、正量繊度のA法に準拠した測定を実施し、見掛繊度にて表記した。
<Fineness>
Based on JIS L1015, measurements were carried out in accordance with method A of positive fineness, and the results were expressed in terms of apparent fineness.

<粒径D90%>
粒子の粒径をJIS Z 8825に従って測定し、頻度(%)を算出し累積頻度が90%である粒径D90%を得た。具体的には、マイクロトラック・ベル株式会社のMicrotrac MT3000を使用し、レーザー波長:780nmm、測定時間:30sec、測定回数:2回、透過性:反射、溶媒:イオン交換水、溶媒屈折率:1.33でレーザー回折・散乱法にて測定した。
<Particle size D90%>
The particle size of the particles was measured according to JIS Z 8825, the frequency (%) was calculated, and the particle size D90% with a cumulative frequency of 90% was obtained. Specifically, Microtrac MT3000 from Microtrac Bell Co., Ltd. was used, laser wavelength: 780 nm, measurement time: 30 sec, number of measurements: 2, transparency: reflection, solvent: ion exchange water, solvent refractive index: 1. It was measured using a laser diffraction/scattering method at .33.

<引張強度、引張伸度>
JIS L1015に基づき、インストロン社製 型番5565を用いて、以下の条件で測定した引張破断強度、引張破断伸度の値を繊維の引断強度、引張伸度とした。
(測定条件)
つかみ間隔 :20mm
初荷重 :0.044cN(1/20g)/dtex
引張速度 :20mm/分
<Tensile strength, tensile elongation>
Based on JIS L1015, the values of tensile strength at break and tensile elongation measured under the following conditions using Instron Model No. 5565 were taken as the tensile strength and tensile elongation of the fiber.
(Measurement condition)
Grasp interval: 20mm
Initial load: 0.044cN (1/20g)/dtex
Tensile speed: 20mm/min

<明度L値>
得られた原綿をカード機で十分に開繊し、1.3グラム取り出して直径30mmの測定用の円形セルに詰め、分光色彩計 SD7000(日本電色工業製)を用いて測定した。
(測定条件)
表色系 :ハンター
正反射光方式 :SCI
光源 :D65
<Lightness L value>
The obtained raw cotton was thoroughly opened using a card machine, 1.3 grams were taken out, packed into a circular measurement cell with a diameter of 30 mm, and measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo).
(Measurement condition)
Color system: Hunter Specular reflection method: SCI
Light source: D65

<色味判定>
得られた原綿を標準光源D65下で目視により確認し、色の濃さと鮮やかさの判定を行った。
<Color judgment>
The obtained raw cotton was visually confirmed under a standard light source D65, and the color depth and vividness were determined.

[実施例1]
乾燥窒素雰囲気下の反応容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)721.5質量部を秤量し、このDMAc中にメタフェニレンジアミン97.2質量部(50.18モル%)を溶解させ、0℃に冷却した。この冷却したDMAc溶液に、さらにイソフタル酸クロライド(以下IPCと略す)181.3質量部(49.82モル%)を徐々に攪拌しながら添加し、重合反応を行った。
[Example 1]
Into a reaction vessel under a dry nitrogen atmosphere, 721.5 parts by mass of N,N-dimethylacetamide (DMAc) with a moisture content of 100 ppm or less was weighed, and in this DMAc, 97.2 parts by mass (50.18 mol) of metaphenylenediamine was added. %) was dissolved and cooled to 0°C. To this cooled DMAc solution, 181.3 parts by mass (49.82 mol %) of isophthalic acid chloride (hereinafter abbreviated as IPC) was gradually added with stirring to perform a polymerization reaction.

次に、平均粒径が10μm以下の水酸化カルシウム粉末を66.6質量部秤量し、重合反応が完了したポリマー溶液に対してゆっくり加え、中和反応を実施した。水酸化カルシウムの投入が完了した後、さらに40分間攪拌して、透明なポリマードープを得た。
得られたポリマードープからポリメタフェニレンイソフタルアミドを単離してIVを測定したところ、1.65であった。また、ポリマードープ中のポリマー濃度は、17質量%であった。
Next, 66.6 parts by mass of calcium hydroxide powder having an average particle size of 10 μm or less was weighed out and slowly added to the polymer solution in which the polymerization reaction had been completed to carry out a neutralization reaction. After the addition of calcium hydroxide was completed, stirring was continued for an additional 40 minutes to obtain a transparent polymer dope.
When polymetaphenylene isophthalamide was isolated from the obtained polymer dope and its IV was measured, it was found to be 1.65. Further, the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を84質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Orange 61を16質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.82μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=6890.0mPa・s、剪断が1000(1/s)の時剪断粘度が47.3mPa・sであった。 84% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. The organic pigment Pigment Orange 61 was gradually added to this DMAc while stirring at high speed to give a concentration of 16% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. Stored in pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.82 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 6890.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 47.3 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対して有機顔料量=6.00質量%となるようにドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the obtained raw cotton is a bright color with a lightness L value of 38 to 40, the above pigment dispersion solution is added to the above polymer dope without mixing with a polymer in advance. After sequentially mixing and stirring via dope piping so that the pigment amount = 6.00% by mass, it was continuously discharged from a spinneret with a pore diameter of 0.07 mm and a number of holes of 500 into a coagulation bath with a bath temperature of 30 ° C. It was spun. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.

洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
得られた原綿の繊度は、1.67dtex,破断強度3.54cN/dtex、破断伸度38.2%と防護衣料に用いるのに問題のない物性であった。
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.
The obtained raw cotton had fineness of 1.67 dtex, breaking strength of 3.54 cN/dtex, and breaking elongation of 38.2%, which had physical properties that were acceptable for use in protective clothing.

また、原綿の残留溶媒量は0.03質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=39.5と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、濃く鮮やかな色であることが確認された。 In addition, since the amount of residual solvent in the raw cotton was 0.03% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Industries), and the result was that the L value was 39.5, which was the target value. It was confirmed that the brightness was achieved. Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was deep and vivid.

[比較例1]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Comparative example 1]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を85質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Orange 73を15質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.93μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=7500.0mPa・s、剪断が1000(1/s)の時剪断粘度が69.0mPa・sであった。 85% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. The organic pigment Pigment Orange 73 was gradually added to this DMAc while stirring at high speed to give a concentration of 15% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. Stored in pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.93 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 7500.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 69.0 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対して有機顔料量=6.00質量%となるようにドープ配管を介して逐次混合撹拌が必要であるが、顔料分散溶液の剪断粘度が高く送液配管内における圧力損失が大きく顔料の混合を行うことができなかった。このためこの製造方法で目的の原綿を得ることができなかった。 Since the target density of the obtained raw cotton is a bright color with a lightness L value of 38 to 40, the above pigment dispersion solution is added to the above polymer dope without mixing with a polymer in advance. It is necessary to mix and stir sequentially through the dope piping so that the amount of pigment is 6.00% by mass, but the shear viscosity of the pigment dispersion solution is high and the pressure loss in the liquid delivery piping is large, making it difficult to mix the pigment. could not. For this reason, it was not possible to obtain the desired raw cotton using this manufacturing method.

[比較例2]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Comparative example 2]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を87質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Red 254を13質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.84μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=5820.0mPa・s、剪断が1000(1/s)の時剪断粘度が24.6mPa・sであった。 87% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. While stirring at high speed, organic pigment Pigment Red 254 was gradually added to this DMAc at a concentration of 13% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. Stored in pigment tank. Here, when the particle size of the pigment dispersion solution was measured, it was found that D90%=1.84 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity is 5820.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 24.6 mPa.・It was s.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を85.3質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら無機オレンジ顔料Pigment Orange 82を14.7質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.63μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=21.2mPa・s、剪断が1000(1/s)の時剪断粘度が24.3mPa・sであった。 85.3% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. While stirring at high speed, an inorganic orange pigment Pigment Orange 82 was gradually added to this DMAc at a concentration of 14.7% by mass, and the mixture was further stirred at high speed for 1 hour to form a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. It was prepared and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.63 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 21.2 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 24.3 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Redを0.70質量%、Pigment Orange 82を6.00質量%となるように2つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the raw cotton obtained is a bright color with a lightness L value of 38 to 40, the pigment dispersion solution is added to the polymer dope without mixing with the polymer etc. in advance. Two pigment dispersion solutions were successively mixed and stirred via a dope pipe so that Red was 0.70% by mass and Pigment Orange 82 was 6.00% by mass. The material was spun by being discharged from a spinneret into a coagulation bath at a bath temperature of 30°C. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の残留溶媒量は0.03質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=39.3と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、濃く鮮やかな色であることが確認された。
しかし、該原綿の物性は、繊度は、1.67dtex,破断強度2.54cN/dtex、破断伸度15.3%と無機顔料の含有量が多いため防護衣料に十分な強度を得ることができなかった。
Since the amount of residual solvent in the obtained raw cotton was 0.03% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 39.3, which was the target value. It was confirmed that the brightness of Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was deep and vivid.
However, the physical properties of the raw cotton are such that the fineness is 1.67 dtex, the breaking strength is 2.54 cN/dtex, and the breaking elongation is 15.3%, and because it contains a large amount of inorganic pigment, it cannot obtain sufficient strength for protective clothing. There wasn't.

[比較例3]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Comparative example 3]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を84質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Orange 61を16質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=2.81μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=6080.0mPa・s、剪断が1000(1/s)の時剪断粘度が44.8mPa・sであった。 84% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. The organic pigment Pigment Orange 61 was gradually added to this DMAc while stirring at high speed to give a concentration of 16% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. Stored in pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=2.81 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 6080.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 44.8 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対して有機顔料量=6.00質量%となるようにドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the obtained raw cotton is a bright color with a lightness L value of 38 to 40, the above pigment dispersion solution is added to the above polymer dope without mixing with a polymer in advance. After sequentially mixing and stirring via dope piping so that the pigment amount = 6.00% by mass, it was continuously discharged from a spinneret with a pore diameter of 0.07 mm and a number of holes of 500 into a coagulation bath with a bath temperature of 30 ° C. It was spun. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の繊度は、1.67dtex,破断強度3.42cN/dtex、破断伸度36.6%と防護衣料に十分な強度を得ることができなかった。
また、原綿の残留溶媒量は0.03質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=40.1と目標の明度に未達であることが確認された。また、標準光源D65下で目視により色味を確認した結果、十分な濃さを有していないことが確認された。
The obtained raw cotton had a fineness of 1.67 dtex, a breaking strength of 3.42 cN/dtex, and a breaking elongation of 36.6%, which meant that it could not provide sufficient strength for protective clothing.
In addition, since the amount of residual solvent in the raw cotton was 0.03% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the result was that the L value was 40.1, which was the target value. It was confirmed that the brightness had not been reached. Further, as a result of visually checking the color under the standard light source D65, it was confirmed that the color was not sufficiently deep.

[実施例2]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Example 2]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を86質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Blue 15:1を14質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.42μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=12.4mPa・s、剪断が1000(1/s)の時剪断粘度が13.2mPa・sであった。 86% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. While stirring at high speed, the organic pigment Pigment Blue 15:1 was gradually added to this DMAc at a concentration of 14% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.42 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 12.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 13.2 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Blue 15:1を2.00質量%となるようにドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the raw cotton obtained is a bright color with a lightness L value of 38 to 40, the pigment dispersion solution is added to the polymer dope without mixing with the polymer etc. in advance. After sequentially mixing and stirring Blue 15:1 to a concentration of 2.00% by mass through a dope pipe, it was continuously poured into a coagulation bath at a bath temperature of 30°C from a spinneret with a pore diameter of 0.07 mm and a number of holes of 500. It was discharged and spun. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の繊度は、1.67dtex,破断強度3.69cN/dtex、破断伸度36.3%であった。
得られた原綿の残留溶媒量は0.02質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=39.8と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、濃く鮮やかな色であることが確認された。
The fineness of the obtained raw cotton was 1.67 dtex, the breaking strength was 3.69 cN/dtex, and the breaking elongation was 36.3%.
Since the amount of residual solvent in the obtained raw cotton was 0.02% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 39.8, which was the target value. It was confirmed that the brightness of Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was deep and vivid.

[比較例4]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Comparative example 4]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

また、実施例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Blue 15:1を14質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.42μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=12.4mPa・s、剪断が1000(1/s)の時剪断粘度が13.2mPa・sであった。 In addition, a pigment dispersion solution was prepared by dispersing Pigment Blue 15:1 to 14% by mass in N,N-dimethylacetamide (DMAc) in the same manner as in Example 2, and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.42 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 12.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 13.2 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で38~40で鮮やかな色味であるが、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Blue 15:1を1.90質量%となるようにドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 The target density of the raw cotton obtained is a bright color with a lightness L value of 38 to 40, but the pigment dispersion solution is added to the polymer dope without mixing it with the polymer in advance. After sequentially mixing and stirring Blue 15:1 to a concentration of 1.90% by mass through a dope pipe, it was continuously poured into a coagulation bath at a bath temperature of 30°C from a spinneret with a pore diameter of 0.07 mm and a number of holes of 500. It was discharged and spun. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の繊度は、1.67dtex,破断強度3.67cN/dtex、破断伸度38.9%であった。
得られた原綿の残留溶媒量は0.02質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=40.7と目標の明度に未達であることが確認された。また、標準光源D65下で目視により色味を確認した結果、十分な濃さを有していないことが確認された。
The fineness of the obtained raw cotton was 1.67 dtex, the breaking strength was 3.67 cN/dtex, and the breaking elongation was 38.9%.
Since the amount of residual solvent in the obtained raw cotton was 0.02% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 40.7, which was the target value. It was confirmed that the brightness had not been reached. Further, as a result of visually checking the color under the standard light source D65, it was confirmed that the color was not sufficiently deep.

[実施例3]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Example 3]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

また、実施例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Blue 15:1を14質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.42μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=12.4mPa・s、剪断が1000(1/s)の時剪断粘度が13.2mPa・sであった。 In addition, a pigment dispersion solution was prepared by dispersing Pigment Blue 15:1 to 14% by mass in N,N-dimethylacetamide (DMAc) in the same manner as in Example 2, and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.42 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 12.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 13.2 mPa.・It was s.

次に、比較例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Red 254を13質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.84μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=5820.0mPa・s、剪断が1000(1/s)の時剪断粘度が24.6mPa・sであった。 Next, a pigment dispersion solution was prepared by dispersing Pigment Red 254 in N,N-dimethylacetamide (DMAc) to a concentration of 13% by mass in the same manner as in Comparative Example 2, and the solution was stored in a pigment tank. Here, when the particle size of the pigment dispersion solution was measured, it was found that D90%=1.84 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity is 5820.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 24.6 mPa.・It was s.

さらに、乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を83質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Yellow 138を17質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.98μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=6230.0mPa・s、剪断が1000(1/s)の時剪断粘度が38.4mPa・sであった。 Further, 83% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. While stirring at high speed, an organic pigment Pigment Yellow 138 was gradually added to this DMAc at a concentration of 17% by mass, and the mixture was further stirred at high speed for 1 hour to create a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. Stored in pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.98 μm. In addition, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 6230.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 38.4 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で30~32で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Blue 15:1を0.56質量%、Pigment Red 254を1.98質量%、Pigment Yellow 138を7.46質量%となるように3つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the raw cotton obtained is a bright color with a lightness L value of 30 to 32, the pigment dispersion solution is added to the polymer dope without mixing it with the polymer in advance. After sequentially mixing and stirring three pigment dispersion solutions through a dope pipe so that Blue 15:1 was 0.56% by mass, Pigment Red 254 was 1.98% by mass, and Pigment Yellow 138 was 7.46% by mass. The material was continuously spun by being discharged from a spinneret with a hole diameter of 0.07 mm and a number of holes of 500 into a coagulation bath at a bath temperature of 30°C. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の残留溶媒量は0.03質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=31.8と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、濃く鮮やかな色であることが確認された。
また、該原綿の物性は、繊度は、2.21dtex,破断強度3.51cN/dtex、破断伸度37.2%と防護衣料に用いるのに十分な物性であった。
Since the amount of residual solvent in the obtained raw cotton was 0.03% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 31.8, which was the target value. It was confirmed that the brightness of Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was deep and vivid.
In addition, the physical properties of the raw cotton were sufficient for use in protective clothing, with a fineness of 2.21 dtex, breaking strength of 3.51 cN/dtex, and breaking elongation of 37.2%.

[比較例5]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Comparative example 5]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

また、実施例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Blue 15:1を14質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.42μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=12.4mPa・s、剪断が1000(1/s)の時剪断粘度が13.2mPa・sであった。 In addition, a pigment dispersion solution was prepared by dispersing Pigment Blue 15:1 to 14% by mass in N,N-dimethylacetamide (DMAc) in the same manner as in Example 2, and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.42 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 12.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 13.2 mPa.・It was s.

次に、比較例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Red 254を13質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.84μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=5820.0mPa・s、剪断が1000(1/s)の時剪断粘度が24.6mPa・sであった。 Next, a pigment dispersion solution was prepared by dispersing Pigment Red 254 in N,N-dimethylacetamide (DMAc) to a concentration of 13% by mass in the same manner as in Comparative Example 2, and the solution was stored in a pigment tank. Here, when the particle size of the pigment dispersion solution was measured, it was found that D90%=1.84 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity is 5820.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 24.6 mPa.・It was s.

さらに、比較例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Yellow 138を17質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.98μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=6230.0mPa・s、剪断が1000(1/s)の時剪断粘度が38.4mPa・sであった。 Furthermore, a pigment dispersion solution was prepared by dispersing Pigment Yellow 138 in N,N-dimethylacetamide (DMAc) to a concentration of 17% by mass in the same manner as in Comparative Example 2, and the solution was stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.98 μm. In addition, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 6230.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 38.4 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で30~32で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Blue 15:1を0.62質量%、Pigment Red 254を2.18質量%、Pigment Yellow 138を8.20質量%となるように3つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the raw cotton obtained is a bright color with a lightness L value of 30 to 32, the pigment dispersion solution is added to the polymer dope without mixing it with the polymer in advance. After sequentially mixing and stirring three pigment dispersion solutions through a dope pipe so that Blue 15:1 was 0.62% by mass, Pigment Red 254 was 2.18% by mass, and Pigment Yellow 138 was 8.20% by mass. The material was continuously spun by being discharged from a spinneret with a hole diameter of 0.07 mm and a number of holes of 500 into a coagulation bath at a bath temperature of 30°C. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の残留溶媒量は0.03質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=30.2と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、非常に濃く鮮やかな色であることが確認された。
しかし、該原綿の物性は、繊度は、2.23dtex,破断強度2.21cN/dtex、破断伸度12.4%と防護衣料に用いるには不十分な物性となった。
Since the amount of residual solvent in the obtained raw cotton was 0.03% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 30.2, which was the target value. It was confirmed that the brightness of Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was very deep and vivid.
However, the physical properties of the raw cotton were such that the fineness was 2.23 dtex, the breaking strength was 2.21 cN/dtex, and the breaking elongation was 12.4%, which were insufficient for use in protective clothing.

[比較例6]
実施例1と同じ方法で重合・中和を行い透明なポリマードープを得た。このドープを高速撹拌しながら水中に入れ凝固させたのち、濾過・水洗・乾燥しポリマーを単離した。
このポリマーを濃度17質量%となる比率で、N-メチル-2-ピロリドン(NMP)に溶解し、ポリマー溶液を作成した。IVは、1.65であであった。
[Comparative example 6]
Polymerization and neutralization were performed in the same manner as in Example 1 to obtain a transparent polymer dope. This dope was placed in water with high speed stirring and coagulated, then filtered, washed with water, and dried to isolate the polymer.
This polymer was dissolved in N-methyl-2-pyrrolidone (NMP) at a concentration of 17% by mass to prepare a polymer solution. IV was 1.65.

また、比較例2と同じ方法で使用する溶媒としてN-メチル-2-ピロリドン(NMP)を用い、この溶媒中にPigment Blue 15:1を14質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.83μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=12.3mPa・s、剪断が1000(1/s)の時剪断粘度が12.8mPa・sであった。 In addition, N-methyl-2-pyrrolidone (NMP) was used as the solvent in the same manner as in Comparative Example 2, and a pigment dispersion solution in which Pigment Blue 15:1 was dispersed at 14% by mass was prepared. It was prepared and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.83 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 12.3 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 12.8 mPa.・It was s.

次に、比較例2と同じ方法で使用する溶媒としてN-メチル-2-ピロリドン(NMP)を用い、この溶媒中にPigment Red 254を13質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.89μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=4200.0mPa・s、剪断が1000(1/s)の時剪断粘度が22.0mPa・sであった。 Next, using N-methyl-2-pyrrolidone (NMP) as a solvent in the same manner as in Comparative Example 2, a pigment dispersion solution was created by dispersing Pigment Red 254 in this solvent to a concentration of 13% by mass. and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.89 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 4200.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 22.0 mPa.・It was s.

さらに、比較例2と同じ方法で使用する溶媒としてN-メチル-2-ピロリドン(NMP)を用い、この溶媒中にPigment Yellow 138を17質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.45μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=5200.0mPa・s、剪断が1000(1/s)の時剪断粘度が25.0mPa・sであった。 Furthermore, using N-methyl-2-pyrrolidone (NMP) as a solvent in the same manner as in Comparative Example 2, a pigment dispersion solution was prepared in which Pigment Yellow 138 was dispersed at 17% by mass. , stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.45 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 5200.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 25.0 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で30~32で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対してPigment Blue 15:1を0.62質量%、Pigment Red 254を2.18質量%、Pigment Yellow 138を8.20質量%となるように3つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、80℃に加温し連続して孔径0.07mm、孔数500の紡糸口金から、浴温度80℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/CaCl2=60/40(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the raw cotton obtained is a bright color with a lightness L value of 30 to 32, the pigment dispersion solution is added to the polymer dope without mixing it with the polymer in advance. After sequentially mixing and stirring three pigment dispersion solutions through a dope pipe so that Blue 15:1 was 0.62% by mass, Pigment Red 254 was 2.18% by mass, and Pigment Yellow 138 was 8.20% by mass. The mixture was heated to 80° C. and continuously spun into a coagulation bath with a bath temperature of 80° C. from a spinneret with a hole diameter of 0.07 mm and a number of holes of 500. The coagulation liquid had a composition of water/CaCl2=60/40 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度80℃の水/NMP=45/55の組成の可塑延伸浴中にて、2.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/NMP=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 2.7 times in a plastic stretching bath having a composition of water/NMP=45/55 at a temperature of 80°C.
After stretching, it was washed in a 20°C water/NMP=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C warm water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿を分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=30.1と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、非常に濃く鮮やかな色であることが確認された。
さらに、該原綿の物性は、繊度は、2.19dtex,破断強度5.73cN/dtex、破断伸度42.3%と凝固条件により繊維表面にスキン層が形成され顔料の含有量が高くても防護衣料に用いるのに十分な物性を得ることが出来た。
しかしながら、繊維表面に形成されたスキン層のため内部の残留溶剤の除去が困難となり、得られた原綿の残留溶媒量は1.98質量%と非常に高いものとなってしまった。
The lightness L value of the obtained raw cotton was measured using a spectrophotometer SD7000 (manufactured by Nippon Denshoku Kogyo), and as a result, it was confirmed that the target lightness was achieved, with L value = 30.1. Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was very deep and vivid.
Furthermore, the physical properties of the raw cotton are such that the fineness is 2.19 dtex, the breaking strength is 5.73 cN/dtex, and the breaking elongation is 42.3%, which means that a skin layer is formed on the fiber surface due to the coagulation conditions, even when the pigment content is high. We were able to obtain sufficient physical properties for use in protective clothing.
However, the skin layer formed on the fiber surface made it difficult to remove the residual solvent inside, and the amount of residual solvent in the obtained raw cotton was as high as 1.98% by mass.

[実施例4]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Example 4]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を88質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Blue 15:1を4.78質量%、Pigment Red 254を5.51質量%、Pigment Yellow 138を1.71質量%となるように3種類の顔料を徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.78μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=4300.0mPa・s、剪断が1000(1/s)の時剪断粘度が38.3mPa・sであった。 88% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. Three types of pigments were added to this DMAc while stirring at high speed: 4.78% by mass of organic pigments Pigment Blue 15:1, 5.51% by mass of Pigment Red 254, and 1.71% by mass of Pigment Yellow 138. After the gradual addition, high speed stirring was further performed for 1 hour to prepare a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc, and the solution was stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.78 μm. In addition, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 4300.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 38.3 mPa.・It was s.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を85.0質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら黒色無機顔料Pigment Black 7を15.0質量%となるように徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=0.72μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=9.4mPa・s、剪断が1000(1/s)の時剪断粘度が9.8mPa・sであった。 85.0% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. A black inorganic pigment, Pigment Black 7, was gradually added to this DMAc while stirring at high speed to give a concentration of 15.0% by mass, and the mixture was further stirred at high speed for 1 hour to obtain a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc. It was prepared and stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=0.72 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 9.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 9.8 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で30~32で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対して有機顔料を合計2.46質量%、黒色無機顔料Pigment Black 7を0.50質量%となるように上記で準備した2つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the obtained raw cotton is a bright color with a lightness L value of 30 to 32, the above pigment dispersion solution is added to the above polymer dope without mixing with a polymer etc. in advance. The two pigment dispersion solutions prepared above were successively mixed and stirred via the dope pipe so that the total amount of pigment was 2.46% by mass and the black inorganic pigment Pigment Black 7 was 0.50% by mass. The material was spun by being discharged from a spinneret with a diameter of 0.07 mm and 500 holes into a coagulation bath at a bath temperature of 30°C. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の物性は、繊度は、1.42dtex,破断強度3.56cN/dtex、破断伸度36.2%と防護衣料に用いるのに十分な物性であった。
また、得られた原綿の残留溶媒量は0.01質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=30.4と目標の明度を達成していることを確認した。また、標準光源D65下で目視により色味を確認した結果、非常に濃く鮮やかな色であることが確認された。
The physical properties of the raw cotton obtained were that the fineness was 1.42 dtex, the breaking strength was 3.56 cN/dtex, and the breaking elongation was 36.2%, which were sufficient for use in protective clothing.
In addition, since the amount of residual solvent in the obtained raw cotton was 0.01% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 30.4. It was confirmed that the target brightness was achieved. Further, as a result of visually checking the color under standard light source D65, it was confirmed that the color was very deep and vivid.

[実施例5]
実施例1と同じ方法でポリマー溶液を作成した。IVは、1.65であり、ポリマードープ中のポリマー濃度は、17質量%であった。
[Example 5]
A polymer solution was prepared in the same manner as in Example 1. IV was 1.65, and the polymer concentration in the polymer dope was 17% by mass.

乾燥窒素雰囲気下の高速撹拌が可能な容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)を88質量%秤量し、0℃に冷却した。このDMAc中に高速撹拌しながら有機顔料Pigment Blue 15:1を4.24質量%、Pigment Red 254を6.88質量%、Pigment Yellow 138を0.88質量%となるように3種類の顔料を徐々に加えた後、さらに1時間高速撹拌し、DMAc中に顔料が均一に分散した顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=1.74μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=4500.0mPa・s、剪断が1000(1/s)の時剪断粘度が40.2mPa・sであった。 88% by mass of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed into a container capable of high-speed stirring under a dry nitrogen atmosphere, and cooled to 0°C. Three types of pigments were added to this DMAc while stirring at high speed: 4.24% by mass of organic pigments Pigment Blue 15:1, 6.88% by mass of Pigment Red 254, and 0.88% by mass of Pigment Yellow 138. After the gradual addition, high speed stirring was further performed for 1 hour to prepare a pigment dispersion solution in which the pigment was uniformly dispersed in DMAc, and the solution was stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=1.74 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 4500.0 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 40.2 mPa.・It was s.

次に、比較例2と同じ方法でN,N-ジメチルアセトアミド(DMAc)中にPigment Black 7を15質量%となるように分散させた顔料分散溶液を作成し、顔料タンクに保管した。ここで該顔料分散溶液の粒径を測定したところD90%=0.72μmであった。また該顔料分散溶液の剪断濃度を測定した結果、剪断が1(1/s)の時、剪断粘度η=9.4mPa・s、剪断が1000(1/s)の時剪断粘度が9.8mPa・sであった。 Next, a pigment dispersion solution was prepared by dispersing Pigment Black 7 in N,N-dimethylacetamide (DMAc) to a concentration of 15% by mass in the same manner as in Comparative Example 2, and the solution was stored in a pigment tank. When the particle size of the pigment dispersion solution was measured, it was found that D90%=0.72 μm. Further, as a result of measuring the shear concentration of the pigment dispersion solution, when the shear is 1 (1/s), the shear viscosity η = 9.4 mPa・s, and when the shear is 1000 (1/s), the shear viscosity is 9.8 mPa.・It was s.

得られる原綿の目標の濃さが明度L値で30~32で鮮やかな色味であるため、上記顔料分散溶液を、予めポリマーなどと混合することなく、上記ポリマードープにポリマー質量に対して有機顔料を合計1.50質量%、黒色無機顔料Pigment Black 7を1.0質量%となるように上記で準備した2つの顔料分散溶液をドープ配管を介して逐次混合撹拌した後、連続して孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量%)であり、凝固浴中に糸速7m/分で吐出して1色目の紡糸を実施した。 Since the target density of the obtained raw cotton is a bright color with a lightness L value of 30 to 32, the above pigment dispersion solution is added to the above polymer dope without mixing with a polymer etc. in advance. The two pigment dispersion solutions prepared above were successively mixed and stirred via the dope pipe so that the total amount of pigment was 1.50% by mass and the black inorganic pigment Pigment Black 7 was 1.0% by mass, and then the pore size was continuously adjusted. The material was spun by being discharged from a spinneret with a diameter of 0.07 mm and 500 holes into a coagulation bath at a bath temperature of 30°C. The coagulation liquid had a composition of water/DMAc=45/55 (mass%), and was discharged into a coagulation bath at a yarn speed of 7 m/min to perform spinning of the first color.

引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、次いで繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、顔料で着色された原着原綿を得た。
Subsequently, stretching was performed at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water/DMAc=45/55 at a temperature of 40°C.
After stretching, it was washed in a 20°C water/DMAc=70/30 bath (immersion length 1.8 m), then in a 20°C water bath (immersion length 3.6 m), and then in a 60°C hot water bath (immersion length 5 .4 m) for thorough cleaning.
After washing, the fibers are subjected to dry heat treatment using a heated roller with a surface temperature of 300°C, and then the fibers are bundled and passed through a crimper to give crimps, and then cut with a cutter to obtain short fibers of 51 mm. A dyed raw cotton colored with a pigment was obtained.

得られた原綿の物性は、繊度は、1.43dtex,破断強度3.52cN/dtex、破断伸度34.2%と防護衣料に用いるのに十分な物性であった。
また、得られた原綿の残留溶媒量は0.01質量%であったので、分光色彩計SD7000(日本電色工業製)を用いて、明度L値を測定した結果、L値=30.1と目標の明度を達成していることを確認した。しかし、標準光源D65下で目視により色味を確認した結果、非常に濃い色ではあるが鮮やかさがなく黒っぽくくすんだ色となり、目標の色味を達成することができなかった。
実施例1~5、比較例1~6により得られた原着メタ型全芳香族ポリアミド繊維の物性を表1に示す。
The physical properties of the raw cotton obtained were that the fineness was 1.43 dtex, the breaking strength was 3.52 cN/dtex, and the breaking elongation was 34.2%, which were sufficient for use in protective clothing.
In addition, since the amount of residual solvent in the obtained raw cotton was 0.01% by mass, the lightness L value was measured using a spectrocolorimeter SD7000 (manufactured by Nippon Denshoku Kogyo), and the L value was 30.1. It was confirmed that the target brightness was achieved. However, when the color was visually checked under the standard light source D65, it was found that although the color was very deep, it lacked vividness and was blackish and dull, and the target color could not be achieved.
Table 1 shows the physical properties of the spun-dyed meta-type wholly aromatic polyamide fibers obtained in Examples 1 to 5 and Comparative Examples 1 to 6.

本発明は、防護衣料等に用いられる原着メタ型全芳香族ポリアミド繊維において鮮やかで濃く深みのある色に着色されながら防護衣料としての性能も有した原着メタ型全芳香族ポリアミド繊維を提供するものである。 The present invention provides a sprue-dyed meta-type fully aromatic polyamide fiber used for protective clothing, etc., which is colored in a vivid, dark, and deep color and also has performance as protective clothing. It is something to do.

Claims (3)

残存溶媒量が全繊維質量に対して0.1質量%以下である原着メタ型全芳香族ポリアミド繊維であって、該繊維には少なくとも1種類の有機顔料が合計2.0~10.0質量%含有されており、かつ該繊維の明度Lが40以下、引張強度が3.5cN/dtex以上であることを特徴とする原着メタ型全芳香族ポリアミド繊維。 A spun-dyed meta-type wholly aromatic polyamide fiber in which the amount of residual solvent is 0.1% by mass or less based on the total fiber mass, and the fiber contains at least one type of organic pigment in a total amount of 2.0 to 10.0% by mass. % by mass, and the fiber has a lightness L of 40 or less and a tensile strength of 3.5 cN/dtex or more. 黒色無機顔料が全繊維質量全体に対して0.1~0.5質量%含有されている請求項1記載の原着メタ型全芳香族ポリアミド繊維。 The spun-dyed meta-type wholly aromatic polyamide fiber according to claim 1, wherein the black inorganic pigment is contained in an amount of 0.1 to 0.5% by mass based on the total fiber mass. アミド系溶媒中に、有機顔料を、下記方法により測定した粒径D90%が2.0μm以下となるように、顔料濃度10~50質量%で分散させて顔料分散溶液とし、該顔料分散溶液に剪断が1(1/s)かかった時の粘度ηが7000mPa・s以下であり、かつ該顔料分散溶液に剪断が1000(1/s)かかった時の粘度ηが50mPa・s以下である有機顔料分散溶液を少なくとも1種類以上作成した後、該有機顔料分散溶液を、メタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液と連続的に混合撹拌して紡糸ドープを作成し、次いで該有機顔料が、繊維中に全繊維質量に対して合計2.0~10.0質量%含有されるよう紡糸することを特徴とする請求項1に記載の原着メタ型全芳香族ポリアミド繊維の製造方法。
<粒径D90%の測定方法>
粒子の粒径をJIS Z 8825に従って測定し、頻度(%)を算出し累積頻度が90%である粒径D90%を得た。具体的には、マイクロトラック・ベル株式会社のMicrotrac MT3000を使用し、レーザー波長:780nmm、測定時間:30sec、測定回数:2回、透過性:反射、溶媒:イオン交換水、溶媒屈折率:1.33でレーザー回折・散乱法にて測定した。
An organic pigment is dispersed in an amide solvent at a pigment concentration of 10 to 50% by mass so that the particle size D90% measured by the following method is 2.0 μm or less, and a pigment dispersion solution is prepared. An organic material having a viscosity η of 7,000 mPa·s or less when sheared at 1 (1/s), and a viscosity η of 50 mPa·s or less when the pigment dispersion solution is subjected to 1,000 (1/s) shear. After creating at least one type of pigment dispersion solution, the organic pigment dispersion solution is continuously mixed and stirred with a solution of meta-type wholly aromatic polyamide dissolved in an amide solvent to create a spinning dope, and then the organic The production of the spun-dyed meta-type wholly aromatic polyamide fiber according to claim 1, wherein the fiber is spun so that the pigment is contained in the fiber in a total amount of 2.0 to 10.0% by mass based on the total fiber mass. Method.
<Measurement method of particle size D90%>
The particle size of the particles was measured according to JIS Z 8825, the frequency (%) was calculated, and the particle size D90% with a cumulative frequency of 90% was obtained. Specifically, Microtrac MT3000 from Microtrac Bell Co., Ltd. was used, laser wavelength: 780 nm, measurement time: 30 sec, number of measurements: 2, transparency: reflection, solvent: ion exchange water, solvent refractive index: 1. It was measured using a laser diffraction/scattering method at .33.
JP2022051079A 2022-03-28 2022-03-28 Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same Pending JP2023144211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022051079A JP2023144211A (en) 2022-03-28 2022-03-28 Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022051079A JP2023144211A (en) 2022-03-28 2022-03-28 Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023144211A true JP2023144211A (en) 2023-10-11

Family

ID=88252954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022051079A Pending JP2023144211A (en) 2022-03-28 2022-03-28 Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023144211A (en)

Similar Documents

Publication Publication Date Title
TWI547619B (en) Meta-type master aromatic polyamide fiber
JP4647680B2 (en) Easy-dyeing meta-type wholly aromatic polyamide fiber
TWI586855B (en) Dope dyed meta-type master aromatic polyamide fiber
JP7248507B2 (en) Spin-dyed meta-type wholly aromatic polyamide fiber and method for producing the same
JP2013133567A (en) Meta-type wholly aromatic polyamide laminated protective garment
JP2009120976A (en) Easily dyeable meta-type wholly aromatic polyamide fiber
JP2012052249A (en) Composite spun yarn
JP7028682B2 (en) Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber.
JP6873768B2 (en) I Ching meta-type total aromatic polyamide fiber with excellent flame retardancy and its manufacturing method
JP2023144211A (en) Spun-dyed meta-type wholly aromatic polyamide fiber and method for producing the same
JP2011202326A (en) Fiber structure including easy-to-dye meta-wholly aromatic polyamide staple fiber
JP6960275B2 (en) Light-colored original meta-type total aromatic polyamide fiber
JP2013133569A (en) Spun yarn of spun-dyed meta-type wholly aromatic polyamide fiber
JP2020117831A (en) Easily-dyeable meta-type wholly aromatic polyamide fiber, and method for producing the same
JP2018154943A (en) Meta-type wholly aromatic polyamide fiber having excellent flame retardancy and method for producing the same
JP7466054B2 (en) Method for producing meta-dyed fully aromatic polyamide fiber
JP2015042790A (en) Stretch-broken spun yarn comprising spun-dyed meta-type wholly aromatic polyamide
JP7239382B2 (en) Easy-dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP6523026B2 (en) Black meta-type wholly aromatic polyamide fiber
JP2021091993A (en) Spun-dyed meta-type wholly aromatic polyamide fiber excellent in visibility, and method for producing the same
JP2021107588A (en) Spun-dyed meta-type wholly aromatic polyamide fiber having excellent light resistance and manufacturing method thereof
JP2023110161A (en) Meta-type whole aromatic polyamide fiber and production method of the same
JP2024084197A (en) Meta-type wholly aromatic polyamide fiber and its manufacturing method
JP2010156083A (en) Protective garment
JP2012154003A (en) Yarn