KR101100295B1 - Manufacturing method of lithium cobalt oxide - Google Patents

Manufacturing method of lithium cobalt oxide Download PDF

Info

Publication number
KR101100295B1
KR101100295B1 KR1020040013035A KR20040013035A KR101100295B1 KR 101100295 B1 KR101100295 B1 KR 101100295B1 KR 1020040013035 A KR1020040013035 A KR 1020040013035A KR 20040013035 A KR20040013035 A KR 20040013035A KR 101100295 B1 KR101100295 B1 KR 101100295B1
Authority
KR
South Korea
Prior art keywords
lithium cobalt
lithium
cobalt acid
density
tap density
Prior art date
Application number
KR1020040013035A
Other languages
Korean (ko)
Other versions
KR20050087303A (en
Inventor
아와노히데카즈
오이시요시히데
야마자키노부유키
Original Assignee
니폰 가가쿠 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 가가쿠 고교 가부시키가이샤 filed Critical 니폰 가가쿠 고교 가부시키가이샤
Priority to KR1020040013035A priority Critical patent/KR101100295B1/en
Publication of KR20050087303A publication Critical patent/KR20050087303A/en
Application granted granted Critical
Publication of KR101100295B1 publication Critical patent/KR101100295B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • B24C7/0061Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier of feed pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • B24C9/003Removing abrasive powder out of the blasting machine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

우수한 초기용량 및 용량유지율을 갖는 비수전해질 2차 전지를 제공할 수 있는 코발트산 리튬의 제조방법을 제공한다.Provided is a method for producing lithium cobalt acid, which can provide a nonaqueous electrolyte secondary battery having excellent initial capacity and capacity retention rate.

탭밀도가 1.8g/㎤이상이고, 가압밀도가 3.5~4.0g/㎤인 코발트산 리튬. 탭밀도 1.7~3.0g/ml의 코발트산 리튬(A)와, 탭밀도 1.0~2.0g/ml의 코발트산 리튬(B)를, 상기 코발트산 리튬(A)와 상기 코발트산 리튬(B)의 탭밀도차가 0.20g/ml이상이 되도록 혼합하는 상기 코발트산 리튬의 제조방법.Lithium cobalt acid whose tap density is 1.8 g / cm <3> or more and pressurization density is 3.5-4.0 g / cm <3>. Lithium cobalt (A) with a tap density of 1.7 to 3.0 g / ml, and lithium cobalt (B) with a tap density of 1.0 to 2.0 g / ml is used for the lithium cobalt (A) and the lithium cobalt (B). A method for producing lithium cobalt oxide, which is mixed so that a tap density difference is 0.20 g / ml or more.

Description

코발트산 리튬의 제조방법{Manufacturing method of lithium cobalt oxide}Manufacturing method of lithium cobalt oxide

도 1은 제조예 1의 1차 입자가 가지런한 단분산된 코발트산 리튬(A)의 입자구조를 나타내는 SEM사진(배율×3000)이다.1 is a SEM photograph (magnification × 3000) showing the particle structure of monodispersed lithium cobalt acid (A) having primary particles of Preparation Example 1.

도 2는 제조예 7의 1차 입자가 응집된 코발트산 리튬(B)의 입자구조를 나타내는 SEM사진(배율×3000)이다.FIG. 2 is a SEM photograph (magnification × 3000) showing the particle structure of lithium cobalt (B) in which primary particles of Preparation Example 7 are aggregated.

도 3은 실시예 2와 비교예 1의 코발트산 리튬을 양극활물질로 이용한 2차 전지의 안전성평가를 나타내는 도면이다.3 is a view showing the safety evaluation of the secondary battery using lithium cobalt oxide of Example 2 and Comparative Example 1 as a positive electrode active material.

도 4는 실시예 2와 비교예 1의 코발트산 리튬을 양극활물질로 이용한 2차전지의 급속충방전시험의 결과를 나타내는 도면이다.4 is a view showing the results of a rapid charge and discharge test of a secondary battery using lithium cobalt oxide of Example 2 and Comparative Example 1 as a positive electrode active material.

본 발명은 코발트산 리튬의 제조방법에 관한 것이다.The present invention relates to a method for producing lithium cobaltate.

최근, 가정용 전자기기의 포터블화, 코드리스화가 급속히 진행함에 따라서 랩탑형 PC, 휴대전화, 비디오 카메라 등과 같은 소형 전자기기의 전원으로서 리튬 이온 2차 전지와 같은 비수전해질 2차 전지가 실용화되고 있다.Background Art In recent years, as portable and cordless home appliances have been rapidly developed, nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries have been put into practical use as power sources for small electronic devices such as laptop PCs, mobile phones, video cameras, and the like.

이 리튬이온 2차 전지에 대해서는, 코발트산 리튬이 리튬이온 2차 전지의 양극활물질로서 유용하다는 점에서, 리튬계 복합산화물에 관한 연구가 활발하게 진행되고 있으며, 지금까지 양극활물질로서 코발트산 리튬, 니켈산 리튬, 망간산 리튬 등의 화합물에 대해서 많은 제안이 되어 있다.Regarding this lithium ion secondary battery, lithium cobalt acid is useful as a positive electrode active material of a lithium ion secondary battery. Therefore, studies on lithium composite oxides have been actively conducted. As a positive electrode active material, lithium cobalt acid, Many proposals are made about compounds, such as lithium nickelate and lithium manganate.

그들 양극활물질은 그 성능을 높이기 위해 여러가지 제안이 되어져 있으며, 그 중요한 요건으로서 겉보기밀도나 가압밀도 등에 대해서 많은 기술이 개시되어 있다.These cathode active materials have been proposed in various ways in order to improve their performance, and as an important requirement, many technologies have been disclosed in terms of apparent density and press density.

예컨대, 평균경이 다른 2종 이상의 출발원료를 소성하여 된 입자상 조성물을 함유하여 이루어진 LipMO2의 탭밀도가 2.65g/㎤ 이상인 양극활물질이 제안되어 있다(예컨대 일본특허공개 2001-85009호 공보 제 1페이지).For example, a cathode active material having a tap density of Li p MO 2 of 2.65 g / cm 3 or more containing a particulate composition obtained by calcining two or more kinds of starting materials having different average diameters has been proposed (for example, JP 2001-85009 A). Page 1).

또한, 화학식 LiCoO2로 표시되는 코발트산 리튬을 이용한 비수전해질 2차 전지용의 양극활물질에 있어서, 상기 코발트산 리튬은 SEM 관찰에 의한 투영도형의 페레경이 0.1~4㎛ 이고, 평균입경이 2㎛ 이하인 소결정의 1차 입자가 다수 집합된 구상 혹은 타원구상의 2차 입자로 이루어지며, 상기 코발트산 리튬의 탭밀도가 2.2g/㎤ 이상인 비수계 전해질 2차 전지 양극활물질이 제안되어 있다(예컨대 일본특허공개 2001-135313호 공보 제 1페이지).In addition, in the positive electrode active material for a nonaqueous electrolyte secondary battery using lithium cobalt acid represented by the formula LiCoO 2 , the lithium cobalt oxide has a Ferre diameter of 0.1 to 4 μm, and an average particle diameter of 2 μm or less. A non-aqueous electrolyte secondary battery positive electrode active material consisting of spherical or ellipsoidal secondary particles having a large number of small crystal primary particles and having a tap density of at least 2.2 g / cm 3 of lithium cobalt has been proposed (for example, Japan). Patent Publication No. 2001-135313, page 1).

또한, 실질적으로 화학식 LiCoO2 로 표시되는 코발트산 리튬의 미소 1차 입자가 다수 응집된 2차 입자로 이루어지고, 이 2차 입자는 전해액으로 침투될 수 있 는 미소한 틈을 다수 가지며, 또한 탭밀도가 2.2g/㎤ 이상인 코발트산 리튬을 이용한 비수계 전해질 2차 전지용 양극활물질이 제안되어 있다(예컨대 일본특허공개 2001-155729호 공보 제 1페이지).Further, substantially composed of a plurality of secondary particles in which a plurality of micro primary particles of lithium cobalt acid represented by the formula LiCoO 2 are aggregated, and the secondary particles have a plurality of minute gaps that can penetrate into the electrolyte solution, and also have tabs. A cathode active material for a non-aqueous electrolyte secondary battery using lithium cobalt acid having a density of 2.2 g / cm 3 or more has been proposed (for example, Japanese Patent Application Laid-Open No. 2001-155729).

그러나, 상기 코발트산 리튬을 양극활물질로 이용한 비수전해액 2차 전지는, 방전용량과 급속충방전성능을 동시에 만족시키지 못하여 그를 위해 각종 시도가 이루어지고 있다. 예컨대, 코발트산 리튬의 입자경이나 입자형상을 변화시킴으로써 전극밀도를 높여서 전지용량을 높이거나 급속충방전성능을 높이는 시도가 수행되어 왔다. 아직 충분한 결과를 얻지 못하고 있다.However, non-aqueous electrolyte secondary batteries using lithium cobalt oxide as a positive electrode active material have failed to satisfy discharge capacity and rapid charge / discharge performance at the same time, and various attempts have been made for them. For example, attempts have been made to increase the battery capacity by increasing the electrode density by changing the particle size or particle shape of lithium cobalt acid, or to increase the rapid charge / discharge performance. Still not getting enough results.

본 발명의 목적은, 이러한 종래기술의 문제점을 감안하여 이루어진 것으로, 우수한 분체물성을 가지며, 전극밀도가 높고, 전지에 사용하였을 때 큰 방전용량을 얻을 수 있으며, 또한 급속충방전성능이 뛰어난 코발트산 리튬의 제조방법을 제공하는 것이다.The object of the present invention has been made in view of the problems of the prior art, and has excellent powder properties, high electrode density, high discharge capacity when used in a battery, and excellent cobalt acid performance. It is to provide a method for producing lithium.

본 발명자들은, 리튬 복합산화물 입자를 양극활물질로 사용할 경우, 리튬 복합산화물의 입자특성만 아니라, 다른 입경을 갖는 리튬 복합산화물 입자를 배합하는 것으로 상기 입자가 갖는 특성을 최대한으로 발휘할 수 있는 것을 알아내고 본 발명을 완성시켰다.The present inventors found that when lithium composite oxide particles are used as the positive electrode active material, not only the particle characteristics of the lithium composite oxide, but also the lithium composite oxide particles having different particle diameters can exhibit the properties of the particles to the maximum. The present invention has been completed.

본 발명은, 탭밀도 1.7~3.0g/㎤의 코발트산 리튬(A)와 탭밀도 1.0~2.0g/㎤의 코발트산 리튬(B)를, 중량비로 상기 코발트산 리튬(A):상기 코발트산 리튬(B)=95:5~60:40의 비율로, 상기 코발트산 리튬(A)와 상기 코발트산 리튬(B)의 탭밀도차가 0.20g/㎤ 이상이 되도록 혼합하고, 또한 상기 코발트산 리튬(A)는 1차 입자가 단분산되어 있고, 상기 코발트산 리튬(B)는 1차 입자가 응집되어 있는 것을 이용하여, 탭밀도가 1.8g/㎤ 이상이고, 또한 가압밀도가 3.5~4.0g/㎤인 코발트산 리튬을 제조하는 것을 특징으로 하는 코발트산 리튬의 제조방법의 제조방법에 관한 것이다.In the present invention, lithium cobalt (A) having a tap density of 1.7 to 3.0 g / cm 3 and lithium cobalt (B) having a tap density of 1.0 to 2.0 g / cm 3 are represented by the weight ratio of the above lithium cobalt (A): the cobalt acid At a ratio of lithium (B) = 95: 5 to 60:40, the mixture is mixed so that the tap density difference between the lithium cobalt (A) and the lithium cobalt (B) is 0.20 g / cm 3 or more, and the lithium cobalt acid In (A), the primary particles are monodisperse, and the lithium cobalt oxide (B) has a tap density of 1.8 g / cm 3 or more and a press density of 3.5 to 4.0 g using the aggregated primary particles. The manufacturing method of the manufacturing method of the lithium cobalt oxide characterized by manufacturing lithium cobalt acid / cm <3>.

삭제delete

삭제delete

상기 코발트산 리튬(A)와, 코발트산 리튬(B)를, 중량비로 (A):(B)=95:5~60:40의 비율로 혼합하는 것이 바람직하다.It is preferable to mix the said lithium cobalt acid (A) and lithium cobalt acid (B) in the ratio of (A) :( B) = 95: 5-60: 40 by weight ratio.

상기 코발트산 리튬(A)는, 1차 입자가 단분산되어 있고, 상기 코발트산 리튬(B)는, 1차 입자가 응집되어 있는 것을 이용하는 것이 바람직하다.As for said lithium cobalt acid (A), it is preferable that the primary particle is monodisperse and the said lithium cobalt acid (B) uses what the primary particle aggregated.

상기 코발트산 리튬(A)의 평균입자경은 5~30㎛ 이고, 상기 코발트산 리튬(B)의 평균입자경은 0.1~10㎛ 인 것이 바람직하다.It is preferable that the average particle diameter of the said lithium cobalt acid (A) is 5-30 micrometers, and the average particle diameter of the said lithium cobalt acid (B) is 0.1-10 micrometers.

본 발명을 더 구체적으로 설명한다.The present invention is explained in more detail.

삭제delete

본 발명의 코발트산 리튬은, 탭밀도가 1.8g/㎤ 이상이고, 가압밀도가 3.5~4.0g/㎤ 인 것을 특징으로 한다.The lithium cobalt oxide of the present invention has a tap density of 1.8 g / cm 3 or more and a press density of 3.5 to 4.0 g / cm 3.

이러한 코발트산 리튬은, 하기 화학식 1로 표시되는 화합물에서 선택된 적어도 2종 이상의 혼합물로 이루어지거나, 또는 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 혼합물로 이루어진다.Such lithium cobalt acid consists of a mixture of at least two or more selected from compounds represented by the following formula (1), or a mixture of the compound represented by the formula (1) and the compound represented by the formula (2).

LiaCoO2 Li a CoO 2

(여기서 a는 0.2≤a≤1.2 범위내의 수를 나타낸다.)(Where a represents a number in the range of 0.2 ≦ a ≦ 1.2.)

LiaCo1-yMyO2-z Li a Co 1-y M y O 2-z

(여기서 M은 Co를 제외한 천이금속원소 또는 원자번호 9이상의 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 나타내고, a는 0.2≤a≤1.2, Y는 0<y≤0.4, z는 0≤z≤1.0 범위내의 수를 나타낸다.)(Where M represents at least one element selected from the group consisting of transition metals other than Co or elements having atomic numbers of 9 or more, a is 0.2 ≦ a ≦ 1.2, Y is 0 <y ≦ 0.4, and z is 0 ≦ z) Represents a number within the range of ≤ 1.0.)

구체적으로는, LiaCoO2 또는 LiaCoO2 의 Co의 일부를 다른 금속원소(M)로 치환한 것이어도 좋다. 치환하는 금속원소(M)로서는, Co를 제외한 천이금속원소 또는 원자번호 9이상의 원소로 이루어진 군에서 선택된 1종 이상의 원소이고, 예컨대 Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Si, Ga, Zr, Nb, W, Mo에서 선택되는 1종 이상이다.Specifically, a part of Co of Li a CoO 2 or Li a CoO 2 may be substituted with another metal element (M). Substituent metal element (M) is one or more elements selected from the group consisting of transition metal elements except Co or elements having atomic number 9 or more, such as Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe , Ni, Zn, Si, Ga, Zr, Nb, W, Mo is one or more selected from.

또한, LiaCoO2 또는 LiaCoO2의 Co의 일부를 다른 금속원소로 치환한 코발트산 리튬의 표면에 황산염을 피복한 것이어도 좋다.In addition, a sulfate may be coated on the surface of lithium cobalt acid in which a part of Li a CoO 2 or Li a CoO 2 Co is substituted with another metal element.

통상, 탭밀도는 특별히 가압하는 일 없이 자연스럽게 조립과 미립이 혼합되어 있는 분체가 충전되는 특성을 나타낸다. 가압밀도는, 가압하에서 조립과 미립이 어떻게 충전되는가의 특성을 나타낸다. 본 발명은, 코발트산 리튬을 비수전해질 2 차 전지의 양극활물질로 사용할 경우, 탭밀도와 가압밀도가 특정 범위에 있는 코발트산 리튬이 중요하다는 것을 알아냈다.Usually, the tap density shows the characteristic that the powder in which granules and granules are mixed naturally is filled without pressing in particular. Pressurized density shows the characteristics of how granulation and granules are filled under pressurization. The present invention has found that lithium cobalt acid having a tap density and a press density in a specific range is important when lithium cobalt acid is used as a positive electrode active material of a nonaqueous electrolyte secondary battery.

즉, 본 발명의 코발트산 리튬의 탭밀도는 1.8g/㎤ 이상, 바람직하게는 2.0g/㎤ 이상, 더 바람직하게는 2.5~3.5g/㎤인것이 바람직하다.That is, the tap density of the lithium cobalt acid of the present invention is preferably 1.8 g / cm 3 or more, preferably 2.0 g / cm 3 or more, and more preferably 2.5 to 3.5 g / cm 3.

또한, 본 발명의 코발트산 리튬의 가압밀도는 3.5~4.0g/㎤, 바람직하게는 3.6~4.0g/㎤, 더 바람직하게는 3.7~4.0g/㎤ 인 것이 바람직하다.The pressure density of the lithium cobalt oxide of the present invention is preferably 3.5 to 4.0 g / cm 3, preferably 3.6 to 4.0 g / cm 3, and more preferably 3.7 to 4.0 g / cm 3.

본 발명의 코발트 산 리튬은, 탭밀도와 가압밀도가 상기 특정 범위의 값을 취함으로써 양극활물질로서 우수한 특성을 갖는 것이다.The lithium cobalt acid of the present invention has excellent characteristics as a positive electrode active material by having a tap density and a press density taking values within the above specific ranges.

이어서, 본 발명의 코발트산 리튬의 제조방법에 대해서 설명한다.Next, the manufacturing method of the lithium cobalt acid of this invention is demonstrated.

본 발명의 코발트산 리튬의 제조방법은, 탭밀도가 다른 2종류 또는 그 이상의 코발트산 리튬을 건식으로 혼합함으로써 얻을 수 있다.The manufacturing method of the lithium cobalt acid of this invention can be obtained by dry-mixing two or more types of lithium cobalt acid from which a tap density differs.

구체적으로는, 본 발명의 코발트산 리튬의 제조방법은, 탭밀도 1.7~3.0g/㎤의 코발트산 리튬(A)와, 탭밀도 1.0~2.0g/㎤의 코발트산 리튬(B)를 상기 코발트산 리튬(A)와 상기 코발트산 리튬(B)와의 탭밀도차가 0.20g/㎤ 이상이 되도록 선택하여 혼합하는 것을 특징으로 한다.Specifically, the method for producing lithium cobalt according to the present invention includes lithium cobalt (A) having a tap density of 1.7 to 3.0 g / cm 3 and lithium cobalt (B) having a tap density of 1.0 to 2.0 g / cm 3. It is characterized by selecting and mixing so that the tap density difference between lithium acid (A) and the said lithium cobalt acid (B) becomes 0.20 g / cm <3> or more.

상기 코발트산 리튬(A)와 코발트산 리튬(B)의 혼합비율은 중량비로 (A):(B)=95:5~60:40, 바람직하게는 90:10~80:20의 비율로 혼합하는 것이 바람직하다.The mixing ratio of the lithium cobalt (A) and lithium cobalt (B) is mixed in a weight ratio of (A) :( B) = 95: 5 to 60:40, preferably 90:10 to 80:20. It is desirable to.

코발트산 리튬(A)는, 탭밀도 1.7~3.0g/㎤, 바람직하게는 2.0~3.0g/㎤의 것을 사용하는 것이 좋다. As the lithium cobalt acid (A), a tap density of 1.7 to 3.0 g / cm 3 and preferably 2.0 to 3.0 g / cm 3 are preferably used.                     

코발트산 리튬(B)는, 탭밀도 1.0~2.0g/㎤, 바람직하게는 1.0~1.7g/㎤의 것을 사용하는 것이 좋다.Lithium cobalt acid (B) is preferably a tap density of 1.0 to 2.0 g / cm 3, preferably 1.0 to 1.7 g / cm 3.

그들 코발트산 리튬(A)와 (B)는 탭밀도가 다른 것을 사용하는 것이 바람직하고, 그들 코발트산 리튬(A)와 (B)의 탭밀도차는 0.20이상, 바람직하게는 0.30 이상인 것이 바람직하다.Those lithium cobalt oxides (A) and (B) preferably use different tap densities, and the tap density difference between these lithium cobalt oxides (A) and (B) is preferably 0.20 or more, preferably 0.30 or more.

또한, 코발트산 리튬(A)는 1차 입자가 단분산되어 있는것이 바람직하다. 1차 입자가 단분산되어 있다는 것은 최소입자가 각각 흩어져서 존재하고 있는 것을 나타내며, 구체적으로는 SEM(주사형전자현미경) 사진관찰로 확인할 수 있다. SEM에서 시야의 80% 이상이 단분산되어 있는 분체를 단분산되어 있는 분(粉)이라 해도 좋다. 도 1은 제조예 1의 1차 입자가 가지런한 단분산된 코발트산 리튬(A)의 입자구조를 나타내는 SEM 사진(배율×3000)을 나타낸다.Moreover, it is preferable that the primary particle of lithium cobalt acid (A) is monodisperse. The monodispersion of the primary particles indicates that the minimum particles are scattered and present, and can be confirmed by SEM (scanning electron microscope) photograph observation. The powder in which 80% or more of the visual field is monodisperse in the SEM may be monodisperse. FIG. 1: shows the SEM photograph (magnification x 3000) which shows the particle structure of the monodisperse lithium cobalt acid (A) which the primary particle of the manufacture example 1 prepared.

이러한 코발트산 리튬(A)이 평균입자경은 5~30㎛, 바람직하게는 10~20㎛의 범위가 바람직하다. 코발트산 리튬(A)는, 코발트산 리튬(B)와 비교하면 조립자이다.The average particle diameter of such lithium cobalt acid (A) is 5-30 micrometers, Preferably the range of 10-20 micrometers is preferable. Lithium cobalt (A) is a coarse particle compared with lithium cobalt (B).

또한, 코발트산 리튬(B)는, 1차 입자가 응집되어 2차 입자를 형성하고 있는 것이 바람직하다. 1차 입자가 응집되어 2차 입자를 형성하고 있다는 것은 최소입자가 반 데어 발스력 및 표면전하력에 의해 끌어당겨져 입자형상을 형성하고 있는 상태를 나타내며, 구체적으로는 SEM 사진관찰로 확인할 수 있다. SEM에서 시야의 80% 이상이 응집되어 있는 분체를 응집되어 있는 분(粉)이라 말해도 좋다. 도 2는 제조예 5의 1차 입자가 응집된 코발트산 리튬(B)의 입자구조를 나타내는 SEM사진(배율 ×3000)을 나타낸다.In addition, it is preferable that primary particles are agglomerated to form secondary particles in lithium cobalt (B). Agglomeration of the primary particles to form secondary particles indicates a state in which the minimum particles are attracted by van der Waals and surface charge forces to form a particle shape, specifically, by SEM photograph observation. In the SEM, the powder in which 80% or more of the visual field is aggregated may be referred to as the aggregated powder. FIG. 2: shows the SEM photograph (magnification x 3000) which shows the particle structure of the lithium cobalt (B) in which the primary particle of manufacture example 5 was aggregated.

이러한 코발트산 리튬(B)의 평균입자경은 0.1~10㎛, 바람직하게는 2.0~8.0㎛의 범위가 바람직하다.The average particle diameter of such lithium cobalt acid (B) is 0.1-10 micrometers, Preferably the range of 2.0-8.0 micrometers is preferable.

본 발명에 있어서 평균입자경은, 레이저산란 입도분포 측정장치에 의해 얻어진 입도분포의 누적 50%(D50)의 값을 나타낸다.In the present invention, the average particle diameter represents a cumulative 50% (D 50 ) value of the particle size distribution obtained by the laser scattering particle size distribution analyzer.

본 발명에 있어서, 1차 입자가 응집된 코발트산 리튬(B)와 단분산되어 있는 코발트산 리튬(A)를 혼합한 코발트산 리튬을 비수전해질 2차 전지의 양극활물질로 사용하는 경우 뛰어난 전지특성을 보인다. 그 이유는, 명확하지는 않지만 이러한 입자의 혼합물이 양극판상의 충전밀도를 높일 뿐만 아니라, 응집입자는 급속충방전에 뛰어나고, 단분산된 입자는 안전성이 높은 특성을 주는 것에 의한다.In the present invention, excellent battery characteristics when lithium cobalt oxide obtained by mixing lithium cobalt (B) in which primary particles are aggregated with lithium cobalt acid (A) that is monodisperse is used as a positive electrode active material of a nonaqueous electrolyte secondary battery Seems. The reason for this is not clear, but the mixture of these particles not only increases the packing density on the positive electrode plate, but also the aggregated particles are excellent in rapid charging and discharging, and the mono-dispersed particles give high safety characteristics.

또한, 본 발명의 제조방법은, 상기 코발트산 리튬(A)는, 화학식 1로 표시되는 화합물을 사용하는 것이 바람직하다. 또한, 상기 코발트산 리튬(B)는, 하기 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물을 이용하는 것이 바람직하다.In the production method of the present invention, the lithium cobalt (A) preferably uses a compound represented by the formula (1). In addition, it is preferable to use the compound represented by following General formula (1) or the compound represented by General formula (2) as said lithium cobalt acid (B).

<화학식 1><Formula 1>

LiaCoO2 Li a CoO 2

(여기서 a는 0.2≤a≤1.2 범위내의 수를 나타낸다.)(Where a represents a number in the range of 0.2 ≦ a ≦ 1.2.)

<화학식 2><Formula 2>

LiaCo1-yMyO2-z Li a Co 1-y M y O 2-z

(여기서 M은 Co를 제외한 천이금속원소 또는 원자번호 9이상의 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 나타내고, a는 0.2≤a≤1.2, Y는 0<y≤0.4, z는 0≤z≤1.0 범위내의 수를 나타낸다.)(Where M represents at least one element selected from the group consisting of transition metals other than Co or elements having atomic numbers of 9 or more, a is 0.2 ≦ a ≦ 1.2, Y is 0 <y ≦ 0.4, and z is 0 ≦ z) Represents a number in the range ≤1.0.)

본 발명의 코발트산 리튬은, 2종류 이상의 다른 탭밀도 및 평균입자경을 갖는 코발트산 리튬을 균일하게 혼합함으로써 얻을 수 있지만, 균일하게 혼합하는 방법은, 공업적으로 실시되고 있는 방법이라면 특별히 제한되지 않는다. 예컨대, 수평원통형, V형, 이중원추형 등의 용기회전형 혼합기, 리본형, 수평스크루형, 패들형, 수형(竪形) 리본형, 분쇄형, 유성운동형, 스태틱 믹서, 단축로터형, 헨셀믹서, 플로우제트믹서 등의 용기고정형 혼합기 등을 사용하는 방법을 들 수 있다.The lithium cobalt acid of the present invention can be obtained by uniformly mixing lithium cobalt acid having two or more different tap densities and average particle diameters, but the method of uniformly mixing is not particularly limited as long as it is an industrially practiced method. . For example, a container rotating mixer such as a horizontal cylindrical type, a V type, a double cone type, a ribbon type, a horizontal screw type, a paddle type, a male ribbon type, a grinding type, a planetary motion type, a static mixer, a single-axis rotor, a Henschel The method of using container fixed mixers, such as a mixer and a flow jet mixer, is mentioned.

본 발명의 비수전해질 2차 전지는, 양극, 음극, 세퍼레이터, 비수전해질 (예컨대 리튬염 함유전해질)등으로 구성된다.The nonaqueous electrolyte secondary battery of the present invention is composed of a positive electrode, a negative electrode, a separator, a nonaqueous electrolyte (for example, a lithium salt-containing electrolyte) and the like.

양극은, 양극판(양극집전체: 예컨대 알루미늄판)상에 양극활물질, 도전제 및 결착제를 함유하여 이루어진 양극합제를 도포하여 된 것이다. 본 발명의 비수전해질 2차 전지는, 양극판을 구성하는 양극활물질로서 상기의 코발트산 리튬으로 된 양극활물질을 사용한다. 또한 양극활물질을 미리 제조하는 것이 아니라 양극합제를 조제할 때, 양극활물질의 조건을 만족하는 구성의 본 발명의 코발트산 리튬을 배합하여 균일하게 혼합해도 좋다.The positive electrode is obtained by applying a positive electrode mixture containing a positive electrode active material, a conductive agent and a binder on a positive electrode plate (positive electrode collector: for example, an aluminum plate). In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material of lithium cobalt acid is used as the positive electrode active material constituting the positive electrode plate. Moreover, when preparing a positive electrode mixture instead of preparing a positive electrode active material previously, you may mix | blend and mix uniformly the lithium cobaltate of this invention of the structure which satisfy | fills the conditions of a positive electrode active material.

양극합제는, 양극활물질에 더하여 도전제, 결착제 및 필러 등을 첨가할 수 있다.In addition to the positive electrode active material, the positive electrode mixture may include a conductive agent, a binder, a filler, and the like.

도전제로서는, 예컨대 천연흑연(인상(鱗狀)흑연, 인편상(鱗片狀)흑연, 토상( 土狀)흑연 등), 인공흑연, 카본블랙, 아세틸렌 블랙, 탄소섬유, 니켈분과 같은 금속분 등으로 이루어진 군에서 선택된 도전성 재료의 1종 또는 2종 이상을 사용할 수 있다. 상기 중에서, 흑연과 아세틸렌 블랙을 도전제로서 병용하는 것이 바람직하다. 또한, 양극합제로의 도전제의 배합량은, 1~50 중량%, 바람직하게는 2~30 중량%이다.Examples of the conductive agent include natural graphite (phosphorous graphite, flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, carbon fiber, metal powder such as nickel powder, and the like. One or two or more kinds of conductive materials selected from the group consisting of these may be used. In the above, it is preferable to use graphite and acetylene black together as a electrically conductive agent. The blending amount of the conductive agent in the positive electrode mixture is 1 to 50% by weight, preferably 2 to 30% by weight.

또한, 결착제로서는, 예컨대 폴리비닐알콜, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 재생셀룰로오스, 디아세틸셀룰로오스, 폴리비닐피롤리돈, 에틸렌-프로필렌-디엔-터폴리머(EPDM), 술폰화 EPDM, 스티렌부타디엔 고무, 불소 고무, 폴리에틸렌옥사이드 등의 다당류, 열가소성수지, 고무탄성을 갖는 폴리머 등의 1종 또는 2종 이상을 사용할 수 있다. 또한, 양극합제로의 결착제의 배합량은 2~30 중량%의 범위가 바람직하다.As the binder, for example, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinylpyrrolidone, ethylene-propylene-diene-terpolymer (EPDM), sulfonated EPDM, styrene One kind or two or more kinds of polysaccharides such as butadiene rubber, fluorine rubber and polyethylene oxide, a thermoplastic resin, and a polymer having rubber elasticity can be used. Moreover, the compounding quantity of the binder in a positive electrode mixture has a preferable range of 2-30 weight%.

또한, 필러는, 비수전해질 2차 전지에서 화학변화를 일으키지 않는 섬유상재료라면 무엇이든지 사용이 가능하지만, 통상 폴리프로필렌, 폴리에틸렌 등의 올레핀계 폴리머, 유리섬유, 탄소섬유와 같은 섬유가 사용될 수 있다. 양극합제에의 필러 배합량은, 특별히 한정되지는 않지만 0~30 중량%가 바람직하다.The filler can be used as long as the fibrous material does not cause chemical change in the nonaqueous electrolyte secondary battery, but fibers such as olefin polymers such as polypropylene and polyethylene, glass fibers, and carbon fibers can be used. Although the filler compounding quantity in a positive electrode mixture is not specifically limited, 0-30 weight% is preferable.

또한, 본 발명의 코발트산 리튬으로 된 양극활물질의 양극합제에의 배합량은, 특별히 한정되지는 않지만 바람직하게는 60~95 중량%, 특히 바람직하게는 70~94 중량%의 범위내이다.In addition, the compounding quantity of the positive electrode active material of lithium cobalt acid of the present invention to the positive electrode mixture is not particularly limited, but is preferably in the range of 60 to 95% by weight, particularly preferably 70 to 94% by weight.

본 발명의 비수전해질 2차 전지의 음극에 사용되는 음극재료로서는, 특별히 제한되지는 않지만, 예컨대 탄소질재료, 금속복합산화물, 리튬금속 또는 리튬합금 등을 들 수 있다. 탄소질재료로서는, 난흑연화탄소재료, 흑연계탄소재료 등을 들 수 있고, 금속복합산화물로서는, SnM1 1-xM2 yOz (여기서, M1은, Mn, Fe, Pb 또는 Ge에서 선택되는 1종 이상을 나타내며, M2는, Al, B, P, Si, 주기율표 제 1족, 제 2족, 제 3족 또는 할로겐원소에서 선택되는 2종 이상의 원소를 나타내며, x는 0<x≤1, y는 1≤y≤3, z는 1≤z≤8 범위내의 수를 나타낸다)등의 화합물을 들 수 있다.The negative electrode material used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a carbonaceous material, a metal composite oxide, a lithium metal or a lithium alloy. Examples of carbonaceous materials include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include SnM 1 1-x M 2 y O z (wherein M 1 represents Mn, Fe, Pb, or Ge). 1 or more selected, M <2> represents 2 or more types of elements chosen from Al, B, P, Si, periodic table group 1, 2, 3, or a halogen element, and x is 0 <x <1, y represents 1 <y <3, z represents the number in the range of 1 <z <8), etc. are mentioned.

그리고, 비수전해질 2차 전지로 이용되는 비수전해액은, 예컨대 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, γ-부틸락톤, 1, 2-디메톡시에탄, 테트라히드록시퓨란, 2-메틸테트라히드로퓨란, 디메틸술폭사이드, 1, 3-디옥소란, 포름아미드, 디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산메틸, 아세트산메틸, 인산트리에스테르, 트리메톡시메탄, 디옥소란유도체, 술포란, 3-메틸-2-옥사졸리디논, 프로필렌카보네이트 유도체, 테트라히드로퓨란 유도체, 디에틸에테르, 1,3-프로판술톤 등의 비프로톤성 유기용매의 적어도 1종 이상을 혼합한 용매와, 그 용매에 용해되는 리튬염, 예컨대 LiClO4, LiBF4, LiPF6, LiCF3SO3, LiCF 3CO2, LiAsF6, LiSbF6, LiB10Cl10, LiAlCl4, 클로로보란리튬, 저급지방족 카르복실산리튬, 테트라페닐붕산리튬 등의 1종 이상의 리튬염으로 구성된다.The nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery is, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1, 2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1, 3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane At least one or more of aprotic organic solvents such as dioxolane derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, and 1,3-propanesultone And a lithium salt dissolved in the solvent, such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , Chloroborane Lithium, low fat Carboxylic acid is lithium, composed of one or more kinds of lithium salts such as tetraphenyl lithium borate.

또한, 비수전해액 외에, 유기고체전해질을 이용할 수 있다. 예컨대 폴리에틸렌 유도체 또는 이것을 포함하는 폴리머, 폴리프로필렌옥사이드 유도체 또는 이것 을 포함하는 폴리머, 인산에스테르폴리머 등을 들 수 있다.In addition to the nonaqueous electrolyte, an organic solid electrolyte can be used. For example, a polyethylene derivative or the polymer containing the same, a polypropylene oxide derivative or the polymer containing the same, a phosphate ester polymer, etc. are mentioned.

전극의 집전체는, 구성된 비수전해질 2차 전지에서 화학변화를 일으키지 않는 전자전도체이면 특별히 제한되지는 않는데, 양극에는, 예컨대 스테인레스강, 니켈, 알루미늄, 티탄, 소성탄소, 알루미늄이나 스테인레스강의 표면을 카본, 니켈, 동, 티탄 또는 은으로 표면처리한 것이 이용된다. 음극에는, 예컨대 스테인레스강, 니켈, 동, 티탄, 알루미늄, 소성탄소 등 이외에 동이나 스테인레스강의 표면을 카본, 니켈, 티탄 또는 은 등으로 처리한 것, Al-Cd합금 등이 이용된다.The current collector of the electrode is not particularly limited as long as it is an electron conductor which does not cause chemical change in the constructed nonaqueous electrolyte secondary battery. The positive electrode may be formed of, for example, carbon on the surface of stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum or stainless steel. Surface treatment with nickel, copper, titanium or silver is used. As the cathode, for example, stainless steel, nickel, copper, titanium, aluminum, calcined carbon, or the like, the surface of copper or stainless steel treated with carbon, nickel, titanium, silver, or the like, Al-Cd alloy or the like is used.

비수전해질 2차 전지의 형상은, 코인, 버튼, 시트, 실린더, 각 등의 어느 것에도 적용할 수 있다.The shape of the nonaqueous electrolyte secondary battery can be applied to any of coins, buttons, sheets, cylinders, and corners.

본 발명의 비수전해질 2차 전지의 용도는, 특별히 제한되지 않는데, 예컨대 노트북PC, 랩탑PC, 포켓워드프로세서, 휴대전화, 무선전화기, 포터블CD, 라디오 등의 전자기기, 자동차, 전동차량, 게임기기 등의 민생용 전자기기를 들 수 있다.The use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. Examples thereof include notebook PCs, laptop PCs, pocket word processors, cellular phones, wireless telephones, portable CDs, electronic devices such as radios, automobiles, electric vehicles, and game machines. Public electronic devices, such as these, are mentioned.

〔실시예〕[Examples]

이하, 실시예에 의해 본 발명을 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예에서는, 본 발명의 양극활물질 및 비수전해질 2차 전지를 설명한다.In the Examples, the cathode active material and the nonaqueous electrolyte secondary battery of the present invention will be described.

(1) 탭밀도의 측정방법(1) Measuring method of tap density

메스실린더를 완전히 건조시키고, 빈 메스실린더의 중량을 측정한다. 약포장지에 시료를 약 70g 칭량하여 취한다. 깔대기를 사용하여 메스실린더 안에 시료를 옮겨 넣는다. 메스실린더를 자동T.D측정장치(유아사아이오닉스 가부시키가이샤 제품, 듀얼오토탭)에 셋트하고, 탭핑회수를 500으로 조정하여 탭핑을 수행하고, 시료 면의 눈금을 읽고, 시료가 들어간 메스실린더의 중량을 측정하여 탭밀도를 산출한다. 탭핑 높이 3.2㎜, 탭핑속도 200회/분(ASTM:B527-93, 85에 준거).Dry the measuring cylinder completely and weigh the empty measuring cylinder. Weigh approximately 70 g of the sample on a weak package. Transfer the sample into the measuring cylinder using a funnel. Set the measuring cylinder to the automatic TD measuring device (Dia Auto Tap, manufactured by Yuasa Ionics Co., Ltd.), adjust the tapping frequency to 500, perform the tapping, read the scale of the sample surface, and weigh the measuring cylinder containing the sample. Calculate the tap density. Tapping height 3.2 mm, tapping speed 200 times / minute (according to ASTM: B527-93, 85).

(2) 가압밀도의 측정방법(2) Measuring method of pressure density

직경 15㎜의 금형에 시료를 넣고, 1.96×108Pa(2ton/㎠)의 프레스(핸드프레스, 동양상공사 제품, 형식; WPN-10)를 1분간 행하여 펠렛을 얻는다. 그 후에 펠렛의 중량 및 체적을 측정하고, 펠렛의 밀도를 산출하여 가압밀도로 한다.The sample is put into a mold having a diameter of 15 mm, and a pellet (1.96 × 10 8 Pa (2ton / cm 2)) press (hand press, Tong Yang Co., Ltd., WPN-10) is performed for 1 minute to obtain pellets. Thereafter, the weight and volume of the pellets are measured, and the density of the pellets is calculated to be a press density.

제조예 1Preparation Example 1

탄산리튬과 산화코발트를 Li/Co원자비가 1.02가 되도록 칭량하고, 유발에서 충분히 혼합하여 균일한 혼합물을 조제하였다. 이어서, 이 혼합물을 알루미나 도가니에 채우고, 전기가열로에 넣어 대기분위기하에서 승온하여, 700℃~1000℃의 온도에서 10시간 유지하여 소성처리하고, 얻어진 소성물을 대기중에서 냉각한 후, 분쇄, 분급함으로써 평균입자경 15.5㎛, 탭밀도 2.80g/㎤, 가압밀도 3.45g/㎤의 코발트산 리튬(LiCoO2)를 얻었다.Lithium carbonate and cobalt oxide were weighed so that the Li / Co atomic ratio was 1.02, and mixed sufficiently in a mortar to prepare a uniform mixture. Subsequently, the mixture was charged into an alumina crucible, placed in an electric heating furnace, heated in an air atmosphere, held at a temperature of 700 ° C. to 1000 ° C. for 10 hours, and calcined, and the resulting fired product was cooled in the air, followed by grinding and classification. By this, lithium cobalt acid (LiCoO 2 ) having an average particle diameter of 15.5 µm, a tap density of 2.80 g / cm 3, and a press density of 3.45 g / cm 3 was obtained.

이 코발트산 리튬은 1차 입자가 가지런한 단분산된 코발트산 리튬(A-1)이었다.This lithium cobaltate was monodisperse lithium cobalt acid (A-1) with a primary particle.

제조예 2Production Example 2

제조예 1과 마찬가지로, 탄산리튬과 산화코발트를 Li/Co원자비가 1.04가 되도록 혼합하여 균일한 혼합물을 조제하고, 1000℃~1050℃에서 10시간 소성처리하여 평균입자경 12.3㎛, 탭밀도 2.50g/㎤, 가압밀도 3.48g/㎤의 코발트산 리튬(LiCoO2) 를 얻었다.In the same manner as in Preparation Example 1, lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.04 to prepare a uniform mixture, and then calcined at 1000 ° C. to 1050 ° C. for 10 hours to obtain an average particle diameter of 12.3 μm and a tap density of 2.50 g /. Lithium cobalt acid (LiCoO 2 ) having a cm 3 and a press density of 3.48 g / cm 3 was obtained.

이 코발트산 리튬의 SEM상은, 1차 입자가 가지런한 단분산된 코발트산 리튬(A-2)이었다.The SEM image of this lithium cobalt acid was mono-dispersed lithium cobalt acid (A-2) with a primary particle.

제조예 3Production Example 3

제조예 1과 마찬가지로, 탄산리튬과 산화코발트를 Li/Co원자비가 1.02가 되도록 혼합하여 균일한 혼합물을 조제하고, 1000℃~1050℃에서 10시간 소성처리하여, 평균입자경 7.8㎛, 탭밀도 1.90g/㎤, 가압밀도 3.41g/㎤의 코발트산 리튬(LiCoO2)를 얻었다.In the same manner as in Production Example 1, lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.02 to prepare a uniform mixture, and then calcined at 1000 ° C. to 1050 ° C. for 10 hours to obtain an average particle diameter of 7.8 μm and a tap density of 1.90 g. Lithium cobalt acid (LiCoO 2 ) having a pressure of 3.41 g / cm 3;

이 코발트산 리튬은, 1차 입자가 가지런한 단분산된 코발트산 리튬(A-3)이었다.This lithium cobaltate was monodisperse lithium cobalt acid (A-3) with primary particles.

제조예 4Preparation Example 4

제조예 1과 마찬가지로, 탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 900℃~1000℃에서 10시간 소성처리하여, 평균입자경 7.4㎛, 탭밀도 1.80g/㎤, 가압밀도 3.20g/㎤의 코발트산 리튬(LiCoO2)를 얻었다.In the same manner as in Production Example 1, lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a uniform mixture, and then calcined at 900 ° C to 1000 ° C for 10 hours to obtain an average particle diameter of 7.4 µm and a tap density of 1.80 g. Lithium cobalt acid (LiCoO 2 ) of / cm 3 and a press density of 3.20 g / cm 3 was obtained.

이 코발트산 리튬은, 1차 입자가 응집된 코발트산 리튬(B-1)이었다.This lithium cobaltate was lithium cobalt oxide (B-1) in which primary particles were aggregated.

제조예 5Preparation Example 5

제조예 1과 마찬가지로, 탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 900℃~1000℃에서 10시간 소성처리하여, 평균입자경 5.2㎛, 탭밀도 1.50g/㎤, 가압밀도 3.15g/㎤의 코발트산 리튬(LiCoO2)를 얻었다.In the same manner as in Preparation Example 1, lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a uniform mixture, and then calcined at 900 ° C to 1000 ° C for 10 hours to obtain an average particle diameter of 5.2 µm and a tap density of 1.50 g. Lithium cobalt acid (LiCoO 2 ) of / 15 cm 3 and a press density of 3.15 g / cm 3 was obtained.

이 코발트산 리튬은, 1차 입자가 응집된 코발트산 리튬(B-2)이었다.This lithium cobaltate was lithium cobalt oxide (B-2) in which primary particles were aggregated.

제조예 6Preparation Example 6

제조예 1과 마찬가지로, 탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 800℃~900℃에서 10시간 소성처리하여, 평균입자경 3.2㎛, 탭밀도 1.20g/㎤, 가압밀도 3.21g/㎤의 코발트산 리튬(LiCoO2)를 얻었다.In the same manner as in Production Example 1, lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a uniform mixture, and then calcined at 800 ° C. to 900 ° C. for 10 hours to obtain an average particle diameter of 3.2 μm and a tap density of 1.20 g. Lithium cobalt acid (LiCoO 2 ) of / cm 3 and a press density of 3.21 g / cm 3 was obtained.

이 코발트산 리튬의 SEM상은, 1차 입자가 응집된 코발트산 리튬(B-3)이었다.The SEM image of this lithium cobalt acid was lithium cobalt acid (B-3) which the primary particle aggregated.

제조예 7Preparation Example 7

제조예 1과 같은 방법으로, Al을 Co에 대해서 2몰% 첨가한 LiCo0.98Al0.02O2 를 합성하였다. 소성방법은, 제조예 1과 동일하며, 유발혼합시에 Al(OH)3을 Co에 대해서 2몰%가 되도록 혼합후, 800~900℃로 소성하여 Al 첨가 코발트산 리튬(LiCo0.98Al0.02O2)을 얻었다.In the same manner as in Production Example 1, LiCo 0.98 Al 0.02 O 2, in which 2 mol% of Al was added to Co, was synthesized. The firing method was the same as in Preparation Example 1, and mixed Al (OH) 3 to 2 mol% with respect to Co at the time of induction mixing, and then calcined at 800 to 900 ° C to add Al cobalt acid (LiCo 0.98 Al 0.02 O 2 ) was obtained.

이 코발트산 리튬은 평균입경 2.8㎛, 탭밀도 1.18g/㎤, 가압밀도 3.19g/㎤였다.This lithium cobalt acid had an average particle diameter of 2.8 µm, a tap density of 1.18 g / cm 3, and a press density of 3.19 g / cm 3.

이 코발트산 리튬의 SEM상은 1차 입자가 응집된 코발트산 리튬(B-4)이었다.The SEM image of this lithium cobaltate was lithium cobalt oxide (B-4) in which the primary particle aggregated.

도 1에 제조예 1의 1차 입자가 가지런한 단분산된 코발트산 리튬(A)의 입자 구조를 나타내는 SEM사진(배율×3000)을 도시하였다.In FIG. 1, the SEM photograph (magnification x 3000) which shows the particle | grain structure of monodisperse lithium cobalt acid (A) which the primary particle of the manufacture example 1 prepared.

도 2에 제조예 7의 응집된 코발트산 리튬(B)의 입자구조를 나타내는 SEM사진(배율×3000)을 도시하였다.The SEM photograph (magnification x 3000) which shows the particle | grain structure of the aggregated lithium cobalt acid (B) of manufacture example 7 is shown in FIG.

상기 제조예 1~7에서 얻어진 코발트산 리튬(A) 및 (B)를 표 1에 정리하여 나타냈다.The lithium cobalt acid (A) and (B) obtained in the said Production Examples 1-7 were put together in Table 1, and were shown.

코발트산 리튬
Lithium cobalt
평균입자경
(㎛)
Average particle size
(Μm)
탭밀도
(g/㎤)
Tap density
(g / cm3)
가압밀도
(g/㎤)
Pressure density
(g / cm3)
제조예 1Preparation Example 1 A-1A-1 단분산Monodispersion 15.515.5 2.802.80 3.453.45 제조예 2Production Example 2 A-2A-2 단분산Monodispersion 12.312.3 2.502.50 3.483.48 제조예 3Production Example 3 A-3A-3 단분산Monodispersion 7.87.8 1.901.90 3.413.41 제조예 4Preparation Example 4 B-1B-1 응집Cohesion 7.47.4 1.801.80 3.203.20 제조예 5Preparation Example 5 B-2B-2 응집Cohesion 5.25.2 1.501.50 3.153.15 제조예 6Preparation Example 6 B-3B-3 응집Cohesion 3.23.2 1.201.20 3.213.21 제조예 7Preparation Example 7 B-4B-4 응집Cohesion 2.82.8 1.181.18 3.193.19

* 표에서 (A)는 코발트산 리튬(A), (B)는 코발트산 리튬(B)를 나타낸다.In the table, (A) represents lithium cobalt (A), and (B) represents lithium cobalt (B).

본 발명에서 코발트산 리튬(A)의 가압밀도는, 3.3~3.7g/㎤, 바람직하게는 3.5~3.7g/㎤가 바람직하다. 또한, 본 발명에서 코발트산 리튬(B)의 가압밀도는, 3.1~3.5g/㎤, 바람직하게는 3.13.3g/㎤가 바람직하다.In the present invention, the pressure density of lithium cobalt (A) is 3.3 to 3.7 g / cm 3, preferably 3.5 to 3.7 g / cm 3. In the present invention, the pressurized density of lithium cobalt (B) is preferably 3.1 to 3.5 g / cm 3, preferably 3.13.3 g / cm 3.

본 발명에서 코발트산 리튬(A)와 코발트산 리튬(B)의 가압밀도차는, 0.2g/㎤이상, 바람직하게는 0.8~1.5g/㎤가 바람직하다.In the present invention, the pressure density difference between lithium cobalt (A) and lithium cobalt (B) is preferably 0.2 g / cm 3 or more, preferably 0.8 to 1.5 g / cm 3.

실시예 1Example 1

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 95중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 5중량부를, 소형의 리본믹서로 균일하게 혼합하여 코발트산 리 튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 15.0㎛, 탭밀도 2.75g/㎤, 가압밀도 3.65g/㎤였다.95 parts by weight of lithium cobalt acid (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and lithium cobalt acid having an average particle diameter of 3.2 µm and 1.20 g / cm 3 of a tap density obtained in Production Example 6 5 parts by weight of (B-3) were uniformly mixed with a small ribbon mixer to produce lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 15.0 micrometers, tap density 2.75g / cm <3>, and pressurization density 3.65g / cm <3>.

실시예 2Example 2

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 70중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 30중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 11.9㎛, 탭밀도 2.40g/㎤, 가압밀도 3.92g/㎤였다.70 parts by weight of lithium cobalt acid (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and lithium cobalt acid having an average particle diameter of 3.2 µm and a tap density of 1.20 g / cm 3 obtained in Production Example 6 (B-3) 30 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 11.9 micrometers, tap density 2.40 g / cm <3>, and pressurization density 3.92 g / cm <3>.

실시예 3Example 3

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 70중량부와, 제조예 5에서 얻어진 평균입자경 5.2㎛, 탭밀도 1.50g/㎤의 코발트산 리튬(B-2) 30중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 12.8㎛, 탭밀도 2.53g/㎤, 가압밀도 3.82g/㎤였다.70 parts by weight of lithium cobalt acid (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and an average particle diameter of 5.2 µm and 1.50 g / cm 3 of lithium cobalate having a tap density of 1.50 g / cm 3. (B-2) 30 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 12.8 micrometers, tap density 2.53g / cm <3>, and pressurization density 3.82g / cm <3>.

실시예 4Example 4

제조예 2에서 얻어진 평균입자경 12.3㎛, 탭밀도 2.50g/㎤의 코발트산 리튬(A-2) 80중량부와, 제조예 5에서 얻어진 평균입자경 5.2㎛, 탭밀도 1.50g/㎤의 코발트산 리튬(B-2) 20중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 10.5㎛, 탭밀도 2.40g/㎤, 가압밀도 3.75g/㎤였다. 80 parts by weight of lithium cobalt oxide (A-2) having an average particle diameter of 12.3 µm and a tap density of 2.50 g / cm 3 obtained in Production Example 2, and lithium cobaltate having an average particle diameter of 5.2 µm and 1.50 g / cm 3 of a tap density obtained in Production Example 5. (B-2) 20 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 10.5 micrometers, tap density 2.40g / cm <3>, and pressurization density 3.75g / cm <3>.                     

실시예 5Example 5

제조예 2에서 얻어진 평균입자경 12.3㎛, 탭밀도 2.50g/㎤의 코발트산 리튬(A-2) 60중량부와, 제조예 4에서 얻어진 평균입자경 7.4㎛, 탭밀도 1.80g/㎤의 코발트산 리튬(B-1) 40중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 10.1㎛, 탭밀도 2.35g/㎤, 가압밀도 3.65g/㎤였다.60 parts by weight of lithium cobalt acid (A-2) having an average particle diameter of 12.3 µm and a tap density of 2.50 g / cm 3 obtained in Production Example 2, and lithium cobalt acid having an average particle diameter of 7.4 µm and a tap density of 1.80 g / cm 3 obtained in Production Example 4. 40 parts by weight of (B-1) were uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 10.1 micrometers, tap density 2.35 g / cm <3>, and pressurization density 3.65 g / cm <3>.

실시예 6Example 6

제조예 3에서 얻어진 평균입자경 7.8㎛, 탭밀도 1.90g/㎤의 코발트산 리튬(A-3) 85중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 15중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 7.0㎛, 탭밀도 1.83g/㎤, 가압밀도 3.55g/㎤였다.85 parts by weight of lithium cobalt oxide (A-3) having an average particle diameter of 7.8 μm and a tap density of 1.90 g / cm 3 obtained in Production Example 3, and an average particle diameter of 3.2 μm and 1.20 g / cm 3 of lithium cobalt acid having a tap density of 1.20 g / cm 3. (B-3) 15 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 7.0 micrometers, tap density 1.83g / cm <3>, and pressurization density 3.55g / cm <3>.

실시예 7Example 7

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 60중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 40중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 7.8㎛, 탭밀도 1.88g/㎤, 가압밀도 3.50g/㎤였다.60 parts by weight of lithium cobalt oxide (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and lithium cobalt acid having an average particle diameter of 3.2 µm and a tap density of 1.20 g / cm 3 obtained in Production Example 6 (B-3) 40 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 7.8 micrometers, tap density 1.88 g / cm <3>, and pressurization density 3.50 g / cm <3>.

실시예 8Example 8

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 70중량부와, 제조예 7에서 얻어진 평균입자경 2.8㎛, 탭밀도 1.18g/㎤의 Al 첨가 코발트산 리튬(LiCo0.98Al0.02O2)(B-4) 30중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 7.7㎛, 탭밀도 2.38g/㎤, 가압밀도 3.89g/㎤였다.70 parts by weight of lithium cobalt oxide (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and an Al-added cobalt of 2.8 µm and a tap density of 1.18 g / cm 3, obtained in Production Example 7 30 parts by weight of lithium acid (LiCo 0.98 Al 0.02 O 2 ) (B-4) was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobaltate was 7.7 micrometers, tap density 2.38g / cm <3>, and pressurization density 3.89g / cm <3>.

실시예 9Example 9

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 90중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 10중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 13.8㎛, 탭밀도 2.65g/㎤, 가압밀도 3.72g/㎤였다.90 parts by weight of lithium cobalt acid (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and lithium cobalt acid having an average particle diameter of 3.2 µm and a tap density of 1.20 g / cm 3 obtained in Production Example 6 (B-3) 10 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 13.8 micrometers, tap density 2.65g / cm <3>, and pressurization density 3.72g / cm <3>.

실시예 10Example 10

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 90중량부와, 제조예 4에서 얻어진 평균입자경 7.4㎛, 탭밀도 1.80g/㎤의 코발트산 리튬(B-1) 10중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 14.8㎛, 탭밀도 2.70g/㎤, 가압밀도 3.60g/㎤였다.90 parts by weight of lithium cobalt acid (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and an average particle diameter of 7.4 µm and a lithium density of 1.80 g / cm 3, obtained in Production Example 4 10 parts by weight of (B-1) was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 14.8 micrometers, tap density 2.70g / cm <3>, and pressurization density 3.60g / cm <3>.

실시예 11Example 11

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 80중량부와, 제조예 6에서 얻어진 평균입자경 3.2㎛, 탭밀도 1.20g/㎤의 코발트산 리튬(B-3) 20중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 13.2㎛, 탭밀도 2.58g/㎤, 가압밀도 3.74g/㎤였다.80 parts by weight of lithium cobalt oxide (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and lithium cobalt acid having an average particle diameter of 3.2 µm and 1.20 g / cm 3 of a tap density obtained in Production Example 6 (B-3) 20 parts by weight of the mixture was uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobaltate was 13.2 micrometers, tap density 2.58 g / cm <3>, and pressurization density 3.74 g / cm <3>.

실시예 12Example 12

제조예 1에서 얻어진 평균입자경 15.5㎛, 탭밀도 2.80g/㎤의 코발트산 리튬(A-1) 80중량부와, 제조예 4에서 얻어진 평균입자경 7.4㎛, 탭밀도 1.80g/㎤의 코발트산 리튬(B-1) 20중량부를 균일하게 혼합하여 코발트산 리튬을 제조하였다. 얻어진 코발트산 리튬의 평균입경은 13.8㎛, 탭밀도 2.62g/㎤, 가압밀도 3.58g/㎤였다.80 parts by weight of lithium cobalt oxide (A-1) having an average particle diameter of 15.5 µm and a tap density of 2.80 g / cm 3 obtained in Production Example 1, and an average particle diameter of 7.4 µm and a lithium density of 1.80 g / cm 3, obtained in Production Example 4 (B-1) 20 parts by weight of uniformly mixed to prepare lithium cobalt acid. The average particle diameter of the obtained lithium cobalt acid was 13.8 micrometers, tap density 2.62 g / cm <3>, and pressurization density 3.58 g / cm <3>.

상기 실시예 1~12에서, 코발트산 리튬(A), (B)를 혼합하여 얻어진 코발트산 리튬을 표 2와 표 3에 정리하여 나타낸다. In the said Examples 1-12, the lithium cobaltate obtained by mixing lithium cobalt (A) and (B) is put together in Table 2 and Table 3, and is shown.                     

(A)
탭밀도
(g/㎤)
(A)
Tap density
(g / cm3)
(B)
탭밀도
(g/㎤)
(B)
Tap density
(g / cm3)
탭밀도차
(g/㎤)
Tap density difference
(g / cm3)
배합비
A:B
Compounding cost
A: B
혼합탭밀도
(g/㎤)
Mixed tap density
(g / cm3)
평균입자경
(㎛)
Average particle size
(Μm)
실시예 1 Example 1 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 95:595: 5 2.752.75 15.015.0
실시예 2 Example 2 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 70:3070:30 2.402.40 11.911.9
실시예 3 Example 3 2.80
(A-1)
2.80
(A-1)
1.50
(B-2)
1.50
(B-2)
1.301.30 70:3070:30 2.532.53 12.812.8
실시예 4 Example 4 2.50
(A-2)
2.50
(A-2)
1.50
(B-2)
1.50
(B-2)
1.001.00 80:2080:20 2.402.40 10.510.5
실시예 5 Example 5 2.50
(A-2)
2.50
(A-2)
1.80
(B-1)
1.80
(B-1)
0.700.70 60:4060:40 2.352.35 10.110.1
실시예 6 Example 6 1.90
(A-3)
1.90
(A-3)
1.20
(B-3)
1.20
(B-3)
0.700.70 85:1585:15 1.831.83 7.07.0
실시예 7 Example 7 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 60:4060:40 1.881.88 7.87.8
실시예 8 Example 8 2.80
(A-1)
2.80
(A-1)
1.18
(B-4)
1.18
(B-4)
1.621.62 70:3070:30 2.382.38 7.77.7
실시예 9 Example 9 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 90:1090:10 2.652.65 13.813.8
실시예 10 Example 10 2.80
(A-1)
2.80
(A-1)
1.80
(B-1)
1.80
(B-1)
1.001.00 90:1090:10 2.702.70 14.814.8
실시예 11 Example 11 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 80:2080:20 2.582.58 13.213.2
실시예 12 Example 12 2.80
(A-1)
2.80
(A-1)
1.80
(B-1)
1.80
(B-1)
1.001.00 80:2080:20 2.622.62 13.813.8

(A)
가압밀도
(g/㎤)
(A)
Pressure density
(g / cm3)
(B)
가압밀도
(g/㎤)
(B)
Pressure density
(g / cm3)
가압
밀도차
(g/㎤)
Pressure
Density difference
(g / cm3)
배합비
A:B
Compounding cost
A: B
혼합
가압밀도
(g/㎤)
mix
Pressure density
(g / cm3)
평균입자경
(㎛)
Average particle size
(Μm)
실시예 1 Example 1 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 95:595: 5 3.653.65 15.015.0
실시예 2 Example 2 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 70:3070:30 3.953.95 11.911.9
실시예 3 Example 3 3.45
(A-1)
3.45
(A-1)
3.15
(B-2)
3.15
(B-2)
0.300.30 70:3070:30 3.823.82 12.812.8
실시예 4 Example 4 3.48
(A-2)
3.48
(A-2)
3.15
(B-2)
3.15
(B-2)
0.330.33 80:2080:20 3.753.75 10.510.5
실시예 5 Example 5 3.48
(A-2)
3.48
(A-2)
3.20
(B-1)
3.20
(B-1)
0.280.28 60:4060:40 3.653.65 10.110.1
실시예 6 Example 6 3.41
(A-3)
3.41
(A-3)
3.21
(B-3)
3.21
(B-3)
0.200.20 85:1585:15 3.553.55 7.07.0
실시예 7 Example 7 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 60:4060:40 3.503.50 7.87.8
실시예 8 Example 8 3.45
(A-1)
3.45
(A-1)
3.19
(B-4)
3.19
(B-4)
0.260.26 70:3070:30 3.893.89 7.77.7
실시예 9 Example 9 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 90:1090:10 3.723.72 13.813.8
실시예 10 Example 10 3.45
(A-1)
3.45
(A-1)
3.20
(B-1)
3.20
(B-1)
0.250.25 90:1090:10 3.603.60 14.814.8
실시예 11 Example 11 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 80:2080:20 3.743.74 13.213.2
실시예 12 Example 12 3.45
(A-1)
3.45
(A-1)
3.20
(B-1)
3.20
(B-1)
0.250.25 80:2080:20 3.583.58 13.813.8

* 표에서 A는 코발트산 리튬(A)를, B는 코발트산 리튬(B)를 나타낸다.In the table, A represents lithium cobalt (A) and B represents lithium cobalt (B).

비교예 1Comparative Example 1

제조예 2에서 얻어진 평균입자경 12.3㎛, 탭밀도 2.50g/㎤, 가압밀도 3.48g/㎤의 코발트산 리튬(LiCoO2)을 비교예로 나타낸다.The lithium cobaltate (LiCoO 2 ) having an average particle diameter of 12.3 μm, a tap density of 2.50 g / cm 3, and a press density of 3.48 g / cm 3 obtained in Production Example 2 is shown as a comparative example.

이 코발트산 리튬의 SEM상은, 1차 입자가 가지런한 단분산된 코발트산 리튬(A)이다.The SEM image of this lithium cobalt acid is mono-dispersed lithium cobalt acid (A) with a primary particle.

다음으로, 본 발명에서 코발트산 리튬(A)와 코발트산 리튬(B)의 혼합을 바꾸었을 경우에 얻어지는 코발트산 리튬의 비교예를 나타낸다. Next, the comparative example of the lithium cobalt oxide obtained when the mixture of lithium cobalt (A) and lithium cobalt (B) is changed in this invention is shown.                     

제조예 8 (비교제조예)Preparation Example 8 (Comparative Production Example)

탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 1000~1050℃로 10시간 유지하여 소성처리하고, 얻어진 소성물을 대기중에서 분쇄, 분급하는 것으로 평균입자경 4.5㎛, 탭밀도 1.60g/㎤, 가압밀도 3.25g/㎤의 코발트산 리튬(LiCoO2)을 얻었다.Lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a homogeneous mixture, and then calcined by holding at 1000 to 1050 ° C for 10 hours. The resulting calcined product was pulverized and classified in the air to have an average particle size of 4.5. Lithium cobalt acid (LiCoO 2 ) having a thickness of 1. µm, a tap density of 1.60 g / cm 3, and a press density of 3.25 g / cm 3 was obtained.

이 코발트산 리튬은 1차 입자가 단분산된 코발트산 리튬(C-1)이었다.This lithium cobaltate was lithium cobalt oxide (C-1) in which primary particles were monodispersed.

제조예 9 (비교제조예)Preparation Example 9 (Comparative Production Example)

탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 800~850℃로 10시간 유지하여 소성처리하고, 얻어진 소성물을 대기중에서 분쇄, 분급하는 것으로 평균입자경 11.0㎛, 탭밀도 2.20g/㎤, 가압밀도 3.30g/㎤의 코발트산 리튬(LiCoO2)을 얻었다.Lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a homogeneous mixture, and then calcined by holding at 800 to 850 ° C. for 10 hours. Lithium cobalt acid (LiCoO 2 ) having a thickness of 2. μm, a tap density of 2.20 g / cm 3, and a press density of 3.30 g / cm 3 was obtained.

이 코발트산 리튬은 1차 입자가 응집된 코발트산 리튬(C-2)였다.This lithium cobaltate was lithium cobalt oxide (C-2) in which primary particles were aggregated.

제조예 10 (비교제조예)Preparation Example 10 (Comparative Production Example)

탄산리튬과 산화코발트를 Li/Co원자비가 1.00이 되도록 혼합하여 균일한 혼합물을 조제하고, 1000~1050℃로 10시간 유지하여 소성처리하고, 얻어진 소성물을 대기중에서 분쇄, 분금하는 것으로 평균입자경 5.0㎛, 탭밀도 1.32g/㎤, 가압밀도 3.12g/㎤의 코발트산 리튬(LiCoO2)을 얻었다.Lithium carbonate and cobalt oxide were mixed to have a Li / Co atomic ratio of 1.00 to prepare a uniform mixture, and then calcined by holding at 1000 to 1050 ° C. for 10 hours. Lithium cobalt acid (LiCoO 2 ) having a micrometer, a tap density of 1.32 g / cm 3, and a press density of 3.12 g / cm 3 was obtained.

이 코발트산 리튬은 1차 입자가 단분산된 코발트산 리튬(C-3)이었다.This lithium cobaltate was lithium cobalt oxide (C-3) in which primary particles were monodispersed.

비교예 2Comparative Example 2

제조예 8에서 얻어진 코발트산 리튬(C-1) 80중량부와, 제조예 6에서 얻어진 코발트산 리튬(B-3) 20중량부를 소형 리본믹서로 균일하게 혼합하여 코발트산 리튬을 제조하였다.80 parts by weight of lithium cobalt (C-1) obtained in Production Example 8 and 20 parts by weight of lithium cobalt (B-3) obtained in Production Example 6 were uniformly mixed with a small ribbon mixer to prepare lithium cobalt acid.

얻어진 코발트산 리튬의 평균입자경은 3.5㎛, 탭밀도 1.32g/㎤, 가압밀도 3.22g/㎤였다.The average particle diameter of the obtained lithium cobaltate was 3.5 micrometers, tap density 1.32 g / cm <3>, and pressurization density 3.22 g / cm <3>.

비교예 3Comparative Example 3

제조예 9에서 얻어진 코발트산 리튬(C-2) 80중량부와, 제조예 6에서 얻어진 코발트산 리튬(B-3) 20중량부를 소형 리본믹서로 균일하게 혼합하여 코발트산 리튬을 제조하였다.80 parts by weight of lithium cobalt (C-2) obtained in Production Example 9 and 20 parts by weight of lithium cobalt (B-3) obtained in Production Example 6 were uniformly mixed with a small ribbon mixer to prepare lithium cobalt acid.

얻어진 코발트산 리튬의 평균입자경은 11.2㎛, 탭밀도 2.15g/㎤, 가압밀도 3.45g/㎤였다.The average particle diameter of the obtained lithium cobaltate was 11.2 micrometers, tap density 2.15 g / cm <3>, and pressurization density 3.45 g / cm <3>.

비교예 4Comparative Example 4

제조예 1에서 얻어진 코발트산 리튬(A-1) 80중량부와, 제조예 9에서 얻어진 코발트산 리튬(C-2) 20중량부를 소형 리본믹서로 균일하게 혼합하여 코발트산 리튬을 제조하였다.80 parts by weight of lithium cobalt (A-1) obtained in Production Example 1 and 20 parts by weight of lithium cobalt (C-2) obtained in Production Example 9 were uniformly mixed with a small ribbon mixer to prepare lithium cobalt acid.

얻어진 코발트산 리튬의 평균입자경은 11.2㎛, 탭밀도 2.56g/㎤, 가압밀도 3.37g/㎤였다.The average particle diameter of the obtained lithium cobalt acid was 11.2 micrometers, tap density 2.56 g / cm <3>, and pressurization density 3.37 g / cm <3>.

비교예 5Comparative Example 5

제조예 1에서 얻어진 코발트산 리튬(A-1) 80중량부와, 제조예 10에서 얻어진 코발트산 리튬(C-3) 20중량부를 소형 리본믹서로 균일하게 혼합하여 코발트산 리튬 을 제조하였다.80 parts by weight of lithium cobalt (A-1) obtained in Production Example 1 and 20 parts by weight of lithium cobalt (C-3) obtained in Production Example 10 were uniformly mixed with a small ribbon mixer to produce lithium cobalt acid.

얻어진 코발트산 리튬의 평균입자경은 13.4㎛, 탭밀도 2.62g/㎤, 가압밀도 3.40g/㎤였다.The average particle diameter of the obtained lithium cobalt acid was 13.4 micrometers, tap density 2.62 g / cm <3>, and pressurization density 3.40 g / cm <3>.

비교예 6Comparative Example 6

제조예 1에서 얻어진 코발트산 리튬(A-1) 50중량부와, 제조예 6에서 얻어진 코발트산 리튬(B-3) 50중량부를 소형 리본믹서로 균일하게 혼합하여 코발트산 리튬을 제조하였다.50 parts by weight of lithium cobalt (A-1) obtained in Production Example 1 and 50 parts by weight of lithium cobalt (B-3) obtained in Production Example 6 were uniformly mixed with a small ribbon mixer to produce lithium cobalt acid.

얻어진 코발트산 리튬의 평균입자경은 9.5㎛, 탭밀도 1.71g/㎤, 가압밀도 3.42g/㎤였다.The average particle diameter of the obtained lithium cobalt acid was 9.5 micrometers, tap density 1.71 g / cm <3>, and pressurization density 3.42 g / cm <3>.

코발트산 리튬Lithium cobalt 평균입자경
(㎛)
Average particle size
(Μm)
탭밀도
(g/㎤)
Tap density
(g / cm3)
가압밀도
(g/㎤)
Pressure density
(g / cm3)
제조예 2 Production Example 2 A-2A-2 단분산Monodispersion 12.312.3 2.502.50 3.483.48 제조예 8 Preparation Example 8 C-1C-1 단분산Monodispersion 4.54.5 1.601.60 3.253.25 제조예 9 Preparation Example 9 C-2C-2 응집Cohesion 11.011.0 2.202.20 3.303.30 제조예 10 Preparation Example 10 C-3C-3 단분산Monodispersion 5.05.0 1.321.32 3.123.12

(A)
탭밀도
(g/㎤)
(A)
Tap density
(g / cm3)
(B)
탭밀도
(g/㎤)
(B)
Tap density
(g / cm3)
탭밀도차
(g/㎤)
Tap density difference
(g / cm3)
배합비
A:B
Compounding cost
A: B
혼합탭밀도
(g/㎤)
Mixed tap density
(g / cm3)
평균입자경
(㎛)
Average particle size
(Μm)
비교예 1 Comparative Example 1 2.50
(A-2)
2.50
(A-2)
-- -- 100100 2.502.50 12.312.3
비교예 2 Comparative Example 2 1.60
(C-1)
1.60
(C-1)
1.20
(B-3)
1.20
(B-3)
0.400.40 80:2080:20 1.321.32 3.53.5
비교예 3 Comparative Example 3 2.20
(C-2)
2.20
(C-2)
1.20
(B-3)
1.20
(B-3)
1.001.00 80:2080:20 2.152.15 11.211.2
비교예 4 Comparative Example 4 2.80
(A-1)
2.80
(A-1)
2.20
(C-2)
2.20
(C-2)
0.600.60 80:2080:20 2.562.56 11.211.2
비교예 5 Comparative Example 5 2.80
(A-1)
2.80
(A-1)
1.32
(C-3)
1.32
(C-3)
1.481.48 80:2080:20 2.622.62 13.413.4
비교예 6 Comparative Example 6 2.80
(A-1)
2.80
(A-1)
1.20
(B-3)
1.20
(B-3)
1.601.60 50:5050:50 1.711.71 9.59.5

(A)
가압밀도
(g/㎤)
(A)
Pressure density
(g / cm3)
(B)
가압밀도
(g/㎤)
(B)
Pressure density
(g / cm3)
가압
밀도차
(g/㎤)
Pressure
Density difference
(g / cm3)
배합비
A:B
Compounding cost
A: B
혼합
가압밀도
(g/㎤)
mix
Pressure density
(g / cm3)
평균입자경
(㎛)
Average particle size
(Μm)
비교예 1 Comparative Example 1 3.48
(A-2)
3.48
(A-2)
-- -- 100100 3.483.48 12.312.3
비교예 2 Comparative Example 2 3.25
(C-1)
3.25
(C-1)
3.21
(B-3)
3.21
(B-3)
0.040.04 80:2080:20 3.223.22 3.53.5
비교예 3 Comparative Example 3 3.30
(C-2)
3.30
(C-2)
3.21
(B-3)
3.21
(B-3)
0.090.09 80:2080:20 3.453.45 11.211.2
비교예 4 Comparative Example 4 3.45
(A-1)
3.45
(A-1)
3.30
(C-2)
3.30
(C-2)
0.150.15 80:2080:20 3.373.37 11.211.2
비교예 5 Comparative Example 5 3.45
(A-1)
3.45
(A-1)
3.12
(C-3)
3.12
(C-3)
0.330.33 80:2080:20 3.403.40 13.413.4
비교예 6 Comparative Example 6 3.45
(A-1)
3.45
(A-1)
3.21
(B-3)
3.21
(B-3)
0.240.24 50:5050:50 3.423.42 9.59.5

다음으로, 본 발명의 코발트산 리튬을 양극활물질로서 이용한 2차 전지의 안전성평가 및 급속충방전시험의 결과를 나타낸다.Next, the result of the safety evaluation and the rapid charge / discharge test of the secondary battery which used the lithium cobalt acid of this invention as a positive electrode active material is shown.

(안전성평가)(Safety Assessment)

실시예 2의 코발트산 리튬 및 비교예 1의 코발트산 리튬(A)를 각각 양극활물질로 이용하였다. 이 양극활물질을 알루미늄박 위에 도포하고, 이 양극판을 이용하여 세퍼레이터, 음극, 양극, 집전체, 장착금구, 외부단자, 전해액 등의 각 부재를 사용하여 리튬이온 2차 전지를 작성하였다. 이 중에서 음극은 금속리튬을 이용하고, 전해액으로는 EC(에틸렌카보네이트)와 MEC(에틸메틸카보네이트)의 1:1 혼합용액 1리터에 LiPF6 1몰을 용해한 것을 이용하였다. 전지작성 후, Li/Li+ 4.3V로 충전 후 아세톤으로 충분히 세정하고 건조하였다. 이 전극을 전해액 EC(에틸렌카보네이트)와 MEC(에틸메틸카보네이트)의 1:1 혼합용액과 함께 용기에 밀봉하고, 그 후 DSC측정에 의한 안정성시험을 행하였다. 그 결과를 도 3에 나타낸다.Lithium cobalt acid of Example 2 and lithium cobalt acid (A) of Comparative Example 1 were used as positive electrode active materials, respectively. This positive electrode active material was applied onto an aluminum foil, and a lithium ion secondary battery was prepared by using each member such as a separator, a negative electrode, a positive electrode, a current collector, a mounting bracket, an external terminal, and an electrolyte solution using the positive electrode plate. Among them, metal lithium was used as the negative electrode, and an electrolyte solution in which 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 mixed solution of EC (ethylene carbonate) and MEC (ethyl methyl carbonate) was used. After cell preparation, the cells were charged with Li / Li + 4.3 V, sufficiently washed with acetone and dried. The electrode was sealed in a container with a 1: 1 mixed solution of electrolytic solution EC (ethylene carbonate) and MEC (ethyl methyl carbonate), and then subjected to stability test by DSC measurement. The result is shown in FIG.

도 3의 결과로부터, 실시예 2의 제1발열 피크(저온측 180℃부근)가 비교예 1의 제1발열 피크(저온측 180℃부근)에 비해서 작고, 발열량이 적은 것을 알 수 있다. 실시예 2의 활물질이 비교예 1의 활물질보다 안전성이 높은 것을 알았다. 일반적으로 미립자는 비표면적이 크고 반응성이 높기때문에 안전성은 낮다. 그러나, 실시예 2의 코발트산 리튬은, 조립자(코발트산 리튬(A))도 공존함으로써, 조립자의 높은 안전성이 미립자(코발트산 리튬(B))의 안전성 낮음을 없애는 효과가 발현된 것에 의한다고 추측된다.From the results of FIG. 3, it can be seen that the first fever peak (near the low temperature side 180 ° C.) of Example 2 is smaller than the first fever peak (near the low temperature side 180 ° C.) of Comparative Example 1, and the heat generation amount is small. It was found that the active material of Example 2 was higher in safety than the active material of Comparative Example 1. In general, particulates have low safety because of their high specific surface area and high reactivity. However, the lithium cobalt oxide of Example 2 also coexists with coarse particles (lithium cobalt acid (A)), whereby the high safety of the coarse particles is effective in eliminating the low safety of fine particles (lithium cobalt acid (B)). I guess that.

(급속충방전시험)(Quick Charge / Discharge Test)

실시예 2의 코발트산 리튬 및 비교예 1의 코발트산 리튬(A)를 각각 양극활물질로 이용하였다. 이 양극활물질을 알루미늄박 위에 도포하고, 이 양극판을 이용하여 세퍼레이터, 음극, 양극, 집전체, 장착금구, 외부단자, 전해액 등의 각 부재를 사용하여 리튬이온 2차 전지를 작성하였다. 이 중에서 음극은 금속리튬을 이용하고, 전해액으로는 EC(에틸렌카보네이트)와 MEC(에틸메틸카보네이트)의 1:1 혼합용 액 1리터에 LiPF6 1몰을 용해한 것을 이용하였다.Lithium cobalt acid of Example 2 and lithium cobalt acid (A) of Comparative Example 1 were used as positive electrode active materials, respectively. This positive electrode active material was applied onto an aluminum foil, and a lithium ion secondary battery was prepared by using each member such as a separator, a negative electrode, a positive electrode, a current collector, a mounting bracket, an external terminal, and an electrolyte solution using the positive electrode plate. Among these, metal lithium was used as the negative electrode, and an electrolyte solution in which 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 mixture solution of EC (ethylene carbonate) and MEC (ethyl methyl carbonate) was used.

2.7V~4.3V(vs.Li/Li+)로 정전류충방전시험을 행하고, 그 충방전커브를 도 4에 나타낸다. 그 때, 0.2C→0.5C→1.0C→2.0C(1.0C→1시간에 방전, 2.0C→0.5시간에 방전)로 전류치를 올려서 급속충방전성능을 시험하였다. 양극 및 음극:금속Li, 전해액:1MLiPF6/EC+MEC, 충전방식: CCCV(0.5C, 5H), 주사전위:2.7V, 4.3V.A constant current charge / discharge test is performed at 2.7 V to 4.3 V (vs. Li / Li + ), and the charge and discharge curve is shown in FIG. 4. At that time, the current value was increased by 0.2C → 0.5C → 1.0C → 2.0C (discharge at 1.0C → 1 hour, discharge at 2.0C → 0.5 hour) to test the rapid charge / discharge performance. Anode and cathode: Metal Li, electrolyte: 1 MLiPF 6 / EC + MEC, charging method: CCCV (0.5C, 5H), scanning potential: 2.7V, 4.3V.

도 4의 결과로부터, 실시예 2가 비교예 1에 비해서 충방전용량이 큰 것을 알 수 있다. 이것은, 실시예 2의 코발트산 리튬에 함유되어 있는 미립자(코발트산 리튬(B))가 급속충방전이 뛰어나기 때문에 좋은 특성이 나왔다고 예상된다.4 shows that Example 2 has a larger charge / discharge capacity than Comparative Example 1. This is expected to have good characteristics because the fine particles (lithium cobalt (B)) contained in the lithium cobalt salt of Example 2 were excellent in rapid charge and discharge.

대립자는 높은 안전성에 기여하고, 소립자는 대립자의 틈새에 들어간 분체간의 도전성 상승에 의한 높은 급속충방전성능을 얻을 수 있다. 그러나 가압밀도가 너무 높으면(4.0이상) 전극으로 하였을 때 전극밀도가 너무 높아지고, 전해액의 전극에의 함침이 충분하지 않아 급속충방전성능이 나빠져 적절하지 않다. 또한 가압밀도, 탭밀도가 적절한 값이 아니면 충분한 전극밀도을 얻을 수 없다.The alleles contribute to high safety, and the small particles can obtain high rapid charge and discharge performance due to the increase in conductivity between the powders entering the gaps of the alleles. However, if the pressurization density is too high (4.0 or more), the electrode density becomes too high when the electrode is used, the impregnation of the electrolyte solution is insufficient, and the rapid charge / discharge performance deteriorates, which is not appropriate. Moreover, sufficient electrode density cannot be obtained unless the press density and tap density are appropriate values.

다음에, 본 발명의 코발트산 리튬의 가압밀도에 대해서 설명한다.Next, the pressurized density of the lithium cobalt acid of this invention is demonstrated.

본 발명의 코발트산 리튬은, 1차 입자가 단분산되어 있는 코발트산 리튬(A)와, 1차 입자가 응집되어 있는 코발트산 리튬(B)의 혼합물로 이루어지고, 이 혼합물의 탭밀도가 1.8g/㎤ 이상이고, 또한 가압밀도가 3.5~4.0g/㎤이다.The lithium cobalt salt of the present invention is composed of a mixture of lithium cobalt acid (A) in which primary particles are monodispersed and lithium cobalt acid (B) in which primary particles are aggregated, and the tap density of the mixture is 1.8. g / cm <3> or more, and pressurization density is 3.5-4.0 g / cm <3>.

상기 본 발명의 코발트산 리튬의 바람직한 실시태양으로는 탭밀도가 1.7~3.0g/㎤이고, 가압밀도가 3.3~3.7g/㎤인 코발트산 리튬(A)와, 탭밀도가 1.0~2.0g/㎤이고 가압밀도가 3.1~3.5g/㎤인 코발트산 리튬(B)와의 혼합물로 이루어지며, 또한 코발트산 리튬(A)와 코발트산 리튬(B)의 탭밀도의 차가 0.20g/㎤ 이상이고, 가압밀도의 차가 0.1g/㎤ 이상인 코발트산 리튬이 바람직하다.As a preferred embodiment of the lithium cobalt oxide of the present invention, lithium cobalt oxide (A) having a tap density of 1.7 to 3.0 g / cm 3, a press density of 3.3 to 3.7 g / cm 3, and a tap density of 1.0 to 2.0 g / cm 3 It consists of a mixture with lithium cobalt oxide (B) of 3 cm <3> and a press density of 3.1-3.5 g / cm <3>, and the difference of the tap density of lithium cobalt (A) and lithium cobalt (B) is 0.20 g / cm <3> or more, Lithium cobalt acid having a difference in pressure density of 0.1 g / cm 3 or more is preferable.

이상 설명한 바와 같이, 본 발명의 코발트산 리튬은, 다른 2종류의 코발트산 리튬을 혼합함으로써, 높은 가압밀도와 적당한 탭밀도를 얻을 수 있으며, 그것을 양극활물질로서 양극판에 사용하면, 전극밀도를 높이는 효과를 얻을 수 있다.As described above, the lithium cobalt oxide of the present invention can obtain a high press density and an appropriate tap density by mixing two different kinds of lithium cobalt oxides, and when used as a cathode active material in a positive electrode plate, the effect of increasing the electrode density is achieved. Can be obtained.

또한, 본 발명의 제조방법에 따르면, 양극활물질로 유용한 상기의 코발트산 리튬을 용이하게 얻을 수 있다.In addition, according to the production method of the present invention, the lithium cobaltate above useful as a cathode active material can be easily obtained.

또한, 본 발명에 따르면, 상기의 코발트산 리튬을 양극활물질로서 이용하는데 좋으며, 안전성 및 급속충방전이 우수한 비수전해질 2차 전지를 얻을 수 있다.In addition, according to the present invention, it is good to use the lithium cobalt oxide as a positive electrode active material, it is possible to obtain a nonaqueous electrolyte secondary battery excellent in safety and rapid charge and discharge.

Claims (7)

탭밀도 1.7~3.0g/㎤의 코발트산 리튬(A)와 탭밀도 1.0~2.0g/㎤의 코발트산 리튬(B)를, 중량비로 상기 코발트산 리튬(A):상기 코발트산 리튬(B)=95:5~60:40의 비율로, 상기 코발트산 리튬(A)와 상기 코발트산 리튬(B)의 탭밀도차가 0.20g/㎤ 이상이 되도록 혼합하고, 또한 상기 코발트산 리튬(A)는 1차 입자가 단분산되어 있고, 상기 코발트산 리튬(B)는 1차 입자가 응집되어 있는 것을 이용하여, 탭밀도가 1.8g/㎤ 이상이고, 또한 가압밀도가 3.5~4.0g/㎤인 코발트산 리튬을 제조하는 것을 특징으로 하는 코발트산 리튬의 제조방법.Lithium cobalt (A) having a tap density of 1.7 to 3.0 g / cm 3 and lithium cobalt oxide (B) having a tap density of 1.0 to 2.0 g / cm 3, in terms of a weight ratio of the above lithium cobalt (A): the lithium cobalt (B) At a ratio of = 95: 5 to 60:40, the cobalt acid (A) and the cobalt acid (B) are mixed so that the tap density difference is 0.20 g / cm 3 or more, and the lithium cobalt acid (A) is The primary particles are monodisperse, and the lithium cobalt (B) is cobalt having a tap density of 1.8 g / cm 3 or more and a press density of 3.5 to 4.0 g / cm 3 using the aggregated primary particles. A method for producing lithium cobalt acid, characterized by producing lithium acid. 제1항에 있어서, 상기 코발트산 리튬(A)의 평균입자경은 5~30㎛이고, 상기 코발트산 리튬(B)의 평균입자경은 0.1~10㎛인 코발트산 리튬의 제조방법.The method for producing lithium cobalt oxide according to claim 1, wherein the average particle diameter of the lithium cobalt acid (A) is 5 to 30 µm and the average particle diameter of the lithium cobalt acid (B) is 0.1 to 10 µm. 제1항 또는 제2항에 있어서, 상기 코발트산 리튬(A)는 하기 화학식 1로 표시되는 화합물이고, 상기 코발트산 리튬(B)는 하기 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물인 코발트산 리튬의 제조방법.The method according to claim 1 or 2, wherein the lithium cobalt acid (A) is a compound represented by the formula (1), the lithium cobalt acid (B) is a compound represented by the formula (1) or a compound represented by the formula (2) Method for producing lithium cobalt acid. <화학식 1><Formula 1> LiaCoO2 Li a CoO 2 (여기서 a는 0.2≤a≤1.2 범위내의 수를 나타낸다.)(Where a represents a number in the range of 0.2 ≦ a ≦ 1.2.) <화학식 2><Formula 2> LiaCo1-yMyO2-z Li a Co 1-y M y O 2-z (여기서 M은 Co를 제외한 천이금속원소 또는 원자번호 9 이상의 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 나타내고, a는 0.2≤a≤1.2, Y는 0<y≤0.4, z는 0≤z≤1.0 범위내의 수를 나타낸다.)(Where M represents at least one element selected from the group consisting of transition metal elements other than Co or elements having atomic number 9 or more, a is 0.2 ≦ a ≦ 1.2, Y is 0 <y ≦ 0.4, and z is 0 ≦ z) Represents a number within the range of ≤ 1.0.) 삭제delete 삭제delete 삭제delete 삭제delete
KR1020040013035A 2004-02-26 2004-02-26 Manufacturing method of lithium cobalt oxide KR101100295B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040013035A KR101100295B1 (en) 2004-02-26 2004-02-26 Manufacturing method of lithium cobalt oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040013035A KR101100295B1 (en) 2004-02-26 2004-02-26 Manufacturing method of lithium cobalt oxide

Publications (2)

Publication Number Publication Date
KR20050087303A KR20050087303A (en) 2005-08-31
KR101100295B1 true KR101100295B1 (en) 2011-12-28

Family

ID=37270590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040013035A KR101100295B1 (en) 2004-02-26 2004-02-26 Manufacturing method of lithium cobalt oxide

Country Status (1)

Country Link
KR (1) KR101100295B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395848B2 (en) * 2016-01-22 2019-08-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
JP7047216B2 (en) 2017-12-08 2022-04-05 エルジー エナジー ソリューション リミテッド Lithium cobalt oxide positive electrode active material, this manufacturing method, positive electrode including this and secondary battery
JP7149436B1 (en) * 2022-03-15 2022-10-06 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide

Also Published As

Publication number Publication date
KR20050087303A (en) 2005-08-31

Similar Documents

Publication Publication Date Title
EP3296267B1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
US7547493B2 (en) Lithium cobalt oxide, method for manufacturing the same, and nonaqueous electrolyte secondary battery
KR100790271B1 (en) Non-aqueous electrolyte secondary battery and production method thereof
KR101243912B1 (en) Positive active material, and positive electrode and lithium battery containing the material
KR101184851B1 (en) Positive Electrode Active Material of Lithium Secondary Battery, Process for Preparing the Same and Lithium Secondary Battery
KR101718057B1 (en) Positive active material, and positive electrode and lithium battery containing the material
US7132197B2 (en) Battery
JP4194027B2 (en) Method for producing lithium cobalt oxide for positive electrode active material of lithium secondary battery
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
US9406933B2 (en) Negative active material, negative electrode and lithium battery including negative active material, and method of manufacturing negative active material
KR20160085089A (en) Secondary Battery
JP4260302B2 (en) Aggregated granular lithium composite oxide, method for producing the same, and lithium secondary battery
JP2004006094A (en) Nonaqueous electrolyte secondary battery
EP1498966A1 (en) Cell
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
CN112424976A (en) Positive electrode active material and secondary battery
KR20030047734A (en) Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
KR101502898B1 (en) Composite anode active material for lithium rechargeable battery, its preparation and lithium battery using same
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
KR20150063265A (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP3916119B2 (en) Lithium cobaltate and method for producing the same, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
CN1665052B (en) Lithium cobalt dioxide, preparing method thereof and non-aqueous electrolyte secondary battery
KR20170074624A (en) Positive active material, lithium battery containing the material, and method of manufacturing the material
KR101100295B1 (en) Manufacturing method of lithium cobalt oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151211

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161209

Year of fee payment: 6