JP7028682B2 - Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber. - Google Patents

Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber. Download PDF

Info

Publication number
JP7028682B2
JP7028682B2 JP2018044223A JP2018044223A JP7028682B2 JP 7028682 B2 JP7028682 B2 JP 7028682B2 JP 2018044223 A JP2018044223 A JP 2018044223A JP 2018044223 A JP2018044223 A JP 2018044223A JP 7028682 B2 JP7028682 B2 JP 7028682B2
Authority
JP
Japan
Prior art keywords
aromatic polyamide
fiber
meta
polyamide fiber
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044223A
Other languages
Japanese (ja)
Other versions
JP2018154954A (en
Inventor
直彦 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JP2018154954A publication Critical patent/JP2018154954A/en
Application granted granted Critical
Publication of JP7028682B2 publication Critical patent/JP7028682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、原着メタ型全芳香族ポリアミド繊維に関するものであり、さらに詳しくは、得られた繊維の燃焼時限界酸素指数LOIが少なくとも33以上であり、かつ130℃で2時間湿熱処理した後の強度保持率が90%以上である、耐久性に優れた原着メタ型全芳香族ポリアミド繊維及びその製造方法、並びに該繊維からなる難燃性紡績糸及び難燃性牽切紡績糸に関するものである。 The present invention relates to a raw meta-type total aromatic polyamide fiber, and more specifically, after the obtained fiber has a combustion limit oxygen index LOI of at least 33 or more and is subjected to a wet heat treatment at 130 ° C. for 2 hours. Related to the highly durable original meta-type total aromatic polyamide fiber having a strength retention rate of 90% or more, a method for producing the same, and a flame-retardant spun yarn and a flame-retardant cut-off spun fiber made of the fiber. Is.

従来より、芳香族ジアミンと芳香族ジカルボン酸ジハライドとから製造される全芳香族ポリアミドが耐熱性及び難燃性に優れていることは周知であり、また、これらの全芳香族ポリアミドはアミド系極性溶媒に可溶であり、全芳香族ポリアミドを該溶媒に溶解した重合体溶液から乾式紡糸、湿式紡糸、半乾半湿式紡糸等の方法により繊維となし得ることもよく知られている。これら全芳香族ポリアミドのうち、ポリメタフェニレンイソフタルアミドで代表されるメタ型全芳香族ポリアミド(「メタアラミド」と称されることもある)の繊維は、耐熱・難燃性繊維として特に有用なものであり、これらの特性を発揮する分野、例えば、フィルター、電子部品等の産業用途や、耐熱性、防炎性、耐炎性が重視される防護衣等の防災安全衣料用途等に用いられている。 It has been well known that all aromatic polyamides produced from aromatic diamines and aromatic dicarboxylic acid dihalides have excellent heat resistance and flame retardancy, and these all aromatic polyamides are amide-based polarities. It is also well known that it is soluble in a solvent and can be made into a fiber by a method such as dry spinning, wet spinning, semi-dry semi-wet spinning, etc. from a polymer solution in which total aromatic polyamide is dissolved in the solvent. Among these total aromatic polyamides, the fibers of the meta-type total aromatic polyamide represented by polymethaphenylene isophthalamide (sometimes referred to as "meta aramid") are particularly useful as heat-resistant and flame-retardant fibers. It is used in fields that exhibit these characteristics, such as industrial applications such as filters and electronic parts, and disaster prevention and safety clothing applications such as protective clothing where heat resistance, flame resistance, and flame resistance are important. ..

これらの分野においてメタ型全芳香族ポリアミド繊維の難燃性は、火災防止、人命保護の観点からもより高く安定したものが求められている。 In these fields, the flame retardancy of the meta-type all-aromatic polyamide fiber is required to be higher and more stable from the viewpoint of fire prevention and protection of human life.

そこで、メタ型全芳香族ポリアミド繊維の難燃性を改善するため、ポリマーに有機リン化合物、含リンフェノール樹脂、ハロゲン化合物等を添加する方法が提案されており、ハロゲン原子含有の有機リン化合物を配合して難燃性を改善する方法が提案されている(下記特許文献1参照)。しかし、ここで使用される化合物は、安定した繊維成形加工を行う観点から、低分子量の有機化合物が使用されるため、繊維成形加工時にその一部が排出・脱落されてしまう傾向があり、さらにはハロゲン化合物の場合は環境問題を危惧した近年の脱ハロゲン化の動きに逆向している。 Therefore, in order to improve the flame retardancy of the meta-type total aromatic polyamide fiber, a method of adding an organic phosphorus compound, a phosphorus-containing phenol resin, a halogen compound, etc. to the polymer has been proposed, and an organic phosphorus compound containing a halogen atom has been proposed. A method of blending to improve flame retardancy has been proposed (see Patent Document 1 below). However, since the compound used here is a low molecular weight organic compound from the viewpoint of performing stable fiber molding, a part of the compound tends to be discharged or dropped during the fiber molding. In the case of halogen compounds, is facing the recent movement toward dehalogenation, which is concerned about environmental problems.

一方、メタ型全芳香族ポリアミド繊維は、その製造プロセスにアミド系有機溶媒を使用することが一般的であり、この場合、繊維中にアミド系溶媒が残留することが知られており、このことにより、本来メタ型全芳香族ポリアミドが有している難燃性が充分に発揮できず、難燃性に劣るものしか得られないという欠点を有している(下記特許文献2~10参照)。 On the other hand, for meta-type total aromatic polyamide fibers, it is common to use an amide-based organic solvent in the production process, and in this case, it is known that the amide-based solvent remains in the fibers. Therefore, the flame retardancy originally possessed by the meta-type all-aromatic polyamide cannot be sufficiently exhibited, and only those having inferior flame retardancy can be obtained (see Patent Documents 2 to 10 below). ..

また、メタ型全芳香族ポリアミド繊維の難燃性能を向上させるには、この残留溶媒量を低減することが望ましいとの考えの下、メタ型全芳香族ポリアミド重量を基準にして0.1~10重量%の層状粘土鉱物を含有させ、この繊維中に残存する溶媒量を1.0%以下とし、本来メタ型全芳香族ポリアミドが有している難燃性を有効に発現させ、難燃剤を配合することなしに難燃効果の良好なメタ型全芳香族ポリアミド繊維を得る方法が提案されている。(下記文献11)しかし、この方法での難燃性向上には限界があり、それ以上の性能を与えるには難燃剤の配合が必須となり、当初の課題が十分には解決されていなかったのが実情である。 Further, in order to improve the flame retardant performance of the meta-type total aromatic polyamide fiber, it is desirable to reduce the amount of this residual solvent, and based on the weight of the meta-type total aromatic polyamide fiber, 0.1 to It contains 10% by weight of layered clay mineral, the amount of solvent remaining in this fiber is 1.0% or less, and the flame retardancy originally possessed by the meta-type total aromatic polyamide is effectively expressed, and the flame retardant is used. A method for obtaining a meta-type total aromatic polyamide fiber having a good flame retardant effect has been proposed without blending. (Reference 11 below) However, there is a limit to the improvement of flame retardancy by this method, and the addition of a flame retardant is indispensable to give more performance, and the initial problem has not been sufficiently solved. Is the reality.

これらメタ型全芳香族ポリアミド繊維の用途の中でも、繊維に捲縮をかけた後に短くカットし、引き続き、打綿、梳綿、粗紡、巻返し工程を通して得られる紡績糸は、産業資材分野や衣料分野など、様々な分野において有用であり、例えば、消防服、耐熱性作業服などの防護衣料分野で好適に使用されている。 Among the uses of these meta-type total aromatic polyamide fibers, spun yarns obtained by crimping the fibers, cutting them into short pieces, and subsequently performing cotton carding, cotton carding, roving, and rewinding processes are used in the industrial materials field and clothing. It is useful in various fields such as fields, and is suitably used in the field of protective clothing such as firefighting clothes and heat-resistant work clothes.

ここで、メタ型全芳香族ポリアミドからなる紡績糸を作製する方法としては、通常の紡績方法による他、例えば、牽切紡績法によるものが挙げられる(特許文献12参照)。牽切紡績法によると、従来の紡績糸の製造方法において必要となるプロセスである、捲縮付与、カット、打綿、梳綿、練条、粗紡、巻返しなどの煩雑な工程を経る必要がない。また、この方法によれば、捲縮の影響や単糸繊維の配向の乱れが少ないため、従来の紡績糸と異なり、極めて低伸度、高強度、低捲縮度、高い耐クリープ性を有する耐熱性紡績糸を得ることができる。 Here, as a method for producing a spun yarn made of a meta-type total aromatic polyamide, a method by a normal spinning method, for example, a method of a cut-out spinning method can be mentioned (see Patent Document 12). According to the cut-off spinning method, it is necessary to go through complicated processes such as crimping, cutting, cotton carding, cotton carding, kneading, rough spinning, and rewinding, which are necessary processes in the conventional method for manufacturing spun yarn. do not have. Further, according to this method, since the influence of crimping and the disorder of the orientation of the single yarn fiber are small, unlike the conventional spun yarn, it has extremely low elongation, high strength, low crimping degree, and high creep resistance. Heat resistant spun yarn can be obtained.

これら紡績糸の主な用途となる衣料分野においては、意匠性などの要求から、着色した繊維を用いるのが一般的である。そして、着色した繊維を得る方法としては、繊維化後、染料を用いて染色する後染色法、あるいは紡糸原液に顔料を添加して繊維化する原着法が知られている。 In the field of clothing, which is the main use of these spun yarns, it is common to use colored fibers because of the demand for design. As a method for obtaining colored fibers, a post-dyeing method in which the fibers are dyed with a dye after fiberization, or a dyeing method in which a pigment is added to a spinning stock solution to form fibers is known.

例えば、特許文献13においては、易染性メタ型芳香族ポリアミド繊維において、非ハロゲン化芳香族縮合型リン酸エステルを含有させることでカチオン染料で容易に染色することができ、しかも、難燃性及びその洗濯耐久性に優れた染色繊維が得られることが開示されている。 For example, in Patent Document 13, the easily dyeable meta-aromatic polyamide fiber can be easily dyed with a cationic dye by containing a non-halogenated aromatic condensed phosphoric acid ester, and is flame-retardant. And it is disclosed that a dyed fiber having excellent washing durability can be obtained.

しかし、この方法での染料の染着率には限界がありそれ以上に効果的に染色を行い繊維内部まで十分に染料を吸塵させるためには、一般的にメタ型芳香族ポリアミド繊維の分子鎖を緩めるキャリア剤を用いた染色が用いられる。この場合、染色後に十分な難燃剤の残留が得られずその効果は不十分なものとなっていた。 However, there is a limit to the dyeing rate of the dye by this method, and in order to perform dyeing more effectively and sufficiently absorb the dye to the inside of the fiber, the molecular chain of the meta-aromatic polyamide fiber is generally used. Staining with a carrier agent is used. In this case, sufficient residual flame retardant could not be obtained after staining, and the effect was insufficient.

さらに、繊維中に添加が容易であり、安価な難燃剤の多くは、160℃~300℃で熱分解するために該繊維の製造段階で分解が始まり、リン酸成分が発生することが知られている。このため、湿熱状態においてメタ型全芳香族ポリアミド繊維のアミド結合部分を加水分解していき強度を低下させるという問題があった。 Further, it is known that most of the inexpensive flame retardants, which are easy to add to the fiber, are thermally decomposed at 160 ° C to 300 ° C, so that the decomposition starts at the manufacturing stage of the fiber and a phosphoric acid component is generated. ing. Therefore, there is a problem that the amide-bonded portion of the meta-type total aromatic polyamide fiber is hydrolyzed in a moist heat state to reduce the strength.

特開昭53-122817号公報Japanese Unexamined Patent Publication No. 53-12281 特公昭35-14399号公報Special Publication No. 35-14399 特公昭47-10863号公報Special Publication No. 47-10863 特公昭48-17551号公報Special Publication No. 48-17551 特開昭50-52167号公報Japanese Unexamined Patent Publication No. 50-52167 特開昭56-31009号公報Japanese Unexamined Patent Publication No. 56-31009 特開平8-74121号公報Japanese Unexamined Patent Publication No. 8-74121 特開平10-88421号公報Japanese Unexamined Patent Publication No. 10-88421 特開2000-303365公報Japanese Patent Application Laid-Open No. 2000-303365 特開2001-348726公報Japanese Unexamined Patent Publication No. 2001-348726 特開2007-254915公報JP-A-2007-254915 特開平02-234932号公報Japanese Unexamined Patent Publication No. 02-234932 特開2004-52166号公報Japanese Unexamined Patent Publication No. 2004-52166

本発明の課題は、かかる従来技術における問題点を解消し、より安全で環境に対応した高い難燃性を示すと共に、特に防護衣料において、より安全な難燃性能を長期にわたり提供することが可能な耐久性に優れた原着メタ型全芳香族ポリアミド繊維及びその製造方法、並びに該繊維からなる難燃性紡績糸及び難燃性牽切紡績糸を提供することにある。 The problem of the present invention is to solve the problems in the prior art, to show safer and more environmentally friendly flame retardancy, and to provide safer flame retardant performance for a long period of time, especially in protective clothing. It is an object of the present invention to provide a raw meta-type total aromatic polyamide fiber having excellent durability, a method for producing the same, and a flame-retardant spun yarn and a flame-retardant cut-off spun yarn made of the fiber.

本発明者は、上記の課題を解決するために鋭意検討をおこなった結果、メタ型全芳香族ポリアミド繊維の製造に用いる有機溶剤に対し、特定の溶解挙動を示す有機リン化合物からなる難燃剤を、メタ型全芳香族ポリアミド繊維中のリン原子含有量が0.2wt%以上となるように含有させるとき、高い難燃性能を持った原着メタ型全芳香族ポリアミド繊維が得られることを究明し、本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventor has obtained a flame retardant composed of an organic phosphorus compound that exhibits a specific dissolution behavior with respect to the organic solvent used for producing the meta-type all-aromatic polyamide fiber. , It was clarified that when the phosphorus atom content in the meta-type total aromatic polyamide fiber is 0.2 wt% or more, the original meta-type total aromatic polyamide fiber having high flame retardant performance can be obtained. And reached the present invention.

即ち、本発明によれば、メタ型全芳香族ポリアミド繊維中におけるリン原糸含有量が0.2wt%以上となるように有機リン化合物が含有されたメタ型全芳香族ポリアミド繊維であって、該繊維には顔料が0.1~10.0wt%含有されており、該繊維の燃焼時限界酸素指数LOIが33以上、130℃で2時間湿熱処理した後の強度保持率が90%以上である原着メタ型全芳香族ポリアミド繊維、及び、
N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解し、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液には不溶である有機リン化合物を、顔料を含む紡糸ドープに対しリン原子含有量が0.2~5.0wt%となるように添加した後、紡糸することを特徴とする原着メタ型全芳香族ポリアミド繊維の製造方法、並びに、
上記の原着メタ型全芳香族ポリアミド繊維をその構成成分とすることを特徴とする難燃性紡績糸、及び、
上記の原着メタ型全芳香族ポリアミド繊維をその構成成分とすることを特徴とする難燃性牽切紡績糸、
が提供される。
That is, according to the present invention, the meta-type total aromatic polyamide fiber contains an organic phosphorus compound so that the phosphorus raw yarn content in the meta-type total aromatic polyamide fiber is 0.2 wt% or more. The fiber contains 0.1 to 10.0 wt% of a pigment, has a combustion limit oxygen index LOI of 33 or more, and has a strength retention rate of 90% or more after being subjected to wet heat treatment at 130 ° C. for 2 hours. A certain original meta-type total aromatic polyamide fiber, and
Dissolve 5% or more in N-methyl -2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) and dissolve in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide. It is characterized by adding an organic phosphorus compound insoluble in a 60% aqueous solution of (DMAc) so that the phosphorus atom content is 0.2 to 5.0 wt% with respect to a spinning dope containing a pigment, and then spinning. The method for producing the original meta-type total aromatic polyamide fiber, and
A flame-retardant spun yarn characterized by containing the above-mentioned original meta-type total aromatic polyamide fiber as a constituent component, and a flame-retardant spun yarn, and
A flame-retardant check-cut spun yarn, which comprises the above-mentioned original meta-type total aromatic polyamide fiber as a constituent component thereof.
Is provided.

本発明によれば、有機リン化合物からなる難燃剤が均一に混合されるので、繊維成形加工において糸切れなどの生産性低下が少ない上、難燃剤が繊維中に効率よく残留することから、少ない添加量で難燃効果を得ることができ、また、凝固液の再利用に際し、装置の腐食などの影響を与えることの無い、原着メタ型全芳香族ポリアミド繊維を得ることができる。 According to the present invention, since the flame retardant composed of the organic phosphorus compound is uniformly mixed, there is little decrease in productivity such as thread breakage in the fiber molding process, and the flame retardant remains efficiently in the fiber, so that the amount is small. A flame retardant effect can be obtained depending on the amount added, and an organophosphorus meta-type total aromatic polyamide fiber that does not affect the corrosion of the apparatus when the coagulating liquid is reused can be obtained.

さらに熱分解開始温度が300℃以上である該有機リン化合物を使用することで繊維中にリン酸などの成分の発生が抑えられるので、130℃で2時間湿熱処理した後の強度保持率が90%以上である、耐久性に優れた原着メタ型全芳香族ポリアミド繊維を得ることができる。 Furthermore, by using the organic phosphorus compound having a thermal decomposition start temperature of 300 ° C. or higher, the generation of components such as phosphoric acid in the fiber can be suppressed, so that the strength retention rate after moist heat treatment at 130 ° C. for 2 hours is 90. % Or more, it is possible to obtain a highly durable original meta-type total aromatic polyamide fiber.

また、上記の原着メタ型全芳香族ポリアミド繊維をその構成成分とする紡績糸や牽切紡績糸を製造すれば、難燃性に優れ、湿熱強度劣化が防止された紡績糸や牽切紡績糸を得ることができる。 Further, if a spun yarn or a pruned spun yarn containing the above-mentioned uncoated meta-type total aromatic polyamide fiber as a constituent component thereof, the spun yarn or the plucked yarn having excellent flame retardancy and preventing deterioration of moist heat strength is produced. You can get the thread.

以下、本発明について詳細を説明する。 Hereinafter, the present invention will be described in detail.

本発明におけるメタ型全芳香族ポリアミドは、メタ型芳香族ジアミンとメタ型芳香族ジカルボン酸ハライドとを原料として、例えば溶液重合や界面重合させることにより製造されるポリアミドであるが、本発明の目的を阻害しない範囲内で、例えばパラ型等の他の共重合成分を共重合したものであってもよい。 The meta-type total aromatic polyamide in the present invention is a polyamide produced by, for example, solution polymerization or interfacial polymerization using a meta-aromatic diamine and a meta-aromatic dicarboxylic acid halide as raw materials. As long as it does not inhibit the above, it may be a copolymer of other copolymerization components such as para-type.

上記メタ型芳香族ジアミンとしては、メタフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン等及びこれらの芳香環にハロゲン、炭素数1~3のアルキル基等の置換基を有する誘導体、例えば2,4-トルイレンジアミン、2,6-トルイレンジアミン、2,4-ジアミノクロルベンゼン、2,6-ジアミノクロルベンゼン等を使用することができる。なかでも、メタフェニレンジアミン又はメタフェニレンジアミンを70モル%以上含有する上記の混合ジアミンが好ましい。 Examples of the meta-aromatic diamine include metaphenylenediamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone and the like, and halogens in these aromatic rings and substituents such as alkyl groups having 1 to 3 carbon atoms. For example, 2,4-toluylene diamine, 2,6-toluylene diamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene and the like can be used. Among them, the above-mentioned mixed diamine containing 70 mol% or more of meta-phenylenediamine or meta-phenylenediamine is preferable.

また、上記メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、及びこれらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば3-クロルイソフタル酸クロライド、3-メトキシイソフタル酸クロライドを使用することができる。なかでも、イソフタル酸クロライド又はイソフタル酸クロライドを70モル%以上含有する上記の混合カルボン酸ハライドが好ましい。 Examples of the meta-aromatic dicarboxylic acid halide include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having a substituent such as a halogen or an alkoxy group having 1 to 3 carbon atoms in these aromatic rings. For example, 3-chlorisophthalic acid chloride and 3-methoxyisophthalic acid chloride can be used. Among them, the above-mentioned mixed carboxylic acid halide containing 70 mol% or more of isophthalic acid chloride or isophthalic acid chloride is preferable.

上記のジアミンとジカルボン酸ハライド以外で使用し得る共重合成分としては、芳香族ジアミンとして、パラフェニレンジアミン、2,5-ジアミノクロルベンゼン、2,5-ジアミノブロムベンゼン、アミノアニシジン等のベンゼン誘導体、1,5-ナフチレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルメタン等が挙げられ、一方、芳香族ジカルボン酸ハライドとして、テレフタル酸クロライド、1,4-ナフタレンジカルボン酸クロライド、2,6-ナフタレンジカルボン酸クロライド、4,4’-ビフェニルジカルボン酸クロライド、4,4’-ジフェニルエーテルジカルボン酸クロライド等が挙げられる。 Examples of the copolymerization component that can be used other than the above diamine and dicarboxylic acid halide include benzene derivatives such as paraphenylenediamine, 2,5-diaminochlorobenzene, 2,5-diaminobrombenzene, and aminoanisidine as aromatic diamines. , 1,5-naphthylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylketone, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylmethane and the like, while aromatics. Examples of the dicarboxylic acid halide include terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4'-biphenyldicarboxylic acid chloride, 4,4'-diphenylether dicarboxylic acid chloride and the like. ..

これらの共重合成分の共重合比は、あまりに多くなりすぎるとメタ型全芳香族ポリアミドの特性が低下しやすいので、ポリアミドの全酸成分を基準として20モル%以下が好ましい。特に、好適なメタ型全芳香族ポリアミドは、全繰返し単位の80モル%以上がメタフェニレンイソフタルアミド単位からなるポリアミドであり、なかでもポリメタフェニレンイソフタルアミドが好ましい。
かようなメタ型全芳香族ポリアミドの重合度は、30℃において97%濃硫酸を溶媒として測定した固有粘度(IV)が1.3~3.0の範囲が適当である。
If the copolymerization ratio of these copolymerization components is too large, the characteristics of the meta-type total aromatic polyamide tend to deteriorate. Therefore, the copolymerization ratio is preferably 20 mol% or less based on the total acid component of the polyamide. In particular, a suitable meta-type total aromatic polyamide is a polyamide in which 80 mol% or more of all repeating units are composed of metaphenylene isophthalamide units, and polymethphenylene isophthalamide is particularly preferable.
The degree of polymerization of such a meta-type total aromatic polyamide is appropriately in the range of 1.3 to 3.0 in intrinsic viscosity (IV) measured at 30 ° C. using 97% concentrated sulfuric acid as a solvent.

次にここで得られたメタ型全芳香族ポリアミドを溶解する溶媒に溶解して紡糸ドープを調整するが、重合後メタ型全芳香族ポリアミドを単離せずそのまま紡糸ドープとすることも可能である。ここで用いる溶媒としてアミド系溶媒を一般的に用いることができ、主なアミド系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を例示することができる。これらのなかでは溶解性と取り扱い安全性の観点から、NMPまたはDMAcを用いることが好ましい。 Next, the spinning dope is adjusted by dissolving the meta-type total aromatic polyamide obtained here in a solvent that dissolves it. However, it is also possible to use the meta-type total aromatic polyamide as it is without isolation after polymerization. .. An amide-based solvent can be generally used as the solvent used here, and examples of the main amide-based solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAc). can do. Among these, it is preferable to use NMP or DMAc from the viewpoint of solubility and handling safety.

溶液濃度としては、次工程である紡糸・凝固工程での凝固速度および重合体の溶解性の観点から、適当な濃度を適宜選択すればよく、例えば、ポリマーがポリメタフェニレンイソフタルアミドで溶媒がNMPの場合には、通常は10~30質量%の範囲とすることが好ましい。 As the solution concentration, an appropriate concentration may be appropriately selected from the viewpoint of the coagulation rate in the spinning / coagulation step, which is the next step, and the solubility of the polymer. For example, the polymer is polymetaphenylene isophthalamide and the solvent is NMP. In the case of, it is usually preferably in the range of 10 to 30% by mass.

本発明においては、この紡糸ドープに有機リン化合物からなる難燃剤をメタ型全芳香族ポリアミド繊維中のリン原子含有量が0.2wt%以上となるように添加し、さらに、市場が要求する色相の原着繊維得るために、この紡糸ドープに、顔料をポリマー成分あたり0.1~10.0wt%となるよう添加する。ここで用いられる顔料としては、アゾ系、フタロシアニン系、ペリノン系、ペリレン系、アンスラキノン系等の有機顔料、あるいは、カーボンブラック、群青、ベンガラ、酸化チタン、酸化鉄等の無機顔料が挙げられるが、これらに限定されるものではない。 In the present invention, a flame retardant composed of an organic phosphorus compound is added to the spinning dope so that the phosphorus atom content in the meta-type total aromatic polyamide fiber is 0.2 wt% or more, and the hue required by the market is further added. In order to obtain the original fiber of the above, a pigment is added to this spun dope in an amount of 0.1 to 10.0 wt% per polymer component. Examples of the pigment used here include organic pigments such as azo-based, phthalocyanine-based, perinone-based, perylene-based, and anthraquinone-based pigments, and inorganic pigments such as carbon black, ultramarine, red iron oxide, titanium oxide, and iron oxide. , Not limited to these.

本発明においては、この紡糸ドープに有機リン化合物からなる難燃剤を添加するが、特にN-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解し、さらにN-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液には溶解しない特性を持ったものを選定して添加することで、紡糸ドープ中に溶解させ均一に混ぜ合わすことが可能となり、繊維成形加工後の繊維中への残留率も高く効率の良い加工となる。 In the present invention, a flame retardant composed of an organic phosphorus compound is added to this spinning dope, and in particular, 5% or more is dissolved in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) . Further, by selecting and adding a substance having a property of not dissolving in a 60% aqueous solution of N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) , spinning dope It can be dissolved in and mixed uniformly, and the residual rate in the fiber after the fiber molding process is high, resulting in efficient processing.

ここで、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%未満しか溶解しない有機リン化合物を使用した場合、紡糸ドープに必要な量の難燃剤を溶解することが困難となる。さらに、この場合、紡糸ドープに添加するには均一に分散させることが必要となるが、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%未満しか溶解しない場合は非常に難しい工程となる。また均一に分散できたとしても粒子または、粒子の凝集物が存在すると繊維成形加工時に単糸が切断するなどの不具合が多く発生する上、繊維化できたとしても該繊維の強度が低下する。 Here, when an organophosphorus compound that dissolves less than 5% in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) is used, the amount of flame retardant required for spinning dope is used. Becomes difficult to dissolve. Further, in this case, less than 5% of N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) is required to be uniformly dispersed for addition to the spinning dope. If it only dissolves, it will be a very difficult process. Further, even if the particles can be uniformly dispersed, the presence of particles or aggregates of the particles causes many problems such as cutting of the single yarn during the fiber molding process, and even if the fibers can be made into fibers, the strength of the fibers is lowered.

また、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解し、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液にも十分溶解するものは、繊維成形加工時にこの溶媒と一緒に難燃剤も抜け落ちてしまいあらかじめ多くの剤を添加しておかなければその性能を発現することが出来ず、効率が悪く不適切な加工となる。 In addition, 5% or more is dissolved in N-methyl-2 -pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) , and N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or Those that are sufficiently soluble in a 60% aqueous solution of dimethylacetamide (DMAc) will lose their flame retardant agent together with this solvent during the fiber molding process, and will exhibit their performance unless a large number of agents are added in advance. It cannot be done, and it is inefficient and improper processing.

該有機リン化合物の熱分解開始温度は、300℃以上であることが好ましく、さらに330℃以上であることがより好ましい。この熱分解開始温度が高いと有機リン酸化合物による難燃性能が高くなるだけでなく、メタ型全芳香族ポリアミドの繊維成形加工時に実施する熱処理加工時に分解が抑えられ、130℃で2時間湿熱処理した後の強度保持率が90%以上である、耐久性に優れた原着メタ型全芳香族ポリアミド繊維を得ることができる。
さらに該有機リン化合物にハロゲンが含まれていないものを選択することで、環境問題への対応も可能となる。
The thermal decomposition start temperature of the organic phosphorus compound is preferably 300 ° C. or higher, more preferably 330 ° C. or higher. When this thermal decomposition start temperature is high, not only the flame retardant performance of the organic phosphoric acid compound becomes high, but also the decomposition is suppressed during the heat treatment process performed during the fiber forming process of the meta-type all-aromatic polyamide, and the temperature is kept at 130 ° C. for 2 hours. It is possible to obtain a highly durable original meta-type total aromatic polyamide fiber having a strength retention rate of 90% or more after heat treatment.
Furthermore, by selecting an organic phosphorus compound that does not contain a halogen, it is possible to deal with environmental problems.

ここで用いる有機リン化合物からなる難燃剤としては、芳香族リン酸エステル類、芳香族縮合リン酸エステル類、含ハロゲンリン酸エステル類、含ハロゲン縮合リン酸エステル類の中から上記特徴にあったものを選定することができる。特に紡糸ドープの溶媒に5%以上溶解し、さらにこの溶媒の60%水溶液には溶解しない特性を持ったものに該当するのは、芳香族縮合リン酸エステル類に多く、主に、レゾルシノールビス-ジフェニルホスフェート(RDP)レゾルシノールビス-ジキシレニルホスフェート(RDX)などを使用することができる。 The flame retardant made of the organic phosphorus compound used here has the above-mentioned characteristics from among aromatic phosphoric acid esters, aromatic condensed phosphoric acid esters, halogen-containing phosphoric acid esters, and halogen-containing condensed phosphoric acid esters. You can select the one. In particular, aromatic condensed phosphoric acid esters have the property of being 5% or more soluble in a spinning-doped solvent and not soluble in a 60% aqueous solution of this solvent, and are mainly resorcinol bis-. Diphenyl phosphate (RDP) resorcinol bis-dixylenyl phosphate (RDX) and the like can be used.

ただし、下記構造を有する芳香族縮合リン酸エステルの多くは、常温で液体状であるものが多くN-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液になじみやすく5%以上溶解することがあり使用することが一般的に好ましくない。 However, most of the aromatic condensed phosphates having the following structure are liquid at room temperature, and are N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) 60. It is generally not preferable to use it because it easily blends with the aqueous solution and may dissolve 5% or more.

Figure 0007028682000001
式中、Rは非ハロゲン化フェニル基、XはビスフェノールA残基、nは1~3の整数を表す。
一方、下記構造式であらわされる芳香族縮合リン酸エステルは、常温で固体であり、本願の難燃剤として好ましい。
Figure 0007028682000001
In the formula, R represents a non-halogenated phenyl group, X represents a bisphenol A residue, and n represents an integer of 1 to 3.
On the other hand, the aromatic condensed phosphoric acid ester represented by the following structural formula is solid at room temperature and is preferable as the flame retardant of the present application.

Figure 0007028682000002
式中、Rは非ハロゲン化フェニル基、Xは芳香環を有する構造で主に下記のものが好ましい。
Figure 0007028682000002
In the formula, R is a non-halogenated phenyl group and X is a structure having an aromatic ring, and the following are mainly preferable.

Figure 0007028682000003
Figure 0007028682000003

該有機リン化合物は、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解するため、紡糸ドープへの添加が容易であり、該有機リン化合物とメタ型全芳香族ポリアミドがともに溶解状態で均一に混合されることから繊維成形加工時に単糸切れなどの不具合が起こりにくくなり安定した繊維の製造が可能となる。 Since the organic phosphorus compound dissolves in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) in an amount of 5% or more, it can be easily added to the spinning dope, and the organic phosphorus can be easily added. Since both the compound and the meta-type total aromatic polyamide are uniformly mixed in the dissolved state, problems such as single yarn breakage are less likely to occur during the fiber molding process, and stable fiber can be produced.

また該有機リン化合物は、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液において不溶となる特性を持っていることから、繊維成形加工時においてその凝固液となる該有機溶剤水溶液中への溶出がなく、繊維中に効率よく残留するため難燃性能発現への寄与率が高くなる。 Further, since the organic phosphorus compound has a property of being insoluble in a 60% aqueous solution of N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc), it is insoluble during fiber molding. In the above, there is no elution into the organic solvent aqueous solution which is the coagulating liquid, and it remains efficiently in the fiber, so that the contribution rate to the development of flame retardant performance is high.

さらに、該有機リン化合物の熱分解開始温度が300℃以上である場合、繊維成形加工時に実施される熱処理による分解は、ほとんど起こらず、変色や強度低下の小さい繊維を得ることが可能となる。さらに該有機リン化合物にハロゲンが含まれていないものを選択することにより環境問題への対応も可能となる。 Further, when the thermal decomposition start temperature of the organic phosphorus compound is 300 ° C. or higher, decomposition by heat treatment performed during the fiber molding process hardly occurs, and it becomes possible to obtain fibers with less discoloration and reduced strength. Furthermore, by selecting an organic phosphorus compound that does not contain a halogen, it is possible to deal with environmental problems.

次に、上記のとおり調製された紡糸ドープを凝固液中へ紡出し凝固させる。紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。また、安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態、孔形状等は特に制限する必要はなく、例えば、孔数が500~30000個、紡糸孔径が0.05~0.2mmのスフ用の多ホール紡糸口金等を用いてもよい。
また、紡糸口金から紡出する際の紡糸ドープの温度は、10~90℃の範囲が適当である。
Next, the spinning dope prepared as described above is spun into a coagulating liquid and coagulated. The spinning device is not particularly limited, and a conventionally known wet spinning device can be used. Further, the number of spinning holes, the arrangement state, the hole shape, etc. of the spinneret are not particularly limited as long as they can be stably wet-spun. For example, the number of holes is 500 to 30,000 and the diameter of the spinning holes is 0.05. A multi-hole spinneret or the like for a rayon of ~ 0.2 mm may be used.
Further, the temperature of the spinning dope when spinning from the spinneret is appropriately in the range of 10 to 90 ° C.

本発明に用いられる繊維を得るために用いる凝固浴の例としては、無機塩を含まないアミド系溶媒濃度45~60質量%の水溶液を、浴液の温度10~35℃の範囲で用いる。
アミド系溶媒濃度が45質量%未満ではスキンが厚い構造となってしまい、洗浄工程における洗浄効率が低下し、最終繊維に溶媒が残存することとなる。また、アミド系溶媒濃度が60質量%を超える場合には、繊維内部に至るまで均一な凝固を行うことができず、このため、繊維成形加工時に単糸が切断するなどの不具合が多く発生する。なお、凝固浴中への繊維の浸漬時間は、0.1~30秒の範囲が適当である。
As an example of the coagulation bath used to obtain the fibers used in the present invention, an aqueous solution containing no inorganic salt and having an amide solvent concentration of 45 to 60% by mass is used in a bath solution temperature range of 10 to 35 ° C.
If the concentration of the amide-based solvent is less than 45% by mass, the skin has a thick structure, the cleaning efficiency in the cleaning step is lowered, and the solvent remains in the final fiber. Further, when the concentration of the amide-based solvent exceeds 60% by mass, uniform coagulation cannot be performed up to the inside of the fiber, which causes many problems such as cutting of the single yarn during the fiber molding process. .. The time for immersing the fiber in the coagulation bath is appropriately in the range of 0.1 to 30 seconds.

次に凝固浴にて凝固して得られた繊維が可塑状態にあるうちに、可塑延伸浴中にて繊維を延伸処理する。可塑延伸浴液としては特に限定されるものではなく、従来公知の浴液を採用することができる。 Next, while the fibers obtained by coagulation in the coagulation bath are in the plastic state, the fibers are drawn in the plastic drawing bath. The plastic stretched bath liquid is not particularly limited, and conventionally known bath liquids can be adopted.

本発明の繊維を得るためには、可塑延伸浴中の延伸倍率を、3.5~5.0倍の範囲とする必要があり、さらに好ましくは3.7~4.5倍の範囲とする。本発明の繊維の製造においては、可塑延伸浴中にて特定倍率の範囲で可塑延伸することにより、凝固糸中からの脱溶剤を促進することができる。 In order to obtain the fiber of the present invention, the draw ratio in the plastic stretching bath needs to be in the range of 3.5 to 5.0 times, more preferably in the range of 3.7 to 4.5 times. .. In the production of the fiber of the present invention, the removal of solvent from the coagulated yarn can be promoted by performing plastic stretching in a plastic stretching bath within a range of a specific magnification.

可塑延伸浴中での延伸倍率が3.5倍未満である場合には、凝固糸中からの脱溶剤が不十分となる。また、破断強度が不十分となり、紡績工程等の加工工程における取り扱いが困難となる。一方で、延伸倍率が5.0倍を超える場合には、単糸切れが発生するため、工程安定性が悪くなる。
可塑延伸浴の温度は、10~90℃の範囲が好ましい。好ましくは温度20~90℃の範囲にあると、工程安定性がよい。
When the draw ratio in the plastic drawing bath is less than 3.5 times, the solvent removal from the coagulated yarn becomes insufficient. In addition, the breaking strength becomes insufficient, and handling in a processing process such as a spinning process becomes difficult. On the other hand, when the draw ratio exceeds 5.0 times, single yarn breakage occurs, resulting in poor process stability.
The temperature of the plastic stretch bath is preferably in the range of 10 to 90 ° C. When the temperature is preferably in the range of 20 to 90 ° C., the process stability is good.

次に、繊維中に残留している溶剤を洗浄する。この工程においては、可塑延伸浴にて延伸された繊維を、十分に洗浄する。洗浄は、得られる繊維の品質面に影響を及ぼすことから、多段で行うことが好ましい。特に、洗浄工程における洗浄浴の温度および洗浄浴液中のアミド系溶媒の濃度は、繊維からのアミド系溶媒の抽出状態および洗浄浴からの水の繊維中への浸入状態に影響を与える。このため、これらを最適な状態とする目的においても、洗浄工程を多段とし、温度条件およびアミド系溶媒の濃度条件を制御することが好ましい。 Next, the solvent remaining in the fiber is washed. In this step, the fibers stretched in the plastic stretching bath are thoroughly washed. Cleaning is preferably performed in multiple stages because it affects the quality of the obtained fibers. In particular, the temperature of the washing bath and the concentration of the amide-based solvent in the washing bath liquid in the washing step affect the extraction state of the amide-based solvent from the fibers and the infiltration state of water from the washing bath into the fibers. For this reason, it is preferable to control the temperature condition and the concentration condition of the amide-based solvent by having a multi-stage cleaning step also for the purpose of optimizing these states.

温度条件およびアミド系溶媒の濃度条件については、最終的に得られる繊維の品質を満足できるものであれば、特に限定されるものではない。ただし、最初の洗浄浴を60℃以上の高温とすると、水の繊維中への浸入が一気に起こるため、繊維中に巨大なボイドが生成し、品質の劣化を招く。このため、最初の洗浄浴は、30℃以下の低温とすることが好ましい。 The temperature condition and the concentration condition of the amide-based solvent are not particularly limited as long as they can satisfy the quality of the finally obtained fiber. However, when the temperature of the first washing bath is as high as 60 ° C. or higher, water infiltrates into the fibers at once, so that huge voids are generated in the fibers, which causes deterioration of quality. Therefore, it is preferable that the first washing bath has a low temperature of 30 ° C. or lower.

繊維中に溶媒が残っている場合、該繊維の難燃性を低下させる上に、該繊維を用いた製品の加工、および当該繊維を用いて形成された製品の使用における環境安全性においても好ましくない。このため、本発明に用いられる繊維に含まれる溶媒量は、0.2%以下であり、より好ましくは0.15%以下であり、0.1%以下であることが特に好ましい。 When the solvent remains in the fiber, it is preferable not only to reduce the flame retardancy of the fiber but also to the environmental safety in the processing of the product using the fiber and the use of the product formed by using the fiber. do not have. Therefore, the amount of the solvent contained in the fiber used in the present invention is 0.2% or less, more preferably 0.15% or less, and particularly preferably 0.1% or less.

次に、乾熱処理工程においては、洗浄工程を経た繊維を、乾燥・熱処理する。乾熱処理の方法としては特に限定されるものではないが、例えば、熱ローラー、熱板等を用いる方法を挙げることができる。乾熱処理を経ることにより、最終的に、本発明に用いられるメタ型全芳香族ポリアミド繊維を得ることができる。 Next, in the dry heat treatment step, the fibers that have undergone the washing step are dried and heat-treated. The method of dry heat treatment is not particularly limited, and examples thereof include a method using a hot roller, a hot plate, and the like. By undergoing a dry heat treatment, the meta-type total aromatic polyamide fiber used in the present invention can be finally obtained.

本発明に用いられる繊維を得るためには、乾熱処理工程における熱処理温度を、260~350℃の範囲とする必要があり、270~340℃の範囲とすることがさらに好ましい。熱処理温度が260℃未満の場合には、繊維の結晶化が不十分となり、繊維の収縮性が高くなる。一方で、350℃を越える場合には、繊維の結晶化が大きくなりすぎるため、破断伸度が著しく低下する。また、乾熱処理温度を270~340℃の範囲とすることは、得られる繊維の破断強度の向上に寄与する。 In order to obtain the fibers used in the present invention, the heat treatment temperature in the dry heat treatment step needs to be in the range of 260 to 350 ° C., more preferably in the range of 270 to 340 ° C. When the heat treatment temperature is less than 260 ° C., the crystallization of the fiber becomes insufficient and the shrinkage of the fiber becomes high. On the other hand, when the temperature exceeds 350 ° C., the crystallization of the fiber becomes too large, so that the elongation at break is significantly reduced. Further, setting the dry heat treatment temperature in the range of 270 to 340 ° C. contributes to the improvement of the breaking strength of the obtained fiber.

乾熱処理が施されたメタ型全芳香族ポリアミド繊維には、必要に応じて、さらに捲縮加工を施してもよい。さらに、捲縮加工後は、適当な繊維長に切断し、次工程に提供してもよい。また、場合によっては、マルチフィラメントヤーンとして巻き取ってもよい。 If necessary, the meta-type total aromatic polyamide fiber that has been subjected to the dry heat treatment may be further subjected to a crimping process. Further, after the crimping process, the fiber may be cut to an appropriate fiber length and provided to the next step. In some cases, it may be wound as a multifilament yarn.

上記メタ型全芳香族ポリアミド繊維を構成成分とする紡績糸を製造する場合は、乾熱処理が施されたメタ型全芳香族ポリアミド繊維に捲縮を施す。捲縮を施す方法としては、特に限定されるものではなく、公知の方法を採用することができる。付与される捲縮数としては、例えば5~20T/in、捲縮度としては、例えば5~20(%)を例示することができるが、特に限定されるものではない。 In the case of producing a spun yarn containing the meta-type total aromatic polyamide fiber as a constituent component, the meta-type total aromatic polyamide fiber that has been subjected to a dry heat treatment is crimped. The method of performing crimping is not particularly limited, and a known method can be adopted. The number of crimps to be given may be, for example, 5 to 20 T / in, and the degree of crimps may be, for example, 5 to 20 (%), but the number is not particularly limited.

引き続き、捲縮処理が施された繊維をカットすることにより、紡績工程に付すための短繊維を得る。カットする方法は特に限定されるものではなく、公知の方法を採用することができる。例えば、ギロチンカッターを用いて、長繊維を所定の繊維長にカットする方法が挙げられる。また、カット長も特に限定されるものではなく、例えば、10~500mm程度が挙げられる。 Subsequently, the crimped fibers are cut to obtain short fibers to be subjected to the spinning process. The cutting method is not particularly limited, and a known method can be adopted. For example, a method of cutting long fibers to a predetermined fiber length using a guillotine cutter can be mentioned. Further, the cut length is not particularly limited, and examples thereof include about 10 to 500 mm.

次に、打綿、梳綿、練条、粗紡、精紡、仕上などを行い、紡績糸を得ることができる。これら工程は特に限定されるものではなく、公知の方法を採用することができる。 Next, cotton carding, cotton carding, kneading, roving, spinning, finishing and the like can be performed to obtain spun yarn. These steps are not particularly limited, and known methods can be adopted.

また、上記メタ型全芳香族ポリアミド繊維を構成成分とする牽切紡績糸を製造する場合は、押込み捲縮などによる捲縮付与を行わず、捲縮を有しない連続糸条(トウ)を牽切する。トウに捲縮を有する場合には、牽切されても捲縮の一部が残りやすく、得られる牽切紡績糸の伸度を低くするうえでの障害となる。
トウの牽切に際しては、一対の供給ローラーと牽切ローラーと間で、一段で牽切することも、複数回に分けて、多段で牽切することもできる。
Further, in the case of producing a plucked spun yarn containing the above-mentioned meta-type all-aromatic polyamide fiber as a constituent component, crimping is not performed by indentation crimping or the like, and continuous yarn (toe) having no crimping is pulled. Cut off. When the toe has crimps, a part of the crimps tends to remain even if the tow is crimped, which is an obstacle to lowering the elongation of the obtained spun yarn.
When the tow is cut off, it can be cut off in one stage between the pair of supply rollers and the cut-off roller, or it can be cut out in multiple stages by dividing it into a plurality of times.

さらに、本発明の牽切紡績糸を得るためには、牽切糸条に抱合性を付与する。抱合にあたっては、牽切した後に、引き続いて連続的に抱合する必要があり、抱合性を付与する手段としては、例えば、インターレース処理、旋回流による毛羽捲付け処理、撚糸、などの方法が、単独または複合的に利用できる。抱合性を付与する際のオーバーフィード率としては、4%以下として緊張状態を維持することが好ましく、より好ましくは3%以下である。4%を超えて抱合性を付与すると、得られる牽切紡績糸の伸度が高くなりすぎて、クリープ変形が大きくなるため好ましくない。 Further, in order to obtain the cut-out spun yarn of the present invention, conjugation is imparted to the cut-off yarn. In conjugation, it is necessary to continuously conjugate after being cut off, and as means for imparting conjugation, for example, interlacing treatment, fluff wrapping treatment by swirling flow, plying, etc. are used alone. Or it can be used in combination. The overfeed rate when imparting conjugation is preferably 4% or less to maintain a tense state, and more preferably 3% or less. If conjugation is imparted in excess of 4%, the elongation of the obtained spun yarn becomes too high, and creep deformation becomes large, which is not preferable.

また、本発明の牽切紡績糸の製造においては、巻き取った後に熱処理してもよいし、抱合性を付与したあとに、加熱ローラーに複数のターンをさせる方法、熱プレート上を走行させる等の方法などによって、連続的に熱処理を施してもよい。 Further, in the production of the cut-out spun yarn of the present invention, heat treatment may be performed after winding, a method of causing the heating roller to make a plurality of turns after imparting conjugation, running on a heat plate, and the like. The heat treatment may be continuously performed by the above method or the like.

以下、実施例により本発明をより詳細に説明する。ただし、本発明はこれら実施例により限定されるものではない。
なお、実施例中の「部」および「%」は特に断らない限りすべて質量基準に基づくものであり、量比は特に断らない限り質量比を示す。実施例および比較例における各物性値は下記の方法で測定した。
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.
In addition, "part" and "%" in an Example are all based on a mass standard unless otherwise specified, and a mass ratio indicates a mass ratio unless otherwise specified. Each physical property value in Examples and Comparative Examples was measured by the following method.

<固有粘度(I.V.)>
ポリマーを97%濃硫酸に溶解し、オストワルド粘度計を用い30℃で測定した。
<溶解度評価>
溶解度評価は、2種の評価液で実施した。
(i)メタ型全芳香族ポリアミド繊維の製造に用いる有機溶剤100%、
(ii)該有機溶剤60%水溶液(有機溶剤60/水40)
測定は以下の手順で実施した。
(1)評価液100gをあらかじめ計量したフラスコに測定対象の化合物5gを加え20℃で2時間攪拌した後、全て溶解した場合、溶解度:>5%とする。
(2)溶け残りが確認された場合、20℃で12時間以上静置した後、溶け残りが全て溶解していた場合も、溶解度:>5%とする。
(3)この段階で溶け残りが確認された場合、上澄み液を50g秤量瓶に取り出し、絶乾法で溶解濃度を重量%で求める。
<Intrinsic viscosity (IV)>
The polymer was dissolved in 97% concentrated sulfuric acid and measured at 30 ° C. using an Ostwald viscometer.
<Solubility evaluation>
The solubility evaluation was carried out with two kinds of evaluation solutions.
(i) 100% organic solvent used in the production of meta-type total aromatic polyamide fibers,
(ii) 60% aqueous solution of the organic solvent (organic solvent 60 / water 40)
The measurement was carried out according to the following procedure.
(1) Add 5 g of the compound to be measured to a flask in which 100 g of the evaluation solution is weighed in advance, stir at 20 ° C. for 2 hours, and then dissolve all of the compound to make the solubility:> 5%.
(2) When undissolved residue is confirmed, the solubility is set to> 5% even when all the undissolved residue is dissolved after standing at 20 ° C. for 12 hours or more.
(3) If undissolved residue is confirmed at this stage, the supernatant liquid is taken out into a 50 g weighing bottle, and the dissolved concentration is determined by weight% by an absolute drying method.

<繊度>
JIS L1015に基づき、正量繊度のA法に準拠した測定を実施し、見掛繊度にて表記した。
<破断強度、破断伸度>
JIS L1015に基づき、インストロン社製 型番5565を用いて、以下の条件で測定した。
(測定条件)
つかみ間隔 :20mm
初荷重 :0.044cN(1/20g)/dtex
引張速度 :20mm/分
<難燃性LOI値>
JIS K7201のLOI測定法に準拠して、LOI値を求めた。
<熱分解開始温度>
Pyris1 TGA(PerkinElmer製)にて熱重量測定を10℃/minの速度で昇温して実施、サンプル重量が5%減少した温度を熱分解開始温度とした。
<Fineness>
Based on JIS L1015, the measurement was carried out in accordance with the method A of the positive amount fineness, and it was expressed by the apparent fineness.
<Breaking strength, breaking elongation>
Based on JIS L1015, measurement was performed under the following conditions using model number 5565 manufactured by Instron.
(Measurement condition)
Grab interval: 20 mm
Initial load: 0.044cN (1 / 20g) / dtex
Tensile speed: 20 mm / min <flame retardant LOI value>
The LOI value was determined according to the LOI measurement method of JIS K7201.
<Pyrolysis start temperature>
Thermogravimetric analysis was carried out with Pyris1 TGA (manufactured by PerkinElmer) at a rate of 10 ° C./min, and the temperature at which the sample weight was reduced by 5% was defined as the thermal decomposition start temperature.

[実施例1~2]
(ポリマーの製造)
乾燥窒素雰囲気下の反応容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)721.5質量部を秤量し、このDMAc中にメタフェニレンジアミン97.2質量部(50.18モル%)を溶解させ、0℃に冷却した。この冷却したDMAc溶液に、さらにイソフタル酸クロライド(以下IPCと略す)181.3質量部(49.82モル%)を徐々に攪拌しながら添加し、重合反応を行った。
次に、平均粒径が10μm以下の水酸化カルシウム粉末を66.6質量部秤量し、重合反応が完了したポリマー溶液に対してゆっくり加え、中和反応を実施した。水酸化カルシウムの投入が完了した後、さらに40分間攪拌して、透明なポリマー溶液を得た。
得られたポリマー溶液からポリメタフェニレンイソフタルアミドを単離してIVを測定したところ、1.65であった。また、ポリマー溶液中のポリマー濃度は、17%であった。
[Examples 1 and 2]
(Manufacturing of polymer)
721.5 parts by mass of N, N-dimethylacetamide (DMAc) having a water content of 100 ppm or less was weighed in a reaction vessel under a dry nitrogen atmosphere, and 97.2 parts by mass (50.18 mol) of metaphenylenediamine was contained in the DMAc. %) Was dissolved and cooled to 0 ° C. To this cooled DMAc solution, 181.3 parts by mass (49.82 mol%) of isophthalic acid chloride (hereinafter abbreviated as IPC) was gradually added with stirring to carry out a polymerization reaction.
Next, 66.6 parts by mass of calcium hydroxide powder having an average particle size of 10 μm or less was weighed and slowly added to the polymer solution in which the polymerization reaction was completed to carry out a neutralization reaction. After the addition of calcium hydroxide was completed, the mixture was further stirred for 40 minutes to obtain a transparent polymer solution.
When polymethaphenylene isophthalamide was isolated from the obtained polymer solution and IV was measured, it was 1.65. The polymer concentration in the polymer solution was 17%.

(紡糸ドープの製造)
得られたポリマー溶液に、Pigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、均一に分散させた。芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートのDMAcへの溶解度を測定したところ溶解度:>5%、DMAc60%水溶液には、溶解度:0%で不溶であった。またこの化合物の熱分解開始温度は、320℃であった。
この化合物を難燃剤として該ポリマー溶液に、繊維中のリン含有量としてそれぞれ0.25wt%、0.50wt%となるよう添加し、減圧脱泡して紡糸ドープとした。
(Manufacturing of spinning dope)
Pigment Blue 15 powder was added to the obtained polymer solution so as to be 2.0 wt% with respect to the polymer component, and the powder was uniformly dispersed. The solubility of resorcinol bis-dixylenyl phosphate, which is an aromatic condensed phosphoric acid ester, in DMAc was measured. The solubility was> 5%, and the solubility was 0% in a 60% DMAc aqueous solution. The thermal decomposition start temperature of this compound was 320 ° C.
This compound was added to the polymer solution as a flame retardant so that the phosphorus content in the fiber was 0.25 wt% and 0.50 wt%, respectively, and defoamed under reduced pressure to obtain a spin dope.

(紡糸)
上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、メタ型全芳香族ポリアミド繊維をトウの状態でサンプリングし破断強度、破断伸度の測定を行った。
(spinning)
The spinning dope was discharged from a spinning spout having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C. for spinning. The composition of the coagulating liquid was water / DMAc = 45/55 (parts by mass), and the coagulating liquid was spun by discharging it into a coagulating bath at a yarn speed of 7 m / min.
Subsequently, stretching was carried out at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water / DMAc = 45/55 at a temperature of 40 ° C.
After stretching, the cells are washed in a water bath at 20 ° C./DMAc=70/30 (immersion length 1.8 m), then in a water bath at 20 ° C. (immersion length 3.6 m), and further in a warm water bath at 60 ° C. (immersion length 5). It was thoroughly washed by passing it through 0.4 m).
The washed fibers were subjected to dry heat treatment with a hot roller having a surface temperature of 300 ° C., and meta-type total aromatic polyamide fibers were sampled in the tow state to measure the breaking strength and breaking elongation.

さらに得られたトウ状態の繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、原着原綿を得た。得られた原綿を用いて難燃性LOI値を測定した。さらに130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めた。これらの結果を表1に示す。 Further, the obtained towed fibers were bundled, passed through a crimper, crimped, and then cut with a cutter to obtain 51 mm short fibers to obtain raw cotton. The flame-retardant LOI value was measured using the obtained raw cotton. Further, a wet heat treatment was carried out at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. These results are shown in Table 1.

[比較例1]
実施例2で製造した紡糸ドープに、耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるようさらに添加し、減圧脱泡して紡糸ドープとした以外は実施例2と同様に実施した。
[Comparative Example 1]
To the spinning dope produced in Example 2, a benzotriazole ultraviolet absorber, tinubin 234, was further added as a light-resistant stabilizer so as to be 3.0 wt% with respect to the polymer component, and defoamed under reduced pressure to obtain a spinning dope. Was carried out in the same manner as in Example 2.

[実施例3]
比較例1において、芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートを、繊維中のリン含有量が0.75wt%、なるよう添加し、減圧脱泡して紡糸ドープとした以外は比較例1と同様に実施した。
[Example 3]
In Comparative Example 1, resorcinol bis-dixylenyl phosphate, which is an aromatic condensed phosphoric acid ester, was added so that the phosphorus content in the fiber was 0.75 wt%, and the fiber was defoamed under reduced pressure to form a spinning dope. It was carried out in the same manner as in Comparative Example 1.

[比較例2]
上記ポリマー溶液に、Pigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、均一に分散させた後、減圧脱泡して紡糸ドープとした以外は実施例1と同様に実施した。
[Comparative Example 2]
The same procedure as in Example 1 was carried out except that Pigment Blue 15 powder was added to the above polymer solution so as to be 2.0 wt% with respect to the polymer component, dispersed uniformly, and then defoamed under reduced pressure to form a spinning dope. did.

[比較例3]
上記ポリマー溶液よりポリメタフェニレンイソフタルアミドを単離したのち、アミド系溶媒であるN-メチル-2-ピロリドン(NMP)にポリマー濃度18%となるよう溶解し、得られたポリマー溶液にPigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、均一に分散させた後、減圧脱泡して紡糸ドープとした以外は実施例1と同様に実施した。
[Comparative Example 3]
After isolating polymethaphenylene isophthalamide from the above polymer solution, it was dissolved in N-methyl-2-pyrrolidone (NMP), which is an amide solvent, so that the polymer concentration was 18%, and Pigment Blue 15 was added to the obtained polymer solution. The powder was added in an amount of 2.0 wt% with respect to the polymer component, dispersed uniformly, and then defoamed under reduced pressure to form a spinning dope, and the same procedure as in Example 1 was carried out.

[比較例4]
比較例3で製造した紡糸ドープに、耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるようさらに添加し、減圧脱泡して紡糸ドープとした以外は比較例3と同様に実施した。
[Comparative Example 4]
A benzotriazole ultraviolet absorber, tinubin 234, was further added to the spinning dope produced in Comparative Example 3 so as to be 3.0 wt% with respect to the polymer component, and defoamed under reduced pressure to obtain a spinning dope. Was carried out in the same manner as in Comparative Example 3.

[比較例5~8]
比較例3で得られたポリマー溶液に、有機リン化合物のNMPへの溶解度が5%以上ではあるが、DMAc60%水溶液にもよく溶解するトリス(クロロプロピル)ホスフェート(熱分解開始温度:160℃)をポリマー成分に対しリン含有量で0.39wt%、0.47wt%、0.59wt%、0.68wt%となるよう添加し、減圧脱泡して紡糸ドープとした以外は比較例3と同様に実施した。これらのドープにおけるポリマー成分に対する塩素含有量は、2.13%、2.53%、2.79%、3.15%であった。
[Comparative Examples 5 to 8]
Tris (chloropropyl) phosphate (thermal decomposition start temperature: 160 ° C.), which has a solubility of the organic phosphorus compound in NMP of 5% or more in the polymer solution obtained in Comparative Example 3 but is well dissolved in a DMAc 60% aqueous solution. Was added to the polymer component so that the phosphorus content was 0.39 wt%, 0.47 wt%, 0.59 wt%, 0.68 wt%, and the mixture was defoamed under reduced pressure to form a spinning dope, which was the same as in Comparative Example 3. It was carried out in. The chlorine content for the polymer components in these dope was 2.13%, 2.53%, 2.79%, 3.15%.

洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、メタ型全芳香族ポリアミド繊維をトウの状態でサンプリングし破断強度、破断伸度の測定を行った。 The washed fibers were subjected to dry heat treatment with a hot roller having a surface temperature of 300 ° C., and meta-type total aromatic polyamide fibers were sampled in the tow state to measure the breaking strength and breaking elongation.

さらに得られたトウ状態の繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、原着原綿を得た。得られた原綿を用いて難燃性LOI値を測定した。さらに130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めた。これらの結果を併せて表1に示す。 Further, the obtained towed fibers were bundled, passed through a crimper, crimped, and then cut with a cutter to obtain 51 mm short fibers to obtain raw cotton. The flame-retardant LOI value was measured using the obtained raw cotton. Further, a wet heat treatment was carried out at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. These results are also shown in Table 1.

比較例2と3で得られる原着繊維は、顔料添加によりLOI値が29、26と低いものしか得られなかった。また比較例3に耐光安定剤を追加した比較例4においては、LOI値が24と更に低くなった。 The original fibers obtained in Comparative Examples 2 and 3 had low LOI values of 29 and 26 due to the addition of the pigment. Further, in Comparative Example 4 in which the light-resistant stabilizer was added to Comparative Example 3, the LOI value was further lowered to 24.

比較例4を改善するため比較例5~8において含ハロゲンリン酸エステル類であるトリス(クロロプロピル)ホスフェートを添加した。添加量の増加とともにLOI値の向上がみられたが、130℃で2時間湿熱処理後の強度保持率の低下がみられ、比較例6においては、LOI値が33であるが、強度保持率が90%以下と耐久性の低い原着繊維となった。 In order to improve Comparative Example 4, tris (chloropropyl) phosphate, which is a halogen-containing phosphoric acid ester, was added in Comparative Examples 5 to 8. The LOI value improved with the increase in the amount added, but the strength retention rate after the wet heat treatment at 130 ° C. for 2 hours decreased. In Comparative Example 6, the LOI value was 33, but the strength retention rate. However, the durability was 90% or less, which was a low-durability raw fiber.

これに対し、実施例1および2では、熱分解開始温度が320℃である芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートを用いLOI値33以上、湿熱処理後の強度保持率95%以上と耐久性の高い原着繊維を得ることができた。 On the other hand, in Examples 1 and 2, a LOI value of 33 or more and a strength retention rate of 95 after wet heat treatment were used using resorcinol bis-dixylenyl phosphate, which is an aromatic condensed phosphoric acid ester having a thermal decomposition start temperature of 320 ° C. We were able to obtain a highly durable raw fiber with a percentage of% or more.

実施例2に耐光安定剤を用いた比較例1においては、LOI値の低下がみられたが、実施例3のとおり芳香族縮合リン酸エステルの添加量を増やすことで耐光性を有しながらLOI値を改善することができた。またこのときの湿熱処理後の強度保持率93%と耐久性を維持した原着繊維を得ることができた。 In Comparative Example 1 in which the light-resistant stabilizer was used in Example 2, a decrease in the LOI value was observed, but as in Example 3, the addition amount of the aromatic condensed phosphoric acid ester was increased to maintain the light resistance. The LOI value could be improved. Further, it was possible to obtain an uncoated fiber having a strength retention rate of 93% after the wet heat treatment at this time and maintaining durability.

Figure 0007028682000004
Figure 0007028682000004

[実施例4]
(ポリマーの製造)
乾燥窒素雰囲気下の反応容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)721.5質量部を秤量し、このDMAc中にメタフェニレンジアミン97.2質量部(50.18モル%)を溶解させ、0℃に冷却した。この冷却したDMAc溶液に、さらにイソフタル酸クロライド(以下IPCと略す)181.3質量部(49.82モル%)を徐々に攪拌しながら添加し、重合反応を行った。
次に、平均粒径が10μm以下の水酸化カルシウム粉末を66.6質量部秤量し、重合反応が完了したポリマー溶液に対してゆっくり加え、中和反応を実施した。水酸化カルシウムの投入が完了した後、さらに40分間攪拌して、透明なポリマー溶液を得た。
得られたポリマー溶液からポリメタフェニレンイソフタルアミドを単離してIVを測定したところ、1.65であった。また、ポリマー溶液中のポリマー濃度は、17%であった。
[Example 4]
(Manufacturing of polymer)
721.5 parts by mass of N, N-dimethylacetamide (DMAc) having a water content of 100 ppm or less was weighed in a reaction vessel under a dry nitrogen atmosphere, and 97.2 parts by mass (50.18 mol) of metaphenylenediamine was contained in the DMAc. %) Was dissolved and cooled to 0 ° C. To this cooled DMAc solution, 181.3 parts by mass (49.82 mol%) of isophthalic acid chloride (hereinafter abbreviated as IPC) was gradually added with stirring to carry out a polymerization reaction.
Next, 66.6 parts by mass of calcium hydroxide powder having an average particle size of 10 μm or less was weighed and slowly added to the polymer solution in which the polymerization reaction was completed to carry out a neutralization reaction. After the addition of calcium hydroxide was completed, the mixture was further stirred for 40 minutes to obtain a transparent polymer solution.
When polymethaphenylene isophthalamide was isolated from the obtained polymer solution and IV was measured, it was 1.65. The polymer concentration in the polymer solution was 17%.

(紡糸ドープの製造)
得られたポリマー溶液に、Pigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、均一に分散させた。芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートのDMAcへの溶解度を測定したところ溶解度:>5%、DMAc60%水溶液には、溶解度:0%で不溶であった。またこの化合物の熱分解開始温度は、320℃であった。
この化合物を難燃剤として該ポリマー溶液に、ポリマー成分に対してリン含有量として0.50wt%となるよう添加し、減圧脱泡して紡糸ドープとした。
(Manufacturing of spinning dope)
Pigment Blue 15 powder was added to the obtained polymer solution so as to be 2.0 wt% with respect to the polymer component, and the powder was uniformly dispersed. The solubility of resorcinol bis-dixylenyl phosphate, which is an aromatic condensed phosphoric acid ester, in DMAc was measured. The solubility was> 5%, and the solubility was 0% in a 60% DMAc aqueous solution. The thermal decomposition start temperature of this compound was 320 ° C.
This compound was added to the polymer solution as a flame retardant so as to have a phosphorus content of 0.50 wt% with respect to the polymer component, and defoamed under reduced pressure to obtain a spin dope.

(紡糸)
上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後、表面温度300℃の熱ローラーにて乾熱処理を施し、繊維を束ねてクリンパーを通し、捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、原着原綿を得た。得られた原綿を用いて難燃性LOI値を測定し、36と高い難燃性を示した。さらに130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めたところ、96%と強度の低下がみられなかった。これらの結果を表2に示す。
(spinning)
The spinning dope was discharged from a spinning spout having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C. for spinning. The composition of the coagulating liquid was water / DMAc = 45/55 (parts by mass), and the coagulating liquid was spun by discharging it into a coagulating bath at a yarn speed of 7 m / min.
Subsequently, stretching was carried out at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water / DMAc = 45/55 at a temperature of 40 ° C.
After stretching, the cells are washed in a water bath at 20 ° C./DMAc=70/30 (immersion length 1.8 m), then in a water bath at 20 ° C. (immersion length 3.6 m), and further in a warm water bath at 60 ° C. (immersion length 5). It was thoroughly washed by passing it through 0.4 m).
After washing, dry heat treatment is performed with a hot roller having a surface temperature of 300 ° C., the fibers are bundled and passed through a crimper to give crimping, and then cut with a cutter to make 51 mm short fibers. Obtained. The flame retardant LOI value was measured using the obtained raw cotton, and the flame retardancy was as high as 36. Further, a wet heat treatment was carried out at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. As a result, no decrease in strength was observed at 96%. These results are shown in Table 2.

(紡績糸作製)
また得られた原着原綿を通常の紡績工程を通して20番手の紡績糸を作製した。該紡績糸においても130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めたところ、94%と原綿同様に高温飽和蒸気下の過酷な環境でも強度が維持されており、消防服や耐熱作業服などの防護衣料が使用される可能性のある高温多湿な過酷な環境下において耐久性がみられた。これらの結果を表2に示す。
(Making spun yarn)
Further, the obtained uncoated raw cotton was used in a normal spinning process to produce a 20-count spun yarn. The spun yarn was also subjected to wet heat treatment at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. As a result, the strength was maintained at 94% even in a harsh environment under high temperature saturated steam like raw cotton. It has been shown to be durable in hot, humid and harsh environments where protective clothing such as firefighting clothing and heat-resistant workwear may be used. These results are shown in Table 2.

[実施例5]
実施例4で製造した紡糸ドープに、耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるようさらに添加し、さらに、芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートをポリマー成分に対してリン含有量が0.75wt%となるよう添加し、減圧脱泡して紡糸ドープとした以外は実施例4と同様に実施した。原綿のLOI値は、紫外線吸収剤の添加により低下傾向ではあるが、本発明の難燃剤を添加していることから33と高い値を維持していた。また、この原綿と紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、それぞれ93%と91%であり、強度の低下がみられず、消防服や耐熱作業服などの防護衣料に求められる耐久性を有していた。これらの結果を表2に示す。
[Example 5]
To the spinning dope produced in Example 4, a benzotriazole ultraviolet absorber, tinubin 234, was further added as a light-resistant stabilizer so as to be 3.0 wt% with respect to the polymer component, and further, an aromatic condensed phosphoric acid ester was added. The same procedure as in Example 4 was carried out except that resorcinol bis-dixylenyl phosphate was added so that the phosphorus content was 0.75 wt% with respect to the polymer component, and the mixture was defoamed under reduced pressure to form a spinning dope. The LOI value of the raw cotton tended to decrease due to the addition of the ultraviolet absorber, but maintained a high value of 33 because the flame retardant of the present invention was added. Further, when the breaking strength retention rates of the raw cotton and the spun yarn in the wet heat treatment under saturated steam at 130 ° C. for 2 hours were obtained, they were 93% and 91%, respectively, and no decrease in strength was observed. It had the durability required for protective clothing such as heat-resistant work clothes. These results are shown in Table 2.

[比較例9]
実施例4記載のポリマーの製造に従って得られたポリマー溶液よりポリメタフェニレンイソフタルアミドを単離したのち、アミド系溶媒であるN-メチル-2-ピロリドン(NMP)にポリマー濃度18%となるよう溶解し、得られたポリマー溶液にPigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、さらに耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるよう添加し、均一に分散させた後、減圧脱泡して紡糸ドープとした。また、凝固液の組成を、水/NMP=70/30(質量部)とした以外は実施例4と同様に実施した。この原綿と紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、それぞれ97%と95%であり、強度の低下がみられず、消防服や耐熱作業服などの防護衣料に求められる耐久性を有していたが、原綿のLOI値は、紫外線吸収剤と有機顔料の添加により24と低い値となり、消防服や耐熱作業服などの防護衣料として人体を保護する目的に対して不十分なものとなった。これらの結果を表2に示す。
[Comparative Example 9]
Polymethaphenylene isophthalamide was isolated from the polymer solution obtained according to the production of the polymer described in Example 4, and then dissolved in N-methyl-2-pyrrolidone (NMP), which is an amide-based solvent, so that the polymer concentration was 18%. Then, the powder of Pigment Blue 15 was added to the obtained polymer solution so as to be 2.0 wt% with respect to the polymer component, and the benzotriazole ultraviolet absorber chinubin 234 as a light-resistant stabilizer was added to the polymer component. It was added so as to be 0 wt%, dispersed uniformly, and then defoamed under reduced pressure to obtain a spinning dope. Further, the same procedure as in Example 4 was carried out except that the composition of the coagulating liquid was water / NMP = 70/30 (parts by mass). When the breaking strength retention rates of this raw cotton and spun yarn in moist heat treatment under saturated steam at 130 ° C for 2 hours were determined, they were 97% and 95%, respectively, and no decrease in strength was observed, and firefighting clothes and heat-resistant work were performed. Although it had the durability required for protective clothing such as clothes, the LOI value of raw cotton became as low as 24 due to the addition of ultraviolet absorbers and organic pigments, and the human body was used as protective clothing for firefighting clothing and heat-resistant work clothing. It became insufficient for the purpose of protecting. These results are shown in Table 2.

[比較例10、11]
比較例9で得られたポリマー溶液に、有機リン化合物のNMPへの溶解度が5%以上ではあるが、NMP60%水溶液にもよく溶解するトリス(クロロプロピル)ホスフェート(熱分解開始温度:160℃)をポリマー成分に対しリン含有量として、0.47wt%、0.68%となるよう添加し、減圧脱泡して紡糸ドープとした以外は比較例9と同様に実施した。それぞれの紡糸ドープにおいてポリマー成分に対する塩素含有量は、2.53%、3.15%であった。これら原綿のLOI値は、難燃剤の添加により比較例1より改善ざれ33、37と高い難燃性が示されたが、この原綿と紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、原綿で89%、79%となり紡績糸で87%、76%となり、強度の低下がみられ、消防服や耐熱作業服などの防護衣料が使用される可能性のある高温多湿な過酷な環境下において耐久性が弱いものとなった。これらの結果を表2に示す。
[Comparative Examples 10 and 11]
In the polymer solution obtained in Comparative Example 9, the solubility of the organic phosphorus compound in NMP is 5% or more, but the tris (chloropropyl) phosphate (thermal decomposition start temperature: 160 ° C.) is well dissolved in a 60% NMP aqueous solution. Was added to the polymer component so that the phosphorus content was 0.47 wt% and 0.68%, and the mixture was defoamed under reduced pressure to form a spinning dope, but the same procedure as in Comparative Example 9 was carried out. The chlorine content with respect to the polymer component in each spinning dope was 2.53% and 3.15%. The LOI value of these raw cottons was improved from Comparative Example 1 by the addition of a flame retardant and showed high flame retardancy of 33 and 37. When the breaking strength retention rate was determined, it was 89% and 79% for raw cotton and 87% and 76% for spun yarn, showing a decrease in strength, and protective clothing such as firefighting clothes and heat-resistant work clothes could be used. Durability is weak in a harsh environment with high temperature and humidity. These results are shown in Table 2.

Figure 0007028682000005
Figure 0007028682000005

[実施例6]
(ポリマーの製造)
乾燥窒素雰囲気下の反応容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)721.5質量部を秤量し、このDMAc中にメタフェニレンジアミン97.2質量部(50.18モル%)を溶解させ、0℃に冷却した。この冷却したDMAc溶液に、さらにイソフタル酸クロライド(以下IPCと略す)181.3質量部(49.82モル%)を徐々に攪拌しながら添加し、重合反応を行った。
次に、平均粒径が10μm以下の水酸化カルシウム粉末を66.6質量部秤量し、重合反応が完了したポリマー溶液に対してゆっくり加え、中和反応を実施した。水酸化カルシウムの投入が完了した後、さらに40分間攪拌して、透明なポリマー溶液を得た。
得られたポリマー溶液からポリメタフェニレンイソフタルアミドを単離してIVを測定したところ、1.65であった。また、ポリマー溶液中のポリマー濃度は、17%であった。
[Example 6]
(Manufacturing of polymer)
721.5 parts by mass of N, N-dimethylacetamide (DMAc) having a water content of 100 ppm or less was weighed in a reaction vessel under a dry nitrogen atmosphere, and 97.2 parts by mass (50.18 mol) of metaphenylenediamine was contained in the DMAc. %) Was dissolved and cooled to 0 ° C. To this cooled DMAc solution, 181.3 parts by mass (49.82 mol%) of isophthalic acid chloride (hereinafter abbreviated as IPC) was gradually added with stirring to carry out a polymerization reaction.
Next, 66.6 parts by mass of calcium hydroxide powder having an average particle size of 10 μm or less was weighed and slowly added to the polymer solution in which the polymerization reaction was completed to carry out a neutralization reaction. After the addition of calcium hydroxide was completed, the mixture was further stirred for 40 minutes to obtain a transparent polymer solution.
When polymethaphenylene isophthalamide was isolated from the obtained polymer solution and IV was measured, it was 1.65. The polymer concentration in the polymer solution was 17%.

(紡糸ドープの製造)
得られたポリマー溶液に、Pigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、均一に分散させた。芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートのDMAcへの溶解度を測定したところ溶解度:>5%、DMAc60%水溶液には、溶解度:0%で不溶であった。またこの化合物の熱分解開始温度は、320℃であった。
この化合物を難燃剤として該ポリマー溶液に、ポリマー成分に対してリン含有量として0.50wt%となるよう添加し、減圧脱泡して紡糸ドープとした。
(Manufacturing of spinning dope)
Pigment Blue 15 powder was added to the obtained polymer solution so as to be 2.0 wt% with respect to the polymer component, and the powder was uniformly dispersed. The solubility of resorcinol bis-dixylenyl phosphate, which is an aromatic condensed phosphoric acid ester, in DMAc was measured. The solubility was> 5%, and the solubility was 0% in a 60% DMAc aqueous solution. The thermal decomposition start temperature of this compound was 320 ° C.
This compound was added to the polymer solution as a flame retardant so as to have a phosphorus content of 0.50 wt% with respect to the polymer component, and defoamed under reduced pressure to obtain a spin dope.

(紡糸)
上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
洗浄後、表面温度300℃の熱ローラーにて乾熱処理を施し、押込み捲縮などによる捲縮付与を行わず、捲縮を有しない連続糸条(トウ)を得た。得られた捲縮を有しない連続糸条(トウ)を用いて難燃性LOI値を測定し、36と高い難燃性を示した。さらに130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めたところ、96%と強度の低下がみられなかった。これらの結果を表3に示す。
(spinning)
The spinning dope was discharged from a spinning spout having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C. for spinning. The composition of the coagulating liquid was water / DMAc = 45/55 (parts by mass), and the coagulating liquid was spun by discharging it into a coagulating bath at a yarn speed of 7 m / min.
Subsequently, stretching was carried out at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water / DMAc = 45/55 at a temperature of 40 ° C.
After stretching, the cells are washed in a water bath at 20 ° C./DMAc=70/30 (immersion length 1.8 m), then in a water bath at 20 ° C. (immersion length 3.6 m), and further in a warm water bath at 60 ° C. (immersion length 5). It was thoroughly washed by passing it through 0.4 m).
After washing, a dry heat treatment was performed with a hot roller having a surface temperature of 300 ° C. to obtain continuous yarns (tows) having no crimping without applying crimping by indentation and crimping. The flame-retardant LOI value was measured using the obtained continuous yarn (tow) having no crimp, and showed high flame retardancy of 36. Further, a wet heat treatment was carried out at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. As a result, no decrease in strength was observed at 96%. These results are shown in Table 3.

(牽切紡績糸作製)
得られたポリメタフェニレンイソフタルアミド繊維のトウを、600mm間隔の一対のローラー間で、牽切比21倍で牽切し、引き続き、下記条件にて連続的に抱合性を付与することにより、牽切紡績糸を得た。該牽切紡績糸においても130℃にて2時間飽和蒸気下で湿熱処理を実施しその前後の破断強度保持率を求めたところ、92%と牽切加工前の捲縮を有しない連続糸条(トウ)と同様に高温飽和蒸気下の過酷な環境でも強度が維持されており、消防服や耐熱作業服などの防護衣料が使用される可能性のある高温多湿な過酷な環境下において耐久性がみられた。これらの結果を表3に示す。
(Making cut-out spun yarn)
The tow of the obtained polymethaphenylene isophthalamide fiber is towed between a pair of rollers at intervals of 600 mm at a check-off ratio of 21 times, and subsequently, by continuously imparting conjugation under the following conditions, the check-off is performed. Obtained cut-spun yarn. The cut-out spun yarn was also subjected to wet heat treatment at 130 ° C. for 2 hours under saturated steam, and the breaking strength retention rate before and after that was determined. Similar to (Tow), its strength is maintained even in a harsh environment under high temperature saturated steam, and it is durable in a hot and humid harsh environment where protective clothing such as firefighting clothes and heat-resistant work clothes may be used. Was seen. These results are shown in Table 3.

[実施例7]
実施例6で製造した紡糸ドープに、耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるようさらに添加し、さらに、芳香族縮合リン酸エステルであるレゾルシノールビス-ジキシレニルホスフェートをポリマー成分に対してリン含有量が0.75wt%となるよう添加し、減圧脱泡して紡糸ドープとした以外は実施例6と同様に実施した。牽切加工前の捲縮を有しない連続糸条(トウ)のLOI値は、紫外線吸収剤の添加により低下傾向ではあるが、本発明の難燃剤を添加していることから33と高い値を維持していた。また、このトウと牽切紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、それぞれ93%と91%であり、強度の低下がみられず、消防服や耐熱作業服などの防護衣料に求められる耐久性を有していた。これらの結果を表3に示す。
[Example 7]
To the spinning dope produced in Example 6, a benzotriazole ultraviolet absorber, tinubin 234, was further added as a light-resistant stabilizer so as to be 3.0 wt% with respect to the polymer component, and further, an aromatic condensed phosphoric acid ester was added. The same procedure as in Example 6 was carried out except that resorcinol bis-dixylenyl phosphate was added so that the phosphorus content was 0.75 wt% with respect to the polymer component, and the mixture was defoamed under reduced pressure to form a spinning dope. The LOI value of the continuous yarn (tow) having no crimping before the cut-off process tends to decrease due to the addition of the ultraviolet absorber, but it is as high as 33 because the flame retardant of the present invention is added. I was keeping it. Further, when the breaking strength retention rates of the tow and the cut-out spun yarn in the wet heat treatment under saturated steam at 130 ° C. for 2 hours were obtained, they were 93% and 91%, respectively, and no decrease in strength was observed. It had the durability required for protective clothing such as clothes and heat-resistant work clothes. These results are shown in Table 3.

[比較例12]
実施例6記載のポリマーの製造に従って得られたポリマー溶液よりポリメタフェニレンイソフタルアミドを単離したのち、アミド系溶媒であるN-メチル-2-ピロリドン(NMP)にポリマー濃度18%となるよう溶解し、得られたポリマー溶液にPigment Blue15の粉末をポリマー成分に対して2.0wt%となるよう添加し、さらに耐光安定剤としてベンゾトリアゾール紫外線吸収剤であるチヌビン234をポリマー成分に対して3.0wt%となるよう添加し、均一に分散させた後、減圧脱泡して紡糸ドープとした。また、凝固液の組成を、水/NMP=70/30(質量部)とした以外は実施例6と同様に実施した。この牽切加工前の捲縮を有しない連続糸条(トウ)と牽切紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、それぞれ97%と93%であり、強度の低下がみられず、消防服や耐熱作業服などの防護衣料に求められる耐久性を有していたが、トウのLOI値は、紫外線吸収剤と有機顔料の添加により24と低い値となり、消防服や耐熱作業服などの防護衣料として人体を保護する目的に対して不十分なものとなった。これらの結果を表3に示す。
[Comparative Example 12]
Polymethaphenylene isophthalamide was isolated from the polymer solution obtained according to the production of the polymer described in Example 6, and then dissolved in N-methyl-2-pyrrolidone (NMP), which is an amide-based solvent, so that the polymer concentration was 18%. Then, the powder of Pigment Blue 15 was added to the obtained polymer solution so as to be 2.0 wt% with respect to the polymer component, and the benzotriazole ultraviolet absorber chinubin 234 as a light-resistant stabilizer was added to the polymer component. It was added so as to be 0 wt%, dispersed uniformly, and then defoamed under reduced pressure to obtain a spinning dope. Further, the same procedure as in Example 6 was carried out except that the composition of the coagulating liquid was water / NMP = 70/30 (parts by mass). The breaking strength retention rates of the continuous yarn (toe) without crimping before the cut-off process and the cut-off spun yarn in the wet heat treatment under saturated steam at 130 ° C. for 2 hours were determined and found to be 97% and 93, respectively. %, No decrease in strength was observed, and it had the durability required for protective clothing such as firefighting clothing and heat-resistant workwear, but the LOI value of tow was 24 due to the addition of ultraviolet absorbers and organic pigments. It became a low value, and it became insufficient for the purpose of protecting the human body as protective clothing such as firefighting clothes and heat-resistant work clothes. These results are shown in Table 3.

[比較例13、14]
比較例12で得られたポリマー溶液に、有機リン化合物のNMPへの溶解度が5%以上ではあるが、NMP60%水溶液にもよく溶解するトリス(クロロプロピル)ホスフェート(熱分解開始温度:160℃)をポリマー成分に対しリン含有量として、0.47wt%、0.68%となるよう添加し、減圧脱泡して紡糸ドープとした以外は比較例12と同様に実施した。それぞれの紡糸ドープにおいてポリマー成分に対する塩素含有量は、2.53%、3.15%であった。これら牽切加工前の捲縮を有しない連続糸条(トウ)のLOI値は、難燃剤の添加により比較例1より改善され33、37と高い難燃性が示されたが、このトウと牽切紡績糸における130℃・2時間飽和蒸気下での湿熱処理における破断強度保持率を求めたところ、トウで89%、79%となり牽切紡績糸で86%、74%となり、強度の低下がみられ、消防服や耐熱作業服などの防護衣料が使用される可能性のある高温多湿な過酷な環境下において耐久性が弱いものとなった。これらの結果を表3に示す。
[Comparative Examples 13 and 14]
Tris (chloropropyl) phosphate (thermal decomposition start temperature: 160 ° C.), which has a solubility of the organic phosphorus compound in NMP of 5% or more in the polymer solution obtained in Comparative Example 12 but is well dissolved in a 60% aqueous solution of NMP. Was added to the polymer component so that the phosphorus content was 0.47 wt% and 0.68%, and the mixture was defoamed under reduced pressure to form a spinning dope, but the same procedure as in Comparative Example 12 was carried out. The chlorine content with respect to the polymer component in each spinning dope was 2.53% and 3.15%. The LOI value of the continuous yarn (toe) having no crimping before the cut-off process was improved from Comparative Example 1 by the addition of the flame retardant, and showed high flame retardancy of 33 and 37. When the breaking strength retention rate in the wet heat treatment under saturated steam at 130 ° C. for 2 hours was obtained for the cut-out spun yarn, it was 89% and 79% for the tow and 86% and 74% for the cut-off spun yarn, resulting in a decrease in strength. However, the durability was weak in the harsh environment of high temperature and humidity where protective clothing such as firefighting clothes and heat-resistant work clothes may be used. These results are shown in Table 3.

Figure 0007028682000006
Figure 0007028682000006

本発明によって、防護衣料に用いられる原着メタ型全芳香族ポリアミド繊維において耐光性を有した高い耐久性を付与することができ、防護衣料を長期間着用しても変色、劣化の進行の少ない製品となる繊維素材を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to impart high light resistance to high durability of the original meta-type total aromatic polyamide fiber used for protective clothing, and even if the protective clothing is worn for a long period of time, discoloration and deterioration are less likely to occur. It is possible to provide a textile material as a product.

Claims (8)

メタ型全芳香族ポリアミド繊維中におけるリン原子含有量が0.2wt%以上となるように有機リン化合物が含有されたメタ型全芳香族ポリアミド繊維であって、該繊維には顔料が0.1~10.0wt%含有されており、該繊維の燃焼時限界酸素指数LOIが33以上、130℃で2時間湿熱処理した後の強度保持率が90%以上である原着メタ型全芳香族ポリアミド繊維。 A meta-type total aromatic polyamide fiber containing an organic phosphorus compound so that the phosphorus atom content in the meta-type total aromatic polyamide fiber is 0.2 wt% or more, and the fiber contains 0.1 pigment. It contains ~ 10.0 wt%, has a combustion limit oxygen index LOI of 33 or more, and has a strength retention rate of 90% or more after moist heat treatment at 130 ° C. for 2 hours. fiber. 該繊維に含まれる有機リン化合物の熱分解開始温度が300℃以上である請求項1記載の原着メタ型全芳香族ポリアミド繊維。 The original meta-type total aromatic polyamide fiber according to claim 1, wherein the organic phosphorus compound contained in the fiber has a thermal decomposition start temperature of 300 ° C. or higher. 有機リン化合物が、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解し、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液には不溶である請求項1または2に記載の原着メタ型全芳香族ポリアミド繊維。 The organic phosphorus compound is dissolved in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) in an amount of 5% or more, and N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) is dissolved. ), Or the original meta-type total aromatic polyamide fiber according to claim 1 or 2, which is insoluble in a 60% aqueous solution of dimethylacetamide (DMAc) . 該繊維中におけるハロゲン含有量が0.2wt%以下である請求項1~3いずれかに記載の原着メタ型全芳香族ポリアミド繊維。 The original meta-type total aromatic polyamide fiber according to any one of claims 1 to 3, wherein the halogen content in the fiber is 0.2 wt% or less. 該繊維を180℃で30秒乾熱処理したときの、乾熱処理前後における色差ΔEが0.75以下である請求項1~4いずれかに記載の原着メタ型全芳香族ポリアミド繊維。 The original meta-type total aromatic polyamide fiber according to any one of claims 1 to 4, wherein the color difference ΔE before and after the dry heat treatment when the fiber is dry heat treated at 180 ° C. for 30 seconds is 0.75 or less. N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)に5%以上溶解し、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、又はジメチルアセトアミド(DMAc)の60%水溶液には不溶である有機リン化合物を、顔料を含む紡糸ドープに対しリン原子含有量が0.2~5.0wt%となるように添加した後、紡糸することを特徴とする原着メタ型全芳香族ポリアミド繊維の製造方法。 Dissolve 5% or more in N-methyl -2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAc) and dissolve in N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide. It is characterized by adding an organic phosphorus compound insoluble in a 60% aqueous solution of (DMAc) so that the phosphorus atom content is 0.2 to 5.0 wt% with respect to a spinning dope containing a pigment, and then spinning. A method for producing a fully aromatic polyamide fiber of the original meta-type. 請求項1~5のいずれか1項に記載の原着メタ型全芳香族ポリアミド繊維をその構成成分とすることを特徴とする難燃性紡績糸。 A flame-retardant spun yarn comprising the original meta-type total aromatic polyamide fiber according to any one of claims 1 to 5 as a constituent component thereof. 請求項1~5のいずれか1項に記載の原着メタ型全芳香族ポリアミド繊維をその構成成分とすることを特徴とする難燃性牽切紡績糸。 A flame-retardant cut-off spun yarn comprising the original meta-type total aromatic polyamide fiber according to any one of claims 1 to 5 as a constituent component thereof.
JP2018044223A 2017-03-17 2018-03-12 Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber. Active JP7028682B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052892 2017-03-17
JP2017052892 2017-03-17

Publications (2)

Publication Number Publication Date
JP2018154954A JP2018154954A (en) 2018-10-04
JP7028682B2 true JP7028682B2 (en) 2022-03-02

Family

ID=63716345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044223A Active JP7028682B2 (en) 2017-03-17 2018-03-12 Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber.

Country Status (1)

Country Link
JP (1) JP7028682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117831A (en) * 2019-01-24 2020-08-06 帝人株式会社 Easily-dyeable meta-type wholly aromatic polyamide fiber, and method for producing the same
JP2021107588A (en) * 2019-12-27 2021-07-29 帝人株式会社 Spun-dyed meta-type wholly aromatic polyamide fiber having excellent light resistance and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150681A (en) 2008-12-24 2010-07-08 Teijin Techno Products Ltd Low-shrinkage meta-type wholly aromatic polyamide fiber and method for producing the same
JP2018154945A (en) 2017-03-17 2018-10-04 帝人株式会社 Easily-dyeable meta-type wholly aromatic polyamide fiber having excellent flame retardancy and method for producing the same
JP2019157290A (en) 2018-03-12 2019-09-19 帝人株式会社 Fire retardant stretch-broken yarn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150681A (en) 2008-12-24 2010-07-08 Teijin Techno Products Ltd Low-shrinkage meta-type wholly aromatic polyamide fiber and method for producing the same
JP2018154945A (en) 2017-03-17 2018-10-04 帝人株式会社 Easily-dyeable meta-type wholly aromatic polyamide fiber having excellent flame retardancy and method for producing the same
JP2019157290A (en) 2018-03-12 2019-09-19 帝人株式会社 Fire retardant stretch-broken yarn

Also Published As

Publication number Publication date
JP2018154954A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
RU2534767C2 (en) Fibre from completely aromatic metatype polyamide
KR20140080552A (en) Spun-dyed meta-type fully aromatic polyamide fiber
JP7028682B2 (en) Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber.
JP3937050B2 (en) Method for producing meta-type wholly aromatic polyamide fiber and fiber obtained thereby
JP6873768B2 (en) I Ching meta-type total aromatic polyamide fiber with excellent flame retardancy and its manufacturing method
JP2018154943A (en) Meta-type wholly aromatic polyamide fiber having excellent flame retardancy and method for producing the same
JP2011202326A (en) Fiber structure including easy-to-dye meta-wholly aromatic polyamide staple fiber
JP7248507B2 (en) Spin-dyed meta-type wholly aromatic polyamide fiber and method for producing the same
JP2020117831A (en) Easily-dyeable meta-type wholly aromatic polyamide fiber, and method for producing the same
JP2013133569A (en) Spun yarn of spun-dyed meta-type wholly aromatic polyamide fiber
JP7267821B2 (en) Method for producing recycled meta-type wholly aromatic polyamide fiber
US9388512B2 (en) Para-type wholly aromatic copolyamide drawn fiber and method for producing the same
JP6960275B2 (en) Light-colored original meta-type total aromatic polyamide fiber
JP5662262B2 (en) Core-sheath type composite yarn
JP2019157290A (en) Fire retardant stretch-broken yarn
JP2015042790A (en) Stretch-broken spun yarn comprising spun-dyed meta-type wholly aromatic polyamide
JP7466054B2 (en) Method for producing meta-dyed fully aromatic polyamide fiber
JP7315378B2 (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
JP7239382B2 (en) Easy-dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP2019157289A (en) Fire retardant yarn
JP2020020058A (en) Fire retardant fabric, scrim for filter comprising fire retardant fabric, and filter using the scrim for filter
JP2020045590A (en) Flame-retardant fabric containing meta-type wholly aromatic polyamide fiber
JP3929342B2 (en) Method for producing dense meta-type wholly aromatic polyamide fiber
JP2018084000A (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
JP2023110161A (en) Meta-type whole aromatic polyamide fiber and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150