JP2023029333A - Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same Download PDF

Info

Publication number
JP2023029333A
JP2023029333A JP2022160968A JP2022160968A JP2023029333A JP 2023029333 A JP2023029333 A JP 2023029333A JP 2022160968 A JP2022160968 A JP 2022160968A JP 2022160968 A JP2022160968 A JP 2022160968A JP 2023029333 A JP2023029333 A JP 2023029333A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022160968A
Other languages
Japanese (ja)
Inventor
輝 吉川
Teru Yoshikawa
裕一 佐飛
Yuichi Satobi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022160968A priority Critical patent/JP2023029333A/en
Publication of JP2023029333A publication Critical patent/JP2023029333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a non-aqueous electrolyte secondary battery which can improve the heat resistance of the non-aqueous electrolyte secondary battery.
SOLUTION: A positive electrode 1 for a non-aqueous electrolyte secondary battery includes a collector 11, and a positive electrode active material layer 12 that is present on the collector 11 and contains positive electrode active material particles. In a spreading resistance value distribution of the positive electrode active material layer 12, the sum of frequencies of resistance values 4.0 to 6.0 (logΩ) is 0.0 to 5.0% based on the sum of frequencies of resistance values 4.0 to 12.5 (logΩ) being 100%.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, a battery module, and a battery system using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
A non-aqueous electrolyte secondary battery is generally composed of a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) placed between the positive electrode and the negative electrode.
As a positive electrode for non-aqueous electrolyte secondary batteries, there is known one in which a composition comprising a positive electrode active material containing lithium ions, a conductive aid, and a binder is adhered to the surface of a metal foil (current collector). ing.
Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate ( LiFePO 4 ) and other lithium phosphate compounds have been put to practical use.

特許文献1では、正極活物質の特性を評価する指標として、正極活物質の二次粒子の拡がり抵抗値に着目し、正極活物質の組成や製造条件を変えて前記拡がり抵抗値が異なる正極活物質を製造した例が記載されている。
特許文献2は、導電助剤として薄片状のグラフェンを用いることによって二次電池の出力特性及びエネルギー密度を向上させた実施例が記載されている。薄片状のグラフェンを用いた実施例は、正極断面を拡がり抵抗値に基づいてマッピングしたときの、特定の抵抗値以下の部分のアスペクト比が、粉末状の導電助剤を用いた比較例に比べて大きくなることが示されている。
In Patent Document 1, as an index for evaluating the characteristics of the positive electrode active material, attention is paid to the spreading resistance value of the secondary particles of the positive electrode active material, and the positive electrode active material having different spreading resistance values is obtained by changing the composition and manufacturing conditions of the positive electrode active material. An example of how the material was produced is described.
Patent Document 2 describes an example in which the output characteristics and energy density of a secondary battery are improved by using flaky graphene as a conductive aid. In the examples using flaky graphene, when the cross section of the positive electrode is spread and mapped based on the resistance value, the aspect ratio of the portion below a specific resistance value is higher than that in the comparative example using the powdery conductive additive. It has been shown that the

国際公開第2017/208894号WO2017/208894 国際公開第2018/168059号WO2018/168059

非水電解質二次電池の用途拡大の観点から、高温環境下でも電池特性を良好に維持できる耐熱性が求められる。
本発明は、非水電解質二次電池の耐熱性を向上できる非水電解質二次電池用正極を提供する。
From the viewpoint of expanding the use of non-aqueous electrolyte secondary batteries, there is a demand for heat resistance that can maintain good battery characteristics even in high-temperature environments.
The present invention provides a positive electrode for a non-aqueous electrolyte secondary battery that can improve the heat resistance of the non-aqueous electrolyte secondary battery.

本発明は以下の態様を有する。
[1] 集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層を有し、前記正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計が0.0~5.0%である、非水電解質二次電池用正極。
[2] 前記拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度より、抵抗値6.0~9.0(logΩ)の平均頻度が大きい、[1]の非水電解質二次電池用正極。
[3] 前記正極活物質層が導電助剤を含む、[1]又は[2]の非水電解質二次電池用正極。
[4] 前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、[3]の非水電解質二次電池用正極。
[5] 前記正極活物質層が導電助剤を含まず、前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、[1]又は[2]の非水電解質二次電池用正極。
[6] 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、[3]~[5]のいずれかの非水電解質二次電池用正極。
[7] 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]~[6]のいずれかの非水電解質二次電池用正極。
[8] 前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、[1]~[7]のいずれかの非水電解質二次電池用正極。
[9] [1]~[8]のいずれかの非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
[10] [9]に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
The present invention has the following aspects.
[1] A current collector and a positive electrode active material layer containing positive electrode active material particles present on the current collector, wherein the spreading resistance value distribution of the positive electrode active material layer has a resistance value of 4.0 to 12. A positive electrode for a non-aqueous electrolyte secondary battery, wherein the total frequency of resistance values 4.0 to 6.0 (log Ω) is 0.0 to 5.0% when the total frequency of .5 (log Ω) is 100%. .
[2] In the spreading resistance value distribution, the average frequency of resistance values 6.0 to 9.0 (log Ω) is higher than the average frequency of resistance values 4.0 to 6.0 (log Ω), Positive electrode for water electrolyte secondary battery.
[3] The positive electrode for a non-aqueous electrolyte secondary battery of [1] or [2], wherein the positive electrode active material layer contains a conductive aid.
[4] The positive electrode for a non-aqueous electrolyte secondary battery according to [3], wherein an active material coating containing a conductive material is present on at least part of the surface of the positive electrode active material particles.
[5] The non-conductive material of [1] or [2], wherein the positive electrode active material layer does not contain a conductive aid, and an active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material particles. Positive electrode for water electrolyte secondary battery.
[6] The positive electrode active material layer contains conductive carbon, and the content of the conductive carbon is 0.5% by mass or more and less than 3.0% by mass with respect to the total mass of the positive electrode active material layer, [ 3] The positive electrode for a non-aqueous electrolyte secondary battery according to any one of [5].
[7] The positive electrode active material particles have the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). A positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [6], containing the represented compound.
[8] The non-aqueous electrolyte according to any one of [1] to [7], wherein a current collector coating layer containing a conductive material is present on at least part of the surface of the current collector on the positive electrode active material layer side. A positive electrode for secondary batteries.
[9] A non-aqueous electrolyte comprising a positive electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [8], a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode for a non-aqueous electrolyte secondary battery. Water electrolyte secondary battery.
[10] A battery module or battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to [9].

本発明によれば、非水電解質二次電池の耐熱性を向上できる非水電解質二次電池用正極が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for nonaqueous electrolyte secondary batteries which can improve the heat resistance of a nonaqueous electrolyte secondary battery is obtained.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention; FIG. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention; FIG. 拡がり抵抗値分布の測定結果を示すマッピング画像である。It is a mapping image showing the measurement results of the spreading resistance value distribution. 拡がり抵抗値分布の測定結果を示すマッピング画像である。It is a mapping image showing the measurement results of the spreading resistance value distribution. 拡がり抵抗値分布の測定結果を示すグラフである。7 is a graph showing measurement results of spreading resistance value distribution.

本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratios and the like of each component may differ from the actual ones.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、集電体(以下「正極集電体」という。)11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極活物質層12側の表面に集電体被覆層15が存在する。すなわち、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。正極集電体本体14のみを正極集電体11としてもよい。
<Positive electrode for non-aqueous electrolyte secondary battery>
A positive electrode (also simply referred to as “positive electrode”) 1 for a non-aqueous electrolyte secondary battery of this embodiment has a current collector (hereinafter referred to as “positive electrode current collector”) 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both surfaces of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 has a current collector coating layer 15 on the surface of the positive electrode active material layer 12 side. That is, the positive electrode current collector 11 has a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side. Only the positive electrode current collector main body 14 may be used as the positive electrode current collector 11 .

[正極活物質層]
正極活物質層12は正極活物質粒子を含む。
正極活物質層12は、さらに結着材を含むことが好ましい。
正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。
正極活物質層12は、さらに分散剤を含んでもよい。
正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
[Positive electrode active material layer]
The positive electrode active material layer 12 contains positive electrode active material particles.
The positive electrode active material layer 12 preferably further contains a binder.
The positive electrode active material layer 12 may further contain a conductive aid. As used herein, the term “conductive aid” refers to a conductive material having a shape such as a granular or fibrous shape, which is mixed with the positive electrode active material particles in forming the positive electrode active material layer. It refers to a conductive material present in the positive electrode active material layer in a form of connection.
The positive electrode active material layer 12 may further contain a dispersant.
The content of the positive electrode active material particles is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass, based on the total mass of the positive electrode active material layer 12 .

正極活物質層の厚み(正極集電体の両面上に正極活物質層が存在する場合、両面の合計)は30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚みが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。 The thickness of the positive electrode active material layer (when the positive electrode active material layer is present on both sides of the positive electrode current collector, the total thickness of both surfaces) is preferably 30 to 500 μm, more preferably 40 to 400 μm, and 50 to 500 μm. 300 μm is particularly preferred. When the thickness of the positive electrode active material layer is at least the lower limit of the above range, the energy density of the battery incorporating the positive electrode tends to be high. Peeling can be suppressed during charging and discharging.

[正極活物質粒子]
正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在することが好ましい。電池容量、サイクル特性により優れる点から、正極活物質粒子の表面全体が導電材料で被覆されていることがより好ましい。
ここで、「正極活物質粒子の表面の少なくとも一部」とは、活物質被覆部が、正極活物質粒子の外表面全体の面積の50%以上、好ましくは70%以上、より好ましくは90%以上を覆っていることを意味する。なお、この割合(%)は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。
[Positive electrode active material particles]
It is preferable that an active material coating containing a conductive material is present on at least part of the surface of the positive electrode active material particles. From the viewpoint of better battery capacity and cycle characteristics, it is more preferable that the entire surface of the positive electrode active material particles is coated with a conductive material.
Here, "at least part of the surface of the positive electrode active material particle" means that the active material coating portion accounts for 50% or more, preferably 70% or more, and more preferably 90% of the total area of the outer surface of the positive electrode active material particle. It means covering the above. Note that this ratio (%) is the average value for all the positive electrode active material particles present in the positive electrode active material layer, and as long as this average value is equal to or higher than the above lower limit, the positive electrode active material without the active material coating portion It does not exclude the presence of minute amounts of particles of matter. When the positive electrode active material particles that do not have the active material coating part are present in the positive electrode active material layer, the amount thereof is preferably 30% by mass with respect to the total amount of the positive electrode active material particles present in the positive electrode active material layer. or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.

活物質被覆部の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質粒子の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は正極活物質粒子の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。
The conductive material of the active material coating preferably contains carbon (conductive carbon). A conductive material consisting only of carbon may be used, or a conductive organic compound containing carbon and an element other than carbon may be used. Nitrogen, hydrogen, oxygen and the like can be exemplified as other elements. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.
The content of the conductive material is preferably 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, and 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, based on the total mass of the positive electrode active material particles having active material coating portions. 7 to 2.5% by mass is more preferable. If the amount is too large, the conductive material may peel off from the surface of the positive electrode active material particles and remain as independent conductive auxiliary particles, which is not preferable.

正極活物質粒子は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
The positive electrode active material particles preferably contain a compound having an olivine crystal structure.
The compound having an olivine-type crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as "general formula (I)"). 0≦x≦1 in general formula (I). M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti or Zr) can be substituted with other elements to the extent that the physical properties are not changed. Even if the compound represented by the general formula (I) contains a trace amount of metal impurities, the effects of the present invention are not impaired.

一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
正極活物質粒子として、表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム粒子(以下「被覆リン酸鉄リチウム粒子」ともいう。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウム粒子の表面全体が導電材料で被覆されていることがさらに好ましい。
被覆リン酸鉄リチウム粒子は公知の方法で製造できる。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粒子を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粒子の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粒子を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
The compound represented by the general formula (I) is preferably lithium iron phosphate represented by LiFePO 4 (hereinafter also simply referred to as “lithium iron phosphate”).
As the positive electrode active material particles, lithium iron phosphate particles having active material coating portions containing a conductive material on at least part of their surfaces (hereinafter also referred to as “coated lithium iron phosphate particles”) are more preferable. From the viewpoint of better battery capacity and cycle characteristics, it is more preferable that the lithium iron phosphate particles are entirely coated with a conductive material.
Coated lithium iron phosphate particles can be produced by known methods.
For example, lithium iron phosphate powder is prepared using the method described in Japanese Patent No. 5098146, and described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31. The method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon.
Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are weighed in a specific molar ratio, and these are pulverized and mixed under an inert atmosphere. Next, a lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere. Next, the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas to obtain lithium iron phosphate particles having at least a portion of the surface coated with carbon.
For example, the particle size of the lithium iron phosphate particles can be adjusted by the pulverization time in the pulverization step. The amount of carbon covering the lithium iron phosphate particles can be adjusted by the heating time and temperature in the step of heat-treating while supplying methanol vapor. It is desirable to remove uncoated carbon particles by subsequent steps such as classification and washing.

正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質粒子の表面の少なくとも一部に、前記活物質被覆部が存在してもよい。
The positive electrode active material particles may contain at least one other positive electrode active material particle containing a positive electrode active material other than the compound having an olivine crystal structure.
Another positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) , lithium nickel cobalt aluminate ( LiNixCoyAlzO2 , where x + y+z=1), lithium nickel cobalt manganate (LiNixCoyMn zO2 , where x+y+z=1), lithium manganate ( LiMn2O4 ), lithium cobalt manganate ( LiMnCoO4 ), lithium manganese chromate ( LiMnCrO4 ) , lithium vanadium nickelate ( LiNiVO4 ), nickel-substituted manganese Lithium oxide (eg, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobaltate (LiCoVO 4 ), non-stoichiometric compounds obtained by substituting a part of these compounds with metal elements, and the like. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn and Ge.
The active material coating portion may be present on at least part of the surface of the other positive electrode active material particles.

正極活物質粒子の総質量(活物質被覆部を有する場合は活物質被覆部の質量も含む)に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
The content of the compound having an olivine-type crystal structure is preferably 50% by mass or more, preferably 80% by mass, based on the total mass of the positive electrode active material particles (including the mass of the active material coating when the active material coating is present). The above is more preferable, and 90% by mass or more is even more preferable. 100 mass % may be sufficient.
When the coated lithium iron phosphate particles are used, the content of the coated lithium iron phosphate particles is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass of the positive electrode active material particles. is more preferred. 100 mass % may be sufficient.

正極活物質粒子の活物質被覆部の厚さは、1~100nmが好ましい。
正極活物質粒子の活物質被覆部の厚さは、正極活物質粒子の透過電子顕微鏡(TEM)像における活物質被覆部の厚さを計測する方法で測定できる。正極活物質粒子の表面に存在する活物質被覆部の厚さは均一でなくてもよい。正極活物質粒子の表面の少なくとも一部に厚さ1nm以上の活物質被覆部が存在し、活物質被覆部の厚さの最大値が100nm以下であることが好ましい。
The thickness of the active material coating portion of the positive electrode active material particles is preferably 1 to 100 nm.
The thickness of the active material coating portion of the positive electrode active material particles can be measured by measuring the thickness of the active material coating portion in a transmission electron microscope (TEM) image of the positive electrode active material particles. The thickness of the active material coating portion present on the surface of the positive electrode active material particles may not be uniform. It is preferable that an active material coating portion having a thickness of 1 nm or more exists on at least part of the surface of the positive electrode active material particles, and the maximum thickness of the active material coating portion is 100 nm or less.

正極活物質として用いる粒子(即ち、正極活物質として用いる粉体)の平均粒子径(活物質被覆部を有する場合は活物質被覆部の厚さも含む)は、例えば0.1~20.0μmが好ましく、0.2~10.0μmがより好ましい。正極活物質を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
The average particle diameter of the particles used as the positive electrode active material (that is, the powder used as the positive electrode active material) (including the thickness of the active material coating portion when it has an active material coating portion) is, for example, 0.1 to 20.0 μm. Preferably, 0.2 to 10.0 μm is more preferable. When two or more kinds of positive electrode active materials are used, each average particle size should be within the above range.
The average particle size of the positive electrode active material in the present specification is a volume-based median size measured using a particle size distribution analyzer based on a laser diffraction/scattering method.

[結着材]
正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層12における結着材の含有量は、例えば、正極活物質層12の総質量に対して、4.0質量%以下が好ましく、2.0質量%以下がより好ましい。結着材の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、電池特性のさらなる向上を図れる。
正極活物質層12が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層12の総質量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。
[Binder]
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinylidene. Acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, polyimide and the like can be mentioned. One type of binder may be used, or two or more types may be used in combination.
The content of the binder in the positive electrode active material layer 12 is, for example, preferably 4.0% by mass or less, more preferably 2.0% by mass or less, relative to the total mass of the positive electrode active material layer 12 . If the content of the binder is equal to or less than the above upper limit, the ratio of substances that do not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, and the battery characteristics can be further improved.
When the positive electrode active material layer 12 contains a binder, the lower limit of the content of the binder is preferably 0.1% by mass or more, more preferably 0.5% by mass, based on the total mass of the positive electrode active material layer 12. The above is more preferable.

[導電助剤]
正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば独立した炭素粒子)が存在しない状態が望ましい。
正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
[Conductive agent]
Examples of conductive aids contained in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer is, for example, preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 1 part by mass or less with respect to 100 parts by mass of the total mass of the positive electrode active material. , it is particularly preferable not to contain a conductive additive, and a state in which independent conductive additive particles (for example, independent carbon particles) do not exist is desirable.
When the positive electrode active material layer contains the conductive support agent, the lower limit of the content of the conductive support agent is appropriately determined according to the type of the conductive support agent. More than 1% by mass.
In addition, the fact that the positive electrode active material layer "does not contain a conductive aid" means that it does not substantially contain a conductive aid, and does not exclude substances contained to such an extent that the effects of the present invention are not affected. For example, if the content of the conductive aid is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer, it can be determined that it is not substantially contained.

[分散剤]
正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)等が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
[Dispersant]
The dispersant contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl formal (PVF), and the like. One dispersant may be used, or two or more dispersants may be used in combination.

[正極集電体本体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚みは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[Positive electrode current collector body]
The positive electrode current collector main body 14 is made of a metal material. Examples of metal materials include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the positive electrode current collector main body 14 is, for example, preferably 8 to 40 μm, more preferably 10 to 25 μm.
The thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of the measuring instrument is Mitutoyo's product name "MDH-25M".

[集電体被覆層]
正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在することが好ましい。集電体被覆層15は導電材料を含む。
ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
[Current collector coating layer]
It is preferable that the current collector coating layer 15 is present on at least part of the surface of the positive electrode current collector main body 14 . Current collector coating layer 15 includes a conductive material.
Here, "at least part of the surface" means 10% to 100%, preferably 30% to 100%, more preferably 50% to 100% of the surface area of the positive electrode current collector body.
The conductive material in the current collector coating layer 15 preferably contains carbon (conductive carbon). A conductive material consisting only of carbon is more preferable.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. The binder for the current collector coating layer 15 can be exemplified by the same binder as the binder for the positive electrode active material layer 12 .
The positive electrode current collector 11 in which the surface of the positive electrode current collector main body 14 is coated with the current collector coating layer 15 is coated with a slurry containing a conductive material, a binder, and a solvent by a known coating method such as a gravure method. can be applied to the surface of the positive electrode current collector body 14 using and dried to remove the solvent.

集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm.
The thickness of the current collector coating layer can be measured by measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of the cross section of the current collector coating layer. The thickness of the current collector coating layer may not be uniform. A current collector coating layer having a thickness of 0.1 μm or more is present on at least a portion of the surface of the positive electrode current collector main body 14, and the maximum thickness of the current collector coating layer is preferably 4.0 μm or less. .

[正極活物質層の拡がり抵抗値分布]
本実施形態において、正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計は0.0~5.0%であり、0.0~4.0%が好ましく、0.0~3.0%がより好ましく、0.0~2.0%がさらに好ましい。
本明細書における正極活物質層の拡がり抵抗値分布は、正極活物質層の断面を測定対象とし、走査型拡がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)を用いて、下記≪拡がり抵抗値分布の測定方法≫で測定する。
[Spreading resistance value distribution of positive electrode active material layer]
In the present embodiment, in the spreading resistance value distribution of the positive electrode active material layer, when the total frequency of resistance values 4.0 to 12.5 (log Ω) is 100%, the resistance value is 4.0 to 6.0 (log Ω). is 0.0 to 5.0%, preferably 0.0 to 4.0%, more preferably 0.0 to 3.0%, even more preferably 0.0 to 2.0%.
The spreading resistance value distribution of the positive electrode active material layer in this specification is measured using a scanning spreading resistance microscope (SSRM) using a cross section of the positive electrode active material layer as a measurement object, and the following <<spreading resistance value distribution Measurement method>>.

≪拡がり抵抗値分布の測定方法≫
SSRMは、測定対象物にバイアス電圧を印加し、表面を導電性探針で走査し、探針直下の抵抗値(拡がり抵抗値)の分布を二次元的に計測する。
拡がり抵抗値分布の測定は、SSRMを用い、DCバイアス電圧+2.0V、スキャンサイズ60μm×60μm、測定点の数(データ点数)1024×1024の条件で行い、横軸を拡がり抵抗値、縦軸を頻度とする度数分布のグラフ(拡がり抵抗値分布)を得る。
縦軸の頻度は、抵抗値が4.0logΩ(1×10Ω)以上、12.5logΩ(1×1012.5Ω)以下である頻度(測定点の数)の合計を100%とするときの相対頻度(単位:%、単に「頻度」ともいう)とする。
<<How to measure the spreading resistance value distribution>>
The SSRM applies a bias voltage to an object to be measured, scans the surface with a conductive probe, and two-dimensionally measures the distribution of resistance values (spreading resistance values) immediately below the probe.
The spreading resistance value distribution was measured using an SSRM under the conditions of a DC bias voltage of +2.0 V, a scan size of 60 μm×60 μm, and the number of measurement points (number of data points) of 1024×1024. A frequency distribution graph (spreading resistance value distribution) is obtained.
The frequency on the vertical axis is defined as the total frequency (number of measurement points) at which the resistance value is 4.0 log Ω (1 × 10 4 Ω) or more and 12.5 log Ω (1 × 10 12.5 Ω) or less. relative frequency (unit: %, also simply referred to as “frequency”).

拡がり抵抗値分布において、抵抗値が4.0~6.0(logΩ)である頻度の合計が5.0%以下であると、非水電解質二次電池の耐熱性の向上効果に優れる。
正極活物質層の断面において、抵抗値が4.0~6.0(logΩ)と低い部分が存在すると、非水電解質二次電池が高温に曝されたときに、そこが活性点となって正極と電解液との副反応が生じやすいと考えられる。
抵抗値が4.0~6.0(logΩ)の頻度合計は、例えば、独立した導電助剤粒子(例えば独立した炭素粒子)を少なくすることによって低減できる。
If the total frequency of the resistance values of 4.0 to 6.0 (log Ω) in the spreading resistance value distribution is 5.0% or less, the effect of improving the heat resistance of the non-aqueous electrolyte secondary battery is excellent.
If there is a portion with a low resistance of 4.0 to 6.0 (log Ω) in the cross section of the positive electrode active material layer, that portion becomes an active point when the non-aqueous electrolyte secondary battery is exposed to high temperatures. It is considered that a side reaction between the positive electrode and the electrolytic solution is likely to occur.
The frequency sum of resistance values of 4.0 to 6.0 (log Ω) can be reduced, for example, by reducing independent conductivity aid particles (eg, independent carbon particles).

拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度Aは、抵抗値4.0~6.0(logΩ)の範囲のグラフを平らに均したときの頻度(%)である。具体的に、平均頻度Aは、抵抗値4.0~6.0(logΩ)の範囲に存在する各測定点の抵抗値の総和を、測定点の数で割ることによって算出される。
拡がり抵抗値分布において、抵抗値6.0~9.0(logΩ)の平均頻度Bは、抵抗値6.0~9.0(logΩ)の範囲のグラフを平らに均したときの頻度(%)である。具体的に、平均頻度Bは、抵抗値6.0~9.0(logΩ)の範囲に存在する各測定点の抵抗値の総和を、測定点の数で割ることによって算出される。
本実施形態において、平均頻度Aより平均頻度Bが大きいこと(A<B)が好ましい。A<Bであると、非水電解質二次電池の耐熱性の向上効果に優れる。また非水電解質二次電池の十分な出力が得られやすい。
平均頻度Bは、例えば0.05~0.5%が好ましく、0.1~0.4%がより好ましく、0.15~0.35%がさらに好ましい。平均頻度Bは、例えば、活物質被覆部として存在する導電材料を多くすることによって増大できる。
A<Bであるとき、B-Aの差は0%超が好ましく、0.05%以上がより好ましく、0.20%以上がさらに好ましい。
In the spread resistance value distribution, the average frequency A of resistance values 4.0 to 6.0 (log Ω) is the frequency (% ). Specifically, the average frequency A is calculated by dividing the sum of the resistance values of each measurement point existing in the resistance value range of 4.0 to 6.0 (logΩ) by the number of measurement points.
In the spread resistance value distribution, the average frequency B of resistance values 6.0 to 9.0 (log Ω) is the frequency (% ). Specifically, the average frequency B is calculated by dividing the sum of the resistance values of each measurement point existing in the resistance value range of 6.0 to 9.0 (logΩ) by the number of measurement points.
In this embodiment, it is preferable that the average frequency B is larger than the average frequency A (A<B). When A<B, the effect of improving the heat resistance of the non-aqueous electrolyte secondary battery is excellent. In addition, it is easy to obtain a sufficient output of the non-aqueous electrolyte secondary battery.
The average frequency B is, for example, preferably 0.05 to 0.5%, more preferably 0.1 to 0.4%, even more preferably 0.15 to 0.35%. The average frequency B can be increased, for example, by having more conductive material present as the active material coating.
When A<B, the difference BA is preferably more than 0%, more preferably 0.05% or more, and even more preferably 0.20% or more.

[導電性炭素含有量]
本実施形態において、正極活物質層12が導電性炭素を含むことが好ましい。正極活物質層が導電性炭素を含む態様としては、下記態様1~3が挙げられる。
態様1:正極活物質層が導電助剤を含み、導電助剤が導電性炭素を含む態様。
態様2:正極活物質層が導電助剤を含み、かつ正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料及び前記導電助剤の一方又は両方が導電性炭素を含む態様。
態様3:正極活物質層が導電助剤を含まず、正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料が導電性炭素を含む態様。
非水電解質二次電池の耐熱性の向上効果に優れる点では態様3がより好ましい。
[Conductive carbon content]
In this embodiment, the positive electrode active material layer 12 preferably contains conductive carbon. Examples of embodiments in which the positive electrode active material layer contains conductive carbon include the following embodiments 1 to 3.
Aspect 1: A mode in which the positive electrode active material layer contains a conductive aid, and the conductive aid contains conductive carbon.
Aspect 2: The positive electrode active material layer contains a conductive aid, and an active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material particles, and the conductive material of the active material coating portion and the conductive material Embodiments in which one or both of the auxiliaries comprise conductive carbon.
Aspect 3: The positive electrode active material layer does not contain a conductive aid, an active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material particles, and the conductive material of the active material coating portion is conductive. Embodiments containing carbon.
Aspect 3 is more preferable in terms of the effect of improving the heat resistance of the non-aqueous electrolyte secondary battery.

正極活物質層の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.3~2.5質量%がさらに好ましい。
正極活物質層中の導電性炭素の含有量が上記範囲の下限値以上であると良好な導電パス形成と低抵抗な特性に優れ、上限値以下であると孤立する導電性炭素が少なく、反応活性点が少ない正極活物質層が形成できる。
The content of the conductive carbon is preferably 0.5% by mass or more and less than 3.0% by mass, more preferably 1.0 to 2.8% by mass, and 1.3 to 1.3% by mass, based on the total mass of the positive electrode active material layer. 2.5% by mass is more preferred.
When the content of conductive carbon in the positive electrode active material layer is at least the lower limit of the above range, good conductive path formation and low resistance characteristics are excellent. A positive electrode active material layer having few active sites can be formed.

正極活物質層の総質量に対する導電性炭素の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含む。結着材中の炭素は含まれない。分散剤中の炭素は含まれない。
The content of conductive carbon with respect to the total mass of the positive electrode active material layer is obtained by peeling the positive electrode active material layer from the positive electrode and vacuum-drying it in a 120 ° C environment. Quantity measurement method>>.
For example, an object to be measured can be obtained by removing powder from the outermost surface of the positive electrode active material layer with a depth of several μm using a spatula or the like and vacuum-drying it in a 120° C. environment.
The content of conductive carbon measured by <<Method for Measuring Content of Conductive Carbon>> below includes carbon in the active material coating portion and carbon in the conductive aid. Carbon in the binder is not included. Carbon in the dispersant is not included.

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
<<Method for measuring conductive carbon content>>
[Measurement method A]
The object to be measured is uniformly mixed, a sample (mass w1) is weighed, and thermogravimetric suggestive heat (TG-DTA) measurement is performed in the following steps A1 and A2 to obtain a TG curve. From the obtained TG curve, the following first weight reduction amount M1 (unit: mass %) and second weight reduction amount M2 (unit: mass %) are determined. Subtract M1 from M2 to obtain the content of conductive carbon (unit: % by mass).
Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30° C. to 600° C. at a rate of temperature increase of 10° C./min and held at 600° C. for 10 minutes. A first weight reduction amount M1 is obtained.
M1=(w1-w2)/w1×100 (a1)
Step A2: Immediately after step A1, the temperature is lowered from 600° C. at a rate of 10° C./min, held at 200° C. for 10 minutes, and then the measurement gas is completely replaced from argon to oxygen with an oxygen flow of 100 mL/min. Inside, the temperature is increased from 200 ° C. to 1000 ° C. at a temperature increase rate of 10 ° C./min, and the mass w3 when held at 1000 ° C. for 10 minutes is calculated by the following formula (a2) to obtain the second weight reduction amount M2 ( Unit: % by mass).
M2=(w1-w3)/w1×100 (a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
The object to be measured is uniformly mixed and 0.0001 mg of the sample is precisely weighed, the sample is burned under the following combustion conditions, the carbon dioxide generated is quantified by a CHN elemental analyzer, and the total carbon content M3 ( Unit: % by mass). In addition, the first weight reduction amount M1 is obtained by the procedure of step A1 of the measuring method A described above. Subtract M1 from M3 to obtain the conductive carbon content (unit: % by mass).
[Combustion conditions]
Combustion furnace: 1150°C
Reduction furnace: 850°C
Helium flow rate: 200 mL/min Oxygen flow rate: 25-30 mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
[Measurement method C]
The total carbon content M3 (unit: % by mass) contained in the sample is measured in the same manner as in the measurement method B above. Also, the binder-derived carbon content M4 (unit: % by mass) is determined by the following method. Subtract M4 from M3 to obtain the conductive carbon content (unit: % by mass).
When the binder is polyvinylidene fluoride (PVDF: monomer (CH 2 CF 2 ) molecular weight 64), the content of fluoride ions (F ) measured by combustion ion chromatography using a tubular combustion method ( Unit: % by mass), the fluorine atomic weight (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF by the following formula.
PVDF content (unit: mass%) = fluoride ion content (unit: mass%) x 64/38
PVDF-derived carbon content M4 (unit: mass%) = fluoride ion content (unit: mass%) x 12/19
The fact that the binder is polyvinylidene fluoride is obtained by measuring the sample or the liquid obtained by extracting the sample with an N,N-dimethylformamide (DMF) solvent by Fourier transform infrared spectrum (FT-IR), can be confirmed by a method for confirming the absorption of It can also be confirmed by 19 F-NMR measurement.
If the binder is identified to be other than PVDF, the content of the binder (unit: mass %) corresponding to the molecular weight and the content of carbon (unit: mass %) of carbon content M4 can be calculated.
When a dispersant is included, the content of conductive carbon (unit: mass %) can be obtained by subtracting M4 from M3 and further subtracting the amount of carbon derived from the dispersant.
These techniques are described in the following publications.
Toray Research Center The TRC News No. 117 (Sep. 2013) pp. 34-37, [searched on February 10, 2021], Internet <https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34- 37).pdf>
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [searched on February 10, 2021], Internet <http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、拡がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<<Method for analyzing conductive carbon>>
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is the conductive aid can be distinguished by the following analysis method.
For example, the particles in the positive electrode active material layer are analyzed by transmission electron microscope electron energy loss spectroscopy (TEM-EELS), and particles having a carbon-derived peak near 290 eV only in the vicinity of the particle surface are positive electrode active materials, Particles in which carbon-derived peaks are present even inside the particles can be determined to be conductive aids. Here, "near the particle surface" means a region up to about 100 nm deep from the particle surface, and "inside the particle" means a region inside the vicinity of the particle surface.
As another method, the particles in the positive electrode active material layer are subjected to mapping analysis by Raman spectroscopy. Particles that are positive electrode active materials and in which only the G-band and D-band are observed can be determined as conductive aids.
As yet another method, a scanning spread resistance microscope (SSRM) is used to observe the cross section of the positive electrode active material layer. It can be determined that it is the conductive carbon present in the active material coating portion. It can be determined that a portion that exists independently and has a low resistance other than such particles is the conductive aid.
A small amount of carbon considered as an impurity, a small amount of carbon unintentionally peeled off from the surface of the positive electrode active material during production, and the like are not determined to be conductive aids.
Using these methods, it is possible to confirm whether or not the positive electrode active material layer contains a conductive aid made of a carbon material.

[正極活物質層の体積密度]
本実施形態において、正極活物質層12の体積密度は2.20~2.70g/cmが好ましく、2.25~2.50g/cmがより好ましい。
正極活物質層の体積密度は、例えば以下の測定方法により測定できる。
正極1及び正極集電体11の厚みをそれぞれマイクロゲージで測定し、これらの差から正極活物質層12の厚みを算出する。正極1及び正極集電体11の厚みは、それぞれ任意の5点以上で測定した値の平均値とする。正極集電体11の厚みとして、後述の正極集電体露出部13の厚みを用いてよい。
正極1を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層12の質量を算出する。
下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚み(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
[Volume Density of Positive Electrode Active Material Layer]
In the present embodiment, the volume density of the positive electrode active material layer 12 is preferably 2.20-2.70 g/cm 3 , more preferably 2.25-2.50 g/cm 3 .
The volume density of the positive electrode active material layer can be measured, for example, by the following measuring method.
The thicknesses of the positive electrode 1 and the positive electrode current collector 11 are each measured with a microgauge, and the thickness of the positive electrode active material layer 12 is calculated from the difference between them. The thickness of the positive electrode 1 and the positive electrode current collector 11 is the average value of the values measured at five or more arbitrary points. As the thickness of the positive electrode current collector 11, the thickness of the positive electrode current collector exposed portion 13, which will be described later, may be used.
The mass of a measurement sample obtained by punching out the positive electrode 1 to have a predetermined area is measured, and the mass of the positive electrode active material layer 12 is calculated by subtracting the pre-measured mass of the positive electrode current collector 11 .
The volume density of the positive electrode active material layer 12 is calculated based on the following formula (1).
Volume density (unit: g/cm 3 )=mass of positive electrode active material layer (unit: g)/[(thickness of positive electrode active material layer (unit: cm)×area of measurement sample (unit: cm 2 )]...・(1)

<正極の製造方法>
本実施形態の正極1の製造方法は、正極活物質を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程を有する。
例えば、正極活物質及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極1を製造できる。正極製造用組成物は導電助剤を含んでもよい。正極製造用組成物は結着材を含んでもよい。製造用組成物は分散剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
<Manufacturing method of positive electrode>
The method for manufacturing the positive electrode 1 of the present embodiment includes a composition preparation step of preparing a positive electrode manufacturing composition containing a positive electrode active material, and a coating step of coating the positive electrode manufacturing composition on the positive electrode current collector 11. have.
For example, the positive electrode 1 can be manufactured by applying a positive electrode manufacturing composition containing a positive electrode active material and a solvent onto the positive electrode current collector 11 and drying it to remove the solvent to form the positive electrode active material layer 12 . The composition for positive electrode production may contain a conductive aid. The composition for manufacturing a positive electrode may contain a binder. The manufacturing composition may contain a dispersant.
The thickness of the positive electrode active material layer 12 can be adjusted by a method in which a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 is sandwiched between two flat jigs and is evenly pressed in the thickness direction. . For example, a method of applying pressure using a roll press can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 A non-aqueous solvent is preferable as the solvent for the positive electrode-manufacturing composition. Examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One type of solvent may be used, or two or more types may be used in combination.

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
本実施形態の非水電解質二次電池10は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。
図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
<Non-aqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 10 of the present embodiment shown in FIG. 2 includes the positive electrode 1 for non-aqueous electrolyte secondary batteries of the present embodiment, a negative electrode 3, and a non-aqueous electrolyte. Further, a separator 2 may be provided. Reference numeral 5 in the figure is an exterior body.
In this embodiment, the positive electrode 1 has a plate-like positive electrode current collector 11 and positive electrode active material layers 12 provided on both sides thereof. The positive electrode active material layer 12 exists on part of the surface of the positive electrode current collector 11 . An edge portion of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the positive electrode current collector exposed portion 13 .
The negative electrode 3 has a plate-like negative electrode current collector 31 and negative electrode active material layers 32 provided on both sides thereof. The negative electrode active material layer 32 exists on part of the surface of the negative electrode current collector 31 . An edge portion of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, the negative electrode 3 and the separator 2 are not particularly limited. For example, it may be rectangular in plan view.
The non-aqueous electrolyte secondary battery 10 of the present embodiment is produced, for example, by fabricating an electrode laminate in which the positive electrode 1 and the negative electrode 3 are alternately laminated with the separator 2 interposed therebetween, and the electrode laminate is packaged in an outer package such as an aluminum laminate bag ( It can be manufactured by a method of enclosing in a housing 5, injecting a non-aqueous electrolyte (not shown), and sealing.
FIG. 2 typically shows a structure in which negative electrodes/separators/positive electrodes/separators/negative electrodes are laminated in this order, but the number of electrodes can be changed as appropriate. One or more positive electrodes 1 are sufficient, and any number of positive electrodes 1 can be used according to the battery capacity to be obtained. One more negative electrode 3 and separator 2 than the number of positive electrodes 1 are used, and they are laminated so that the negative electrode 3 is the outermost layer.

[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. Furthermore, a binding material may be included. Further, it may contain a conductive aid. The shape of the negative electrode active material is preferably particulate.
For the negative electrode 3, for example, a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent is prepared, coated on the negative electrode current collector 31, and dried to remove the solvent to obtain the negative electrode active material. It can be manufactured by any method that forms layer 32 . The negative electrode production composition may contain a conductive aid.

負極活物質及び導電助剤としては、例えば炭素材料、チタン酸リチウム(LTO)、シリコン、一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of negative electrode active materials and conductive aids include carbon materials, lithium titanate (LTO), silicon, and silicon monoxide. Examples of carbon materials include graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). Each of the negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
負極製造用組成物中の結着材としては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
負極製造用組成物中の溶媒としては、水、有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
The material of the negative electrode current collector 31 can be exemplified by the same materials as those of the positive electrode current collector 11 described above.
Binders in the negative electrode production composition include polyacrylic acid (PAA), lithium polyacrylate (PAALi), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-propylene hexafluoride copolymer (PVDF-HFP ), styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethylcellulose (CMC), polyacrylonitrile (PAN), polyimide (PI), and the like. One type of binder may be used, or two or more types may be used in combination.
Examples of the solvent in the negative electrode-producing composition include water and organic solvents. Examples of organic solvents include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone (NMP) and N,N-dimethylformamide (DMF); and ketones such as acetone. I can give an example. The solvent may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。 The total content of the negative electrode active material and the conductive aid is preferably 80.0 to 99.9 mass %, more preferably 85.0 to 98.0 mass %, relative to the total mass of the negative electrode active material layer 32 .

[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
[Separator]
A separator 2 is arranged between the negative electrode 3 and the positive electrode 1 to prevent short circuit or the like. The separator 2 may hold a non-aqueous electrolyte, which will be described later.
The separator 2 is not particularly limited, and can be exemplified by porous polymer membranes, non-woven fabrics, glass fibers, and the like.
An insulating layer may be provided on one or both surfaces of the separator 2 . The insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with an insulating layer binder.

セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 2 may contain various plasticizers, antioxidants and flame retardants.
Antioxidants include phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenolic antioxidants, and polyphenolic antioxidants; hindered amine antioxidants; phosphorus antioxidants. benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenolic antioxidants and phosphorus antioxidants are preferred.

[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
[Non-aqueous electrolyte]
A non-aqueous electrolyte fills between the positive electrode 1 and the negative electrode 3 . For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors and the like.
As the non-aqueous electrolyte, a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent is preferable.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, Polar solvents such as tetrahydrafuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or mixtures of two or more of these polar solvents are included.

電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ). 2 , Li( SO2CF2CF3 ) 2 , LiN( COCF3 ) 2 , LiN( COCF2CF3 ) 2 , or a mixture of two or more of these salts.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
The non-aqueous electrolyte secondary battery of the present embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The mode of use of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, it can be used for a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary equipment storage battery systems, and emergency power supply storage battery systems.

後述の実施例に示されるように、本発明によれば非水電解質二次電池の耐熱性を向上できる。例えば、80℃、20日間の貯蔵前後の1C出力試験において、50%以上、好ましくは60%以上の出力維持率を達成できる。
したがって、従来は非水電解質二次電池を使用することが困難であった高温環境においても、非水電解質二次電池を使用しやすくなる。例えば、車両のエンジンルーム内で使用される鉛蓄電池の代替品としての、非水電解質二次電池の提供が可能となる。
As shown in the examples below, the present invention can improve the heat resistance of non-aqueous electrolyte secondary batteries. For example, in a 1C output test before and after storage at 80°C for 20 days, an output retention rate of 50% or more, preferably 60% or more can be achieved.
Therefore, it becomes easy to use the non-aqueous electrolyte secondary battery even in a high-temperature environment where it has been difficult to use the non-aqueous electrolyte secondary battery. For example, it is possible to provide a non-aqueous electrolyte secondary battery as a substitute for a lead-acid battery used in the engine room of a vehicle.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

<測定方法>
[拡がり抵抗値分布]
正極活物質層の厚さ方向に平行な断面を測定対象とし、SSRMを用い、下記の条件で拡がり抵抗値分布を測定した。
(使用装置)Bruker社製、製品名:NanoScopeV DimensionIcon、Glovebox。
(試料の調製)正極シートから切り出した試験片をエポキシ樹脂で包埋した後、ブロードイオンビーム加工により切断して断面を作製し、不活性雰囲気下で測定装置内に導入した。
(測定条件)
走査モード:コンタクトモードと拡がり抵抗の同時測定。
探針(Tip):ダイヤモンドコートシリコンカンチレバー(DDESP 10)。
測定環境:室温、高純度Arガス雰囲気中(HO=0.1ppm、O=0.1ppm)。
印加電圧:DCバイアス電圧=+2.0V。
スキャンサイズ:60μm×60μm。
測定点の数(データ点数):1024×1024。
<Measurement method>
[Spreading resistance distribution]
Using a cross section parallel to the thickness direction of the positive electrode active material layer as a measurement target, the spreading resistance value distribution was measured using SSRM under the following conditions.
(Apparatus used) Bruker, product name: NanoScopeV Dimension Icon, Glovebox.
(Preparation of Sample) A test piece cut out from the positive electrode sheet was embedded in an epoxy resin, cut by broad ion beam processing to prepare a cross section, and introduced into a measuring apparatus under an inert atmosphere.
(Measurement condition)
Scan mode: Simultaneous measurement of contact mode and spreading resistance.
Tip: Diamond coated silicon cantilever (DDESP 10).
Measurement environment: room temperature, high-purity Ar gas atmosphere (H 2 O=0.1 ppm, O 2 =0.1 ppm).
Applied voltage: DC bias voltage = +2.0V.
Scan size: 60 μm×60 μm.
Number of measurement points (number of data points): 1024×1024.

[体積密度の測定方法]
マイクロゲージを用いて正極シートの厚み及び正極集電体露出部の厚みを測定した。それぞれ任意の5点で測定して平均値を求めた。正極シートの厚みから正極集電体露出部の厚みを差し引いて正極活物質層の厚みを算出した。
正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備した。
各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体の質量を差し引くことにより、測定試料中の正極活物質層の質量を算出した。各測定値の平均値から前記式(1)に基づいて、正極活物質層の体積密度を算出した。
[Method for measuring volume density]
Using a microgauge, the thickness of the positive electrode sheet and the thickness of the exposed portion of the positive electrode current collector were measured. Each was measured at arbitrary five points and an average value was obtained. The thickness of the positive electrode active material layer was calculated by subtracting the thickness of the positive electrode current collector exposed portion from the thickness of the positive electrode sheet.
Five measurement samples were prepared by punching a positive electrode sheet into a circle with a diameter of 16 mm.
The mass of each measurement sample was weighed with a precision balance, and the mass of the positive electrode active material layer in the measurement sample was calculated by subtracting the previously measured mass of the positive electrode current collector from the measurement result. The volume density of the positive electrode active material layer was calculated based on the above formula (1) from the average value of each measured value.

<評価方法>
[耐熱性の評価:出力維持率の測定]
(1)非水電解質二次電池(初期状態)について、下記の方法で初期出力可能な電力(単位:Wh)を測定した。
定格容量が1.5Ahとなるように非水電解質二次電池(セル)を作製した。得られたセルに対し、25℃環境下で、0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として充電を行った。
次いで、25℃環境下で、放電を1.0Cレート(すなわち、1500mA)で一定電流にて終止電圧3.0Vで行った。このときの放電電力を初期状態で出力可能な電力(以下、「初期出力」ともいう)E1とした。
(2)次いで、25℃環境下で、セルの0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として満充電状態への調整を行った。
(3)前記(1)の測定、および前記(2)の満充電への調整を終えた非水電解質二次電池を、80℃の雰囲気中に20日間貯蔵した。
(4)前記(3)の貯蔵を終えた後、下記の方法で貯蔵後出力可能な電力(単位:Wh)を測定した。
まず、25℃環境下で、放電を0.2Cレート(すなわち、300mA)で一定電流にて終止電圧2.5Vで行った。
次いで、25℃環境下で、充電を0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として充電を行った。
次いで、25℃環境下で、放電を1.0Cレート(すなわち、1500mA)で一定電流にて終止電圧3.0Vで行った。このときの放電電力を貯蔵後の状態で出力可能な電力(以下、「貯蔵後出力」ともいう)E2とした。
(5)前記(1)で得た初期出力E1に対する、前記(4)で得た貯蔵後出力E2の割合を下記式により求め、出力維持率(単位:%)とした。
出力維持率=(E2/E1)×100
<Evaluation method>
[Evaluation of heat resistance: measurement of output retention rate]
(1) Regarding the non-aqueous electrolyte secondary battery (initial state), the initial output power (unit: Wh) was measured by the following method.
A non-aqueous electrolyte secondary battery (cell) was produced so as to have a rated capacity of 1.5 Ah. The resulting cell was charged at a constant current of 0.2 C rate (i.e., 300 mA) at a constant current at a final voltage of 3.6 V under an environment of 25 ° C., and then charged at a constant voltage of 1/10 of the charging current. was set as the final current (that is, 30 mA).
Then, in a 25° C. environment, discharge was performed at a constant current of 1.0 C rate (ie, 1500 mA) with a final voltage of 3.0 V. The discharge power at this time was defined as the power that can be output in the initial state (hereinafter also referred to as "initial output") E1.
(2) Then, in an environment of 25° C., the cell is charged at a constant current at a rate of 0.2 C (that is, 300 mA) at a final voltage of 3.6 V, and then at a constant voltage of 1/10 of the charging current. was set as the final current (ie, 30 mA) and adjusted to the fully charged state.
(3) The non-aqueous electrolyte secondary battery subjected to the measurement in (1) and the adjustment to full charge in (2) was stored in an atmosphere of 80° C. for 20 days.
(4) After completing the storage in (3) above, the power (unit: Wh) that can be output after storage was measured by the following method.
First, in a 25° C. environment, discharge was performed at a constant current of 0.2 C rate (that is, 300 mA) and a final voltage of 2.5 V.
Then, in an environment of 25 ° C., after charging at a constant current of 0.2 C rate (that is, 300 mA) and a final voltage of 3.6 V, 1/10 of the charging current at a constant voltage is charged to the final current. (that is, 30 mA).
Then, in a 25° C. environment, discharge was performed at a constant current of 1.0 C rate (ie, 1500 mA) with a final voltage of 3.0 V. The discharge power at this time was defined as the power that can be output in the state after storage (hereinafter also referred to as "post-storage output") E2.
(5) The ratio of the post-storage output E2 obtained in (4) above to the initial output E1 obtained in (1) above was determined by the following formula and defined as an output retention rate (unit: %).
Output maintenance rate = (E2/E1) x 100

<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<Production Example 1: Production of Negative Electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent are mixed, A composition for manufacturing a negative electrode having a solid content of 50% by mass was obtained.
The obtained composition for manufacturing a negative electrode was coated on both sides of a copper foil (thickness: 8 μm), dried in vacuum at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to obtain a negative electrode.

<製造例2:集電体被覆層を有する集電体の製造]
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを厚さ15μmのアルミニウム箔(正極集電体本体)の表裏両面に、乾燥後の集電体被覆層の厚さ(両面合計)が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層は、塗工量及び厚みが互いに均等になるように形成した。
<Production Example 2: Production of current collector having current collector coating layer]
A slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent. The amount of NMP used was the amount necessary for coating the slurry.
The resulting slurry is applied to both the front and back surfaces of a 15 μm thick aluminum foil (positive electrode current collector body) by a gravure method so that the thickness of the current collector coating layer after drying (both sides total) is 2 μm. and dried to remove the solvent to obtain a positive electrode current collector. The current collector coating layers on both sides were formed so that the coating amount and thickness were uniform.

<例1~5>
例1~3は実施例、例4、5は比較例である。
正極活物質粒子として、下記の2種の活物質被覆部を有するリン酸鉄リチウム粒子(以下「カーボンコート活物質」ともいう。)を用いた。
カーボンコート活物質(1):平均粒子径1μm、炭素含有量1.5質量%。
カーボンコート活物質(2):平均粒子径10μm、炭素含有量2.5質量%。
カーボンコート活物質(1)、(2)のいずれも、活物質被覆部の厚さは1~100nmの範囲内であった。
導電助剤としてカーボンブラック(CB)又はカーボンナノチューブ(CNT)を用いた。CB及びCNTは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。
結着材としてポリフッ化ビニリデン(PVDF)を用いた。
溶媒としてN-メチルピロリドン(NMP)を用いた。
正極集電体として、製造例2で得た集電体被覆層を有するアルミニウム箔を用いた。
<Examples 1 to 5>
Examples 1 to 3 are working examples, and examples 4 and 5 are comparative examples.
As the positive electrode active material particles, lithium iron phosphate particles (hereinafter also referred to as “carbon-coated active material”) having the following two kinds of active material coating portions were used.
Carbon-coated active material (1): average particle diameter of 1 μm, carbon content of 1.5% by mass.
Carbon-coated active material (2): average particle size of 10 μm, carbon content of 2.5% by mass.
Both of the carbon-coated active materials (1) and (2) had a thickness of the active material coating within a range of 1 to 100 nm.
Carbon black (CB) or carbon nanotube (CNT) was used as a conductive aid. CB and CNT have impurities below the limit of quantification, and can be regarded as having a carbon content of 100% by mass.
Polyvinylidene fluoride (PVDF) was used as a binder.
N-methylpyrrolidone (NMP) was used as solvent.
As the positive electrode current collector, the aluminum foil having the current collector coating layer obtained in Production Example 2 was used.

以下の方法で正極活物質層を形成した。
表1に示す配合の正極活物質粒子、導電助剤、結着材及び溶媒(NMP)をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表中における正極活物質粒子、導電助剤及び結着材の配合量は、溶媒以外の合計(即ち、正極活物質粒子、導電助剤及び結着材の合計量)を100質量%とするときの割合である。
得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。得られた積層物を加圧プレスして正極シートを得た。塗工量(両面合計)、正極活物質層の厚み(両面合計)、及び体積密度を表1に示す。両面それぞれの正極活物質層は、塗工量及び厚みが互いに均等になるように形成した。
得られた正極シートを打ち抜き、正極とした。
A positive electrode active material layer was formed by the following method.
The positive electrode active material particles, the conductive aid, the binder and the solvent (NMP) having the compositions shown in Table 1 were mixed in a mixer to obtain a composition for manufacturing a positive electrode. The amount of the solvent used was the amount necessary for coating the composition for manufacturing a positive electrode. In addition, the compounding amounts of the positive electrode active material particles, the conductive aid, and the binder in the table are based on the total amount other than the solvent (that is, the total amount of the positive electrode active material particles, the conductive aid, and the binder) being 100% by mass. It is the ratio when
The obtained composition for manufacturing a positive electrode was applied on both sides of a positive electrode current collector, and after preliminary drying, vacuum drying was performed in an environment of 120° C. to form a positive electrode active material layer. The resulting laminate was pressure-pressed to obtain a positive electrode sheet. Table 1 shows the coating amount (both sides total), the thickness of the positive electrode active material layer (both sides total), and the volume density. The positive electrode active material layers on both sides were formed so that the coating amount and thickness were uniform.
The obtained positive electrode sheet was punched out to obtain a positive electrode.

得られた正極シートについて、上記の方法で正極活物質層の断面の拡がり抵抗値分布を測定し、表2に示す各項目の値を求めた。また正極活物質層の総質量に対する導電性炭素含有量を求めた。結果を表2に示す。
図3は、例1の拡がり抵抗値分布の測定結果を示したマッピング画像であり、図4は、例4のマッピング画像である。図5は例1、3の拡がり抵抗値分布を表すグラフであり、横軸は拡がり抵抗値(単位:logΩ)を表し、縦軸は抵抗値4.0~12.5(logΩ)の頻度合計を100%としたときの相対頻度(単位:%)を表す。
カーボンコート活物質の炭素含有量と配合量、及び導電助剤の炭素含有量と配合量に基づいて、正極活物質層の総質量に対する導電性炭素の含有量を算出した。上記≪導電性炭素含有量の測定方法≫に記載の方法を用いて確認することも可能である。
For the obtained positive electrode sheet, the spreading resistance value distribution of the cross section of the positive electrode active material layer was measured by the method described above, and the values of each item shown in Table 2 were obtained. Also, the conductive carbon content relative to the total mass of the positive electrode active material layer was determined. Table 2 shows the results.
3 is a mapping image showing the measurement results of the spreading resistance value distribution of Example 1, and FIG. 4 is a mapping image of Example 4. As shown in FIG. FIG. 5 is a graph showing the spreading resistance value distribution of Examples 1 and 3, the horizontal axis represents the spreading resistance value (unit: log Ω), and the vertical axis represents the total frequency of resistance values 4.0 to 12.5 (log Ω). represents the relative frequency (unit: %) when is 100%.
Based on the carbon content and compounding amount of the carbon-coated active material and the carbon content and compounding amount of the conductive aid, the content of conductive carbon with respect to the total mass of the positive electrode active material layer was calculated. It is also possible to confirm using the method described in the above <<Method for measuring conductive carbon content>>.

以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法で、高温貯蔵前後の出力維持率を測定し耐熱性を評価した。結果を表2に示す。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed so that the volume ratio of EC:DEC was 3:7. An aqueous electrolyte was prepared.
The positive electrode obtained in this example and the negative electrode obtained in Production Example 1 were alternately laminated via a separator to prepare an electrode laminate having the negative electrode as the outermost layer. A polyolefin film (thickness: 15 μm) was used as the separator.
In the process of producing the electrode laminate, first, the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2 .
A terminal tab is electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are stacked with an aluminum laminate film so that the terminal tab protrudes to the outside. The body was sandwiched, and three sides were laminated and sealed.
Subsequently, a non-aqueous electrolyte was injected from one side that was left unsealed, and vacuum-sealed to manufacture a non-aqueous electrolyte secondary battery (laminate cell).
The heat resistance was evaluated by measuring the output retention rate before and after high-temperature storage by the above method. Table 2 shows the results.

Figure 2023029333000002
Figure 2023029333000002

Figure 2023029333000003
Figure 2023029333000003

表2の結果に示されるように、正極活物質層の断面において抵抗値が4.0~6.0(logΩ)である部分が5.0%以下と少ない例1~3は、高温環境に貯蔵されても出力維持率が高く、耐熱性が良好であった。高温下で劣化反応しやすい低抵抗な部分が正極活物質層中にほとんど存在しないため、抵抗の増大が生じ難かったと考えられる。
例1と例3を比べると、導電助剤を含まない例1の方が、抵抗値4.0~6.0(logΩ)の頻度合計が少なく、出力維持率がより高かった。
例2は、例1において導電助剤の添加量を増やさずに、導電性炭素の含有量を増大させた例である。例1に比べて抵抗値4.0~6.0(logΩ)の頻度合計がより少なく、抵抗値6.0~9.0(logΩ)の平均頻度Bがより多くなり、出力維持率がさらに向上した。
As shown in the results of Table 2, Examples 1 to 3, in which the cross section of the positive electrode active material layer has a resistance value of 4.0 to 6.0 (log Ω) as small as 5.0% or less, are in a high temperature environment. Even when stored, the output retention rate was high and the heat resistance was good. It is conceivable that the increase in resistance was difficult to occur because there was almost no low-resistance portion in the positive electrode active material layer, which is likely to undergo a deterioration reaction at high temperatures.
Comparing Examples 1 and 3, Example 1, which does not contain a conductive aid, has a lower total frequency of resistance values of 4.0 to 6.0 (logΩ) and a higher output retention rate.
Example 2 is an example in which the content of conductive carbon is increased without increasing the amount of the conductive additive in Example 1. Compared to Example 1, the total frequency of resistance values 4.0 to 6.0 (log Ω) is less, the average frequency B of resistance values 6.0 to 9.0 (log Ω) is greater, and the output maintenance rate is further increased. Improved.

一方、抵抗値4.0~6.0(logΩ)の頻度合計が5.0%を超える例4、5は、例1~3と比べて高温環境に貯蔵されたときの出力維持率が顕著に低く、耐熱性が劣った。図4のマッピング画像からわかるように、例4の正極活物質層中には低抵抗な部分が局所的に点在している。このような低抵抗な部分が高温環境下において活性点となって劣化反応が生じたと考えられる。 On the other hand, Examples 4 and 5, in which the total frequency of resistance values 4.0 to 6.0 (log Ω) exceeds 5.0%, have a remarkable output retention rate when stored in a high temperature environment compared to Examples 1 to 3. was low, and the heat resistance was poor. As can be seen from the mapping image of FIG. 4, the positive electrode active material layer of Example 4 is locally dotted with low-resistance portions. It is considered that such a low-resistance portion became an active point in a high-temperature environment, and a deterioration reaction occurred.

1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 集電体(正極集電体)
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
REFERENCE SIGNS LIST 1 positive electrode 2 separator 3 negative electrode 5 exterior body 10 secondary battery 11 current collector (positive electrode current collector)
REFERENCE SIGNS LIST 12 Positive electrode active material layer 13 Positive electrode current collector exposed portion 14 Positive electrode current collector main body 15 Current collector coating layer

Claims (10)

集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層を有し、
前記正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計が0.0~5.0%である、非水電解質二次電池用正極。
having a current collector and a positive electrode active material layer containing positive electrode active material particles present on the current collector;
In the spreading resistance value distribution of the positive electrode active material layer, when the total frequency of resistance values 4.0 to 12.5 (log Ω) is 100%, the total frequency of resistance values 4.0 to 6.0 (log Ω) is A positive electrode for a non-aqueous electrolyte secondary battery, which is 0.0 to 5.0%.
前記拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度より、抵抗値6.0~9.0(logΩ)の平均頻度が大きい、請求項1に記載の非水電解質二次電池用正極。 2. The nonaqueous according to claim 1, wherein in the spreading resistance value distribution, the average frequency of resistance values 6.0 to 9.0 (log Ω) is higher than the average frequency of resistance values 4.0 to 6.0 (log Ω). Positive electrode for electrolyte secondary batteries. 前記正極活物質層が導電助剤を含む、請求項1又は2に記載の非水電解質二次電池用正極。 3. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein said positive electrode active material layer contains a conductive aid. 前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、請求項3に記載の非水電解質二次電池用正極。 4. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein an active material coating portion containing a conductive material is present on at least part of the surface of said positive electrode active material particles. 前記正極活物質層が導電助剤を含まず、前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、請求項1又は2に記載の非水電解質二次電池用正極。 3. The non-aqueous electrolyte 2 according to claim 1, wherein the positive electrode active material layer does not contain a conductive aid, and an active material coating portion containing a conductive material is present on at least part of the surface of the positive electrode active material particles. Positive electrode for secondary batteries. 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、請求項3~5のいずれか一項に記載の非水電解質二次電池用正極。 Claims 3 to 3, wherein the positive electrode active material layer contains conductive carbon, and the content of the conductive carbon is 0.5% by mass or more and less than 3.0% by mass with respect to the total mass of the positive electrode active material layer. 6. The positive electrode for a non-aqueous electrolyte secondary battery according to any one of 5. 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode active material particles are represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, comprising a compound. 前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、請求項1~7のいずれか一項に記載の非水電解質二次電池用正極。 The non-aqueous electrolyte 2 according to any one of claims 1 to 7, wherein a current collector coating layer containing a conductive material is present on at least part of the surface of the current collector on the positive electrode active material layer side. Positive electrode for secondary batteries. 請求項1~8のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。 A positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 8, a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode for the non-aqueous electrolyte secondary battery, non-aqueous Electrolyte secondary battery. 請求項9に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。 A battery module or battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to claim 9 .
JP2022160968A 2021-08-18 2022-10-05 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same Pending JP2023029333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022160968A JP2023029333A (en) 2021-08-18 2022-10-05 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021133447 2021-08-18
JP2022160968A JP2023029333A (en) 2021-08-18 2022-10-05 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021133447 Division 2021-03-19 2021-08-18

Publications (1)

Publication Number Publication Date
JP2023029333A true JP2023029333A (en) 2023-03-03

Family

ID=87885131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022160968A Pending JP2023029333A (en) 2021-08-18 2022-10-05 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same

Country Status (1)

Country Link
JP (1) JP2023029333A (en)

Similar Documents

Publication Publication Date Title
US20230115482A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2024048656A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery, battery module, and battery system using same
JP2022144809A (en) Cathode for nonaqueous electrolyte secondary battery
WO2023176895A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, battery module, and battery system
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP2022145471A (en) Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery module and battery system
JP7181372B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7197670B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7157863B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7183464B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7149436B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7193671B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
WO2024009988A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
JP7323690B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
US20230178731A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2024048784A1 (en) Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2023140733A (en) Composition for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module and battery system, and method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2023141411A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2022145469A (en) Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system
JP2022144968A (en) Method for evaluation of cathode for nonaqueous electrolyte secondary battery