JP2023135371A - Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system Download PDF

Info

Publication number
JP2023135371A
JP2023135371A JP2022040535A JP2022040535A JP2023135371A JP 2023135371 A JP2023135371 A JP 2023135371A JP 2022040535 A JP2022040535 A JP 2022040535A JP 2022040535 A JP2022040535 A JP 2022040535A JP 2023135371 A JP2023135371 A JP 2023135371A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022040535A
Other languages
Japanese (ja)
Other versions
JP7149436B1 (en
Inventor
輝 吉川
Teru Yoshikawa
裕一 佐飛
Yuichi Satobi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022040535A priority Critical patent/JP7149436B1/en
Priority to JP2022150942A priority patent/JP2023135585A/en
Application granted granted Critical
Publication of JP7149436B1 publication Critical patent/JP7149436B1/en
Priority to PCT/JP2023/010124 priority patent/WO2023176892A1/en
Publication of JP2023135371A publication Critical patent/JP2023135371A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide a positive electrode for non-aqueous electrolyte secondary battery that can increase the energy density of the non-aqueous electrolyte secondary battery and also enhance quick charge-discharge characteristics thereof at a high current.SOLUTION: A positive electrode 1 for a non-aqueous electrolyte secondary battery has a current collector 11, and a positive electrode active material layer 12 present on the current collector 11. A current collector coating layer 15 is present on at least a portion of the surface of the current collector 11 on the positive electrode active material layer 12 side. The current collector coating layer 15 contains a conductive material. The positive electrode active material layer 12 contains positive electrode active material particles and a resin component. The content of the resin component based on the total mass of the positive electrode active material layer 15 is 0.8-3.0 mass%. With respect to the volume-based particle size distribution curve of the particles present in the positive electrode active material layer 15, the mode particle diameter is 50.0-100.0 μm, and the frequency at the mode particle diameter is 5-15%.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。 The present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, a battery module, and a battery system using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
A non-aqueous electrolyte secondary battery generally includes a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) installed between the positive electrode and the negative electrode.
As a positive electrode for a non-aqueous electrolyte secondary battery, one in which a composition consisting of a positive electrode active material containing lithium ions, a conductive agent, and a binder is fixed to the surface of a metal foil (current collector) is known. ing.
Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (lithium iron phosphate). Lithium phosphate compounds such as LiFePO 4 ) have been put into practical use.

特許文献1には、非水電解質二次電池の正極において、アルミニウム箔集電体と、リチウム遷移金属複合酸化物を含む正極活物質層との間に、カーボンを導電剤とする導電性塗料層を設けることによってサイクル寿命を向上させる方法が記載されている。 Patent Document 1 discloses that in a positive electrode of a non-aqueous electrolyte secondary battery, a conductive paint layer containing carbon as a conductive agent is provided between an aluminum foil current collector and a positive electrode active material layer containing a lithium-transition metal composite oxide. A method is described for improving cycle life by providing a

特開2001-351612号公報Japanese Patent Application Publication No. 2001-351612

しかし、特許文献1の方法は必ずしも充分ではなく、電池特性のさらなる向上が求められている。
本発明は、非水電解質二次電池のエネルギー密度を高めるとともに、大電流での急速充放電特性(大電流特性)も高められる非水電解質二次電池用正極を提供することを課題とする。
However, the method of Patent Document 1 is not necessarily sufficient, and further improvement of battery characteristics is required.
An object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery that not only increases the energy density of the non-aqueous electrolyte secondary battery but also improves rapid charge/discharge characteristics at large currents (large current characteristics).

本発明は以下の態様を有する。
[1] 集電体と、前記集電体上に存在する正極活物質層とを有し、前記集電体の、前記正極活物質層側の表面の少なくとも一部に集電体被覆層が存在し、前記集電体被覆層は導電材料を含み、前記正極活物質層は正極活物質粒子及び樹脂成分を含み、前記正極活物質層の総質量に対して前記樹脂成分の含有量が0.8~3.0質量%であり、前記正極活物質層に存在する粒子の、体積基準の粒度分布曲線において、最頻度粒子径が50.0~100.0μmであり、前記最頻度粒子径における頻度が5~15%である、非水電解質二次電池用正極。
[2] 縦軸を頻度とする前記粒度分布曲線において、極大点が複数存在し、前記複数の極大点のうち粒子径が最も大きい極大点における粒子径が前記最頻度粒子径である、[1]の非水電解質二次電池用正極。
[3] 前記粒度分布曲線において、90%径から10%径を差し引いた分布幅が80.0~200.0μmである、[1]又は[2]の非水電解質二次電池用正極。
[4] 前記正極活物質層の体積密度が、2.00~2.40g/cmである、[1]~[3]のいずれかの非水電解質二次電池用正極。
[5] 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]~[4]のいずれかの非水電解質二次電池用正極。
[6] 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、[1]~[5]のいずれかの非水電解質二次電池用正極。
[7] 前記正極活物質層が結着材を含み、前記結着材が前記樹脂成分を含む、[1]~[6]のいずれかの非水電解質二次電池用正極。
[8] 前記正極活物質層が導電助剤を含まない、[1]~[7]のいずれかの非水電解質二次電池用正極。
[9] [1]~[8]のいずれかの非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質を備える、非水電解質二次電池。
[10] [9]の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
The present invention has the following aspects.
[1] A current collector and a positive electrode active material layer present on the current collector, and a current collector coating layer is provided on at least a part of the surface of the current collector on the positive electrode active material layer side. the current collector coating layer contains a conductive material, the cathode active material layer contains cathode active material particles and a resin component, and the content of the resin component is 0 with respect to the total mass of the cathode active material layer. .8 to 3.0% by mass, and in the volume-based particle size distribution curve of the particles present in the positive electrode active material layer, the most frequent particle diameter is 50.0 to 100.0 μm, and the most frequent particle diameter is 50.0 to 100.0 μm. A positive electrode for a non-aqueous electrolyte secondary battery, in which the frequency is 5 to 15%.
[2] In the particle size distribution curve with frequency as the vertical axis, there are a plurality of maximum points, and the particle size at the maximum point having the largest particle size among the plurality of maximum points is the most frequent particle size. ] Positive electrode for non-aqueous electrolyte secondary batteries.
[3] The positive electrode for a non-aqueous electrolyte secondary battery according to [1] or [2], wherein in the particle size distribution curve, the distribution width obtained by subtracting the 10% diameter from the 90% diameter is 80.0 to 200.0 μm.
[4] The positive electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [3], wherein the positive electrode active material layer has a volume density of 2.00 to 2.40 g/cm 3 .
[5] The positive electrode active material particles have the general formula LiFe x M (1-x) PO 4 (wherein 0≦x≦1, M is Co, Ni, Mn, Al, Ti, or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [4], which comprises the represented compound.
[6] The positive electrode active material layer contains conductive carbon, and the content of the conductive carbon is 0.5% by mass or more and less than 3.0% by mass with respect to the total mass of the positive electrode active material layer. 1] to [5], the positive electrode for a non-aqueous electrolyte secondary battery.
[7] The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [6], wherein the positive electrode active material layer contains a binder, and the binder contains the resin component.
[8] The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [7], wherein the positive electrode active material layer does not contain a conductive additive.
[9] A positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [8], a negative electrode, and a non-aqueous electrolyte present between the positive electrode for a non-aqueous electrolyte secondary battery and the negative electrode, Nonaqueous electrolyte secondary battery.
[10] A battery module or a battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to [9].

本発明によれば、非水電解質二次電池のエネルギー密度を高めるとともに、大電流での急速充放電特性も高められる非水電解質二次電池用正極が得られる。 According to the present invention, a positive electrode for a non-aqueous electrolyte secondary battery can be obtained that increases the energy density of the non-aqueous electrolyte secondary battery and also improves rapid charge/discharge characteristics at large currents.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention. 実施例における粒度分布の例を示すグラフである。It is a graph showing an example of particle size distribution in an example.

本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "~" indicating a numerical range means that the numerical values listed before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
Note that FIGS. 1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、集電体(以下「正極集電体」という。)11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極活物質層12側の表面に集電体被覆層15が存在する。すなわち、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。
<Positive electrode for non-aqueous electrolyte secondary batteries>
A positive electrode for a non-aqueous electrolyte secondary battery (also simply referred to as "positive electrode") 1 of the present embodiment includes a current collector (hereinafter referred to as "positive electrode current collector") 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both sides of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 has a current collector coating layer 15 on the surface thereof on the positive electrode active material layer 12 side. That is, the positive electrode current collector 11 includes a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side.

[正極活物質層]
正極活物質層12は正極活物質粒子を含む。
正極活物質層12は樹脂成分を含む。正極活物質層12中の樹脂成分としては、結着材、分散剤等が挙げられる。
正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。
正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
[Cathode active material layer]
The positive electrode active material layer 12 includes positive electrode active material particles.
The positive electrode active material layer 12 contains a resin component. Examples of the resin component in the positive electrode active material layer 12 include a binder, a dispersant, and the like.
The positive electrode active material layer 12 may further contain a conductive additive. In this specification, the term "conductive additive" refers to a conductive material having a granular, fibrous, etc. shape that is mixed with positive electrode active material particles when forming a positive electrode active material layer; Refers to a conductive material that is present in the positive electrode active material layer in a connected manner.
With respect to the total mass of the positive electrode active material layer 12, the content of the positive electrode active material particles is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass.

正極活物質層の厚さ(正極集電体の両面上に正極活物質層が存在する場合、両面の合計)は30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚さが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。 The thickness of the positive electrode active material layer (when positive electrode active material layers are present on both sides of the positive electrode current collector, the total thickness of both surfaces) is preferably 30 to 500 μm, more preferably 40 to 400 μm, and 50 to 500 μm. It is particularly preferred that the thickness is 300 μm. When the thickness of the positive electrode active material layer is at least the lower limit of the above range, the energy density of a battery incorporating the positive electrode tends to be high, and when it is below the upper limit of the above range, the peel strength of the positive electrode active material layer is high. , peeling can be suppressed during charging and discharging.

[正極活物質粒子]
正極活物質粒子の表面に、導電材料を含む活物質被覆部が存在することが好ましい。すなわち、正極活物質粒子は、正極活物質からなる芯部と、導電材料を含む活物質被覆部とを有することが好ましい。活物質被覆部は前記芯部の表面を覆う。
正極活物質層中の正極活物質粒子は、正極活物質の粒子(芯部)のみからなる単一粒子でもよく、芯部が1個であり活物質被覆部を有する単体の被覆粒子でもよく、複数個の芯部を含み、隣り合う芯部の間に活物質被覆部が存在し、一体的に集合している集合粒子でもよく、これらが混在してもよい。正極活物質粒子が集合粒子を含むことが好ましい。
[Cathode active material particles]
It is preferable that an active material coating portion containing a conductive material exists on the surface of the positive electrode active material particles. That is, it is preferable that the positive electrode active material particles have a core portion made of a positive electrode active material and an active material coating portion containing a conductive material. The active material coating portion covers the surface of the core portion.
The positive electrode active material particles in the positive electrode active material layer may be single particles consisting only of positive electrode active material particles (core part), or may be single coated particles having one core part and an active material coating part, The particles may be aggregated particles that include a plurality of core portions, have active material coating portions between adjacent core portions, and are integrally aggregated, or may be a mixture of these. It is preferable that the positive electrode active material particles include aggregate particles.

(被覆粒子)
被覆粒子において、正極活物質粒子の表面には、導電材料を含む活物質被覆部が存在する。活物質被覆部が存在することで、電池容量、サイクル特性をより高められる。
被覆粒子において、活物質被覆部は、予め正極活物質粒子の表面に形成されており、かつ正極活物質層中において、正極活物質粒子の表面に存在する。即ち、本稿における活物質被覆部は、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で欠落するものではない。
例えば、正極製造用組成物を調製する際に、被覆粒子を溶媒と共にミキサー等で混合しても、活物質被覆部は正極活物質(芯部)の表面を被覆している。また、仮に、正極から正極活物質層を剥がし、これを溶媒に投入して正極活物質層中の結着材を溶媒に溶解させた場合にも、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極活物質層中の粒子の粒度分布をレーザー回折・散乱法により測定する際に、凝集した粒子をほぐす操作を行った場合にも活物質被覆部は正極活物質の表面を被覆している。
被覆粒子において、活物質被覆部は、正極活物質粒子の外表面全体の面積の50%以上に存在することが好ましく、70%以上に存在することが好ましく、90%以上に存在することが好ましい。
すなわち、被覆粒子は、正極活物質である芯部と、前記芯部の表面を覆う活物質被覆部とを有し、芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。
(Coated particles)
In the coated particles, an active material coating portion containing a conductive material is present on the surface of the positive electrode active material particles. The presence of the active material coating portion allows the battery capacity and cycle characteristics to be further improved.
In the coated particles, the active material coating portion is formed in advance on the surface of the positive electrode active material particles, and is present on the surface of the positive electrode active material particles in the positive electrode active material layer. That is, the active material coating portion in this paper is not newly formed in a step after the step of preparing the composition for producing a positive electrode. In addition, the active material coating portion is not lost in the steps after the step of preparing the composition for producing the positive electrode.
For example, when preparing a composition for producing a positive electrode, even if the coated particles are mixed with a solvent using a mixer or the like, the active material coating portion still covers the surface of the positive electrode active material (core portion). Furthermore, even if the positive electrode active material layer is peeled off from the positive electrode and put into a solvent to dissolve the binder in the positive electrode active material layer, the active material coating part will not cover the surface of the positive electrode active material. Covered. In addition, even if an operation is performed to loosen aggregated particles when measuring the particle size distribution of particles in the positive electrode active material layer by laser diffraction/scattering method, the active material coating portion will not cover the surface of the positive electrode active material. are doing.
In the coated particles, the active material coating portion preferably exists on 50% or more, preferably 70% or more, and preferably 90% or more of the entire outer surface area of the positive electrode active material particles. .
That is, the coated particles have a core that is a positive electrode active material and an active material coating that covers the surface of the core, and the area (coverage) of the active material coating with respect to the surface area of the core is 50%. It is preferably at least 70%, more preferably at least 90%, even more preferably at least 90%.

被覆粒子の製造方法としては、例えば、焼結法、蒸着法等が挙げられる。
焼結法としては、正極活物質の粒子と有機物とを含む活物質製造用組成物(例えば、スラリー)を、大気圧下、500~1000℃、1~100時間で焼成する方法が挙げられる。活物質製造用組成物に添加する有機物としては、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂等、スクロース、グルコース、ラクトース等の糖類、リンゴ酸、クエン酸などのカルボン酸、アリルアルコール、プロパルギルアルコール等の不飽和一価アルコール、アスコルビン酸、ポリビニルアルコール等が挙げられる。この焼結法によれば、活物質製造用組成物を焼成することで、有機物中の炭素を正極活物質の表面に焼結して、活物質被覆部を形成する。
また、他の焼結法としては、いわゆる衝撃焼結被覆法が挙げられる。
Examples of methods for producing coated particles include sintering methods, vapor deposition methods, and the like.
Examples of the sintering method include a method in which a composition for producing an active material (for example, a slurry) containing particles of a positive electrode active material and an organic substance is fired at 500 to 1000° C. for 1 to 100 hours under atmospheric pressure. Examples of organic substances added to the composition for producing active materials include salicylic acid, catechol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, hexahydroxybenzene, benzoic acid, phthalic acid, terephthalic acid, phenylalanine, water-dispersible phenol resin, etc. , sugars such as glucose and lactose, carboxylic acids such as malic acid and citric acid, unsaturated monohydric alcohols such as allyl alcohol and propargyl alcohol, ascorbic acid, and polyvinyl alcohol. According to this sintering method, by firing the composition for producing an active material, carbon in the organic substance is sintered onto the surface of the positive electrode active material, thereby forming an active material coating portion.
Further, other sintering methods include the so-called impact sintering coating method.

衝撃焼結被覆法は、例えば、衝撃焼結被覆装置において燃料の炭化水素と酸素の混合ガスを用いてバーナに点火し燃焼室で燃焼させてフレームを発生させ、その際、酸素量を燃料に対して完全燃焼の当量以下にしてフレーム温度を下げ、その後方に粉末供給用ノズルを設置し、そのノズルから被覆する有機物と溶媒を用いて溶かしスラリー状にしたものと燃焼ガスからなる固体―液体―気体三相混合物を粉末供給ノズルから噴射させ、室温に保持された燃焼ガス量を増して、噴射微粉末の温度を下げて、粉末材料の変態温度、昇華温度、蒸発温度以下で加速し、衝撃により瞬時焼結させて、正極活物質の粒子を被覆する。
蒸着法としては、物理気相成長法(PVD)、化学気相成長法(CVD)等の気相堆積法、メッキ等の液相堆積法等が挙げられる。
In the impact sinter coating method, for example, a burner is ignited using a mixed gas of hydrocarbon fuel and oxygen in an impact sinter coating device, and the mixture is combusted in a combustion chamber to generate a flame. The flame temperature is lowered to below the equivalent of complete combustion, and a powder supply nozzle is installed behind it, and a solid-liquid consisting of the organic matter to be coated, a slurry made by melting it with a solvent, and combustion gas is passed through the nozzle. - injecting a gaseous three-phase mixture from a powder supply nozzle, increasing the amount of combustion gas maintained at room temperature, lowering the temperature of the injected fine powder and accelerating it below the transformation, sublimation, and evaporation temperatures of the powder material; Instant sintering is performed by impact to coat the particles of the positive electrode active material.
Examples of the vapor deposition method include vapor deposition methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), and liquid deposition methods such as plating.

被覆粒子において、芯部の表面積に対する活物質被覆部の面積(被覆率)を求めるには、正極活物質層中の粒子をエネルギー分散型X線分光法(TEM-EDX)により検出し、正極活物質粒子の外周部をEDXで元素分析する。元素分析は炭素について行い、正極活物質粒子を被覆している炭素を特定する。炭素の被覆部が1nm以上の厚さである箇所を被覆部分とし、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、これを被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値とすることができる。
また、前記活物質被覆部は、正極活物質のみから構成される粒子(芯部)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層であり、この厚みは上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
被覆粒子において、サイクル特性により優れる点から、芯部の表面積に対する活物質被覆部の面積は、100%が特に好ましい。
なお、この被覆率(%)は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。
正極活物質粒子として被覆粒子を用いたときに、活物質被覆部を有しない正極活物質粒子(単一粒子)が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。
In coated particles, to determine the area (coverage) of the active material coated portion relative to the surface area of the core, particles in the positive electrode active material layer are detected by energy dispersive X-ray spectroscopy (TEM-EDX). The outer periphery of the material particles is subjected to elemental analysis using EDX. Elemental analysis is performed on carbon to identify the carbon that coats the positive electrode active material particles. A portion where the carbon coating portion has a thickness of 1 nm or more is defined as the coating portion, and the ratio of the coating portion to the entire circumference of the observed positive electrode active material particles is determined, and this can be taken as the coverage rate. For example, the measurement can be performed on 10 positive electrode active material particles, and the average value can be taken as the average value.
Further, the active material coating portion is a layer having a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm, formed directly on the surface of the particle (core portion) composed only of the positive electrode active material, and this thickness is as described above. This can be confirmed by TEM-EDX used to measure coverage.
In the coated particles, the area of the active material coating portion relative to the surface area of the core portion is particularly preferably 100% from the viewpoint of better cycle characteristics.
Note that this coverage rate (%) is an average value for all the positive electrode active material particles present in the positive electrode active material layer, and as long as this average value is greater than or equal to the lower limit above, the positive electrode without an active material coating part This does not exclude the presence of a trace amount of active material particles.
When coated particles are used as positive electrode active material particles, if a positive electrode active material particle (single particle) without an active material coating is present in the positive electrode active material layer, the amount of positive electrode active material particles in the positive electrode active material layer is It is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, based on the total amount of positive electrode active material particles present.

(集合粒子)
本明細書において、「一体的に集合している集合粒子」とは、後述の正極活物質層に存在する粒子の粒度分布を測定する際に、1個の粒子として挙動する集合粒子を意味する。
集合粒子は、正極活物質のみから構成される粒子(芯部)を複数含み、隣り合う芯部の間に活物質被覆部が存在する。
集合粒子の外側の表面の少なくとも一部は活物質被覆部で被覆されている。集合粒子の外側の表面積のうち、活物質被覆部で被覆されている面積は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましく、100%が特に好ましい。
なお、この外側の表面の被覆率(%)は、正極活物質層中に存在する集合粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、外側の表面に活物質被覆部を有しない集合粒子が微量に存在することを排除するものではない。
集合粒子は、複数の芯部が活物質被覆部を介して一体化するように造粒された二次粒子(以下「活物質造粒体」ともいう)でもよく、複数個の被覆粒子が結着材によって一体的に結着した凝集体でもよく、複数個の活物質造粒体が結着材によって一体的に結着した凝集体でもよく、これらが混在してもよい。
活物質造粒体は公知の方法(例えば、特許第5509598号公報)で製造できる。市販品からも入手できる。
被覆粒子を含む凝集体には、被覆粒子以外の粒子(例えば導電助剤)が含まれていてもよい。また結着材以外の成分(例えば分散剤)が含まれていてもよい。
活物質造粒体を含む凝集体には、活物質造粒体以外の粒子(例えば導電助剤)が含まれていてもよい。また結着材以外の成分(例えば分散剤)が含まれていてもよい。
(collected particles)
In this specification, "aggregated particles that are integrally aggregated" means aggregated particles that behave as one particle when measuring the particle size distribution of particles present in the positive electrode active material layer described below. .
The aggregate particles include a plurality of particles (core portions) composed only of the positive electrode active material, and an active material coating portion exists between adjacent core portions.
At least a portion of the outer surface of the aggregated particles is covered with an active material coating. Of the outer surface area of the aggregate particles, the area covered by the active material coating portion is preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, and particularly preferably 100%.
The coverage rate (%) of the outer surface is the average value for all the aggregate particles present in the positive electrode active material layer, and as long as this average value is greater than or equal to the lower limit above, the active material is coated on the outer surface. This does not exclude the presence of a small amount of aggregated particles without a coating.
The aggregated particles may be secondary particles (hereinafter also referred to as "active material granules") that are granulated so that a plurality of core parts are integrated through an active material coating part, or a plurality of coated particles are aggregated. An aggregate formed by binding together with a binding material may be used, an aggregate formed by a plurality of active material granules bound together by a binding material may be used, or a mixture of these may be used.
The active material granules can be manufactured by a known method (for example, Japanese Patent No. 5509598). It is also available commercially.
The aggregate containing coated particles may contain particles other than the coated particles (for example, a conductive aid). Further, components other than the binder (for example, a dispersant) may be included.
The aggregate containing the active material granules may contain particles other than the active material granules (for example, a conductive aid). Further, components other than the binder (for example, a dispersant) may be included.

活物質造粒体において、活物質被覆部は予め形成されており、かつ正極活物質層中において、集合粒子(活物質造粒体)の外側の表面及び隣り合う芯部の間に存在する。即ち、活物質造粒体の活物質被覆部は、前記被覆粒子の活物質被覆部と同様に、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で欠落するものではない。
活物質造粒体において、それぞれの芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましく、100%が特に好ましい。
なお、この芯部の被覆率(%)は、正極活物質層中に存在する芯部についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない芯部が微量に存在することを排除するものではない。
活物質造粒体において、芯部の表面を覆う活物質被覆部、又は外側の表面を覆う活物質被覆部の面積及び被覆率は、前記被覆粒子の活物質被覆部と同様に、正極活物質層中の粒子をエネルギー分散型X線分光法(TEM-EDX)により検出し、芯部の外周部、又は集合粒子(活物質造粒体)の外周部を、EDXで元素分析して求めることができる。
活物質造粒体において、外側の表面を覆う活物質被覆部及び隣り合う芯部の間に存在する活物質被覆部は、正極活物質のみから構成される粒子(芯部)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層であり、この厚みは上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
In the active material granule, the active material coating portion is formed in advance and is present between the outer surface of the aggregate particles (active material granule) and adjacent core portions in the positive electrode active material layer. That is, like the active material coating portion of the coated particles, the active material coating portion of the active material granule is not newly formed in a step subsequent to the preparation step of the positive electrode manufacturing composition. In addition, the active material coating portion is not lost in the steps after the step of preparing the composition for producing the positive electrode.
In the active material granules, the area (coverage) of the active material coating portion relative to the surface area of each core portion is preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, and particularly 100%. preferable.
The core coverage rate (%) is the average value for the core present in the positive electrode active material layer, and as long as this average value is greater than or equal to the lower limit above, the core without the active material coating This does not exclude the presence of a small amount of
In the active material granules, the area and coverage of the active material coating portion that covers the surface of the core portion or the active material coating portion that covers the outer surface is the same as the active material coating portion of the coated particles. Detect particles in the layer using energy dispersive X-ray spectroscopy (TEM-EDX), and perform elemental analysis of the outer periphery of the core or the outer periphery of aggregated particles (active material granules) using EDX. I can do it.
In the active material granule, the active material coating part covering the outer surface and the active material coating part existing between adjacent core parts are directly on the surface of the particle (core part) composed only of the positive electrode active material. The formed layer has a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm, and this thickness can be confirmed by TEM-EDX used for measuring the coverage ratio described above.

被覆粒子又は活物質造粒体において、活物質被覆部の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
In the coated particles or active material granules, the conductive material of the active material coating portion preferably contains carbon (conductive carbon). A conductive material consisting only of carbon may be used, or a conductive organic compound containing carbon and an element other than carbon may be used. Examples of other elements include nitrogen, hydrogen, and oxygen. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material constituting the active material coating portion consists only of carbon.

被覆粒子又は活物質造粒体の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は被覆粒子又は活物質造粒体の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。 The content of the conductive material is preferably 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, and more preferably 0.7 to 3.0% by mass with respect to the total mass of the coated particles or active material granules. More preferably, it is 2.5% by mass. If the amount is too large, the conductive material may peel off from the surface of the coated particles or active material granules and remain as independent conductive aid particles, which is not preferable.

正極活物質粒子の粒子径は、後述の正極活物質層に存在する粒子の粒度分布曲線における最頻度粒子径(以下、「モード径」ともいう。)、及びモード径における頻度が好ましい範囲となるように設計することが好ましい。
正極活物質(芯部)のみからなる正極活物質粒子(単一粒子)の平均粒子径は、1.0~20.0μmが好ましく、5.0~15.0μmがより好ましい。2種以上の正極活物質粒子(単一粒子)を用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
被覆粒子の平均粒子径は、0.1~5.0μmが好ましく、0.5~3.0μmがより好ましい。2種以上の被覆粒子を用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
活物質造粒体の平均粒子径は、5.0~30.0μmが好ましく、10.0~20.0μmがより好ましい。2種以上の活物質造粒体を用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質粒子の平均粒子径は、特に断りのない限り、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
The particle diameter of the positive electrode active material particles is the most frequent particle diameter (hereinafter also referred to as "mode diameter") in the particle size distribution curve of particles present in the positive electrode active material layer described below, and the frequency in the mode diameter is within a preferable range. It is preferable to design it as follows.
The average particle diameter of the positive electrode active material particles (single particles) consisting only of the positive electrode active material (core) is preferably 1.0 to 20.0 μm, more preferably 5.0 to 15.0 μm. When using two or more types of positive electrode active material particles (single particles), the average particle diameter of each may be within the above range.
The average particle diameter of the coated particles is preferably 0.1 to 5.0 μm, more preferably 0.5 to 3.0 μm. When using two or more types of coated particles, the average particle diameter of each coated particle may be within the above range.
The average particle diameter of the active material granules is preferably 5.0 to 30.0 μm, more preferably 10.0 to 20.0 μm. When using two or more types of active material granules, the average particle size of each may be within the above range.
Unless otherwise specified, the average particle diameter of the positive electrode active material particles in this specification is a volume-based median diameter measured using a particle size distribution analyzer using a laser diffraction/scattering method.

正極活物質粒子は、正極活物質としてオリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
The positive electrode active material particles preferably contain a compound having an olivine crystal structure as a positive electrode active material.
The compound having an olivine crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as "general formula (I)"). In general formula (I), 0≦x≦1. M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti, or Zr) can also be replaced with other elements to the extent that the physical properties do not change. Even if the compound represented by the general formula (I) contains trace amounts of metal impurities, the effects of the present invention are not impaired.
The compound represented by the general formula (I) is preferably lithium iron phosphate (hereinafter also simply referred to as "lithium iron phosphate") represented by LiFePO 4 .

正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質粒子は、正極活物質(芯部)のみからなる単一粒子でもよく、芯部が1個である単体の被覆粒子でもよく、複数の芯部が活物質被覆部を介して一体化するように造粒された二次粒子(活物質造粒)でもよく、これらが混在してもよい。
The positive electrode active material particles may include one or more other positive electrode active material particles containing a positive electrode active material other than a compound having an olivine crystal structure.
The other positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt aluminate (LiNix Co y Al z O 2 , where x+y+z=1), lithium nickel cobalt manganate (LiNix Co y Mn zO 2 , where x+y+z=1), lithium manganate (LiMn 2 O 4 ), lithium cobalt manganate (LiMnCoO 4 ), lithium manganese chromate (LiMnCrO 4 ), lithium vanadium nickelate (LiNiVO 4 ), nickel-substituted manganese Examples include lithium oxide (for example, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobalt oxide (LiCoVO 4 ), and non-stoichiometric compounds in which a portion of these compounds is replaced with a metal element. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn, and Ge.
The other positive electrode active material particles may be single particles consisting only of the positive electrode active material (core part), or may be single coated particles with one core part, or multiple core parts may be connected through the active material coating part. Secondary particles granulated so as to be integrated (active material granulation) may be used, or these may be mixed.

正極活物質粒子の総質量に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。 The content of the compound having an olivine crystal structure is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more with respect to the total mass of the positive electrode active material particles. It may be 100% by mass.

[結着材]
正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等の樹脂が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層の総質量に対する結着材の含有量は、後述の正極活物質層に対する樹脂成分の含有量が、好ましい範囲となるように設計することが好ましい。
[Binder]
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinyl. Examples include resins such as acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, and polyimide. One type of binder may be used, or two or more types may be used in combination.
The content of the binder relative to the total mass of the positive electrode active material layer is preferably designed so that the content of the resin component for the positive electrode active material layer, which will be described later, falls within a preferable range.

[導電助剤]
正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば独立した炭素粒子)が存在しない状態が望ましい。
正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
[Conductivity aid]
Examples of the conductive additive included in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, Ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer is, for example, preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 1 part by mass or less, based on 100 parts by mass of the total mass of the positive electrode active material. It is particularly preferable that the conductive agent is not contained, and it is desirable that there be no independent conductive agent particles (for example, independent carbon particles).
When blending a conductive support agent into the positive electrode active material layer, the lower limit of the content of the conductive support agent is appropriately determined depending on the type of the conductive support agent, and is, for example, 0.0% relative to the total mass of the positive electrode active material layer. It is considered to be more than 1% by mass.
Note that the expression that the positive electrode active material layer "does not contain a conductive additive" means that it does not substantially contain it, and does not exclude that it contains it to the extent that it does not affect the effects of the present invention. For example, if the content of the conductive additive is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer, it can be determined that the conductive additive is not substantially contained.

[分散剤]
正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)等の樹脂が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
正極活物質層の総質量に対する分散剤の含有量は、後述の正極活物質層に対する樹脂成分の含有量が、好ましい範囲となるように設計することが好ましい。
[Dispersant]
The dispersant contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include resins such as polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), and polyvinyl formal (PVF). One type of dispersant may be used, or two or more types may be used in combination.
The content of the dispersant relative to the total mass of the positive electrode active material layer is preferably designed so that the content of the resin component for the positive electrode active material layer, which will be described later, falls within a preferable range.

[正極集電体本体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚さは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚さ及び正極集電体11の厚さは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[Positive electrode current collector body]
The positive electrode current collector body 14 is made of a metal material. Examples of the metal material include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the positive electrode current collector body 14 is, for example, preferably 8 to 40 μm, more preferably 10 to 25 μm.
The thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of a measuring device is Mitutoyo's product name "MDH-25M."

[集電体被覆層]
正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在する。集電体被覆層15は導電材料を含む。
ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
[Current collector coating layer]
A current collector coating layer 15 is present on at least a portion of the surface of the positive electrode current collector body 14 . Current collector coating layer 15 includes a conductive material.
Here, "at least a portion of the surface" means 10% to 100%, preferably 30% to 100%, more preferably 50% to 100% of the surface area of the positive electrode current collector body.
The conductive material in the current collector coating layer 15 preferably contains carbon (conductive carbon). A conductive material consisting only of carbon is more preferable.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. Examples of the binding material for the current collector coating layer 15 include those similar to those for the positive electrode active material layer 12.
The positive electrode current collector 11 in which the surface of the positive electrode current collector body 14 is coated with a current collector coating layer 15 is prepared by, for example, applying a slurry containing a conductive material, a binder, and a solvent using a known coating method such as a gravure method. It can be manufactured by coating the surface of the positive electrode current collector body 14 using a solvent and drying to remove the solvent.

集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm.
The thickness of the current collector coating layer can be measured by a method of measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of a cross section of the current collector coating layer. The thickness of the current collector coating layer does not have to be uniform. It is preferable that a current collector coating layer with a thickness of 0.1 μm or more exists on at least a part of the surface of the positive electrode current collector main body 14, and the maximum value of the thickness of the current collector coating layer is 4.0 μm or less. .

[粒度分布曲線]
本明細書において、正極活物質層12に存在する粒子の粒度分布曲線(以下「正極活物質層の粒度分布曲線」ともいう。)は、レーザー回折・散乱法による粒度分布測定器で測定した体積基準の粒度分布曲線である。
粒度分布曲線は、横軸が粒子径、縦軸が頻度(単位:%)である頻度分布曲線、又は横軸が粒子径、縦軸が頻度の積算値(単位:%)である積算分布曲線として表示できる。
頻度分布曲線において、頻度が最大値となる粒子径が最頻度粒子径(モード径)である。
頻度分布曲線において極大点(ピーク)を示す粒子径を、以下、「ピーク径」ともいう。頻度分布曲線の極大点とは接線の傾きが正から負に変わる点を意味する。
積算分布曲線において、小粒径側から頻度積算値10%における粒子径が10%径(D10)、小粒径側から頻度積算値90%における粒子径が90%径(D90)である。
[Particle size distribution curve]
In this specification, the particle size distribution curve of particles present in the positive electrode active material layer 12 (hereinafter also referred to as "particle size distribution curve of the positive electrode active material layer") refers to the volume measured by a particle size distribution measuring device using a laser diffraction/scattering method. This is a standard particle size distribution curve.
The particle size distribution curve is a frequency distribution curve where the horizontal axis is the particle diameter and the vertical axis is the frequency (unit: %), or an integrated distribution curve where the horizontal axis is the particle diameter and the vertical axis is the integrated value of the frequency (unit: %). It can be displayed as
In the frequency distribution curve, the particle diameter at which the frequency becomes the maximum value is the most frequent particle diameter (mode diameter).
The particle size that shows the maximum point (peak) in the frequency distribution curve is hereinafter also referred to as "peak diameter." The maximum point of the frequency distribution curve means the point where the slope of the tangent changes from positive to negative.
In the integrated distribution curve, the particle size at a frequency integrated value of 10% from the small particle size side is the 10% diameter (D10), and the particle size at a frequency integrated value of 90% from the small particle size side is the 90% diameter (D90).

粒度分布を測定する試料は、正極1から正極活物質層12を剥がし、正極活物質層12中に存在する粒子を水に分散させた水分散液を用いる。例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を水に分散させた水分散液を試料とする。
水分散液を超音波処理して、粒子を充分に分散させた状態で粒度分布を測定する。
As a sample for measuring the particle size distribution, the positive electrode active material layer 12 is peeled off from the positive electrode 1, and an aqueous dispersion in which particles present in the positive electrode active material layer 12 are dispersed in water is used. For example, the sample is an aqueous dispersion in which powder obtained by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers with a spatula or the like is dispersed in water.
The aqueous dispersion is treated with ultrasonic waves to sufficiently disperse the particles, and the particle size distribution is then measured.

本実施形態の正極は、正極活物質層の粒度分布曲線におけるモード径が50.0~100.0μmであり、かつモード径における頻度が5~15%である。
モード径は60.0~100.0μmが好ましく、80.0~100.0μmがより好ましい。
モード径における頻度は6~14%が好ましく、8~12%がより好ましい。
モード径が上記範囲の下限値以上であると大電流特性を高めやすく、上限値以下であると重量エネルギー密度を高めやすい。
モード径における頻度が上記範囲の下限値以上であると大電流特性を高めやすく、上限値以下であると重量エネルギー密度を高めやすい。
正極活物質層の粒度分布曲線におけるモード径、及びモード径における頻度は、正極の製造に用いる正極活物質粒子の粒子径、結着材の添加量、分散剤の添加量等によって調整できる。
例えば、正極製造用組成物に結着材を添加して正極活物質粒子どうしを結着させると、モード径は大きくなる。結着材の添加量によってモード径を調整できる。また分散剤を用いて正極製造用組成物中の粒子をより均一に分散させると、粒子径の均一性が高まり、モード径における頻度が高くなる傾向がある。
In the positive electrode of this embodiment, the mode diameter in the particle size distribution curve of the positive electrode active material layer is 50.0 to 100.0 μm, and the frequency in the mode diameter is 5 to 15%.
The mode diameter is preferably 60.0 to 100.0 μm, more preferably 80.0 to 100.0 μm.
The frequency in the mode diameter is preferably 6 to 14%, more preferably 8 to 12%.
When the mode diameter is at least the lower limit of the above range, it is easy to increase large current characteristics, and when it is at most the upper limit, it is easy to increase the weight energy density.
When the frequency in the mode diameter is at least the lower limit of the above range, it is easy to increase large current characteristics, and when it is at most the upper limit, it is easy to increase the weight energy density.
The mode diameter and the frequency in the mode diameter in the particle size distribution curve of the positive electrode active material layer can be adjusted by adjusting the particle diameter of the positive electrode active material particles used for manufacturing the positive electrode, the amount of binder added, the amount of dispersant added, and the like.
For example, when a binder is added to the composition for producing a positive electrode to bind the positive electrode active material particles, the mode diameter increases. The mode diameter can be adjusted by adjusting the amount of binder added. Furthermore, when the particles in the composition for producing a positive electrode are more uniformly dispersed using a dispersant, the uniformity of the particle diameter increases, and the frequency in the mode diameter tends to increase.

また本実施形態の正極は、頻度分布曲線において極大点(ピーク)が複数存在し、複数の極大点のうち粒子径が最も大きい極大点における粒子径がモード径であることが好ましい。
すなわち、頻度分布曲線において、ピーク径の数が2以上であり、最大のピーク径におけるピーク(頻度)が最も高いことが好ましい。
例えば、結着材を用いて正極活物質粒子の一部を結着させると、粒子径が大きい粒子と小さい粒子とが混在した状態となり、ピークの数が増える。結着材の添加量を増やすと、最大のピーク径におけるピーク(頻度)が高くなりやすい。
粒子径が大きい粒子と小さい粒子とが混在していると、正極活物質層が加圧プレスされたときに、正極活物質層の厚さが小さくなりやすく体積密度が高くなりやすい。その結果、重量エネルギー密度が高くなりやすい。
最大のピーク径がモード径であると、正極活物質粒子どうしが結着した粒子、すなわち導電パスの向上に寄与する粒子が多く、大電流特性が向上しやすい。
Further, it is preferable that the positive electrode of this embodiment has a plurality of maximum points (peaks) in the frequency distribution curve, and the particle diameter at the maximum point having the largest particle diameter among the plurality of maximum points is the mode diameter.
That is, in the frequency distribution curve, it is preferable that the number of peak diameters is two or more and that the peak (frequency) at the largest peak diameter is the highest.
For example, if some of the positive electrode active material particles are bound using a binder, particles with large particle diameters and particles with small particle diameters will be mixed, and the number of peaks will increase. When the amount of binder added is increased, the peak (frequency) at the maximum peak diameter tends to increase.
When particles with large particle diameters and particles with small particle diameters coexist, when the positive electrode active material layer is pressurized, the thickness of the positive electrode active material layer tends to become small and the volume density tends to increase. As a result, the weight energy density tends to increase.
When the maximum peak diameter is the mode diameter, there are many particles in which the positive electrode active material particles are bound together, that is, particles that contribute to improving the conductive path, and the large current characteristics are likely to be improved.

また本実施形態の正極は、90%径から10%径を差し引いた分布幅が、80.0~200.0μmであることが好ましく、90.0~180.0μmがより好ましく、100.0~160.0μmがさらに好ましい。
例えば、結着材を適度に用いて正極活物質粒子の一部を結着させると、粒子径が大きい粒子と小さい粒子とが混在した状態となり、分布幅が大きくなる。
また分散剤を用いて正極製造用組成物中の粒子の分散性を調整することでも、粒子径の均一を調整して、分布幅を調整できる。
粒子径が大きい粒子と小さい粒子とが混在していると、正極活物質層が加圧プレスされたときに、正極活物質層の厚さが小さくなりやすく体積密度が高くなりやすい。その結果、重量エネルギー密度が高くなりやすい。
Further, in the positive electrode of this embodiment, the distribution width obtained by subtracting the 10% diameter from the 90% diameter is preferably 80.0 to 200.0 μm, more preferably 90.0 to 180.0 μm, and more preferably 100.0 to 180.0 μm. More preferably, the thickness is 160.0 μm.
For example, when a portion of the positive electrode active material particles are bound using a binder in an appropriate amount, particles with large particle diameters and particles with small particle diameters are mixed, and the distribution width becomes large.
Further, by adjusting the dispersibility of particles in the composition for producing a positive electrode using a dispersant, the uniformity of the particle diameter can be adjusted and the distribution width can be adjusted.
When particles with large particle diameters and particles with small particle diameters coexist, when the positive electrode active material layer is pressurized, the thickness of the positive electrode active material layer tends to become small and the volume density tends to increase. As a result, the weight energy density tends to increase.

[樹脂成分の含有量]
正極活物質層の総質量に対して、樹脂成分の含有量は0.8~3.0質量%であり、1.0~2.9質量%が好ましく、1.2~2.8質量%がより好ましく、1.4~2.7質量%がさらに好ましい。
正極活物質層中の樹脂成分の含有量が、上記範囲の下限値以上であると、大電流特性が向上しやすく、上限値以下であると体積密度を高めやすく、その結果、重量エネルギー密度を高めやすい。
正極活物質層の総質量に対する樹脂成分の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪樹脂成分の含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
[Content of resin component]
The content of the resin component is 0.8 to 3.0% by mass, preferably 1.0 to 2.9% by mass, and 1.2 to 2.8% by mass with respect to the total mass of the positive electrode active material layer. is more preferable, and even more preferably 1.4 to 2.7% by mass.
When the content of the resin component in the positive electrode active material layer is at least the lower limit of the above range, the large current characteristics tend to improve, and when it is at most the upper limit, the volume density tends to increase, and as a result, the weight energy density decreases. Easy to raise.
The content of the resin component with respect to the total mass of the positive electrode active material layer is determined by the following <<Content of resin component It can be measured using the measurement method≫.
For example, a powder obtained by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers using a spatula or the like can be vacuum-dried in a 120° C. environment and used as a measurement target.

正極活物質層が樹脂成分である結着材を含む場合、正極活物質層の総質量に対する結着材の含有量は0.70~2.90質量%が好ましく、0.90~2.70質量%がより好ましく、1.10~2.50質量%がさらに好ましい。
正極活物質層が樹脂成分である分散剤を含む場合、正極活物質層の総質量に対する文才剤の含有量は0.10~0.50質量%が好ましく、0.15~0.45質量%がより好ましく、0.20~0.40質量%がさらに好ましい。
When the positive electrode active material layer contains a binder that is a resin component, the content of the binder relative to the total mass of the positive electrode active material layer is preferably 0.70 to 2.90% by mass, and 0.90 to 2.70% by mass. The amount is more preferably 1.10 to 2.50% by weight, and even more preferably 1.10 to 2.50% by weight.
When the positive electrode active material layer contains a dispersant which is a resin component, the content of the literary agent is preferably 0.10 to 0.50% by mass, and 0.15 to 0.45% by mass with respect to the total mass of the positive electrode active material layer. is more preferable, and even more preferably 0.20 to 0.40% by mass.

[導電性炭素含有量]
本実施形態において、正極活物質層12が導電性炭素を含むことが好ましい。正極活物質層が導電性炭素を含む態様としては、下記態様1~3が挙げられる。
態様1:正極活物質層が導電助剤を含み、導電助剤が導電性炭素を含む態様。
態様2:正極活物質層が導電助剤を含み、かつ正極活物質粒子に導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料及び前記導電助剤の一方又は両方が導電性炭素を含む態様。
態様3:正極活物質層が導電助剤を含まず、正極活物質粒子に導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料が導電性炭素を含む態様。
重量エネルギー密度を高める点では態様3がより好ましい。
[Conductive carbon content]
In this embodiment, it is preferable that the positive electrode active material layer 12 contains conductive carbon. Examples of embodiments in which the positive electrode active material layer contains conductive carbon include embodiments 1 to 3 below.
Embodiment 1: An embodiment in which the positive electrode active material layer contains a conductive additive, and the conductive additive contains conductive carbon.
Aspect 2: The positive electrode active material layer contains a conductive additive, and the positive electrode active material particles have an active material coating portion containing a conductive material, and one or both of the conductive material of the active material coating portion and the conductive additive Embodiment containing conductive carbon.
Embodiment 3: An embodiment in which the positive electrode active material layer does not contain a conductive aid, the positive electrode active material particles have an active material coating portion containing a conductive material, and the conductive material of the active material coating portion contains conductive carbon.
Embodiment 3 is more preferable in terms of increasing the weight energy density.

正極活物質層の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.2~2.6質量%がさらに好ましい。
正極活物質層中の導電性炭素の含有量が、上記範囲の下限値以上であると正極活物質層での導電パス形成に十分な量となり、上限値以下であると分散性向上に優れる。
With respect to the total mass of the positive electrode active material layer, the content of conductive carbon is preferably 0.5% by mass or more and less than 3.0% by mass, more preferably 1.0 to 2.8% by mass, and 1.2 to 2.8% by mass. 2.6% by mass is more preferred.
When the content of conductive carbon in the positive electrode active material layer is at least the lower limit of the above range, it is sufficient to form a conductive path in the positive electrode active material layer, and when it is at most the upper limit, it is excellent in improving dispersibility.

正極活物質層の総質量に対する導電性炭素の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含む。結着材中の炭素は含まれない。分散剤中の炭素は含まれない。
The content of conductive carbon with respect to the total mass of the positive electrode active material layer is determined by peeling off the positive electrode active material layer from the positive electrode and vacuum-drying the dried material (powder) in a 120°C environment as the measurement target. Quantity measurement method≫
For example, a powder obtained by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers using a spatula or the like can be vacuum-dried in a 120° C. environment and used as a measurement target.
The conductive carbon content measured by the following <Method for Measuring Conductive Carbon Content> includes carbon in the active material coating and carbon in the conductive aid. Carbon in the binder is not included. Carbon in the dispersant is not included.

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示差熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
≪Measurement method for conductive carbon content≫
[Measurement method A]
The object to be measured is mixed uniformly, a sample (mass w1) is weighed, and a thermogravimetric differential thermal analysis (TG-DTA) measurement is performed according to the following steps A1 and A2 to obtain a TG curve. The following first weight loss amount M1 (unit: mass %) and second weight loss amount M2 (unit: mass %) are determined from the obtained TG curve. The content of conductive carbon (unit: mass %) is obtained by subtracting M1 from M2.
Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30 °C to 600 °C at a temperature increase rate of 10 °C / min, and from the mass w2 when held at 600 °C for 10 minutes, according to the following formula (a1) A first weight reduction amount M1 is determined.
M1=(w1-w2)/w1×100...(a1)
Step A2: Immediately after step A1, the temperature was lowered from 600°C at a rate of 10°C/min, and after being held at 200°C for 10 minutes, the measurement gas was completely replaced with oxygen from argon, and an oxygen stream of 100 mL/min was added. The second weight loss amount M2 ( Unit: mass %).
M2=(w1-w3)/w1×100...(a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
Mix the measurement object uniformly, weigh 0.0001 mg of the sample accurately, burn the sample under the following combustion conditions, quantify the generated carbon dioxide with a CHN elemental analyzer, and calculate the total carbon content M3 ( Unit: mass%). Further, the first weight loss amount M1 is determined by the procedure of step A1 of the measuring method A. The conductive carbon content (unit: mass %) is obtained by subtracting M1 from M3.
[Combustion conditions]
Combustion furnace: 1150℃
Reduction furnace: 850℃
Helium flow rate: 200mL/min Oxygen flow rate: 25-30mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
[Measurement method C]
The total carbon content M3 (unit: mass %) contained in the sample is measured in the same manner as the measurement method B above. Further, the content M4 of carbon derived from the binder (unit: mass %) is determined by the following method. The content of conductive carbon (unit: mass %) is obtained by subtracting M4 from M3.
When the binder is polyvinylidene fluoride (PVDF: the molecular weight of the monomer (CH 2 CF 2 ) is 64), the content of fluoride ions (F - ) measured by combustion ion chromatography using the tubular combustion method ( (unit: mass %), the atomic weight of fluorine (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF using the following formula.
PVDF content (unit: mass %) = fluoride ion content (unit: mass %) × 64/38
PVDF-derived carbon content M4 (unit: mass %) = fluoride ion content (unit: mass %) × 12/19
The fact that the binder is polyvinylidene fluoride can be confirmed by Fourier transform infrared spectroscopy (FT-IR) measurement of the sample or the liquid extracted from the sample with N,N-dimethylformamide (DMF) solvent, and it can be determined that the origin of the C-F bond is This can be confirmed by checking the absorption of Similarly, it can be confirmed by 19F -NMR measurement.
If the binder is identified as other than PVDF, the binder content (unit: mass %) and carbon content (unit: mass %) corresponding to the molecular weight can be determined to determine the origin of the binder. The carbon amount M4 can be calculated.
When a dispersant is included, the conductive carbon content (unit: mass %) can be obtained by subtracting M4 from M3 and further subtracting the amount of carbon derived from the dispersant.
These techniques are described in the following several known documents.
Toray Research Center The TRC News No. 117 (Sep. 2013) pp. 34-37, [Retrieved February 10, 2021], Internet <https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34- 37).pdf>
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [Retrieved February 10, 2021], Internet <http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により検出し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質粒子(被覆粒子)であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質粒子であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、広がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
≪Analysis method of conductive carbon≫
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is a conductive aid can be distinguished by the following analysis method.
For example, when particles in a positive electrode active material layer are detected by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS), particles with a carbon-derived peak around 290 eV only near the particle surface are found to be positive electrode active material particles (coated particles). (particles), and particles in which carbon-derived peaks exist even inside the particles can be determined to be conductive aids. Here, "near the particle surface" means a region up to a depth of approximately 100 nm from the particle surface, and "inside the particle" means a region inside the vicinity of the particle surface.
Another method is to perform mapping analysis of particles in the positive electrode active material layer by Raman spectroscopy, and particles in which the peaks of carbon-derived G-band and D-band and oxide crystals derived from the positive electrode active material are simultaneously observed are Particles that are positive electrode active material particles and in which only G-band and D-band are observed can be determined to be conductive additives.
Another method is to observe the cross section of the positive electrode active material layer using a scanning spread resistance microscope (SSRM), and if there is a part on the particle surface with a lower resistance than the inside of the particle, the part with low resistance is determined. It can be determined that this is conductive carbon present in the active material coating portion. A portion that exists independently other than such particles and has a low resistance can be determined to be a conductive aid.
Note that trace amounts of carbon that can be considered as impurities and trace amounts of carbon that are unintentionally peeled off from the surface of the positive electrode active material during manufacturing are not determined to be conductive additives.
Using these methods, it can be confirmed whether or not a conductive additive made of a carbon material is included in the positive electrode active material layer.

≪樹脂成分の含有量の測定方法≫
前記測定方法Aにおいて得られる質量w2が樹脂成分として検出できる。正極活物質層中の樹脂成分組成比はw2/w1×100(wt%)として求める事ができる。
≪Method for measuring the content of resin components≫
The mass w2 obtained in the measurement method A can be detected as a resin component. The resin component composition ratio in the positive electrode active material layer can be determined as w2/w1×100 (wt%).

[正極活物質層の体積密度]
本実施形態において、正極活物質層12の体積密度は2.00~2.40g/cmが好ましく、2.10~2.30g/cmがより好ましい。
正極活物質層の体積密度は、例えば以下の測定方法により測定できる。
正極1及び正極集電体11の厚さをそれぞれマイクロゲージで測定し、これらの差から正極活物質層12の厚さを算出する。正極1及び正極集電体11の厚さは、それぞれ任意の5点以上で測定した値の平均値とする。正極集電体11の厚さとして、後述の正極集電体露出部13の厚さを用いてよい。
正極1を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層12の質量を算出する。
下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚さ(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
[Volume density of positive electrode active material layer]
In this embodiment, the volume density of the positive electrode active material layer 12 is preferably 2.00 to 2.40 g/cm 3 , more preferably 2.10 to 2.30 g/cm 3 .
The volume density of the positive electrode active material layer can be measured, for example, by the following measuring method.
The thicknesses of the positive electrode 1 and the positive electrode current collector 11 are each measured using a microgauge, and the thickness of the positive electrode active material layer 12 is calculated from the difference. The thickness of the positive electrode 1 and the positive electrode current collector 11 is an average value of values measured at five or more arbitrary points. As the thickness of the positive electrode current collector 11, the thickness of the positive electrode current collector exposed portion 13, which will be described later, may be used.
The mass of a measurement sample obtained by punching out the positive electrode 1 to have a predetermined area is measured, and the mass of the positive electrode current collector 11 measured in advance is subtracted to calculate the mass of the positive electrode active material layer 12.
The volume density of the positive electrode active material layer 12 is calculated based on the following formula (1).
Volume density (unit: g/cm 3 ) = mass of positive electrode active material layer (unit: g) / [(thickness of positive electrode active material layer (unit: cm) x area of measurement sample (unit: cm 2 )]・...(1)

正極活物質層の体積密度が上記範囲の下限値以上であると、非水電解質二次電池のエネルギー密度を高めやすい。上限値以下であると、プレス荷重によるクラックが正極活物質層に発生し難く、優れた導電パスを形成できる。
正極活物質層の体積密度は、例えば、正極活物質の含有量、正極活物質の粒子径、正極活物質層の厚さ等によって調整できる。正極活物質層が導電助剤を有する場合は、導電助剤の種類(比表面積、比重)、導電助剤の含有量、導電助剤の粒子径によっても調整できる。
When the volume density of the positive electrode active material layer is at least the lower limit of the above range, it is easy to increase the energy density of the nonaqueous electrolyte secondary battery. When it is below the upper limit, cracks due to press load are unlikely to occur in the positive electrode active material layer, and an excellent conductive path can be formed.
The volume density of the positive electrode active material layer can be adjusted by, for example, the content of the positive electrode active material, the particle size of the positive electrode active material, the thickness of the positive electrode active material layer, and the like. When the positive electrode active material layer has a conductive additive, it can also be adjusted by the type of conductive additive (specific surface area, specific gravity), the content of the conductive additive, and the particle size of the conductive additive.

<正極の製造方法>
本実施形態の正極1の製造方法は、正極活物質粒子を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程を有する。
例えば、正極活物質粒子及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極1を製造できる。正極製造用組成物は導電助剤を含んでもよい。正極製造用組成物は結着材を含んでもよい。正極製造用組成物は分散剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚さ方向に均一に加圧する方法で、正極活物質層12の厚さを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
<Manufacturing method of positive electrode>
The method for manufacturing the positive electrode 1 of the present embodiment includes a composition preparation step of preparing a positive electrode manufacturing composition containing positive electrode active material particles, and a coating step of coating the positive electrode manufacturing composition onto the positive electrode current collector 11. has.
For example, the positive electrode 1 can be manufactured by a method in which a positive electrode manufacturing composition containing positive electrode active material particles and a solvent is applied onto the positive electrode current collector 11, dried, and the solvent is removed to form the positive electrode active material layer 12. . The composition for producing a positive electrode may include a conductive additive. The composition for producing a positive electrode may include a binder. The composition for producing a positive electrode may also contain a dispersant.
The thickness of the cathode active material layer 12 is determined by sandwiching the laminate in which the cathode active material layer 12 is formed on the cathode current collector 11 between two flat jigs and applying pressure uniformly in the thickness direction. Can be adjusted. For example, a method of applying pressure using a roll press machine can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 The solvent for the composition for producing a positive electrode is preferably a non-aqueous solvent. Examples include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One type of solvent may be used, or two or more types may be used in combination.

好ましい態様において、組成物調製工程は、正極活物質粒子と結着材を混合して、正極活物質粒子どうしが結着した集合粒子を形成する工程を有する。
具体的には、正極活物質層の粒度分布曲線におけるモード径及びモード径における頻度が、上記の好ましい範囲となるように、正極活物質粒子と結着材を混合して集合粒子を形成する。溶媒中で正極活物質粒子と結着材を混合してもよい。分散剤の存在下で正極活物質粒子と結着材を混合してもよい。
In a preferred embodiment, the composition preparation step includes a step of mixing positive electrode active material particles and a binder to form aggregate particles in which the positive electrode active material particles are bound together.
Specifically, the positive electrode active material particles and the binder are mixed to form aggregate particles such that the mode diameter and the frequency of the mode diameter in the particle size distribution curve of the positive electrode active material layer fall within the above-mentioned preferred range. The positive electrode active material particles and the binder may be mixed in a solvent. The positive electrode active material particles and the binder may be mixed in the presence of a dispersant.

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
<Nonaqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 10 of this embodiment shown in FIG. 2 includes a positive electrode 1 for a non-aqueous electrolyte secondary battery of this embodiment, a negative electrode 3, and a non-aqueous electrolyte. Furthermore, a separator 2 may be provided. Reference numeral 5 in the figure is an exterior body.
In this embodiment, the positive electrode 1 includes a plate-shaped positive electrode current collector 11 and positive electrode active material layers 12 provided on both surfaces thereof. The positive electrode active material layer 12 exists on a part of the surface of the positive electrode current collector 11 . The edge of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary location on the positive electrode current collector exposed portion 13 .
The negative electrode 3 includes a plate-shaped negative electrode current collector 31 and negative electrode active material layers 32 provided on both surfaces thereof. The negative electrode active material layer 32 exists on a part of the surface of the negative electrode current collector 31 . The edge of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary location on the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, negative electrode 3, and separator 2 are not particularly limited. For example, it may have a rectangular shape in plan view.

[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. It may further contain a binding material. Furthermore, a conductive aid may be included. The shape of the negative electrode active material is preferably particulate.
For example, the negative electrode 3 is prepared by preparing a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent, coating this on the negative electrode current collector 31, drying it, and removing the solvent to form the negative electrode active material. It can be manufactured by a method of forming layer 32. The composition for producing a negative electrode may also contain a conductive additive.

負極活物質及び導電助剤としては、例えば炭素材料、チタン酸リチウム(LTO)、シリコン、一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of the negative electrode active material and conductive aid include carbon materials, lithium titanate (LTO), silicon, and silicon monoxide. Examples of the carbon material include graphite, graphene, hard carbon, Ketjen black, acetylene black, carbon nanotube (CNT), and the like. The negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
負極製造用組成物中の結着材としては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
負極製造用組成物中の溶媒としては、水、有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
Examples of the material of the negative electrode current collector 31 include those similar to the materials of the positive electrode current collector 11 described above.
As the binder in the negative electrode manufacturing composition, polyacrylic acid (PAA), polylithium acrylate (PAALi), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride copolymer (PVDF-HFP) ), styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethyl cellulose (CMC), polyacrylonitrile (PAN), polyimide (PI), and the like. The binder may be used alone or in combination of two or more.
Examples of the solvent in the composition for producing a negative electrode include water and organic solvents. Examples of organic solvents include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone (NMP) and N,N-dimethylformamide (DMF); and ketones such as acetone. I can give an example. The solvent may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。 With respect to the total mass of the negative electrode active material layer 32, the total content of the negative electrode active material and the conductive additive is preferably 80.0 to 99.9% by mass, more preferably 85.0 to 98.0% by mass.

[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
[Separator]
A separator 2 is placed between the negative electrode 3 and the positive electrode 1 to prevent short circuits and the like. The separator 2 may hold a non-aqueous electrolyte, which will be described later.
The separator 2 is not particularly limited, and examples thereof include porous polymer membranes, nonwoven fabrics, glass fibers, and the like.
An insulating layer may be provided on one or both surfaces of separator 2. The insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with a binder for an insulating layer.

セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 2 may contain various plasticizers, antioxidants, and flame retardants.
As antioxidants, phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenol antioxidants, and polyphenol antioxidants; hindered amine antioxidants; phosphorus antioxidants Sulfur-based antioxidants; benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenol-based antioxidants and phosphorus-based antioxidants are preferred.

[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
非水電解液は、さらに添加剤を含むことが好ましい。製造後(初期充電後)の非水電解質二次電池10は、有機溶媒と電解質塩を含み、さらに添加剤に由来する残留物又は痕跡を含んでもよい。
[Nonaqueous electrolyte]
The non-aqueous electrolyte fills the space between the positive electrode 1 and the negative electrode 3. For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors, and the like.
As the non-aqueous electrolyte, a non-aqueous electrolyte in which an electrolyte salt is dissolved in an organic solvent is preferred.
It is preferable that the non-aqueous electrolyte further contains an additive. The non-aqueous electrolyte secondary battery 10 after manufacture (after initial charging) contains an organic solvent and an electrolyte salt, and may further contain residues or traces derived from additives.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples include polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, and mixtures of two or more of these polar solvents.

電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and includes, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ). 2 , Li( SO2CF2CF3 ) 2 , LiN ( COCF3 ) 2 , LiN( COCF2CF3 ) 2 , or a mixture of two or more of these salts.

添加剤としては、硫黄原子及び窒素原子の一方又は両方を含む化合物Aが挙げられる。添加剤は、1種単独でもよいし、2種以上の組み合わせでもよい。
化合物Aの例としては、リチウムビス(フルオロスルホニル)イミド(LiN(SOF)、以下「LiFSI」とも記す。)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、以下「LiTFSI」とも記す。)が挙げられる。
Examples of the additive include compound A containing one or both of a sulfur atom and a nitrogen atom. The additives may be used alone or in combination of two or more.
Examples of compound A include lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , hereinafter also referred to as "LiFSI"), lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , (hereinafter also referred to as "LiTFSI").

<非水電解質二次電池の製造方法>
本実施形態の非水電解質二次電池の製造方法は、正極、セパレータ、負極、非水電解液、外装体等を公知の方法で組み立て、非水電解質二次電池を得る方法が挙げられる。
本実施形態の非水電解質二次電池の製造方法の一例について説明する。例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製する。電極積層体をアルミラミネート袋等の外装体(筐体)5に封入する。次いで、非水電解液(図示せず)を外相体に注入し、外装体5を密閉して、非水電解質二次電池とする。
<Method for manufacturing non-aqueous electrolyte secondary battery>
The method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment includes a method of assembling a positive electrode, a separator, a negative electrode, a non-aqueous electrolyte, an exterior body, etc. by a known method to obtain a non-aqueous electrolyte secondary battery.
An example of the method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment will be described. For example, an electrode laminate in which positive electrodes 1 and negative electrodes 3 are alternately laminated with separators 2 in between is produced. The electrode laminate is enclosed in an exterior body (casing) 5 such as an aluminum laminate bag. Next, a non-aqueous electrolyte (not shown) is injected into the outer shell, and the outer shell 5 is sealed to form a non-aqueous electrolyte secondary battery.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
The nonaqueous electrolyte secondary battery of this embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The usage form of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, it can be used in a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary storage battery systems, emergency power storage battery systems, and the like.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.

<測定方法>
[粒度分布の測定方法]
正極活物質層の最表面の、深さ数μmの部分をスパチュラで剥がし、得られた粉体を水に分散させた分散液を試料とした。
測定には、レーザー回折式粒度分布測定装置(堀場製作所社製品名LA-960V2)を用い、フローセルを使用した。試料は、循環、撹拌及び超音波照射(10分間)を行い、分散状態が充分に安定した状態で粒度分布を測定した。
体積基準の粒度分布曲線を得て、最頻度径(モード径)、モード径における頻度、極大点の数(ピークの数)、分布幅(D90-D10)を求めた。
<Measurement method>
[Method of measuring particle size distribution]
A sample was prepared by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers using a spatula, and dispersing the obtained powder in water.
For the measurement, a laser diffraction particle size distribution analyzer (Horiba, Ltd. product name: LA-960V2) was used, and a flow cell was used. The sample was circulated, stirred, and irradiated with ultrasonic waves (for 10 minutes), and the particle size distribution was measured after the dispersion state was sufficiently stable.
A volume-based particle size distribution curve was obtained, and the most frequent diameter (mode diameter), frequency in the mode diameter, number of maximum points (number of peaks), and distribution width (D90-D10) were determined.

[体積密度の測定方法]
マイクロメータを用いて、正極シートの厚さ、正極集電体露出部の厚さを測定した。それぞれ任意の5点で測定して平均値を求めた。正極シートの厚さから正極集電体露出部の厚さを差し引いて正極活物質層の厚さを算出した。
正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備した。
各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体の質量を差し引くことにより、測定試料中の正極活物質層の質量を算出した。各測定値の平均値から前記式(1)に基づいて、正極活物質層の体積密度を算出した。
[Method of measuring volume density]
Using a micrometer, the thickness of the positive electrode sheet and the thickness of the exposed portion of the positive electrode current collector were measured. Each was measured at five arbitrary points and the average value was calculated. The thickness of the positive electrode active material layer was calculated by subtracting the thickness of the exposed portion of the positive electrode current collector from the thickness of the positive electrode sheet.
Five measurement samples were prepared by punching out a positive electrode sheet into a circular shape with a diameter of 16 mm.
The mass of each measurement sample was weighed using a precision balance, and the mass of the positive electrode active material layer in the measurement sample was calculated by subtracting the mass of the positive electrode current collector measured in advance from the measurement result. The volume density of the positive electrode active material layer was calculated from the average value of each measured value based on the above formula (1).

<評価方法>
[重量エネルギー密度]
重量エネルギー密度の評価は、下記(1)~(3)の手順に沿って行った。
(1)定格容量が1Ahとなるようにセルを作製し、セルの重量を測定した。
(2)得られたセルに対して、25℃(常温)環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に30分間、開回路状態で休止した。
(3)放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときに放電開始から放電終了までに測定された合計の放電電力(Wh)を(1)にて測定したセルの重量(kg)で除する事で重量エネルギー密度(Wh/kg)を算出した。
<Evaluation method>
[Gravimetric energy density]
Evaluation of gravimetric energy density was performed according to the following procedures (1) to (3).
(1) A cell was prepared with a rated capacity of 1 Ah, and the weight of the cell was measured.
(2) The obtained cell was charged at a constant current of 0.2C rate (i.e. 200mA) at a final voltage of 3.6V in an environment of 25°C (normal temperature), and then charged at a constant voltage of 3.6V. After charging was carried out with 1/10 of the charging current as the final current (ie, 20 mA), the battery was rested in an open circuit state for 30 minutes.
(3) Discharge was performed at a constant current at a rate of 0.2C with a final voltage of 2.5V. At this time, the gravimetric energy density (Wh/kg) was calculated by dividing the total discharge power (Wh) measured from the start of discharge to the end of discharge by the weight (kg) of the cell measured in (1). .

[大電流特性]
大電流特性の評価は、下記(1)~(5)の手順に沿って行った。
(1)得られたセルに対して、25℃(常温)環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に30分間、開回路状態で休止した。
(2)放電を0.2Cレートで一定電流にて終止電圧1,5Vで行った。このときに放電開始から放電終了までに測定された合計の放電容量(Ah)を0.2C放電容量とした。
(3)再び0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、20mA)として充電を行った後に30分間、開回路状態で休止した。
(4)放電を20Cレートで一定電流にて終止電圧1,5Vで行った。このときに放電開始から放電終了までに測定された合計の放電容量(Ah)を20C放電容量とした。
(5)20C放電容量(Ah)を0.2C放電容量(Ah)で除した値(単位:%)を算出し大電流特性を評価した。この値が100%に近いほど大電流特性に優れる。
[Large current characteristics]
Evaluation of large current characteristics was performed according to the following procedures (1) to (5).
(1) The obtained cell was charged at a constant current at a rate of 0.2C (i.e. 200mA) at a final voltage of 3.6V in an environment of 25°C (normal temperature), and then charged at a constant voltage at a final voltage of 3.6V. After charging was carried out with 1/10 of the charging current as the final current (ie, 20 mA), the battery was rested in an open circuit state for 30 minutes.
(2) Discharge was carried out at a constant current at a rate of 0.2C with a final voltage of 1.5V. At this time, the total discharge capacity (Ah) measured from the start of discharge to the end of discharge was defined as 0.2C discharge capacity.
(3) After charging again at a constant current at a 0.2C rate (i.e., 200 mA) with a final voltage of 3.6 V, 1/10 of the charging current is set as a final current (i.e., 20 mA) at a constant voltage. After charging, the battery rested in an open circuit state for 30 minutes.
(4) Discharge was carried out at a constant current at a rate of 20C with a final voltage of 1.5V. At this time, the total discharge capacity (Ah) measured from the start of discharge to the end of discharge was defined as the 20C discharge capacity.
(5) The large current characteristics were evaluated by calculating the value (unit: %) obtained by dividing the 20C discharge capacity (Ah) by the 0.2C discharge capacity (Ah). The closer this value is to 100%, the better the large current characteristics are.

<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<Manufacture example 1: Manufacture of negative electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent, A composition for producing a negative electrode with a solid content of 50% by mass was obtained.
The obtained composition for producing a negative electrode was applied on both sides of a copper foil (thickness: 8 μm), vacuum dried at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to form a negative electrode.

<製造例2:集電体被覆層を有する集電体の製造>
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを厚さ15μmのアルミニウム箔(正極集電体本体)の表裏両面に、乾燥後の集電体被覆層の厚さ(両面合計)が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層は、塗工量及び厚さが互いに均等になるように形成した。
<Production Example 2: Production of a current collector having a current collector coating layer>
A slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent. The amount of NMP used was the amount necessary to coat the slurry.
The obtained slurry was coated on both the front and back sides of a 15 μm thick aluminum foil (positive electrode current collector body) using a gravure method so that the thickness of the dried current collector coating layer (total of both sides) was 2 μm. Then, it was dried and the solvent was removed to obtain a positive electrode current collector. The current collector coating layers on both sides were formed so that the coating amount and thickness were equal to each other.

正極活物質粒子として、多数の芯部(リン酸鉄リチウム)が活物質被覆部(炭素)を介して一体化された活物質造粒体、又は芯部(リン酸鉄リチウム)と活物質被覆部(炭素)からなる単体の被覆粒子(非造粒体)を用いた。
活物質造粒体(1):平均粒子径7.8μm、炭素含有量2.5質量%。
活物質造粒体(2):平均粒子径10.3μm、炭素含有量2.5質量%。
活物質造粒体(3):平均粒子径14.9μm、炭素含有量2.5質量%。
活物質造粒体(4):平均粒子径3.0μm、炭素含有量2.5質量%。
被覆粒子(1):平均粒子径1.1μm、炭素含有量1.5質量%、被覆率90%以上。
活物質造粒体(1)~(4)をマッピング機能付き走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)にて観察したところ、いずれも、リン酸鉄リチウムからなる芯部を多数個含む略球形の粒子(造粒体)であった。隣り合う芯部の間には炭素が存在し、造粒体の外側の表面が薄膜状の炭素で被覆されていた。芯部の被覆率は90%以上、外側の表面の被覆率は90%以上であった。
As positive electrode active material particles, active material granules in which a large number of core parts (lithium iron phosphate) are integrated via an active material coating part (carbon), or a core part (lithium iron phosphate) and an active material coating A single coated particle (non-granulated body) consisting of 50% (carbon) was used.
Active material granules (1): average particle diameter 7.8 μm, carbon content 2.5% by mass.
Active material granules (2): average particle diameter 10.3 μm, carbon content 2.5% by mass.
Active material granules (3): average particle diameter 14.9 μm, carbon content 2.5% by mass.
Active material granules (4): average particle diameter 3.0 μm, carbon content 2.5% by mass.
Coated particles (1): average particle diameter 1.1 μm, carbon content 1.5% by mass, coverage rate 90% or more.
When active material granules (1) to (4) were observed using a scanning electron microscope (SEM) with a mapping function and a transmission electron microscope (TEM), it was found that many cores were composed of lithium iron phosphate. The particles were approximately spherical particles (granules) containing 1,000 particles. Carbon existed between adjacent core parts, and the outer surface of the granule was coated with a thin film of carbon. The coverage of the core was 90% or more, and the coverage of the outer surface was 90% or more.

導電助剤としてカーボンブラック(CB)を用いた。CBは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。
結着材として、樹脂成分であるポリフッ化ビニリデン(PVDF)を用いた。
分散剤として、樹脂成分であるポリビニルピロリドン(PVP)を用いた。
溶媒としてN-メチルピロリドン(NMP)を用いた。
正極集電体として、製造例2で得た集電体被覆層を有するアルミニウム箔、又は集電体被覆層を設けないアルミニウム箔(厚さ15μm)を用いた。
Carbon black (CB) was used as a conductive aid. CB has impurities below the quantitative limit and can be considered to have a carbon content of 100% by mass.
Polyvinylidene fluoride (PVDF), which is a resin component, was used as a binder.
Polyvinylpyrrolidone (PVP), which is a resin component, was used as a dispersant.
N-methylpyrrolidone (NMP) was used as a solvent.
As the positive electrode current collector, the aluminum foil having the current collector coating layer obtained in Production Example 2 or the aluminum foil (15 μm thick) without the current collector coating layer was used.

<例1~9>
例1~4は実施例、例5~9は比較例である。
以下の方法で正極活物質層を形成した。
表1に示す配合の正極活物質粒子、導電助剤、結着材、分散剤及び溶媒(NMP)をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表中に示す配合は、溶媒以外の原料の合計を100質量%とするときの割合である。
得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。正極製造用組成物の塗工量は、両面合計で20mg/cmとなるように設定した。両面それぞれの正極活物質層は、塗工量及び厚さが互いに均等になるように形成した。得られた積層物を加圧プレスして正極シートを得た。加圧プレスの荷重は10kNとした。
得られた正極シートを打ち抜き、正極とした。
<Examples 1 to 9>
Examples 1 to 4 are examples, and Examples 5 to 9 are comparative examples.
A positive electrode active material layer was formed by the following method.
Positive electrode active material particles, a conductive aid, a binder, a dispersant, and a solvent (NMP) having the composition shown in Table 1 were mixed in a mixer to obtain a composition for manufacturing a positive electrode. The amount of solvent used was the amount necessary for coating the composition for producing a positive electrode. Note that the formulations shown in the table are the proportions when the total of raw materials other than the solvent is 100% by mass.
The obtained composition for producing a positive electrode was applied onto both surfaces of a positive electrode current collector, and after preliminary drying, vacuum drying was performed in a 120° C. environment to form a positive electrode active material layer. The coating amount of the positive electrode manufacturing composition was set to be 20 mg/cm 2 in total on both sides. The positive electrode active material layers on both sides were formed so that the coating amount and thickness were equal to each other. The obtained laminate was pressed under pressure to obtain a positive electrode sheet. The load of the pressure press was 10 kN.
The obtained positive electrode sheet was punched out to form a positive electrode.

得られた正極シートについて、正極活物質層の粒度分布、正極活物質層の総質量に対すると樹脂成分の含有量、導電性炭素の含有量、及び正極活物質層の体積密度を求めた。結果を表2に示す。
具体的に、上記の方法で正極活物質層の粒度分布、及び正極活物質層の厚さと体積密度を測定した。粒度分布の測定結果に基づいて、表2に示す各項目の値を求めた。一例として、例3と例8の正極活物質層の粒度分布を図3に示す。
例1~9の粒度分布曲線において、ピークの数は2であり、粒子径が大きいピークの方が、頻度が大きかった。すなわち粒子径が大きいピークにおける粒子径がモード径であった。
正極活物質粒子の炭素含有量と配合量、及び導電助剤の炭素含有量と配合量に基づいて、正極活物質層の総質量に対する導電性炭素の含有量を算出した。上記≪導電性炭素含有量の測定方法≫に記載の方法を用いて確認することも可能である。
結着材及び分散剤の配合量に基づいて、正極活物質層の総質量に対する結着材と分散剤の合計の含有量を算出し、樹脂成分の含有量とした。上記≪樹脂成分の含有量の測定方法≫に記載の方法を用いて確認することも可能である。
Regarding the obtained positive electrode sheet, the particle size distribution of the positive electrode active material layer, the content of the resin component relative to the total mass of the positive electrode active material layer, the content of conductive carbon, and the volume density of the positive electrode active material layer were determined. The results are shown in Table 2.
Specifically, the particle size distribution of the positive electrode active material layer, and the thickness and volume density of the positive electrode active material layer were measured using the above method. Based on the measurement results of particle size distribution, values for each item shown in Table 2 were determined. As an example, the particle size distributions of the positive electrode active material layers of Examples 3 and 8 are shown in FIG.
In the particle size distribution curves of Examples 1 to 9, the number of peaks was 2, and the peak with a larger particle size had a higher frequency. In other words, the particle diameter at the peak where the particle diameter is large was the mode diameter.
The content of conductive carbon relative to the total mass of the positive electrode active material layer was calculated based on the carbon content and amount of the positive electrode active material particles and the carbon content and amount of the conductive additive. It is also possible to confirm using the method described in the above <<Method for Measuring Conductive Carbon Content>>.
Based on the blending amounts of the binder and dispersant, the total content of the binder and dispersant with respect to the total mass of the positive electrode active material layer was calculated, and was taken as the content of the resin component. It is also possible to confirm using the method described in the above <<Method for Measuring Content of Resin Component>>.

以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法で、重量エネルギー密度を測定した。また、上記の方法で大電流特性を評価した。結果を表2に示す。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
LiPF 6 was dissolved as an electrolyte at 1 mol/liter in a solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC of 3:7. An aqueous electrolyte was prepared.
The positive electrode obtained in this example and the negative electrode obtained in Production Example 1 were alternately laminated with separators interposed therebetween to produce an electrode laminate in which the outermost layer was the negative electrode. A polyolefin film (thickness: 15 μm) was used as a separator.
In the step of producing the electrode laminate, first, the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2.
Terminal tabs are electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are laminated with an aluminum laminate film so that the terminal tabs protrude to the outside. The body was sandwiched and the three sides were laminated and sealed.
Subsequently, a non-aqueous electrolyte was injected from one side left unsealed, and vacuum-sealed to produce a non-aqueous electrolyte secondary battery (laminate cell).
The gravimetric energy density was measured using the method described above. In addition, large current characteristics were evaluated using the method described above. The results are shown in Table 2.

Figure 2023135371000002
Figure 2023135371000002

Figure 2023135371000003
Figure 2023135371000003

表2の結果に示されるように、集電体被覆層を有し、正極活物質層が樹脂成分を0.8~3.0質量%含み、正極活物質層に存在する粒子のモード径が50.0~100.0μmであり、かつモード径における頻度が5~15%である例1~4は、重量エネルギー密度が高く、大電流特性にも優れる。 As shown in the results in Table 2, the positive electrode active material layer has a current collector coating layer, contains a resin component of 0.8 to 3.0% by mass, and the mode diameter of the particles present in the positive electrode active material layer is Examples 1 to 4, in which the diameter is 50.0 to 100.0 μm and the frequency in the mode diameter is 5 to 15%, have a high gravimetric energy density and are excellent in large current characteristics.

これに対して、集電体被覆層を有するものの、樹脂成分の含有量が多く、モード径が100.0μmを超える例5は、重量エネルギー密度が低下した。
一方、集電体被覆層を有するものの、樹脂成分の含有量が少ない例6は、モード径における頻度が5%未満であり、大電流特性が低下した。
集電体被覆層を設けなかった例7は、大電流特性が顕著に劣った。集電体と正極活物質との間の導電パスが不十分であったと考えられる。
正極活物質層に存在する粒子のモード径が50.0μmより小さい例8は、大電流特性が劣った。活物質造粒体の粒子径が小さいため、活物質造粒体内部の導電性は良好であるが、活物質造粒体どうしをつなぐ箇所が相対的に増え、導電パスが不均一になったと考えられる。
例9は、導電助剤を多く添加し、導電助剤を結着させるためにバインダーの添加量も多くなった例であり、重量エネルギー密度が低下した。また、導電性炭素の含有量が多いにもかかわらず大電流特性がやや劣った。導電助剤が多いため導電パスが不均一になったと考えられる。
On the other hand, in Example 5, which had a current collector coating layer but had a high resin component content and a mode diameter exceeding 100.0 μm, the weight energy density decreased.
On the other hand, in Example 6, which had a current collector coating layer but had a small content of the resin component, the frequency in the mode diameter was less than 5%, and the large current characteristics were deteriorated.
In Example 7, in which no current collector coating layer was provided, the large current characteristics were significantly inferior. It is thought that the conductive path between the current collector and the positive electrode active material was insufficient.
Example 8, in which the mode diameter of particles present in the positive electrode active material layer was smaller than 50.0 μm, had poor large current characteristics. Because the particle size of the active material granules is small, the conductivity inside the active material granules is good, but the number of points connecting the active material granules increases relatively, making the conductive path uneven. Conceivable.
Example 9 is an example in which a large amount of conductive additive was added and the amount of binder added was also increased to bind the conductive additive, resulting in a decrease in the weight energy density. Furthermore, despite the high content of conductive carbon, the large current characteristics were somewhat inferior. It is thought that the conductive path became non-uniform due to the large amount of conductive aid.

1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 集電体(正極集電体)
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
1 Positive electrode 2 Separator 3 Negative electrode 5 Exterior body 10 Secondary battery 11 Current collector (positive electrode current collector)
12 Positive electrode active material layer 13 Positive electrode current collector exposed portion 14 Positive electrode current collector main body 15 Current collector coating layer

Claims (10)

集電体と、前記集電体上に存在する正極活物質層とを有し、
前記集電体の、前記正極活物質層側の表面の少なくとも一部に集電体被覆層が存在し、
前記集電体被覆層は導電材料を含み、
前記正極活物質層は正極活物質粒子及び樹脂成分を含み、
前記正極活物質層の総質量に対して前記樹脂成分の含有量が0.8~3.0質量%であり、
前記正極活物質層に存在する粒子の、体積基準の粒度分布曲線において、最頻度粒子径が50.0~100.0μmであり、前記最頻度粒子径における頻度が5~15%である、非水電解質二次電池用正極。
comprising a current collector and a positive electrode active material layer present on the current collector,
A current collector coating layer is present on at least a part of the surface of the current collector on the positive electrode active material layer side,
The current collector coating layer includes a conductive material,
The positive electrode active material layer includes positive electrode active material particles and a resin component,
The content of the resin component is 0.8 to 3.0% by mass with respect to the total mass of the positive electrode active material layer,
In the volume-based particle size distribution curve of the particles present in the positive electrode active material layer, the most frequent particle size is 50.0 to 100.0 μm, and the frequency of the particles in the most frequent particle size is 5 to 15%. Positive electrode for water electrolyte secondary batteries.
縦軸を頻度とする前記粒度分布曲線において、極大点が複数存在し、前記複数の極大点のうち粒子径が最も大きい極大点における粒子径が前記最頻度粒子径である、請求項1に記載の非水電解質二次電池用正極。 According to claim 1, in the particle size distribution curve with frequency as the vertical axis, there are a plurality of maximum points, and the particle size at the maximum point having the largest particle size among the plurality of maximum points is the most frequent particle size. Positive electrode for non-aqueous electrolyte secondary batteries. 前記粒度分布曲線において、90%径から10%径を差し引いた分布幅が80.0~200.0μmである、請求項1又は2に記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein in the particle size distribution curve, the distribution width obtained by subtracting the 10% diameter from the 90% diameter is 80.0 to 200.0 μm. 前記正極活物質層の体積密度が、2.00~2.40g/cmである、請求項1~3のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the positive electrode active material layer has a volume density of 2.00 to 2.40 g/cm 3 . 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1~4のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode active material particles are represented by the general formula LiFe x M (1-x) PO 4 (wherein 0≦x≦1, M is Co, Ni, Mn, Al, Ti, or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, comprising a compound. 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、請求項1~5のいずれか一項に記載の非水電解質二次電池用正極。 Claims 1 to 3, wherein the positive electrode active material layer contains conductive carbon, and the content of the conductive carbon is 0.5% by mass or more and less than 3.0% by mass with respect to the total mass of the positive electrode active material layer. 5. The positive electrode for a non-aqueous electrolyte secondary battery according to any one of 5. 前記正極活物質層が結着材を含み、前記結着材が前記樹脂成分を含む、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the positive electrode active material layer contains a binder, and the binder contains the resin component. 前記正極活物質層が導電助剤を含まない、請求項1~7のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the positive electrode active material layer does not contain a conductive additive. 請求項1~8のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質を備える、非水電解質二次電池。 A non-aqueous electrolyte battery comprising: a positive electrode for a non-aqueous electrolyte secondary battery, a negative electrode according to any one of claims 1 to 8, and a non-aqueous electrolyte present between the positive electrode for a non-aqueous electrolyte secondary battery and the negative electrode Water electrolyte secondary battery. 請求項9に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。 A battery module or a battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to claim 9.
JP2022040535A 2022-03-15 2022-03-15 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same Active JP7149436B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022040535A JP7149436B1 (en) 2022-03-15 2022-03-15 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP2022150942A JP2023135585A (en) 2022-03-15 2022-09-22 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system
PCT/JP2023/010124 WO2023176892A1 (en) 2022-03-15 2023-03-15 Positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery using same, battery module, and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040535A JP7149436B1 (en) 2022-03-15 2022-03-15 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022150942A Division JP2023135585A (en) 2022-03-15 2022-09-22 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Publications (2)

Publication Number Publication Date
JP7149436B1 JP7149436B1 (en) 2022-10-06
JP2023135371A true JP2023135371A (en) 2023-09-28

Family

ID=83507672

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022040535A Active JP7149436B1 (en) 2022-03-15 2022-03-15 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP2022150942A Pending JP2023135585A (en) 2022-03-15 2022-09-22 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022150942A Pending JP2023135585A (en) 2022-03-15 2022-09-22 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Country Status (2)

Country Link
JP (2) JP7149436B1 (en)
WO (1) WO2023176892A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073749A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Manufacturing method of electrode for power storage device
WO2020194510A1 (en) * 2019-03-26 2020-10-01 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100295B1 (en) * 2004-02-26 2011-12-28 니폰 가가쿠 고교 가부시키가이샤 Manufacturing method of lithium cobalt oxide
JP2005276502A (en) * 2004-03-23 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal compound oxide powder for lithium secondary battery positive electrode active material and its manufacturing method, its precursor and its manufacturing method, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2017054682A (en) * 2015-09-09 2017-03-16 株式会社Uacj Current collector, electrode structure, and power-storage part
JP2019036490A (en) * 2017-08-18 2019-03-07 三井化学株式会社 Current collector provided with undercoat layer, electrode, and non-aqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073749A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Manufacturing method of electrode for power storage device
WO2020194510A1 (en) * 2019-03-26 2020-10-01 株式会社 東芝 Electrode, non-aqueous electrolyte battery, and battery pack

Also Published As

Publication number Publication date
JP2023135585A (en) 2023-09-28
JP7149436B1 (en) 2022-10-06
WO2023176892A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP7323713B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2024048656A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery, battery module, and battery system using same
WO2023176895A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, battery module, and battery system
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149436B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2024005214A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using same
WO2022196815A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2024048784A1 (en) Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system
JP7254235B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197670B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
WO2024048735A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery, battery module and battery system each using same
WO2024048653A1 (en) Nonaqueous electrolyte secondary battery, battery module and battery system
WO2023182271A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system that use same
JP2023140733A (en) Composition for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module and battery system, and method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2023141508A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
JP2023141716A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141411A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150