JP2023134292A - 銅-セラミックス接合基板およびその製造方法 - Google Patents

銅-セラミックス接合基板およびその製造方法 Download PDF

Info

Publication number
JP2023134292A
JP2023134292A JP2022039744A JP2022039744A JP2023134292A JP 2023134292 A JP2023134292 A JP 2023134292A JP 2022039744 A JP2022039744 A JP 2022039744A JP 2022039744 A JP2022039744 A JP 2022039744A JP 2023134292 A JP2023134292 A JP 2023134292A
Authority
JP
Japan
Prior art keywords
copper
ppm
copper plate
ceramic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022039744A
Other languages
English (en)
Inventor
整哉 結城
Masaya Yuki
祐基 寺本
yuki Teramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2022039744A priority Critical patent/JP2023134292A/ja
Priority to PCT/JP2022/043043 priority patent/WO2023176046A1/ja
Publication of JP2023134292A publication Critical patent/JP2023134292A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】銅-セラミックス接合基板において、外形サイズを大きく変更しなくても、良好なヒートサイクル特性を実現する。【解決手段】セラミックス基板と、セラミックス基板の少なくとも一方の面に接合される銅板と、を備え、銅板のビッカース硬さが42.5HV以下であり、銅板におけるマグネシウムの含有量が1ppm以下、ニッケルの含有量が2.5ppm以下、錫の含有量が0.05ppm以下、セレンの含有量が0.3ppm以下、テルルの含有量が0.07ppm以下、ビスマスの含有量が0.2ppm以下である、銅‐セラミックス接合基板である。【選択図】図1

Description

本発明は、銅-セラミックス接合基板およびその製造方法に関する。
電気自動車、電車、工作機械などの大電力を制御するためにパワーモジュールが使用されており、このようなパワーモジュール用の電気回路基板として、セラミックス板の表面にCuやAlなどの金属回路板を接合した金属-セラミックス接合基板が使用されている。この金属-セラミックス接合基板のセラミックス基板の一方の面には回路パターン金属板が形成され、他方の面には放熱金属板が形成される。
このような金属-セラミックス接合基板の製造方法として、活性金属とAgとCuとを混合したろう(Ag-Cu活性金属ろう)材を介在させて、加熱処理により金属板をセラミックスに接合する方法(活性金属ろう付け法)が知られている(例えば、特許文献1参照)。
パワーモジュール用の金属-セラミックス接合基板には、パワーモジュールの組み立て工程や、パワーモジュールの実使用環境下において、繰り返しの熱負荷が加わる。
例えば、パワーモジュールの組み立て工程において、前記回路パターン金属板には、半田接合法や微粒子金属焼結法などの接合法によってパワー半導体素子が搭載され、また前記放熱金属板には同様の接合法によってCuやAl、Al-SiC複合材などのベース板が接合される。その際、例えばトンネル(連続)炉内を通炉することにより加熱するため、前記接合基板には通炉処理による熱負荷が掛かる。
また例えば、パワーモジュールが実際に使用される状況においては、パワー半導体素子がスイッチング動作により発熱し、パワーモジュール動作停止時には冷却されるため、パワーモジュールにヒートサイクルの熱負荷が掛かる。
金属-セラミックス接合基板の回路板としては例えばCuやAlが用いられている。Alを使用すると、通炉処理やヒートサイクルなどの熱負荷が掛かり、セラミックス基板と金属回路板の熱膨張差により発生する熱応力を、Alが塑性変形することにより緩和することができるが、導電性、放熱性の面でCuの金属回路板よりも劣る。一方、Cuを金属回路板として使用した場合は、Alを使用したときよりも熱負荷が発生したときの信頼性に劣るという課題がある。
そのため、銅-セラミックス接合基板には、これらの熱負荷が掛かってもセラミックス基板が破壊し難い良好なヒートサイクル特性が求められている。
熱負荷によって生じるセラミックスへの熱応力を緩和する方法として、セラミックスに接合されている金属板の断面形状に段差形状を設ける方法(例えば、特許文献2参照)や、セラミックスに接合されている金属板の外周にディンプル形状を設ける方法(例えば、特許文献3参照)が提案されている。
特開平8-97554号公報 特開平10-125821号公報 特開2012-114203号公報
しかし、特許文献2や3に開示される方法では、金属板の表面に実装される電子部品の実装面積が減り、そのため銅-セラミックス接合基板の外形サイズ(面積)を大きくせざるを得なくなり、パワーモジュールが大型化してしまうことがあった。
そこで、本発明は、銅-セラミックス接合基板の外形サイズを変更しなくても、良好なヒートサイクル特性を実現する技術を提供することを目的とする。
本発明の第1の態様は、
セラミックス基板と、
前記セラミックス基板の少なくとも一方の面に接合される銅板と、を備え、
前記銅板のビッカース硬さが42.5HV以下であり、
前記銅板におけるマグネシウムの含有量が1ppm以下、ニッケルの含有量が2.5ppm以下、錫の含有量が0.05ppm以下、セレンの含有量が0.3ppm以下、テルルの含有量が0.07ppm以下、ビスマスの含有量が0.2ppm以下である、
銅-セラミックス接合基板である。
本発明の第2の態様は、第1の態様において、
380℃まで加熱し、10分間保持した後、40℃まで冷却するヒートサイクルを20回行った後、20℃まで放冷した前記銅板の熱負荷後のビッカース硬さが50HV以下である。
本発明の第3の態様は、第1又は2の態様において、
前記銅板における銀の含有量が0.1ppm~20ppmである。
本発明の第4の態様は、第3の態様において、
前記銅板におけるマグネシウム、ニッケル、錫、セレン、テルル、ビスマスおよび銀を除く不純物元素の総量が0.01ppm~12ppmである。
本発明の第5の態様は、第1~4の態様において、
前記銅板の材質が無酸素銅またはタフピッチ銅である。
本発明の第6の態様は、第1~5の態様において、
前記セラミックス基板と前記銅板との間に、ろう材から形成されるろう材接合層を備え、
前記銅板が前記ろう材接合層を介して前記セラミックス基板に接合されている。
本発明の第7の態様は、
セラミックス基板の少なくとも一方の面に銅板を配置し、加熱して接合する接合工程を有し、
前記銅板におけるマグネシウムの含有量が1ppm以下、ニッケルの含有量が2.5ppm以下、錫の含有量が0.05ppm以下、セレンの含有量が0.3ppm以下、テルルの含有量が0.07ppm以下、ビスマスの含有量が0.2ppm以下であり、
前記接合工程では、前記銅板の接合後のビッカース硬さが42.5HV以下となるように加熱する、
銅-セラミックス接合基板の製造方法。
本発明の第8の態様は、第7の態様において、
前記接合工程では、前記セラミックス基板に前記銅板を配置し、前記セラミックス基板と前記銅板を仮加圧した状態で加熱する。
本発明の第9の態様は、第7又は8の態様において、
前記銅板における、銀の含有量が0.1ppm~20ppmである。
本発明の第10の態様は、第7~9の態様において、
前記銅板におけるマグネシウム、ニッケル、錫、セレン、テルル、ビスマスおよび銀を除く不純物元素の総量が0.01ppm~12ppmである。
本発明の第11の態様は、第7~10の態様において、
前記銅板の材質が無酸素銅またはタフピッチ銅である。
本発明の第12の態様は、第7~11の態様において、
前記銅板をろう材を介して前記セラミックス基板の上に配置した後、加熱して接合する。
本発明の第13の態様は、第7~12の態様において、
前記接合工程では、500℃以上の温度域で6時間以上保持して加熱を行う。
本発明の第14の態様は、第7~13の態様において、
前記接合工程では、700℃以上の温度域で2時間以上保持して加熱を行う。
本発明の第15の態様は、第7~14の態様において、
前記接合工程における仮加圧の荷重圧力が0.5kPa~5kPaである。
本発明によれば、銅-セラミックス接合基板において、外形サイズを変更しなくても、良好なヒートサイクル特性を実現することができる。
図1は、本発明の一実施形態に係る銅-セラミックス接合基板の一例を模式的に示す断面図である。 図2は、実施例の接合基板における一方の面に形成された回路パターンの形状を説明するための概略図である。 図3は、実施例の接合基板における他方の面に形成された放熱板パターンの形状を説明するための概略図である。
<本発明者等が得た知見>
まず、本発明者等が得た知見について説明する。
銅-セラミックス接合基板(以下、単に接合基板ともいう)に使用する銅板には、一般に、無酸素銅(C1020)やタフピッチ銅(C1100)などの銅純度99.9質量%以上の純銅の板材が用いられる。しかし、同一規格(同一の種類の純銅、同一の質別)の銅板を使用したとしても、最終的に得られる銅-セラミックス接合基板でヒートサイクル特性が異なることが判明した。
この点について検討、調査したところ、ヒートサイクル特性の違いは、銅-セラミックス接合基板における銅板のビッカース硬さに起因していることが分かった。ビッカース硬さが大きい銅板ほど、ヒートサイクルの熱負荷により加工硬化が進みやすく、ヒートサイクル特性が低い傾向にあった。一般に、銅板は、セラミックス基板と接合する際、銅の軟化温度(例えば200℃)以上に保持されて焼きなまされるため、銅板に蓄積するひずみが減少し、それにともなってビッカース硬さは低下することになる。ただし、同一規格の銅板でも、圧延前の鋳造した銅ケークに含まれる微量不純物元素の量や圧延条件、熱処理条件などの製造条件が伸銅メーカー毎に異なると考えられ、接合基板の接合工程における銅結晶の回復・再結晶・粒成長の状態も異なり、これが最終的に得られる接合基板における銅板のビッカース硬さやそのヒートサイクル特性と関連していると推測される。
そこで本発明者は、銅板の接合後のビッカース硬さ、銅板に含まれる微量の不純物元素量、そして接合基板のヒートサイクル特性との関連性についてさらに検討を行った。
その結果、銅-セラミックス接合基板における銅板のビッカース硬さを所定の値以下に調整することで、高いヒートサイクル特性を得られることを見出した。しかも、銅板に含まれる特定の不純物元素の含有量を一定範囲に制御することにより、接合基板における銅板のビッカース硬さを小さく制御できることができることを見出した。
本発明は上記知見に基づいてなされたものである。
<本発明の一実施形態>
以下に、本発明に係る銅-セラミックス接合基板の実施形態について図面を用いて説明する。図1は、本発明の一実施形態に係る銅-セラミックス接合基板の一例を模式的に示す断面図である。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
(1)銅-セラミックス接合基板
まず、銅-セラミックス接合基板について説明する。ここでは、セラミックス基板の両面に銅板が接合された場合を一例として説明する。なお、本明細書では「銅-セラミックス接合基板」は、銅板に回路パターンを形成する前の回路作製前基板、銅板に回路パターンを形成した後の回路基板の両方を示す。以下、「銅-セラミックス接合基板」を単に「接合基板」ともいう。
図1に示すように、本実施形態の銅-セラミックス接合基板1(接合基板1)は、例えば、セラミックス基板10と、ろう材接合層11と、銅板12とを備えて構成される。接合基板1は、銅板12に所定のパターンを形成することで、銅-セラミックス回路基板(以下、回路基板ともいう)に加工される。
(セラミックス基板)
セラミックス基板10は、銅板12を支持固定し、さらには回路基板としたときは回路間や表裏間の絶縁性を具備させるためのものである。セラミックス基板10としては、例えば、アルミナ等を主成分とする酸化物系セラミックス基板、または、窒化アルミニウム、窒化ケイ素、炭化ケイ素等を主成分とする非酸化物系セラミックス基板を用いることができる。セラミックス基板10のサイズとしては、好ましくは、長さ5mm~200mm、幅5mm~200mm、厚さ0.2mm~3.0mmのものを、より好ましくは、長さ10mm~100mm、幅10mm~100mm、厚さ0.25mm~2.0mmの略矩形のものを用いることができる。
(ろう材接合層)
セラミックス基板10の両面には、ろう材接合層11が設けられている。ろう材接合層11は、セラミックス基板10と銅板12との間に介在し、これらを接合するためのものである。ろう材接合層11は、例えば金属成分として銀や銅を含み、さらに活性金属成分を含むろう材(活性金属含有ろう材)から形成される。ろう材接合層11は、後述する接合工程において、セラミックス基板10、ろう材および銅板12の各成分が反応して生成する層である。
ろう材接合層11の厚さは、特に限定されないが、接合基板1から作製される回路基板の耐熱衝撃性および接合性を確保する観点からは、3μm~50μmであることが好ましく、5~20μmであることがより好ましい。
ろう材における銀の含有量は、特に限定されないが、ろう材接合層11による接合強度などの信頼性を向上させる観点からは、例えば、30~95質量%であることが好ましく、50~90質量%であることがより好ましく、65~90質量%であることがさらに好ましい。なお、ろう材における銀の含有量とは、ろう材に含まれる金属成分の総質量に対する質量の割合を示すものとする。以下、銀以外の金属成分の含有量も同様に、ろう材に含まれる金属成分の総質量に対する割合である。
活性金属成分としては、例えば、チタンまたはジルコニウムから選ばれる少なくとも1種の活性金属を含むことが好ましい。ろう材における活性金属成分の含有量は、例えば、1.0~7.0質量%であることが好ましく、1.5~6.5質量%であることがより好ましい。これにより、セラミックス基板と銅板との接合性を向上、確保させることができる。活性金属含有ろう材が、銀-銅系の場合は、上述の銀と活性金属成分以外の金属成分(の残部)が銅の含有量となる。
なお、ろう材は、接合欠陥を低減してマイグレーションを抑制する観点から、金属成分として錫をさらに含んでもよい。錫の含有量は、例えば金属元素の合計に対して10質量%以下とするとよい。錫によれば、セラミックス基板と銅板との接合性をより高くすることができる。すなわち銀-銅系の活性金属含有ろう材の場合、例えば上述のようにろう材の金属成分中の銀の含有量が30~95質量%、活性金属の含有量が1.0~7.0質量%、錫の含有量が10質量%以下(好ましくは1~8質量%)であり、残部が銅からなる組成であることが好ましい。
(銅板)
セラミックス基板10の両面には、ろう材接合層11を介して銅板12が接合されている。銅板12は、銅および微量の不純物元素を含む純銅からなる板状部材である。2枚の銅板12のうち、一方の面に接合される銅板12aは、所定の回路パターンを形成するためのものである。他方の面に接合される銅板12bは、回路パターンに搭載される半導体素子等のチップ部品から発生する熱を逃がす放熱板パターンを形成するためのものである。
銅板12は、熱伝導率を向上させ、高い放熱性を実現する観点から、銅(Cu)の含有量が99.9質量%以上であり、99.96質量%以上の純銅であることが好ましい。また、銅板12には、不純物元素として、例えばマグネシウム(Mg)、ニッケル(Ni)、セレン(Se)、錫(Sn)、テルル(Te)、ビスマス(Bi)、シリコン(Si)、鉄(Fe)、銀(Ag)などが含まれる。
(銅板における不純物元素)
一般的に銅に元素を添加した場合、元素の含有量が銅に対する固溶限を超えると、元素は銅中で析出物を形成することになる。この析出物は、銅が加熱されたときの銅結晶のすべり運動、もしくは転位の移動や消滅を阻害し、銅の再結晶にともなうビッカース硬さの低減を阻害する要因となる。つまり、析出物は銅のビッカース硬さを上昇させる要因となる。本来であれば銅板12が熱負荷を受けたときに銅が再結晶することにより銅板12のビッカース硬さは低くなるが、析出物が銅の再結晶を阻害することで銅板12のビッカース硬さが十分に低減しなくなる。そして、銅-セラミックス接合基板1において、銅板12は熱負荷を繰り返し受けることにより、銅板とセラミックスとの熱膨張差に起因する熱応力が増大し、銅板12の加工硬化が進むことで、銅板12のビッカース硬さが大きくなり、セラミックス基板10にマイクロクラックなどが生じることとなる。
本発明者等は不純物の中でもビッカース硬さを上昇させやすい元素について検討を行ったところ、Mg、Ni、Se、Sn、TeおよびBiがビッカース硬さの上昇に特に大きく影響を与える元素であることを見出した。Mg、Se、Sn、TeおよびBiは、銅に対する固溶限が大きくないため、銅中で析出物を生成しやすい傾向がある。また、Niは、銅中に不可避的に混入する元素と析出物を生成しやすい傾向がある。
これらの不純物元素について、その含有量をさらに検討したところ、各不純物元素の含有量を以下のようにするとよいことが見出された。すなわち、Mgの含有量は1ppm以下、Niの含有量は2.5ppm以下、Seの含有量は0.3ppm以下、Snの含有量は0.05ppm以下、Teの含有量は0.07ppm以下、Biの含有量は0.2ppm以下に制御することが好ましい。これらの不純物元素の含有量を制御することにより、析出物の生成を抑制し、銅板12のビッカース硬さを低くし、かつ熱負荷によるビッカース硬さの上昇を低く抑制することができる。このような組成を有する銅板12によれば、ヒートサイクルなどの熱負荷による加工硬化を抑制することができる。つまり、銅-セラミックス接合基板1のヒートサイクル特性をより向上させることができる。なお、不純物元素の割合は「質量ppm」を意味するが、便宜上「ppm」と示す。また、不純物元素の含有量は、後述の実施例に示すように、グロー放電質量分析法(GDMS法)により測定される数値を示す。
以下、各不純物元素の含有量について説明する。
Mgの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷によるビッカース硬さの上昇を抑制する観点からは、1ppm以下であることが好ましく、0.5ppm以下であることがより好ましく、0.1ppm以下であることがさらに好ましい。また、Mgの含有量の下限は特にないが、下限値として0ppm(Mgを含有しない)としてもよく、0.01ppmとしてもよい。
Niの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷によるビッカース硬さの上昇を抑制する観点からは2.5ppm以下であることが好ましい。より好ましくは0.01ppm~2ppmであり、さらに好ましくは、0.1ppm~1.8ppmである。
Seの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷による上昇を抑制する観点からは0.3ppm以下であることが好ましく、0.005ppm~0.2ppmであることがより好ましく、0.01ppm~0.1ppmであることがより好ましい。
Snの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷によるビッカース硬さの上昇を抑制する観点からは0.05ppm以下であることが好ましく、0.005ppm~0.05ppmであることがより好ましく、0.01ppm~0.05ppmであることがさらに好ましい。
Teの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷によるビッカース硬さの上昇を抑制する観点からは0.07ppm以下であることが好ましく、0.05ppm以下であることがより好ましい。また、Teの含有量の下限は特にないが、下限値として0ppm(Teを含有しない)としてもよく、0.01ppmとしてもよい。
Biの含有量は、接合基板1における銅板12のビッカース硬さをより小さく、かつ熱負荷による上昇を抑制する観点からは0.2ppm以下であることが好ましく、0.005ppm~0.1ppmであることがより好ましく、0.01ppm~0.08ppmであることがさらに好ましい。
銅板12には、Mg、Ni、Se、Sn、TeおよびBi以外に、Agが含まれていても良い。Agは、銅板12のビッカース硬さの上昇には大きく影響を与えず、無視できると考えられる。よって、Agの含有量は20ppm以下であることが好ましく、0.1ppm~15ppmであることがより好ましく、1~10ppmであることがさらに好ましい。
また、銅板12には、上述したMg、Ni、Se、Sn、Te、BiおよびAg以外のその他の不純物元素が含まれてもよい。その他の不純物元素の含有量の総量は、0.01ppm~12ppmであることが好ましく、0.1ppm~11ppmであることがより好ましく、1ppm~11ppmであることが最も好ましい。
(ビッカース硬さ)
セラミックス基板10に接合されている銅板12は、不純物元素の含有量が上述した範囲に制御され析出物が少なく構成されることで、接合した後の初期状態でのビッカース硬さが42.5HV以下である。また、銅板12は、ヒートサイクルなどの熱負荷を受けたときのビッカース硬さの上昇が少なく、熱負荷を繰り返し受けた場合の熱負荷後のビッカース硬さが小さく維持される。具体的には、銅板12に対して、平均昇温速度1.0℃/sで380℃まで加熱し、10分間保持した後、平均冷却速度2.5℃/sで100℃まで急冷し、平均冷却速度0.5℃/sで40℃まで徐冷するヒートサイクルを20回行った後、室温20℃まで放冷したときに、銅板12の熱負荷後のビッカース硬さが50HV以下である。なお、ビッカース硬さの下限値は特に限定されないが、接合した後の初期状態では30HV以上、所定の熱負荷後の状態では40HV以上である。
なお、ビッカース硬さは「JIS Z 2244ビッカース硬さ試験 試験方法」に基づいて銅板12の表面を測定して得られる。このときの試験力は0.25kgf、保持時間5sとした。JISにおいてはビッカース硬さの単位のHVの後に試験力と保持時間を表記することとしている(例えば[HV0.25/5])が、本明細書では省略して単に[HV]と表記する。
なお、接合基板1に使用する2枚の銅板12は、同一の組成であってもよく、異なっていてもよいが、製造効率の観点から同一の組成であることが好ましい。
(2)銅-セラミックス接合基板の製造方法
次に、上述した接合基板1の製造方法について説明する。
(準備工程)
まず、セラミックス基板10、原料銅板、およびろう材を準備する。
原料銅板としては、例えば無酸素銅板を用いることができ、Mg、Ni、Se、Sn、TeおよびBiの含有量が上述した範囲内となるものを適宜選択するとよい。なお、原料銅板のビッカース硬さは、特に限定されず、例えば120HV以下であることが好ましく、50HV~120HVの範囲内であることがより好ましい。
活性金属含有ろう材の形態としては、ペーストや箔などが挙げられる。ペースト状のろう材は、金属成分からなる金属粉末と、バインダーおよび溶剤を含むビヒクルを混錬する公知の手法により作製することができる。上述したように、ろう材は、金属成分として、例えば、銀および銅を含み、チタンまたはジルコニウムから選ばれる少なくとも1種の活性金属を含むことが好ましく、錫またはインジウムから選ばれる少なくとも1種の金属成分を含んでいてもよい。
(ろう材層形成工程)
続いて、セラミックス基板10の両面に、例えばペースト状のろう材を塗布する。そして、塗布したろう材を大気中あるいは不活性雰囲気中等で乾燥させ、ろう材層を形成する。ろう材の塗布は、例えば、スクリーン印刷、スプレー、ロールコーター等の従来公知の方法を採用することができる。ろう材が箔である場合は、セラミックス基板の表面にろう材箔が接触するように配置してろう材層を形成すればよい。
(銅板接合工程)
続いて、ろう材層に原料銅板を接触するように配置し、原料銅板の位置ずれを抑制する等のために原料銅板に仮加圧した後、この積層体を真空中または非酸化性雰囲気中において加熱する。これにより、ろう材層が溶融して原料銅板とセラミックス基板10を接合してろう材接合層11が形成され、セラミックス基板10へろう材接合層11を介して原料銅板を接合する。また接合の際、原料銅板を加熱により焼きなまし、またCuを再結晶させて内部に残留する転位を低減させることで、所定のビッカース硬さを有する銅板12を形成する。本実施形態では、銅板12に含まれる不純物元素を前述した所定の含有量とすることで、銅板12のビッカース硬さを42.5HV以下とすることができる。また、このような銅板12によれば、上述した所定の熱負荷を繰り返した後の熱負荷後のビッカース硬さを50HV以下とすることができる。
なお、ろう材層へ原料銅板を接触して配置するとは、セラミックス基板10と原料銅板とをろう材層を介して積層することを示す。また原料銅板に仮加圧するとは、原料銅板の位置ずれを抑制する等のため、この積層体における原料銅板上に例えばセラミックス基板などのスペーサーを介して重りを乗せる、或いは積層体を挟持する治具などにより加圧することを示す。仮加圧とは、原料銅板の位置ずれを抑制でき、かつ、接合により得られる銅板12のビッカース硬さを過度に上昇させないような低加圧荷重を示す。接合時の荷重圧力が過度に高いと、接合後の冷却過程で銅板12が荷重圧力により変形し、加工硬化の進行によりビッカース硬さが増加してしまうことがある。そのため、接合後の銅板12のビッカース硬さを上記範囲内とする観点からは、低加圧荷重による仮加圧とするとよい。具体的には、荷重圧力としては0.5kPa~5kPaとすることが好ましい。
接合の際の加熱条件は、接合後の銅板12のビッカース硬さが42.5HV以下となるように、温度プロファイルを適宜調整するとよい。すなわち、Cuの軟化開始温度(約200℃)以上に保持される時間を、ビッカース硬さが所定範囲となるように適宜調整するとよい。加熱時間を短縮して製造効率を向上させる観点からは、500℃以上(Cuの軟化開始温度の2倍以上)の温度域での保持時間が6時間以上となるように加熱することが好ましく、または700℃以上の温度域での保持時間が2時間以上となるように加熱することがより好ましい。ろう接法においては、ろう材が溶融してセラミックス基板10と原料銅板とが接合される接合温度として、一般的に750℃以上、好ましくは770℃以上であるが、前記温度域および保持時間を満たす条件で温度プロファイルを管理するのが好ましい。
以上により、セラミックス基板10の表面にろう材接合層11を介して銅板12が接合された接合基板1が得られる。
(3)銅-セラミックス回路基板およびその製造方法
次に、上述した接合基板1から回路基板を作製する方法について説明する。
まず、接合基板1の銅板12aの表面に、例えば所定の回路パターンを有するエッチング用のレジスト膜を形成する。また、銅板12bの表面に、所定の放熱板パターンを有するエッチング用のレジスト膜を形成する。これらのレジスト膜は、例えばスクリーン印刷法、ラミネート法、フォトマスク法など公知の方法によりレジストを形成し、硬化させることで銅板12a、銅板12bの表面に形成するとよい。
続いて、公知のエッチング液、例えば塩化第二銅、塩化鉄、フッ化水素酸、キレート剤などを用いて、銅板12およびろう材接合層11(銅板接合工程においてろう材と銅板およびセラミックス基板とが反応して生成した層)のレジスト膜で覆われていない領域を除去することにより、所定の回路パターンおよび放熱板パターンを形成する。
続いて、回路パターンや放熱板パターンに対してめっき処理を施しても良い。めっき処理としては、例えば無電解Ni-Pめっきや電気Niめっきなどを用いることができる。
以上により、回路基板が得られる。
(4)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
本実施形態の接合基板1の銅板12は、不純物元素であるMg、Ni、Se、Sn、TeおよびBiを所定量含有し、接合後の初期状態でのビッカース硬さが42.5HV以下であり、所定の熱負荷を繰り返し受けたときの熱負荷後のビッカース硬さが50HV以下となるのが好ましい。このような銅板12によれば、不純物元素に由来する析出物が少ないため、加熱されたときにCu結晶がすべり運動しやすく、熱変形による加工硬化を抑制することができる。つまり、銅板12によれば、初期状態でのビッカース硬さを小さく、また熱負荷によるビッカース硬さの上昇を小さくすることができる。そのため、例えば接合基板1から得られる回路基板に半導体チップを搭載し、パワーモジュールを作製するときに、その作製過程の通炉処理などの熱負荷による回路パターンなどの加工硬化を抑制することができる。これにより、セラミックス基板10に加わる熱応力の上昇を抑制でき、作製過程中にセラミックス基板10に蓄積するダメージを低減し、セラミックス基板10に生じるマイクロクラックを抑制することができる。しかも、パワーモジュールは、半導体チップのスイッチング動作時には発熱し、その動作停止時には冷却されるというように、使用中にヒートサイクルの熱負荷がかかることになるが、このヒートサイクルにおいてもセラミックス基板10のダメージを低減することができる。このように、本実施形態の接合基板1によれば、繰り返しの熱負荷によるダメージを低減でき、高いヒートサイクル特性を実現することができる。
また、本実施形態の接合基板1によれば、ヒートサイクル特性が高いので、回路基板のセラミックス基板に加わる熱応力を緩和すべく、金属部分に段差形状を設けたり、ディンプル形状を設けたりすることを省略することができる。そのため、回路基板の表面に半導体チップを実装する実装面積を確保しつつ接合基板1の外形サイズの大型化を回避することができる。さらには段差形状を設けたり、ディンプル形状を設けたりする製造工程を省略することもでき、その場合は製造コストを低減することができる。
また、本実施形態の接合基板1の作製においては、Mg、Ni、Se、Sn、TeおよびBiの含有量が所定範囲である原料銅板を使用している。この原料銅板によれば、銅に対する固溶限が低く、析出物を形成して銅板12のビッカース硬さを上昇させる不純物元素が所定の含有量に制御されているため、銅板12のビッカース硬さの上昇を抑制することができる。そのため、接合の際にCu結晶のすべり運動を促し、銅板12のビッカース硬さを上記範囲とすることができる。
また、本実施形態では、セラミックス基板10と原料銅板とをろう材を介して接合(ろう接)している。ろう接によれば、セラミックス基板10と原料銅板とを直接接合する場合と比較して、接合時の加熱温度を低くできるため、セラミックス基板10と原料銅板の熱膨張係数の差に起因する応力を低減でき、銅板12のセラミックス基板10との接合信頼性を高く維持することができる。また、直接接合の場合、接合時の加熱温度が比較的高く、再結晶によりビッカース硬さをより低減しやすい傾向にあるが、本実施形態では、原料銅板における不純物元素の含有量が少ないため、加熱温度が比較的低いろう接であっても、再結晶させやすく、銅板12のビッカース硬さを低くすることができる。つまり、本実施形態の接合基板1においては、銅板12の接合信頼性を高くしつつ、銅板12のビッカース硬さを低くすることができる。
また、本実施形態では、セラミックス基板10と原料銅板とを配置した状態、もしくは配置後に仮加圧した状態で接合している。このような状態で接合することで、銅板12にかかる接合荷重を小さくすることができる。これにより、銅板12において、接合荷重による銅板12の変形を抑制し、変形にともなうビッカース硬さの増加を抑制することができる。
<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
例えば、上述の実施形態では、セラミックス基板10の両面(上面および下面)上に、銅板12が接合されている場合について説明したが、銅-セラミックス接合基板1においては、セラミックス基板10の少なくとも一方の面上に、銅板12が接合されていればよい。
また例えば、実装面積が減少するが、熱負荷によるセラミックス基板10への熱応力をさらに緩和することを目的として、回路基板の銅板の断面形状に段差形状を設けたり、金属部の外周にディンプル形状を設けたりしてもよい。
また、上述の実施形態では、セラミックス基板10と銅板12とをろう材を介して接合する場合について説明したが、本発明はこれに限定されない。例えば、セラミックス基板10と銅板12とを直接接合してもよい。この場合、例えば、セラミックス基板10と銅板12とをろう材を介さずに接触配置して不活性ガス雰囲気中で加熱して接合するとよい。このときの加熱温度は、例えば1065℃以上1083℃以下とするとよい。また、加熱時間は、セラミックス基板10と銅板12との接合信頼性を担保できれば特に限定されない。
次に、本発明について実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されない。
<サンプル1~5>
本実施例では、接合基板を作製し、そのヒートサイクル特性を評価した。
まず、接合基板を作製するため、セラミックス基板、原料銅板およびろう材を準備した。
セラミックス基板としては、AlNセラミックス基板を準備した。AlN基板は、サイズが縦68mm×横68mm×厚さ0.64mmであり、サイズ縦34mm×横34mm×厚さ0.64mmの4つの個片に分割できるように分割ラインが設けられている。
原料銅板としては、銅純度が99.96質量%以上であって、合金番号・質別がC1020-1/2Hである無酸素銅板(サイズ68mm×68mm×0.25mm)を準備した。本実施例では、表1に示すように、無酸素銅板として、銅板A~銅板Eの5種類を準備した。
Figure 2023134292000002
表1において、銅板A~銅板Eのそれぞれにおける不純物元素の含有量は、グロー放電質量分析法(GDMS法)により測定した。具体的には、まず、各銅板から約25mm四方の試料片を切り出した。続いて、この試料片に対して硝酸により表面の汚染を酸洗浄した。この洗浄した試料片について、GDMS法の測定装置(VGElemental社製「VG9000」)を用いて、不純物元素の含有量を測定した。表1中、「その他不純物元素の総量」は、表に列挙した以外の元素を含む総量を示す。なお、表1の測定値はGDMS法による測定値のため、「その他不純物元素」には、GDMS法で定量評価できないH、C、N、O、第18族元素、およびGDMS測定装置のサンプルホルダーであるTaは含まれない。
GDMS法の測定条件は、以下のように各種条件を設定した。放電セル(イオン源)には平板状試料用のフラットセルを用い、分析時には液体窒素で放電セルを冷却した。放電ガスには6Nグレードの高純度Arガスを用い、グロー放電は3mAの定電流制御モードとし、放電電圧は導入する放電ガス量により1kVに制御した。イオン電流の検出・測定には、マトリックス元素であるCuに対してはファラデー検出器を、その他の不純物元素に対してはデイリー検出器を用いた。検出器の積分時間は、ファラデー検出器では取り込み時間160ms×取り込み回数1回、デイリー検出器では取り込み時間200ms×3~5回とした。質量分解能(m/Δm:5%ピーク高さ)は約4000以上となるように調整した。イオン電流強度比を濃度に換算するための相対感度係数(RSF)には、装置内蔵の値を用いた。なお、定量分析に用いるイオン電流値の測定は、予備放電(約20min)により表面汚染が消失し、各元素のイオン強度比が安定に達した後に実施している。また、表1中、0.01ppm未満(<0.01)とは、GDMS法による測定下限値未満であって、含有量が極微量もしくは0であることを示す。
ろう材は、以下のように作製した。10質量%の銅粉、1.7質量%のチタン粉、0.5質量%の酸化チタン粉(酸化チタン(IV)ルチル型)、残部が銀粉からなる粉末100質量部を計量し、これら粉末100質量部に対してアクリル系バインダーと溶剤からなるビヒクルを13.8質量部添加して、乳鉢および三本ロールミルを用いて混練し、ペースト状のろう材を作製した。
次に、準備した材料を用いて銅-セラミックス接合基板を作製した。
具体的には、まず、AlNセラミックス基板の両面に対して、ペースト状のろう材を塗布した。このとき、AlNセラミックス基板において、分割ラインで区切られた4つの区画のそれぞれの略全面にペースト状のろう材を厚さが約20μmとなるようにスクリーン印刷した。ろう材を塗布したAlNセラミックス基板を、大気中で乾燥させて、ろう材塗布層を形成した。
続いて、AlNセラミックス基板の両面にろう材塗布層を介して銅板A~銅板Eをそれぞれ接触配置して積層させ、セラミックス基板(アルミナ基板)のスペーサーを介して重りを乗せて積層体に1kPaの圧力を付加した状態で、この積層体を真空炉に導入した。真空炉にて、接合温度(最高温度)として835℃で40分間、加熱した後冷却した。なお、昇温~接合温度保持~降温の一連の過程において、500℃以上の温度域は7.5時間継続した。また、同様に昇温~接合温度保持~降温の一連の過程において、700℃以上の温度域は2.5時間継続した。これにより、AlNセラミックス基板に銅板A~銅板Eを接合し、サンプル1~5として銅-セラミックス接合基板を作製した。
(回路基板の作製)
次に、銅-セラミックス接合基板について、回路パターンおよび放熱板パターンを形成した。
具体的には、サンプル1~5の接合基板における一方の面の銅板の表面に回路パターン形状のエッチングマスクを、他方の面の銅板の表面に放熱板パターン形状のエッチングマスクを、スクリーン印刷法で紫外線硬化型アルカリ剥離レジストインクを塗布し紫外線硬化させることで形成した。その後、銅板の不要部分とろう材接合層(エッチングマスクで被覆されていない箇所)を薬液により除去した後、エッチングマスクをアルカリ薬液で除去した。そして、回路パターンおよび放熱板パターンが形成された積層体を、AlNセラミックス基板に設けられた分割ラインに沿って4つに分割した。これにより、所定の回路パターンを有する銅-セラミックス接合基板(サイズ34mm×34mm)を作製した。この回路基板(金属-セラミックス接合基板)の回路パターン形状および放熱板パターン形状を図2および図3に示す。図2は、実施例の接合基板における一方の面に形成された回路パターンの形状を説明するための概略図である。図3は、実施例の接合基板における他方の面に形成された放熱板パターンの形状を説明するための概略図である。(なお、本実施例では、接合基板の銅板へめっき処理を施していない。)
(評価方法)
原料銅板である銅板A~銅板Eについて接合前のビッカース硬さを、サンプル1~5の接合基板から得られた回路基板について、銅板の接合後の初期状態でのビッカース硬さと熱負荷後のビッカース硬さ、および通炉耐量をそれぞれ測定し、評価した。なお、通炉耐量は、回路基板を用いてパワーモジュールを組み立てる際の加熱による影響を評価するものであり、組み立ての際に回路基板を通炉させたときを模した熱処理(ヒートサイクル特性)の加速試験となる。各測定方法について以下に説明する。
(ビッカース硬さ)
ビッカース硬さは、原料銅板、接合により得られた接合基板の初期状態での銅板、接合基板に後述する条件で所定回数のヒートサイクルをかけた熱負荷後の銅板のそれぞれについて測定した。具体的には、測定機(株式会社ミツトヨ製「HM-200A」)を用いて、試験力を0.25kgf、試験力負荷時間を4s、試験力保持時間を5s、試験力除荷時間を4sとし、各銅板表面の任意の10か所におけるビッカース硬さを測定し、その平均値を評価指標とした。
熱負荷後の銅板は、サンプル1~5の接合基板(回路基板)のそれぞれを、内部にカーボン製のホットプレートと、ホットプレートと対面する下面に昇降により接触・非接触を切り替えられる水冷式冷却板を備えたバッチ炉に導入してヒートサイクルをかけることで取得した。具体的には、接合基板をバッチ炉のホットプレートの上面に配置して、繰り返しの通炉熱負荷を与えた。このときの通炉熱負荷1回分の温度プロファイルは、冷却板がホットプレートに非接触の状態でホットプレートを平均昇温速度1.0℃/sで最高温度380℃まで昇温した後、最高温度380℃で10分間保持し、冷却板をホットプレートに接触させて室温まで急冷(380℃~100℃の平均冷却速度が2.5℃/s、100℃~40℃の平均冷却速度が0.5℃/s)する処理を1回分とした。通炉処理中のバッチ炉内雰囲気は、水素/窒素=20/80(容量%)の還元雰囲気とした。本実施例では、上述の通炉熱負荷を20回繰り返した後、室温20℃まで放冷したときに得られる熱負荷後の銅板について、上述した方法によりビッカース硬さを測定した。
(通炉耐量)
通炉耐量は、サンプル1~5の(めっきが施されていない)回路基板について、上述した通炉熱負荷を繰り返し与え、通炉熱負荷3回毎に回路基板のセラミックス基板をマイクロスコープで検査し、セラミックス基板上にクラックが初めて発見された際の回数を、そのピースの通炉耐量値として記録した。この通炉耐量値を回路基板10ピースに対して実施し、その通炉耐量値の結果に対してワイブルプロット解析を実施し、通炉耐量のワイブル分布を推定した。推定されたワイブル分布からワイブル分布の期待値を算出し、その結果を通炉耐量期待値として求めた。
(評価結果)
各評価結果を表2にまとめる。
Figure 2023134292000003
サンプル1~3では、Mg、Ni、Sn,Se、TeおよびBiの含有量が所定範囲にある銅板A~銅板Dを用いたため、セラミックス基板と接合して接合基板を作製したときに、その銅板の初期状態でのビッカース硬さを42.5HV以下に調整できることが確認された。これは、不純物元素を所定範囲に制御することで、これらに由来する析出物の生成を抑制し、接合時の加熱により銅結晶のすべり運動を促進することができたためと推測される。
またサンプル1~3では、通炉熱負荷を20回与えたところ、熱負荷後のビッカース硬さが50HV以下であることが確認された。つまり、所定のヒートサイクルを受けた場合であっても銅板が加工硬化しにくいことが確認された。これは、ヒートサイクルを受けたときに、加熱により銅結晶がすべり運動しやすく、熱変形による加工硬化を抑制できたためと推測される。
またサンプル1~3では、初期状態のビッカース硬さが低く、またヒートサイクルによるビッカース硬さの上昇が少ないため、通炉耐量が28回以上であって、ヒートサイクル特性が高いことが確認された。
これに対し、サンプル4や5では、Mg、Ni、Sn、Se、TeおよびBiの少なくとも1つが所定量よりも多い銅板Dや銅板Eを用いたため、接合基板において銅板の初期状態でのビッカース硬さが42.5HVよりも大きいことが確認された。また、ヒートサイクルを繰り返した後の熱負荷後のビッカース硬さが50HVよりも大きくなることが確認された。これらのサンプルでは、所定の不純物元素の含有量が多く、それにともない析出物が多く生成したため、加熱の際に銅結晶のすべり運動が阻害されやすく、銅板が熱変形して加工硬化が進みやすかったものと推測される。これらのサンプルでは、通炉耐量が28回未満となり、ヒートサイクル特性が低いことが確認された。
以上のように、接合基板において、Mg、Ni、Sn,Se、TeおよびBiの含有量が所定範囲にある銅板を使用することで、セラミックス基板と接合したときに銅板の初期状態でのビッカース硬さを低くし、ヒートサイクルを繰り返し受けたときのビッカース硬さの上昇も低くできることが確認された。
1 銅-セラミックス接合基板
10 セラミックス基板
11 ろう材接合層
12 銅板

Claims (15)

  1. セラミックス基板と、
    前記セラミックス基板の少なくとも一方の面に接合される銅板と、を備え、
    前記銅板のビッカース硬さが42.5HV以下であり、
    前記銅板におけるマグネシウムの含有量が1ppm以下、ニッケルの含有量が2.5ppm以下、錫の含有量が0.05ppm以下、セレンの含有量が0.3ppm以下、テルルの含有量が0.07ppm以下、ビスマスの含有量が0.2ppm以下である、
    銅-セラミックス接合基板。
  2. 380℃まで加熱し、10分間保持した後、40℃まで冷却するヒートサイクルを20回行った後、20℃まで放冷した前記銅板の熱負荷後のビッカース硬さが50HV以下である、
    請求項1に記載の銅-セラミックス接合基板。
  3. 前記銅板における銀の含有量が0.1ppm~20ppmである、
    請求項1又は2に記載の銅-セラミックス接合基板。
  4. 前記銅板におけるマグネシウム、ニッケル、錫、セレン、テルル、ビスマスおよび銀を除く不純物元素の総量が0.01ppm~12ppmである、
    請求項3に記載の銅-セラミックス接合基板。
  5. 前記銅板の材質が無酸素銅またはタフピッチ銅である、
    請求項1~4のいずれか1項に記載の銅-セラミックス接合基板。
  6. 前記セラミックス基板と前記銅板との間に、ろう材から形成されるろう材接合層を備え、
    前記銅板が前記ろう材接合層を介して前記セラミックス基板に接合されている、
    請求項1~5のいずれか1項に記載の銅-セラミックス接合基板。
  7. セラミックス基板の少なくとも一方の面に銅板を配置し、加熱して接合する接合工程を有し、
    前記銅板におけるマグネシウムの含有量が1ppm以下、ニッケルの含有量が2.5ppm以下、錫の含有量が0.05ppm以下、セレンの含有量が0.3ppm以下、テルルの含有量が0.07ppm以下、ビスマスの含有量が0.2ppm以下であり、
    前記接合工程では、前記銅板の接合後のビッカース硬さが42.5HV以下となるように加熱する、
    銅-セラミックス接合基板の製造方法。
  8. 前記接合工程では、前記セラミックス基板に前記銅板を配置し、前記セラミックス基板と前記銅板を仮加圧した状態で加熱する、
    請求項7に記載の銅-セラミックス接合基板の製造方法。
  9. 前記銅板における、銀の含有量が0.1ppm~20ppmである、
    請求項7又は8に記載の銅-セラミックス接合基板の製造方法。
  10. 前記銅板におけるマグネシウム、ニッケル、錫、セレン、テルル、ビスマスおよび銀を除く不純物元素の総量が0.01ppm~12ppmである、
    請求項7~9のいずれか1項に記載の銅-セラミックス接合基板の製造方法。
  11. 前記銅板の材質が無酸素銅またはタフピッチ銅である、
    請求項7~10のいずれか1項に記載の銅-セラミックス接合基板の製造方法。
  12. 前記銅板をろう材を介して前記セラミックス基板の上に配置した後、加熱して接合する、
    請求項7~11のいずれか1項に記載の銅‐セラミックス接合基板の製造方法。
  13. 前記接合工程では、500℃以上の温度域で6時間以上保持して加熱を行う、
    請求項7~12のいずれか1項に記載の銅-セラミックス接合基板の製造方法。
  14. 前記接合工程では、700℃以上の温度域で2時間以上保持して加熱を行う、
    請求項7~13のいずれか1項に記載の銅-セラミックス接合基板の製造方法。
  15. 前記接合工程における仮加圧の荷重圧力が0.5kPa~5kPaである、
    請求項7~14のいずれか1項に記載の銅-セラミックス接合基板の製造方法。
JP2022039744A 2022-03-14 2022-03-14 銅-セラミックス接合基板およびその製造方法 Pending JP2023134292A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022039744A JP2023134292A (ja) 2022-03-14 2022-03-14 銅-セラミックス接合基板およびその製造方法
PCT/JP2022/043043 WO2023176046A1 (ja) 2022-03-14 2022-11-21 銅-セラミックス接合基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022039744A JP2023134292A (ja) 2022-03-14 2022-03-14 銅-セラミックス接合基板およびその製造方法

Publications (1)

Publication Number Publication Date
JP2023134292A true JP2023134292A (ja) 2023-09-27

Family

ID=88023225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022039744A Pending JP2023134292A (ja) 2022-03-14 2022-03-14 銅-セラミックス接合基板およびその製造方法

Country Status (2)

Country Link
JP (1) JP2023134292A (ja)
WO (1) WO2023176046A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769750A (ja) * 1993-06-29 1995-03-14 Tokuyama Corp セラミック接合構造体
JP4915011B2 (ja) * 2005-03-31 2012-04-11 Dowaメタルテック株式会社 金属−セラミックス接合基板
EP3632879B1 (en) * 2017-05-30 2022-02-09 Denka Company Limited Ceramic circuit board and method of production
WO2019179600A1 (de) * 2018-03-20 2019-09-26 Aurubis Stolberg Gmbh & Co. Kg Kupfer-keramik-substrat

Also Published As

Publication number Publication date
WO2023176046A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
EP3471517A1 (en) Ceramic circuit board and method for manufacturing ceramic circuit board
EP2811513B1 (en) Method for producing substrate for power modules
EP3618107B1 (en) Ceramic circuit substrate, method for manufacturing ceramic circuit substrate, and module using ceramic circuit substrate
EP3632879B1 (en) Ceramic circuit board and method of production
JP7219810B2 (ja) 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
EP1873272B1 (en) Alloy material for dissipating heat from semiconductor device and method for production thereof
EP2767524B1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
EP2492958B1 (en) Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module
EP2816593A1 (en) Solder joint structure, power module, heat-sink-attached substrate for power module, method for producing said substrate, and paste for forming solder underlayer
EP2930744B1 (en) Substrate for power modules, substrate with heat sink for power modules and power module
WO1996029736A1 (en) Silicon nitride circuit substrate
EP1965423B1 (en) Method for producing a metal/ceramic bonding substrate and brazing filler metal for use therein
EP3031937A1 (en) Copper alloy, copper alloy thin sheet and copper alloy manufacturing method
EP4116449A1 (en) Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
JPH09157054A (ja) 回路基板
EP1403229B1 (en) Method for producing an aluminum/ceramic bonding substrate
WO2023176046A1 (ja) 銅-セラミックス接合基板およびその製造方法
WO2023176045A1 (ja) 銅-セラミックス接合基板およびその製造方法
JP2000297301A (ja) 炭化珪素系複合材料とその粉末およびそれらの製造方法
JP4305986B2 (ja) 炭化珪素系複合材料の製造方法
JP6969466B2 (ja) 接合用成形体の製造方法及びこの方法で得た接合用成形体を用いた接合方法
JP5211314B2 (ja) Cr−Cu合金板およびそれを用いた電子機器用放熱板と電子機器用放熱部品
WO2022224949A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
EP4328208A1 (en) Copper/ceramic bonded body and insulated circuit board
EP4378913A1 (en) Copper/ceramic bonded body and insulated circuit board