JP2023141411A - Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same Download PDF

Info

Publication number
JP2023141411A
JP2023141411A JP2022047724A JP2022047724A JP2023141411A JP 2023141411 A JP2023141411 A JP 2023141411A JP 2022047724 A JP2022047724 A JP 2022047724A JP 2022047724 A JP2022047724 A JP 2022047724A JP 2023141411 A JP2023141411 A JP 2023141411A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022047724A
Other languages
Japanese (ja)
Inventor
裕一 佐飛
Yuichi Satobi
輝 吉川
Teru Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022047724A priority Critical patent/JP2023141411A/en
Publication of JP2023141411A publication Critical patent/JP2023141411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode for a non-aqueous electrolyte secondary battery that provides sufficient adhesive strength between an electrode active material layer and a separator without deteriorating battery characteristics.SOLUTION: A positive electrode 1 for a non-aqueous electrolyte secondary battery includes a separator 20, and a positive electrode body 10 that is laminated on one side 20a of the separator 20 with an adhesive layer 21 interposed therebetween. The positive electrode body 10 includes a current collector 11, and a positive electrode active material layer 12 containing positive electrode active material particles present on the current collector 11, and the arithmetic mean height (Sa) of the positive electrode active material layer 12 on the surface 12a on the separator 20 side is 0.010 μm or more and less than 0.100 μm, and the porosity of the positive electrode active material layer 12 is 40% or more.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。 The present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, a battery module, and a battery system using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面にプレスして固着させ、電極活物質層を形成したものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
A non-aqueous electrolyte secondary battery generally includes a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) installed between the positive electrode and the negative electrode.
For the positive electrode of a non-aqueous electrolyte secondary battery, a composition consisting of a positive electrode active material containing lithium ions, a conductive agent, and a binder is pressed and fixed onto the surface of metal foil (current collector), and the electrode Those with an active material layer formed thereon are known.
Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (lithium iron phosphate). Lithium phosphate compounds such as LiFePO 4 ) have been put into practical use.

非水電解質二次電池としては、例えば、正極と負極がセパレータを介して積層されたものが知られている。また、正極および負極は、接着剤層を介して、セパレータに積層されている(例えば、特許文献1参照)。接着剤層を介して、正極または負極とセパレータとを接着する機構(接着機構)は、2種ある。1つの接着機構は、電池セル内に電解液を注入する前のプレスにて、電極活物質層の表面とセパレータとを接合する機能である(ドライ接着)。電極とセパレータの積層体を積層スタックする工程にて、セパレータのずれが発生しないようにする。もう1つの接着機構は、電池セル内に電解液を注入した後に、接着剤層がゲル化し接着性を発現する機能である(ウェット接着)。電極活物質層とセパレータとの接着性を向上することで、充放電サイクルが向上する。 As a non-aqueous electrolyte secondary battery, for example, one in which a positive electrode and a negative electrode are laminated with a separator in between is known. Further, the positive electrode and the negative electrode are laminated on a separator via an adhesive layer (see, for example, Patent Document 1). There are two types of mechanisms (adhesion mechanisms) for bonding a positive electrode or a negative electrode and a separator via an adhesive layer. One adhesion mechanism is a function of joining the surface of the electrode active material layer and the separator using a press before injecting the electrolyte into the battery cell (dry adhesion). To prevent misalignment of separators in a step of stacking a laminate of electrodes and separators. Another adhesion mechanism is a function in which the adhesive layer gels and exhibits adhesive properties after injecting electrolyte into the battery cell (wet adhesion). By improving the adhesion between the electrode active material layer and the separator, charge/discharge cycles are improved.

特開2017-73328号公報JP2017-73328A

ドライ接着は、接着剤層が固いため、一般的に接着性が低く、高いプレス圧が必要であり、多くのバインダー量が必要である。バインダー量が多すぎると、電池の抵抗が上昇する原因となる。 Dry bonding generally has low adhesion because the adhesive layer is hard, requires high press pressure, and requires a large amount of binder. If the amount of binder is too large, it will cause the resistance of the battery to increase.

本発明は、電池特性を低下することなく、電極活物質層とセパレータとの十分な接着力が得られる非水電解質二次電池用正極を提供する。 The present invention provides a positive electrode for a non-aqueous electrolyte secondary battery that provides sufficient adhesive strength between an electrode active material layer and a separator without deteriorating battery characteristics.

本発明者等は、鋭意検討した結果、以下の知見を得た。
接着剤層の接着性を向上するためには、電極活物質層のセパレータと接する面における表面粗さが適切な範囲内である必要がある。より具体的には、電極活物質層のセパレータと接する面が平坦であるほど、電極活物質層とセパレータとの接触面積が増える。一方、前記表面粗さを低くするためには、電極活物質層の空隙率を低くしなければならず、電極活物質層内に電解液が十分に浸透しなくなり、電池特性が低下する。
正極活物質層の表面の平滑性を特定の範囲とし、正極活物質層における空隙率を特定の範囲とすることで、電池特性を低下することなく、電極活物質層とセパレータとの接着力を高められることを見出し、本発明を完成するに至った。
本発明は以下の態様を有する。
[1]セパレータと、前記セパレータの一方の面に接着剤層を介して積層された正極本体と、を備え、
前記正極本体は、集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層と、を有し、
前記正極活物質層の前記セパレータ側の面における算術平均高さ(Sa)が0.010μm以上0.100μm未満、
前記正極活物質層の空隙率が40%以上である、非水電解質二次電池用正極。
[2]前記正極活物質層が導電助剤を含む、前記正極活物質層の総質量に対して前記導電助剤の含有量が1質量%以下である、[1]に記載の非水電解質二次電池用正極。
[3]前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]または[2]に記載の非水電解質二次電池用正極。
[4]前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、[1]~[3]のいずれかに記載の非水電解質二次電池用正極。
[5][1]~[4]のいずれかに記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
[6][5]に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
As a result of intensive studies, the present inventors obtained the following knowledge.
In order to improve the adhesiveness of the adhesive layer, the surface roughness of the surface of the electrode active material layer in contact with the separator needs to be within an appropriate range. More specifically, the flatter the surface of the electrode active material layer in contact with the separator, the greater the contact area between the electrode active material layer and the separator. On the other hand, in order to reduce the surface roughness, the porosity of the electrode active material layer must be lowered, which prevents the electrolytic solution from sufficiently penetrating into the electrode active material layer, resulting in deterioration of battery characteristics.
By adjusting the surface smoothness of the positive electrode active material layer to a specific range and the porosity in the positive electrode active material layer to a specific range, the adhesive strength between the electrode active material layer and the separator can be improved without deteriorating battery characteristics. The present inventors have discovered that the present invention can be improved.
The present invention has the following aspects.
[1] Comprising a separator and a positive electrode body laminated on one surface of the separator via an adhesive layer,
The positive electrode main body includes a current collector and a positive electrode active material layer containing positive electrode active material particles present on the current collector,
the arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface is 0.010 μm or more and less than 0.100 μm;
A positive electrode for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material layer has a porosity of 40% or more.
[2] The nonaqueous electrolyte according to [1], wherein the positive electrode active material layer contains a conductive additive, and the content of the conductive additive is 1% by mass or less with respect to the total mass of the positive electrode active material layer. Positive electrode for secondary batteries.
[3] The positive electrode active material particles have the general formula LiFe x M (1-x) PO 4 (wherein 0≦x≦1, M is Co, Ni, Mn, Al, Ti, or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to [1] or [2], which contains the compound represented by the formula.
[4] The non-container according to any one of [1] to [3], wherein a current collector coating layer containing a conductive material is present on at least a part of the surface of the current collector on the positive electrode active material layer side. Positive electrode for water electrolyte secondary batteries.
[5] The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [4], a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode for a non-aqueous electrolyte secondary battery. , non-aqueous electrolyte secondary battery.
[6] A battery module or a battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to [5].

本発明によれば、電池特性を低下することなく、電極活物質層とセパレータとの十分な接着力が得られる非水電解質二次電池用正極が得られる。 According to the present invention, a positive electrode for a non-aqueous electrolyte secondary battery can be obtained that provides sufficient adhesive strength between an electrode active material layer and a separator without deteriorating battery characteristics.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention.

本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "~" indicating a numerical range means that the numerical values listed before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
Note that FIGS. 1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、正極本体10と、セパレータ20とを備える。正極本体10は、セパレータ20の一方の面20aに接着剤層21を介して積層されている。
正極本体10は、集電体(以下「正極集電体」という。)11と、正極活物質層12とを有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極活物質層12側の表面に集電体被覆層15が存在してもよい。すなわち、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有してもよい。正極集電体本体14のみを正極集電体11としてもよい。
<Positive electrode for non-aqueous electrolyte secondary batteries>
A positive electrode for a non-aqueous electrolyte secondary battery (also simply referred to as a "positive electrode") 1 of the present embodiment includes a positive electrode main body 10 and a separator 20. The positive electrode body 10 is laminated on one surface 20a of the separator 20 with an adhesive layer 21 interposed therebetween.
The positive electrode main body 10 includes a current collector (hereinafter referred to as “positive electrode current collector”) 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both sides of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 may have a current collector coating layer 15 on the surface thereof on the positive electrode active material layer 12 side. That is, the positive electrode current collector 11 may include the positive electrode current collector main body 14 and the current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side. Only the positive electrode current collector main body 14 may be used as the positive electrode current collector 11.

[正極活物質層]
正極活物質層12は正極活物質粒子を含む。
正極活物質層12は、さらに結着材を含むことが好ましい。
正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。
正極活物質層12は、さらに分散剤を含んでもよい。
正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
[Cathode active material layer]
The positive electrode active material layer 12 includes positive electrode active material particles.
It is preferable that the positive electrode active material layer 12 further contains a binder.
The positive electrode active material layer 12 may further contain a conductive additive. In this specification, the term "conductive additive" refers to a conductive material having a granular, fibrous, etc. shape that is mixed with positive electrode active material particles when forming a positive electrode active material layer; Refers to a conductive material that is present in the positive electrode active material layer in a connected manner.
The positive electrode active material layer 12 may further contain a dispersant.
With respect to the total mass of the positive electrode active material layer 12, the content of the positive electrode active material particles is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass.

正極活物質層の厚み(正極集電体の両面上に正極活物質層が存在する場合、両面の合計)は30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚みが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。 The thickness of the positive electrode active material layer (when positive electrode active material layers are present on both surfaces of the positive electrode current collector, the total thickness of both surfaces) is preferably 30 to 500 μm, more preferably 40 to 400 μm, and 50 to 50 μm. Particularly preferred is 300 μm. When the thickness of the positive electrode active material layer is at least the lower limit of the above range, the energy density of a battery incorporating the positive electrode tends to be high, and when it is below the upper limit of the above range, the peel strength of the positive electrode active material layer is high; Peeling can be suppressed during charging and discharging.

[正極活物質粒子]
正極活物質粒子は、正極活物質を含む。正極活物質粒子の少なくとも一部は、被覆粒子である。
被覆粒子において、正極活物質粒子の表面には、導電材料を含む被覆部(以下、「活物質被覆部」ともいう。)が存在する。正極活物質粒子は、活物質被覆部を有することで、電池容量、サイクル特性をより高められる。
例えば、活物質被覆部は、予め正極活物質粒子の表面に形成されており、かつ正極活物質層中において、正極活物質粒子の表面に存在する。すなわち、本稿における活物質被覆部は、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で欠落するものではない。
例えば、正極製造用組成物を調製する際に、被覆粒子を溶媒と共にミキサー等で混合しても、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極から正極活物質層を剥がし、これを溶媒に投入して正極活物質層中の結着材を溶媒に溶解させた場合にも、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極活物質層中の粒子の粒度分布をレーザー回折・散乱法により測定する際に、凝集した粒子をほぐす操作を行った場合にも活物質被覆部は正極活物質の表面を被覆している。
活物質被覆部は、正極活物質粒子の外表面全体の面積の50%以上に存在することが好ましく、70%以上に存在することが好ましく、90%以上に存在することが好ましい。
すなわち、被覆粒子は、正極活物質である芯部と、前記芯部の表面を覆う活物質被覆部とを有し、芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。
[Cathode active material particles]
The positive electrode active material particles contain a positive electrode active material. At least some of the positive electrode active material particles are coated particles.
In the coated particles, a coating portion (hereinafter also referred to as “active material coating portion”) containing a conductive material is present on the surface of the positive electrode active material particle. By having the active material coating part of the positive electrode active material particles, battery capacity and cycle characteristics can be further improved.
For example, the active material coating portion is formed in advance on the surface of the positive electrode active material particles, and is present on the surface of the positive electrode active material particles in the positive electrode active material layer. That is, the active material coating portion in this paper is not newly formed in a step after the step of preparing the composition for producing a positive electrode. In addition, the active material coating portion is not lost in the steps after the step of preparing the composition for producing the positive electrode.
For example, when preparing a composition for producing a positive electrode, even if coated particles are mixed with a solvent using a mixer or the like, the active material coating portion still covers the surface of the positive electrode active material. Furthermore, even if the positive electrode active material layer is peeled off from the positive electrode and put into a solvent to dissolve the binder in the positive electrode active material layer, the active material coating part will not cover the surface of the positive electrode active material. Covered. In addition, even if an operation is performed to loosen aggregated particles when measuring the particle size distribution of particles in the positive electrode active material layer by laser diffraction/scattering method, the active material coating portion will not cover the surface of the positive electrode active material. are doing.
The active material coating portion preferably exists on 50% or more, preferably 70% or more, and preferably 90% or more of the entire outer surface area of the positive electrode active material particles.
That is, the coated particles have a core that is a positive electrode active material and an active material coating that covers the surface of the core, and the area (coverage) of the active material coating with respect to the surface area of the core is 50%. It is preferably at least 70%, more preferably at least 90%, even more preferably at least 90%.

被覆粒子の製造方法としては、例えば、焼結法、蒸着法等が挙げられる。
焼結法としては、正極活物質の粒子と有機物とを含む活物質製造用組成物(例えば、スラリー)を、大気圧下、500~1000℃、1~100時間で焼成する方法が挙げられる。活物質製造用組成物に添加する有機物としては、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂等、スクロース、グルコース、ラクトース等の糖類、リンゴ酸、クエン酸などのカルボン酸、アリルアルコール、プロパルギルアルコール等の不飽和一価アルコール、アスコルビン酸、ポリビニルアルコール等が挙げられる。この焼結法によれば、活物質製造用組成物を焼成することで、有機物中の炭素を正極活物質の表面に焼結して、活物質被覆部を形成する。
また、他の焼結法としては、いわゆる衝撃焼結被覆法が挙げられる。
Examples of methods for producing coated particles include sintering methods, vapor deposition methods, and the like.
Examples of the sintering method include a method in which a composition for producing an active material (for example, a slurry) containing particles of a positive electrode active material and an organic substance is fired at 500 to 1000° C. for 1 to 100 hours under atmospheric pressure. Examples of organic substances added to the composition for producing active materials include salicylic acid, catechol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, hexahydroxybenzene, benzoic acid, phthalic acid, terephthalic acid, phenylalanine, water-dispersible phenol resin, etc. , sugars such as glucose and lactose, carboxylic acids such as malic acid and citric acid, unsaturated monohydric alcohols such as allyl alcohol and propargyl alcohol, ascorbic acid, and polyvinyl alcohol. According to this sintering method, by firing the composition for producing an active material, carbon in the organic substance is sintered onto the surface of the positive electrode active material, thereby forming an active material coating portion.
Further, other sintering methods include the so-called impact sintering coating method.

衝撃焼結被覆法は、例えば、衝撃焼結被覆装置において燃料の炭化水素と酸素の混合ガスを用いてバーナに点火し燃焼室で燃焼させてフレームを発生させ、その際、酸素量を燃料に対して完全燃焼の当量以下にしてフレーム温度を下げ、その後方に粉末供給用ノズルを設置し、そのノズルから被覆する有機物と溶媒を用いて溶かしスラリー状にしたものと燃焼ガスからなる固体―液体―気体三相混合物を粉末供給ノズルから噴射させ、室温に保持された燃焼ガス量を増して、噴射微粉末の温度を下げて、粉末材料の変態温度、昇華温度、蒸発温度以下で加速し、衝撃により瞬時焼結させて、正極活物質の粒子を被覆する。
蒸着法としては、物理気相成長法(PVD)、化学気相成長法(CVD)等の気相堆積法、メッキ等の液相堆積法等が挙げられる。
In the impact sinter coating method, for example, a burner is ignited using a mixed gas of hydrocarbon fuel and oxygen in an impact sinter coating device, and the mixture is combusted in a combustion chamber to generate a flame. The flame temperature is lowered to below the equivalent of complete combustion, and a powder supply nozzle is installed behind it, and a solid-liquid consisting of the organic matter to be coated, a slurry made by melting it with a solvent, and combustion gas is passed through the nozzle. - injecting a gaseous three-phase mixture from a powder supply nozzle, increasing the amount of combustion gas maintained at room temperature, lowering the temperature of the injected fine powder and accelerating it below the transformation, sublimation, and evaporation temperatures of the powder material; Instant sintering is performed by impact to coat the particles of the positive electrode active material.
Examples of the vapor deposition method include vapor deposition methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), and liquid deposition methods such as plating.

前記被覆率は次の様な方法により測定することができる。 まず、正極活物質層中の粒子を、透過電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)により分析する。具体的には、TEM画像における正極活物質粒子の外周部をEDXで元素分析する。元素分析は炭素について行い、正極活物質粒子を被覆している炭素を特定する。炭素の被覆部が1nm以上の厚さである箇所を被覆部分とし、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、これを被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値とすることができる。
また、前記活物質被覆部は、正極活物質のみから構成される粒子(以下、「芯部」と称することもある。)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層であり、この厚みは上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
The coverage rate can be measured by the following method. First, particles in the positive electrode active material layer are analyzed by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. Specifically, the outer periphery of the positive electrode active material particles in the TEM image is subjected to elemental analysis using EDX. Elemental analysis is performed on carbon to identify the carbon that coats the positive electrode active material particles. A portion where the carbon coating portion has a thickness of 1 nm or more is defined as the coating portion, and the ratio of the coating portion to the entire circumference of the observed positive electrode active material particles is determined, and this can be taken as the coverage rate. For example, the measurement can be performed on 10 positive electrode active material particles, and the average value can be taken as the average value.
Further, the active material coating portion has a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm, and is formed directly on the surface of the particle (hereinafter sometimes referred to as “core portion”) composed only of the positive electrode active material. layer, and this thickness can be confirmed by TEM-EDX used for measuring the coverage ratio described above.

本発明において、被覆粒子は、芯部の表面積に対する活物質被覆部の面積は、100%が特に好ましい。
なお、この被覆率(%)は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子(単一粒子)が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。
In the present invention, it is particularly preferable that the area of the active material coated portion of the coated particle is 100% of the surface area of the core portion.
Note that this coverage rate (%) is an average value for all the positive electrode active material particles present in the positive electrode active material layer, and as long as this average value is greater than or equal to the lower limit above, the positive electrode without an active material coating part This does not exclude the presence of a trace amount of active material particles. When positive electrode active material particles (single particles) without an active material coating are present in the positive electrode active material layer, the amount thereof is relative to the total amount of positive electrode active material particles present in the positive electrode active material layer. Preferably it is 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less.

活物質被覆部の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。
他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質粒子の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は正極活物質粒子の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。
The conductive material of the active material covering portion preferably contains carbon (conductive carbon). A conductive material consisting only of carbon may be used, or a conductive organic compound containing carbon and an element other than carbon may be used.
Examples of other elements include nitrogen, hydrogen, and oxygen. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material constituting the active material coating portion consists only of carbon.
The content of the conductive material is preferably 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, and 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, with respect to the total mass of the positive electrode active material particles having the active material coating portion. More preferably 7 to 2.5% by mass. If the amount is too large, the conductive material may peel off from the surface of the positive electrode active material particles and remain as independent conductive aid particles, which is not preferable.

正極活物質粒子は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
The positive electrode active material particles preferably include a compound having an olivine crystal structure.
The compound having an olivine crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as "general formula (I)"). In general formula (I), 0≦x≦1. M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti, or Zr) can also be replaced with other elements to the extent that the physical properties do not change. Even if the compound represented by the general formula (I) contains trace amounts of metal impurities, the effects of the present invention are not impaired.

一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
正極活物質粒子として、表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム粒子(以下「被覆リン酸鉄リチウム粒子」ともいう。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウム粒子の表面全体が導電材料で被覆されていることがさらに好ましい。
被覆リン酸鉄リチウム粒子は公知の方法で製造できる。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。
次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粒子を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粒子の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粒子を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
The compound represented by the general formula (I) is preferably lithium iron phosphate (hereinafter also simply referred to as "lithium iron phosphate") represented by LiFePO 4 .
As the positive electrode active material particles, lithium iron phosphate particles (hereinafter also referred to as "coated lithium iron phosphate particles") in which at least part of the surface is coated with an active material containing a conductive material are more preferable. It is more preferable that the entire surface of the lithium iron phosphate particles be coated with a conductive material from the viewpoint of better battery capacity and cycle characteristics.
The coated lithium iron phosphate particles can be produced by a known method.
For example, lithium iron phosphate powder is produced using the method described in Japanese Patent No. 5098146, and the powder is prepared using the method described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31, etc. The method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon.
Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are measured in a specific molar ratio, and these are ground and mixed under an inert atmosphere. Next, lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere.
Next, the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas, thereby obtaining lithium iron phosphate particles whose surfaces are at least partially coated with carbon.
For example, the particle size of the lithium iron phosphate particles can be adjusted by changing the grinding time in the grinding process. The amount of carbon coating the lithium iron phosphate particles can be adjusted by adjusting the heating time, temperature, etc. in the step of heat treatment while supplying methanol vapor. It is desirable to remove uncoated carbon particles through subsequent steps such as classification and washing.

正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質粒子の表面の少なくとも一部に、前記活物質被覆部が存在してもよい。
The positive electrode active material particles may include one or more other positive electrode active material particles containing a positive electrode active material other than a compound having an olivine crystal structure.
The other positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt aluminate (LiNix Co y Al z O 2 , where x+y+z=1), lithium nickel cobalt manganate (LiNix Co y Mn zO 2 , where x+y+z=1), lithium manganate (LiMn 2 O 4 ), lithium cobalt manganate (LiMnCoO 4 ), lithium manganese chromate (LiMnCrO 4 ), lithium vanadium nickelate (LiNiVO 4 ), nickel-substituted manganese Examples include lithium oxide (for example, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobalt oxide (LiCoVO 4 ), and non-stoichiometric compounds in which a portion of these compounds is replaced with a metal element. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn, and Ge.
The active material coating portion may be present on at least a portion of the surface of another positive electrode active material particle.

正極活物質粒子の総質量(活物質被覆部を有する場合は活物質被覆部の質量も含む)に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
The content of the compound having an olivine-type crystal structure is preferably 50% by mass or more, and 80% by mass with respect to the total mass of the positive electrode active material particles (including the mass of the active material coating if it has an active material coating). The content is more preferably 90% by mass or more, and even more preferably 90% by mass or more. It may be 100% by mass.
When using coated lithium iron phosphate particles, the content of coated lithium iron phosphate particles is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass of the positive electrode active material particles. is even more preferable. It may be 100% by mass.

[結着材]
正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層における結着材の含有量が少ない方が、正極活物質層内の抵抗成分が低減し、充放電特性が向上する。正極活物質層の総質量に対して、結着材の含有量は1.0質量%以下が好ましく、0.8質量%以下がより好ましい。
正極活物質層が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層の総質量に対して0.1質量%以上が好ましく、0.3質量%以上がより好ましい。
[Binder]
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinyl. Examples include acetal, polyethylene oxide, polyethylene glycol, carboxymethylcellulose, polyacrylonitrile, polyimide, and the like. One type of binder may be used, or two or more types may be used in combination.
When the content of the binder in the positive electrode active material layer is small, the resistance component in the positive electrode active material layer is reduced and the charge/discharge characteristics are improved. The content of the binder is preferably 1.0% by mass or less, more preferably 0.8% by mass or less with respect to the total mass of the positive electrode active material layer.
When the positive electrode active material layer contains a binder, the lower limit of the binder content is preferably 0.1% by mass or more, and 0.3% by mass or more based on the total mass of the positive electrode active material layer. More preferred.

[導電助剤]
正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば、独立した炭素粒子)が存在しない状態が望ましい。
正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
[Conductivity aid]
Examples of the conductive additive included in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, Ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer is, for example, preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 1 part by mass or less, based on 100 parts by mass of the total mass of the positive electrode active material. It is particularly preferable that the conductive agent does not contain a conductive agent, and it is desirable that no independent conductive agent particles (for example, independent carbon particles) are present.
When blending a conductive support agent into the positive electrode active material layer, the lower limit of the content of the conductive support agent is appropriately determined depending on the type of the conductive support agent, and is, for example, 0.0% relative to the total mass of the positive electrode active material layer. It is considered to be more than 1% by mass.
Note that the expression that the positive electrode active material layer "does not contain a conductive additive" means that it does not substantially contain it, and does not exclude that it contains it to the extent that it does not affect the effects of the present invention. For example, if the content of the conductive additive is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer, it can be determined that the conductive additive is not substantially contained.

[分散剤]
正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)等が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
分散剤は正極活物質層のスラリー中の凝集物の除去に寄与する。一方、分散剤の含有量が多すぎると抵抗が増大して入力特性が低下しやすい。
正極活物質層の総質量に対して、分散剤の含有量は0.5質量%以下が好ましく、0.2質量%以下がより好ましい。
正極活物質層が分散剤を含有する場合、分散剤の含有量の下限値は、正極活物質層の総質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましい。
[Dispersant]
The dispersant contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), and polyvinyl formal (PVF). One type of dispersant may be used, or two or more types may be used in combination.
The dispersant contributes to the removal of aggregates in the slurry of the positive electrode active material layer. On the other hand, if the content of the dispersant is too large, resistance increases and input characteristics tend to deteriorate.
The content of the dispersant is preferably 0.5% by mass or less, more preferably 0.2% by mass or less with respect to the total mass of the positive electrode active material layer.
When the positive electrode active material layer contains a dispersant, the lower limit of the content of the dispersant is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total mass of the positive electrode active material layer. .

[正極集電体本体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚みは、例えば、8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[Positive electrode current collector body]
The positive electrode current collector body 14 is made of a metal material. Examples of the metal material include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the positive electrode current collector body 14 is, for example, preferably 8 to 40 μm, more preferably 10 to 25 μm.
The thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of a measuring device is Mitutoyo's product name "MDH-25M."

[集電体被覆層]
正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在することが好ましい。集電体被覆層15は導電材料を含む。
ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10~100%、好ましくは30~100%、より好ましくは50~100%を意味する。
集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
[Current collector coating layer]
It is preferable that the current collector coating layer 15 is present on at least a portion of the surface of the positive electrode current collector body 14. Current collector coating layer 15 includes a conductive material.
Here, "at least a portion of the surface" means 10 to 100%, preferably 30 to 100%, more preferably 50 to 100% of the surface area of the positive electrode current collector body.
The conductive material in the current collector coating layer 15 preferably contains carbon (conductive carbon). A conductive material consisting only of carbon is more preferable.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. Examples of the binding material for the current collector coating layer 15 include those similar to those for the positive electrode active material layer 12.
The positive electrode current collector 11 in which the surface of the positive electrode current collector body 14 is coated with a current collector coating layer 15 is prepared by, for example, applying a slurry containing a conductive material, a binder, and a solvent using a known coating method such as a gravure method. It can be manufactured by coating the surface of the positive electrode current collector body 14 using a solvent and drying to remove the solvent.

集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm.
The thickness of the current collector coating layer can be measured by a method of measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of a cross section of the current collector coating layer. The thickness of the current collector coating layer does not have to be uniform. It is preferable that a current collector coating layer with a thickness of 0.1 μm or more exists on at least a part of the surface of the positive electrode current collector main body 14, and the maximum value of the thickness of the current collector coating layer is 4.0 μm or less. .

[正極活物質層の算術平均高さ(Sa)]
正極活物質層12のセパレータ20側の面、すなわち、正極活物質層12の接着剤層21を介してセパレータ20と対向する面12aにおける算術平均高さ(Sa)が0.010μm以上0.100μm未満であり、0.010~0.060μmが好ましく、0.010~0.040μmがより好ましい。上記面12aの算術平均高さ(Sa)が上記範囲の下限値未満であると、正極活物質層12の空隙率が低下し、電解液浸透性が低下する。その結果、非水電解質二次電池の抵抗が上昇し充放電特性が低下する。一方、上記面12aの算術平均高さ(Sa)が上記範囲の上限値以上であると、正極活物質層12とセパレータ20との接着性が低下する。その結果、非水電解質二次電池のサイクル特性が低下する。算術平均高さ(Sa)は、導電助剤量、プレス圧の組み合わせ等により調節される。
[Arithmetic mean height (Sa) of positive electrode active material layer]
The arithmetic mean height (Sa) of the surface of the positive electrode active material layer 12 on the separator 20 side, that is, the surface 12a of the positive electrode active material layer 12 facing the separator 20 via the adhesive layer 21, is 0.010 μm or more and 0.100 μm. It is preferably from 0.010 to 0.060 μm, more preferably from 0.010 to 0.040 μm. When the arithmetic mean height (Sa) of the surface 12a is less than the lower limit of the above range, the porosity of the positive electrode active material layer 12 decreases, and the electrolyte permeability decreases. As a result, the resistance of the nonaqueous electrolyte secondary battery increases and the charge/discharge characteristics deteriorate. On the other hand, when the arithmetic mean height (Sa) of the surface 12a is greater than or equal to the upper limit of the above range, the adhesiveness between the positive electrode active material layer 12 and the separator 20 decreases. As a result, the cycle characteristics of the nonaqueous electrolyte secondary battery deteriorate. The arithmetic mean height (Sa) is adjusted by a combination of the amount of conductive additive, press pressure, and the like.

≪算術平均高さ(Sa)の測定方法≫
算術平均高さ(Sa)の測定は、ISO 25178表面性状(面粗さ測定)で規定する方法に従って行う。
≪Measurement method of arithmetic mean height (Sa)≫
The arithmetic mean height (Sa) is measured according to the method specified in ISO 25178 surface texture (surface roughness measurement).

[正極活物質層の表面粗さ(Ra)]
正極活物質層12の接着剤層21を介してセパレータ20と対向する面12aにおける表面粗さ(算術平均粗さ:Ra)は0.010μm以上0.100μm未満であり、0.010~0.080μmが好ましく、0.010~0.060μmがより好ましい。上記面12aの算術平均粗さ(Ra)が上記範囲の下限値未満であると、正極活物質層12の空隙率が低下し、電解液浸透性が低下する。その結果、非水電解質二次電池の抵抗が上昇し充放電特性が低下する。一方、上記面12aの算術平均粗さ(Ra)が上記範囲の上限値以下であると、正極活物質層12とセパレータ20との接着性が低下する。その結果、非水電解質二次電池のサイクル特性が低下する。表面粗さ(Ra)は、導電助剤量、プレス圧の組み合わせ等により調節される。
[Surface roughness (Ra) of positive electrode active material layer]
The surface roughness (arithmetic mean roughness: Ra) of the surface 12a of the positive electrode active material layer 12 facing the separator 20 via the adhesive layer 21 is 0.010 μm or more and less than 0.100 μm, and 0.010 to 0. 080 μm is preferable, and 0.010 to 0.060 μm is more preferable. When the arithmetic mean roughness (Ra) of the surface 12a is less than the lower limit of the above range, the porosity of the positive electrode active material layer 12 decreases, and the electrolyte permeability decreases. As a result, the resistance of the nonaqueous electrolyte secondary battery increases and the charge/discharge characteristics deteriorate. On the other hand, when the arithmetic mean roughness (Ra) of the surface 12a is less than or equal to the upper limit of the above range, the adhesiveness between the positive electrode active material layer 12 and the separator 20 decreases. As a result, the cycle characteristics of the nonaqueous electrolyte secondary battery deteriorate. The surface roughness (Ra) is adjusted by a combination of the amount of conductive additive, press pressure, and the like.

≪表面粗さ(Ra)の測定方法≫
表面粗さ(Ra)の測定は、ISO 25178表面性状(面粗さ測定)で規定する方法に従って行う。
≪Measurement method of surface roughness (Ra)≫
The surface roughness (Ra) is measured according to the method specified in ISO 25178 Surface Properties (Surface Roughness Measurement).

正極活物質のプレス圧の強さと、上記面12aの表面粗さとは、ある程度相関すると考えられる。具体的には、プレス圧が大きい場合、上記面12aの表面粗さは小さくなる傾向にある。一方、プレス圧が小さい場合、上記面12aの表面粗さは大きくなる傾向にある。また、導電助剤量によっても調整される。つまり、上記面12aの表面粗さが適度な値となる(小さ過ぎず、かつ、大き過ぎない値となる)ようにプレス条件、構成材料組成により、適切な正極活物質層12の圧縮状態が実現され、正極活物質間に適度な隙間ができると考えられる。そして、正極活物質層の電解液の浸透性とセパレータとの接着性が両立することとなり、電池特性が向上すると考えられる。 It is thought that the strength of the press pressure of the positive electrode active material and the surface roughness of the surface 12a are correlated to some extent. Specifically, when the press pressure is large, the surface roughness of the surface 12a tends to become small. On the other hand, when the press pressure is small, the surface roughness of the surface 12a tends to increase. It is also adjusted by the amount of conductive aid. In other words, an appropriate compressed state of the positive electrode active material layer 12 can be achieved by adjusting the pressing conditions and the constituent material composition so that the surface roughness of the surface 12a has an appropriate value (a value that is neither too small nor too large). It is thought that this can be realized and that an appropriate gap can be created between the positive electrode active materials. It is thought that the permeability of the electrolyte in the positive electrode active material layer and the adhesion to the separator are both compatible, and the battery characteristics are improved.

[導電性炭素含有量]
本実施形態において、正極活物質層12が導電性炭素を含むことが好ましい。正極活物質層が導電性炭素を含む態様としては、下記態様1~3が挙げられる。
態様1:正極活物質層が導電助剤を含み、導電助剤が導電性炭素を含む態様。
態様2:正極活物質層が導電助剤を含み、かつ正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料及び前記導電助剤の一方又は両方が導電性炭素を含む態様。
態様3:正極活物質層が導電助剤を含まず、正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料が導電性炭素を含む態様。
算術平均高さを低減する点では態様3がより好ましい。また、同様の理由により、態様1もしくは2であった場合は導電助剤の組成が少ないことが好ましい。
[Conductive carbon content]
In this embodiment, it is preferable that the positive electrode active material layer 12 contains conductive carbon. Examples of embodiments in which the positive electrode active material layer contains conductive carbon include embodiments 1 to 3 below.
Embodiment 1: An embodiment in which the positive electrode active material layer contains a conductive additive, and the conductive additive contains conductive carbon.
Aspect 2: The positive electrode active material layer contains a conductive aid, and an active material coating portion containing a conductive material is present on at least a portion of the surface of the positive electrode active material particles, and the conductive material of the active material coating portion and the conductive material An embodiment in which one or both of the auxiliary agents contains conductive carbon.
Aspect 3: The positive electrode active material layer does not contain a conductive aid, an active material coating portion containing a conductive material is present on at least a portion of the surface of the positive electrode active material particles, and the conductive material of the active material coating portion is electrically conductive. Embodiment containing carbon.
Embodiment 3 is more preferable in terms of reducing the arithmetic mean height. Furthermore, for the same reason, in the case of Embodiment 1 or 2, it is preferable that the composition of the conductive additive is small.

正極活物質層の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.2~2.6質量%がさらに好ましい。
正極活物質層中の導電性炭素の含有量が、上記範囲の下限値以上であると正極活物質層での導電パス形成に十分な量となり、上限値以下であると分散性向上に優れる。
With respect to the total mass of the positive electrode active material layer, the content of conductive carbon is preferably 0.5% by mass or more and less than 3.0% by mass, more preferably 1.0 to 2.8% by mass, and 1.2 to 2.8% by mass. 2.6% by mass is more preferred.
When the content of conductive carbon in the positive electrode active material layer is at least the lower limit of the above range, it is sufficient to form a conductive path in the positive electrode active material layer, and when it is at most the upper limit, it is excellent in improving dispersibility.

正極活物質層の総質量に対する導電性炭素の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含む。結着材中の炭素は含まれない。分散剤中の炭素は含まれない。
The content of conductive carbon with respect to the total mass of the positive electrode active material layer is determined by peeling off the positive electrode active material layer from the positive electrode and vacuum-drying the dried material (powder) in a 120°C environment as the measurement target. Quantity measurement method≫
For example, a powder obtained by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers using a spatula or the like can be vacuum-dried in a 120° C. environment and used as a measurement target.
The conductive carbon content measured by the following <Method for Measuring Conductive Carbon Content> includes carbon in the active material coating and carbon in the conductive aid. Carbon in the binder is not included. Carbon in the dispersant is not included.

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 ・・・(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 ・・・(a2)
≪Measurement method for conductive carbon content≫
[Measurement method A]
The object to be measured is mixed uniformly, a sample (mass w1) is weighed, and thermogravimetrically indicated heat (TG-DTA) measurement is performed according to the following steps A1 and A2 to obtain a TG curve. The following first weight loss amount M1 (unit: mass %) and second weight loss amount M2 (unit: mass %) are determined from the obtained TG curve. The content of conductive carbon (unit: mass %) is obtained by subtracting M1 from M2.
Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30 °C to 600 °C at a temperature increase rate of 10 °C / min, and from the mass w2 when held at 600 °C for 10 minutes, according to the following formula (a1) A first weight reduction amount M1 is determined.
M1=(w1-w2)/w1×100...(a1)
Step A2: Immediately after step A1, the temperature was lowered from 600°C at a rate of 10°C/min, and after being held at 200°C for 10 minutes, the measurement gas was completely replaced with oxygen from argon, and an oxygen stream of 100 mL/min was added. The second weight loss amount M2 ( Unit: mass %).
M2=(w1-w3)/w1×100...(a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
Mix the measurement object uniformly, weigh 0.0001 mg of the sample accurately, burn the sample under the following combustion conditions, quantify the generated carbon dioxide with a CHN elemental analyzer, and calculate the total carbon content M3 ( Unit: mass%). Further, the first weight loss amount M1 is determined by the procedure of step A1 of the measuring method A. The conductive carbon content (unit: mass %) is obtained by subtracting M1 from M3.
[Combustion conditions]
Combustion furnace: 1150℃
Reduction furnace: 850℃
Helium flow rate: 200mL/min Oxygen flow rate: 25-30mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:
質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
[Measurement method C]
The total carbon content M3 (unit: mass %) contained in the sample is measured in the same manner as the measurement method B above. Further, the content M4 of carbon derived from the binder (unit: mass %) is determined by the following method. The content of conductive carbon (unit: mass %) is obtained by subtracting M4 from M3.
When the binder is polyvinylidene fluoride (PVDF: the molecular weight of the monomer (CH 2 CF 2 ) is 64), the content of fluoride ions (F - ) measured by combustion ion chromatography using the tubular combustion method ( (unit: mass %), the atomic weight of fluorine (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF using the following formula.
PVDF content (unit: mass %) = fluoride ion content (unit: mass %) × 64/38
PVDF-derived carbon content M4 (unit: mass %) = fluoride ion content (unit:
Mass%) x 12/19
The fact that the binder is polyvinylidene fluoride can be confirmed by Fourier transform infrared spectroscopy (FT-IR) measurement of the sample or the liquid extracted from the sample with N,N-dimethylformamide (DMF) solvent, and it can be determined that the origin of the C-F bond is This can be confirmed by checking the absorption of Similarly, it can be confirmed by 19F -NMR measurement.
If the binder is identified as other than PVDF, the binder content (unit: mass %) and carbon content (unit: mass %) corresponding to the molecular weight can be determined to determine the origin of the binder. The carbon amount M4 can be calculated.
When a dispersant is included, the conductive carbon content (unit: mass %) can be obtained by subtracting M4 from M3 and further subtracting the amount of carbon derived from the dispersant.
These techniques are described in the following several known documents.
Toray Research Center The TRC News No. 117 (Sep. 2013) pp. 34-37, [Retrieved February 10, 2021], Internet <https://www. toray-research. co. jp/technical-info/trcnews/pdf/TRC117(34-37). pdf>
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [Searched on February 10, 2021], Internet <http://www. tosoh-arc. co. jp/techrepo/files/tarc00522/T1719N. pdf>

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、広がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
≪Analysis method of conductive carbon≫
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is a conductive aid can be distinguished by the following analysis method.
For example, when particles in a positive electrode active material layer are analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS), particles in which a carbon-derived peak around 290 eV exists only near the particle surface are positive electrode active materials, Particles in which carbon-derived peaks exist even inside the particles can be determined to be conductive aids. Here, "near the particle surface" means a region up to a depth of approximately 100 nm from the particle surface, and "inside the particle" means a region inside the vicinity of the particle surface.
Another method is to perform mapping analysis of particles in the positive electrode active material layer by Raman spectroscopy, and particles in which the peaks of carbon-derived G-band and D-band and oxide crystals derived from the positive electrode active material are simultaneously observed are Particles that are positive electrode active materials and in which only G-band and D-band were observed can be determined to be conductive additives.
Another method is to observe the cross section of the positive electrode active material layer using a scanning spread resistance microscope (SSRM), and if there is a part on the particle surface with a lower resistance than the inside of the particle, the part with low resistance is determined. It can be determined that this is conductive carbon present in the active material coating portion. A portion that exists independently other than such particles and has a low resistance can be determined to be a conductive aid.
Note that trace amounts of carbon that can be considered as impurities and trace amounts of carbon that are unintentionally peeled off from the surface of the positive electrode active material during manufacturing are not determined to be conductive additives.
Using these methods, it can be confirmed whether or not a conductive additive made of a carbon material is included in the positive electrode active material layer.

[正極活物質層の空隙率]
本実施形態において、正極活物質層12は多孔質層であり、その空隙率(空孔率、細孔率または多孔度と呼ばれることもある。)は40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましい。上記範囲の下限値以上であると、電池のエネルギー密度が向上する。
[Porosity of positive electrode active material layer]
In this embodiment, the positive electrode active material layer 12 is a porous layer, and its porosity (also referred to as porosity, porosity, or porosity) is preferably 40% or more, and more preferably 45% or more. Preferably, 50% or more is more preferable. When it is at least the lower limit of the above range, the energy density of the battery improves.

ここで、空隙率とは「製膜した正極活物質層の単位体積あたりの空隙の体積が占める百分率」を意味する。この空隙率は、空隙率=嵩比重/真比重×100(%)によって算出される。嵩比重は、正極活物質層の単位体積あたりの質量を単位体積あたりの正極活物質粒子の質量(理論値)で除したものであり、真比重は、正極活物質粒子の比重(理論値)を意味する。
空隙率の測定は、公知のガス吸着試験又は水銀圧入試験によって行うことができる。
Here, the porosity means "the percentage occupied by the volume of voids per unit volume of the formed positive electrode active material layer." This porosity is calculated by porosity=bulk specific gravity/true specific gravity×100(%). The bulk specific gravity is the mass per unit volume of the positive electrode active material layer divided by the mass of the positive electrode active material particles per unit volume (theoretical value), and the true specific gravity is the specific gravity of the positive electrode active material particles (theoretical value). means.
The porosity can be measured by a known gas adsorption test or mercury intrusion test.

[セパレータ]
セパレータ20は、正極1と後述する負極3との間に配置して短絡等を防止する。セパレータ20は、後述する非水電解質を保持してもよい。
セパレータ20としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
[Separator]
The separator 20 is disposed between the positive electrode 1 and the negative electrode 3, which will be described later, to prevent short circuits and the like. The separator 20 may hold a non-aqueous electrolyte, which will be described later.
The separator 20 is not particularly limited, and examples include porous polymer membranes, nonwoven fabrics, glass fibers, and the like.

セパレータ20は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 20 may contain various plasticizers, antioxidants, and flame retardants.
As antioxidants, phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenol antioxidants, and polyphenol antioxidants; hindered amine antioxidants; phosphorus antioxidants Sulfur-based antioxidants; benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenol-based antioxidants and phosphorus-based antioxidants are preferred.

[接着剤層]
接着剤層21は、正極本体10とセパレータ20の間に介在し、正極本体10をセパレータ20の一方の面20aに接着する。なお、正極本体10とセパレータ20が直接接触する部分が存在していてもよい。接着剤層21は、正極本体10をセパレータ20の一方の面20aに接着する機能を有すればよく、接着剤層21は、正極本体10の空隙や、セパレータ20の空隙に存在す形で形成されていてもよい。
[Adhesive layer]
The adhesive layer 21 is interposed between the positive electrode body 10 and the separator 20 and adheres the positive electrode body 10 to one surface 20a of the separator 20. Note that there may be a portion where the positive electrode main body 10 and the separator 20 are in direct contact. The adhesive layer 21 only needs to have the function of adhering the positive electrode body 10 to one surface 20a of the separator 20, and the adhesive layer 21 is formed so as to exist in the gap of the positive electrode body 10 or the gap of the separator 20. may have been done.

接着剤層21を構成する接着剤としては、特に限定されず、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)、ポリウレタン(PU)等、およびそれらの誘導体等が例示できる。 The adhesive constituting the adhesive layer 21 is not particularly limited, and includes, for example, polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride copolymer (PVDF-HFP), polyacrylic acid (PAA), Lithium polyacrylate (PAALi), styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethylcellulose (CMC), polyacrylonitrile (PAN), polyimide (PI) , polyurethane (PU), and derivatives thereof.

<正極の製造方法>
本実施形態の正極1の製造方法は、正極活物質を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程とを有する。
例えば、正極活物質及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極本体10を製造できる。正極製造用組成物は導電助剤を含んでもよい。正極製造用組成物は結着材を含んでもよい。正極製造用組成物は分散剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
<Manufacturing method of positive electrode>
The method for manufacturing the positive electrode 1 of the present embodiment includes a composition preparation step of preparing a positive electrode manufacturing composition containing a positive electrode active material, and a coating step of coating the positive electrode manufacturing composition onto the positive electrode current collector 11. has.
For example, the positive electrode main body 10 can be manufactured by a method in which a positive electrode manufacturing composition containing a positive electrode active material and a solvent is applied onto the positive electrode current collector 11, dried, and the solvent is removed to form the positive electrode active material layer 12. . The composition for producing a positive electrode may include a conductive additive. The composition for producing a positive electrode may include a binder. The composition for producing a positive electrode may also contain a dispersant.
The thickness of the positive electrode active material layer 12 can be adjusted by sandwiching a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 between two flat jigs and applying pressure uniformly in the thickness direction. . For example, a method of applying pressure using a roll press machine can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 The solvent for the composition for producing a positive electrode is preferably a non-aqueous solvent. Examples include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One type of solvent may be used, or two or more types may be used in combination.

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池100は、本実施形態の非水電解質二次電池用正極1と、セパレータ2と、負極3と、非水電解質とを備える。図中、符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。
正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば、平面視矩形状でもよい。
本実施形態の非水電解質二次電池100は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。
図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
<Nonaqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 100 of this embodiment shown in FIG. 2 includes a positive electrode 1 for a non-aqueous electrolyte secondary battery of this embodiment, a separator 2, a negative electrode 3, and a non-aqueous electrolyte. In the figure, numeral 5 is an exterior body.
In this embodiment, the positive electrode 1 includes a plate-shaped positive electrode current collector 11 and positive electrode active material layers 12 provided on both surfaces thereof. The positive electrode active material layer 12 exists on a part of the surface of the positive electrode current collector 11 .
The edge of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary location on the positive electrode current collector exposed portion 13 .
The negative electrode 3 includes a plate-shaped negative electrode current collector 31 and negative electrode active material layers 32 provided on both surfaces thereof. The negative electrode active material layer 32 exists on a part of the surface of the negative electrode current collector 31 . The edge of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary location on the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, negative electrode 3, and separator 2 are not particularly limited. For example, it may be rectangular in plan view.
The non-aqueous electrolyte secondary battery 100 of this embodiment is manufactured by, for example, producing an electrode laminate in which positive electrodes 1 and negative electrodes 3 are alternately laminated with separators 2 in between, and wrapping the electrode laminate in an exterior body (such as an aluminum laminate bag). It can be manufactured by enclosing it in a casing (5), injecting a non-aqueous electrolyte (not shown), and sealing it.
Although FIG. 2 typically shows a structure in which negative electrode/separator/positive electrode/separator/negative electrode are laminated in this order, the number of electrodes can be changed as appropriate. One or more positive electrodes 1 may be used, and any number of positive electrodes 1 may be used depending on the desired battery capacity. The number of negative electrodes 3 and separators 2 is one more than the number of positive electrodes 1, and the negative electrodes 3 and separators 2 are stacked so that the outermost layer is the negative electrode 3.

[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. It may further contain a binding material. Furthermore, a conductive aid may be included. The shape of the negative electrode active material is preferably particulate.
For example, the negative electrode 3 is prepared by preparing a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent, coating this on the negative electrode current collector 31, drying it, and removing the solvent to form the negative electrode active material. It can be manufactured by a method of forming layer 32. The composition for producing a negative electrode may also contain a conductive additive.

負極活物質及び導電助剤としては、例えば、炭素材料、チタン酸リチウム(LTO)、シリコン、一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of the negative electrode active material and conductive aid include carbon materials, lithium titanate (LTO), silicon, and silicon monoxide. Examples of the carbon material include graphite, graphene, hard carbon, Ketjen black, acetylene black, carbon nanotube (CNT), and the like. The negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
負極製造用組成物中の結着材としては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
負極製造用組成物中の溶媒としては、水、有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
Examples of the material of the negative electrode current collector 31 include those similar to the materials of the positive electrode current collector 11 described above.
As the binder in the negative electrode manufacturing composition, polyacrylic acid (PAA), polylithium acrylate (PAALi), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride copolymer (PVDF-HFP) ), styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethyl cellulose (CMC), polyacrylonitrile (PAN), polyimide (PI), and the like. The binder may be used alone or in combination of two or more.
Examples of the solvent in the composition for producing a negative electrode include water and organic solvents. Examples of organic solvents include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone (NMP) and N,N-dimethylformamide (DMF); and ketones such as acetone. I can give an example. The solvent may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。 With respect to the total mass of the negative electrode active material layer 32, the total content of the negative electrode active material and the conductive additive is preferably 80.0 to 99.9% by mass, more preferably 85.0 to 98.0% by mass.

[セパレータと電極の接合方法]
正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を加圧することでセパレータ上の接着剤と正極、負極を接合する。加圧圧力は2kgf/cm以上が好ましく、5kgf/cm以上がより好ましい。下限以下では活物質との接着力が不十分となる。一定圧力以上をかけると活物質との接着力は一定値に漸近する。
[Method of joining separator and electrode]
By applying pressure to an electrode laminate in which positive electrodes 1 and negative electrodes 3 are alternately laminated with separators 2 in between, the adhesive on the separators and the positive and negative electrodes are bonded. The pressurizing pressure is preferably 2 kgf/cm 2 or more, more preferably 5 kgf/cm 2 or more. Below the lower limit, the adhesive force with the active material will be insufficient. When a certain pressure or more is applied, the adhesive force with the active material asymptotically approaches a certain value.

[非水電解質]
非水電解質は、正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
[Nonaqueous electrolyte]
The non-aqueous electrolyte fills the space between the positive electrode 1 and the negative electrode 3. For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors, and the like.
As the non-aqueous electrolyte, a non-aqueous electrolyte in which an electrolyte salt is dissolved in an organic solvent is preferred.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples include polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, and mixtures of two or more of these polar solvents.

電解質塩は、特に限定されず、例えば、LiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and includes, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ) 2 , Li(SO 2 CF 2 CF 3 ) 2 , LiN(COCF 3 ) 2 , LiN(COCF 2 CF 3 ) 2 and other salts containing lithium, or a mixture of two or more of these salts.

非水電解質は、電解質とポリマーとを含むポリマー電解質であってもよい。
ポリマーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)、ポリウレタン(PU)等、およびそれらの誘導体等が挙げられる。
The nonaqueous electrolyte may be a polymer electrolyte containing an electrolyte and a polymer.
Examples of the polymer include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride copolymer (PVDF-HFP), polyacrylic acid (PAA), polylithium acrylate (PAALi), and styrene-butadiene rubber (SBR). ), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethylcellulose (CMC), polyacrylonitrile (PAN), polyimide (PI), polyurethane (PU), etc., and their derivatives. Can be mentioned.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
The nonaqueous electrolyte secondary battery of this embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The usage form of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, it can be used in a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary storage battery systems, emergency power storage battery systems, and the like.

以下に実施例および比較例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

<測定方法>
[算術平均高さ(Sa)の測定方法]
上記の方法で正極活物質層のセパレータ側の面における算術平均高さ(Sa)を測定した。
<Measurement method>
[Measurement method of arithmetic mean height (Sa)]
The arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface was measured using the method described above.

[算術平均粗さ(Ra)の測定方法]
上記の方法で正極活物質層のセパレータ側の面における算術平均粗さ(Ra)を測定した。
[Measurement method of arithmetic mean roughness (Ra)]
The arithmetic mean roughness (Ra) of the positive electrode active material layer on the separator side surface was measured using the method described above.

[正極活物質層の空隙率の測定方法]
上記の方法で正極活物質層の空隙率を測定した。
[Method for measuring porosity of positive electrode active material layer]
The porosity of the positive electrode active material layer was measured using the method described above.

<評価方法>
[サイクル容量維持率]
サイクル容量維持率の評価は、下記(1)~(7)の手順に沿って行った。
(1)定格容量が1Ahとなるように非水電解質二次電池(セル)を作製し、常温(25℃)下で、サイクル評価を実施した。
(2)得られたセルに対して、1Cレート(即ち、1000mA)で一定電流にて終止電圧3.2Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(即ち、100mA)として充電を行った。
(3)容量確認のための放電を1Cレートで一定電流にて終止電圧2.5Vで行った。このときの放電容量を基準容量とし、基準容量を1Cレートの電流値とした(即ち、1000mAとした)。
(4)セルの1Cレート(即ち、1000mA)で一定電流にて終止電圧3.6Vで充電を行った後、10秒間休止し、この状態から1Cレートにて終止電圧2.5Vで放電を行い、10秒間休止した。
(5)(4)のサイクル試験を2,000回繰り返した。
(6)(2)と同様の充電を実施した後に、(3)と同じ容量確認を実施した。
(7)(6)で測定された容量確認での放電容量をサイクル試験前の基準容量で除して百分率とする事で、2,000サイクル後のサイクル容量維持率(2,000サイクル容量維持率、単位:%)とした。
2000サイクル時点での残存容量が初期容量の80%以上の場合に合格とし、セル20個のうち18個以上合格となった条件を〇、満たなかった条件を×と判定した。
<Evaluation method>
[Cycle capacity maintenance rate]
Evaluation of cycle capacity retention rate was performed according to the following procedures (1) to (7).
(1) A non-aqueous electrolyte secondary battery (cell) was prepared so that the rated capacity was 1 Ah, and cycle evaluation was performed at room temperature (25° C.).
(2) After charging the obtained cell with a constant current at a 1C rate (i.e., 1000 mA) to a final voltage of 3.2 V, 1/10 of the charging current is changed to a final voltage of 3.2 V at a constant voltage. That is, charging was performed at 100 mA).
(3) Discharging to confirm capacity was performed at a constant current at a rate of 1C with a final voltage of 2.5V. The discharge capacity at this time was defined as a reference capacity, and the reference capacity was defined as a current value at a 1C rate (ie, 1000 mA).
(4) After charging the cell at a constant current of 1C rate (i.e. 1000mA) to a final voltage of 3.6V, pause for 10 seconds, and from this state discharge at a 1C rate with a final voltage of 2.5V. , paused for 10 seconds.
(5) The cycle test in (4) was repeated 2,000 times.
(6) After carrying out the same charging as in (2), the same capacity confirmation as in (3) was carried out.
(7) By dividing the discharge capacity measured in (6) by the reference capacity before the cycle test and making it a percentage, the cycle capacity retention rate after 2,000 cycles (2,000 cycle capacity maintenance rate, unit: %).
If the remaining capacity at the time of 2000 cycles was 80% or more of the initial capacity, it was judged as a pass, and the conditions where 18 or more out of 20 cells passed were judged as ○, and the conditions that were not met were judged as ×.

<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<Manufacture example 1: Manufacture of negative electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent, A composition for producing a negative electrode with a solid content of 50% by mass was obtained.
The obtained composition for producing a negative electrode was applied on both sides of a copper foil (thickness: 8 μm), vacuum dried at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to form a negative electrode.

<製造例2:集電体被覆層を有する集電体の製造>
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを厚さ15μmのアルミニウム箔(正極集電体本体)の表裏両面に、乾燥後の集電体被覆層の厚さ(両面合計)が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層は、塗工量及び厚みが互いに均等になるように形成した。
<Production Example 2: Production of a current collector having a current collector coating layer>
A slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent. The amount of NMP used was the amount necessary to coat the slurry.
The obtained slurry was coated on both the front and back sides of a 15 μm thick aluminum foil (positive electrode current collector body) using a gravure method so that the thickness of the dried current collector coating layer (total of both sides) was 2 μm. Then, it was dried and the solvent was removed to obtain a positive electrode current collector. The current collector coating layers on both sides were formed so that the coating amount and thickness were equal to each other.

<実施例1~3、比較例1~2>
正極活物質粒子として、下記の3種の活物質被覆部を有するリン酸鉄リチウム粒子(以下「カーボンコート活物質」ともいう。)を用いた。
カーボンコート活物質(1.0):平均二次粒子径1.0μm、炭素含有量1.5質量%。
カーボンコート活物質(1.2):平均二次粒子径1.2μm、炭素含有量1.5質量%。
カーボンコート活物質(10):平均二次粒子径10μm、炭素含有量2.5質量%。
カーボンコート活物質(1.0)、(1.2)、(10)のいずれも、活物質被覆部の厚さは1~30nmの範囲内であった。また、いずれも一次粒子径は約100~500nmの範囲であった。
導電助剤としてカーボンブラック(CB)又はカーボンナノチューブ(CNT)を用いた。CB及びCNTは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。
結着材としてポリフッ化ビニリデン(PVDF)を用いた。
分散剤として、ポリビニルピロリドン(PVP)を用いた。
溶媒としてN-メチルピロリドン(NMP)を用いた。
正極集電体として、製造例2で得た集電体被覆層を有するアルミニウム箔、又は集電体被覆層を有しないアルミニウム箔(厚さ15μm)を用いた。
<Examples 1-3, Comparative Examples 1-2>
As the positive electrode active material particles, lithium iron phosphate particles (hereinafter also referred to as "carbon coated active material") having the following three types of active material coating parts were used.
Carbon coated active material (1.0): average secondary particle diameter 1.0 μm, carbon content 1.5% by mass.
Carbon coated active material (1.2): average secondary particle diameter 1.2 μm, carbon content 1.5% by mass.
Carbon coated active material (10): average secondary particle diameter 10 μm, carbon content 2.5% by mass.
For each of carbon coated active materials (1.0), (1.2), and (10), the thickness of the active material coating was within the range of 1 to 30 nm. In addition, the primary particle diameter in each case was in the range of about 100 to 500 nm.
Carbon black (CB) or carbon nanotube (CNT) was used as a conductive aid. CB and CNT have impurities below the quantitative limit and can be considered to have a carbon content of 100% by mass.
Polyvinylidene fluoride (PVDF) was used as a binder.
Polyvinylpyrrolidone (PVP) was used as a dispersant.
N-methylpyrrolidone (NMP) was used as a solvent.
As the positive electrode current collector, the aluminum foil having the current collector coating layer obtained in Production Example 2 or the aluminum foil (thickness: 15 μm) without the current collector coating layer was used.

以下の方法で正極活物質層を形成した。
表2に示す配合の正極活物質粒子、導電助剤、結着材、分散剤に対し塗工に適した固形分濃度になるよう溶媒(NMP)をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表中における正極活物質粒子、導電助剤、結着材及び分散剤の配合量は、溶媒以外の合計(即ち、正極活物質粒子、導電助剤、結着材及び分散剤の合計量)を100質量%とするときの割合である。
得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。両面それぞれの正極活物質層は、塗工量及び厚みが互いに均等になるように形成した。得られた積層物を加圧プレスして正極シートを得た。
得られた正極シートを打ち抜き、正極とした。
A positive electrode active material layer was formed by the following method.
A composition for producing a positive electrode is prepared by mixing a solvent (NMP) with a mixer to obtain a solid content concentration suitable for coating with the positive electrode active material particles, conductive aid, binder, and dispersant having the composition shown in Table 2. I got it. The amount of solvent used was the amount necessary for coating the composition for producing a positive electrode. In addition, the blended amounts of positive electrode active material particles, conductive aid, binder, and dispersant in the table are the total amount other than the solvent (i.e., the total amount of positive electrode active material particles, conductive aid, binder, and dispersant). ) is taken as 100% by mass.
The obtained composition for producing a positive electrode was applied onto both surfaces of a positive electrode current collector, and after preliminary drying, vacuum drying was performed in a 120° C. environment to form a positive electrode active material layer. The positive electrode active material layers on both sides were formed so that the coating amount and thickness were equal to each other. The obtained laminate was pressed under pressure to obtain a positive electrode sheet.
The obtained positive electrode sheet was punched out to form a positive electrode.

以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法で、急速充電試験により、エネルギー密度とサイクル特性を評価した。結果を表1に示す。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
LiPF 6 was dissolved as an electrolyte at 1 mol/liter in a solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC of 3:7. An aqueous electrolyte was prepared.
The positive electrode obtained in this example and the negative electrode obtained in Production Example 1 were alternately laminated with separators interposed therebetween to produce an electrode laminate in which the outermost layer was the negative electrode. A polyolefin film (thickness: 15 μm) was used as a separator.
In the step of producing the electrode laminate, first, the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2.
Terminal tabs are electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are laminated with an aluminum laminate film so that the terminal tabs protrude to the outside. The body was sandwiched and the three sides were laminated and sealed.
Subsequently, a non-aqueous electrolyte was injected from one side left unsealed, and vacuum-sealed to produce a non-aqueous electrolyte secondary battery (laminate cell).
Energy density and cycle characteristics were evaluated by a quick charging test using the method described above. The results are shown in Table 1.

Figure 2023141411000002
Figure 2023141411000002

Figure 2023141411000003
Figure 2023141411000003

表1の結果に示されるように、正極活物質層のセパレータ側の面における算術平均高さ(Sa)が0.02μm~0.08μm、正極活物質層の空隙率が41%以上である実施例1~3は、サイクル特性に優れていた。
一方、正極活物質層の空隙率が35%である比較例1は、サイクル特性に劣っていた。比較例1は、正極活物質層のセパレータ側の面における算術平均高さ(Sa)が低く抑えられ接着性が高いものの、導電助剤を含むため、所望の算術平均高さ(Sa)にするために圧縮比率が高く、正極活物質層の空隙率が低くなり、サイクル特性が悪くなっているものと推定される。
また、正極活物質層のセパレータ側の面における算術平均高さ(Sa)が0.18μmである比較例2は、サイクル特性に劣っていた。比較例2は、導電助剤の含有量が少なく、プレス後の正極活物質層の空隙率が高いものの、算術平均高さ(Sa)を十分に低くしなかったため、密着性が悪く、サイクル特性が悪くなっているものと推定される。
As shown in the results in Table 1, the arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface is 0.02 μm to 0.08 μm, and the porosity of the positive electrode active material layer is 41% or more. Examples 1 to 3 had excellent cycle characteristics.
On the other hand, Comparative Example 1 in which the porosity of the positive electrode active material layer was 35% had poor cycle characteristics. In Comparative Example 1, the arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface is suppressed to a low level and has high adhesion, but since it contains a conductive additive, the desired arithmetic mean height (Sa) cannot be adjusted. Therefore, it is presumed that the compression ratio is high and the porosity of the positive electrode active material layer is low, resulting in poor cycle characteristics.
Furthermore, Comparative Example 2 in which the arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface was 0.18 μm had poor cycle characteristics. In Comparative Example 2, although the content of the conductive additive was low and the porosity of the positive electrode active material layer after pressing was high, the arithmetic mean height (Sa) was not made low enough, resulting in poor adhesion and poor cycle characteristics. It is estimated that the condition has deteriorated.

1 正極(非水電解質二次電池用正極)
3 負極
5 外装体
10 正極本体
11 集電体(正極集電体)
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
20 セパレータ
21 接着剤層
100 非水電解質二次電池
1 Positive electrode (positive electrode for non-aqueous electrolyte secondary battery)
3 Negative electrode 5 Exterior body 10 Positive electrode main body 11 Current collector (positive electrode current collector)
12 Positive electrode active material layer 13 Positive electrode current collector exposed portion 14 Positive electrode current collector main body 15 Current collector coating layer 20 Separator 21 Adhesive layer 100 Non-aqueous electrolyte secondary battery

Claims (6)

セパレータと、前記セパレータの一方の面に接着剤層を介して積層された正極本体と、を備え、
前記正極本体は、集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層と、を有し、
前記正極活物質層の前記セパレータ側の面における算術平均高さ(Sa)が0.010μm以上0.100μm未満、
前記正極活物質層の空隙率が40%以上である、非水電解質二次電池用正極。
comprising a separator and a positive electrode body laminated on one surface of the separator via an adhesive layer,
The positive electrode main body includes a current collector and a positive electrode active material layer containing positive electrode active material particles present on the current collector,
the arithmetic mean height (Sa) of the positive electrode active material layer on the separator side surface is 0.010 μm or more and less than 0.100 μm;
A positive electrode for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material layer has a porosity of 40% or more.
前記正極活物質層が導電助剤を含む、前記正極活物質層の総質量に対して前記導電助剤の含有量が1質量%以下である、請求項1に記載の非水電解質二次電池用正極。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material layer contains a conductive additive, and the content of the conductive additive is 1% by mass or less with respect to the total mass of the positive electrode active material layer. For positive electrode. 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1または2に記載の非水電解質二次電池用正極。 The positive electrode active material particles are represented by the general formula LiFe x M (1-x) PO 4 (wherein 0≦x≦1, M is Co, Ni, Mn, Al, Ti, or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, comprising a compound. 前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、請求項1~3のいずれか一項に記載の非水電解質二次電池用正極。 The nonaqueous electrolyte diode according to any one of claims 1 to 3, wherein a current collector coating layer containing a conductive material is present on at least a part of the surface of the current collector on the positive electrode active material layer side. Positive electrode for secondary batteries. 請求項1~4のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。 A non-aqueous electrolyte comprising the positive electrode for a non-aqueous electrolyte secondary battery, the negative electrode, and the non-aqueous electrolyte present between the positive electrode and the negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 Electrolyte secondary battery. 請求項5に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。 A battery module or a battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to claim 5.
JP2022047724A 2022-03-24 2022-03-24 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same Pending JP2023141411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022047724A JP2023141411A (en) 2022-03-24 2022-03-24 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022047724A JP2023141411A (en) 2022-03-24 2022-03-24 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Publications (1)

Publication Number Publication Date
JP2023141411A true JP2023141411A (en) 2023-10-05

Family

ID=88205301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022047724A Pending JP2023141411A (en) 2022-03-24 2022-03-24 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Country Status (1)

Country Link
JP (1) JP2023141411A (en)

Similar Documents

Publication Publication Date Title
JP7323713B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2024048656A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery, battery module, and battery system using same
JP7194299B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7138259B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141411A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP7323690B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149436B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7183464B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
JP7181372B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023182271A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system that use same
WO2024009988A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
WO2024048653A1 (en) Nonaqueous electrolyte secondary battery, battery module and battery system
US20230178723A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141508A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2023140733A (en) Composition for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module and battery system, and method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
JP2024037651A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same, battery module, and battery system
JP2023141415A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same