JP2023125564A - Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields - Google Patents

Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields Download PDF

Info

Publication number
JP2023125564A
JP2023125564A JP2022029744A JP2022029744A JP2023125564A JP 2023125564 A JP2023125564 A JP 2023125564A JP 2022029744 A JP2022029744 A JP 2022029744A JP 2022029744 A JP2022029744 A JP 2022029744A JP 2023125564 A JP2023125564 A JP 2023125564A
Authority
JP
Japan
Prior art keywords
water
rice
seed soaking
iron
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022029744A
Other languages
Japanese (ja)
Inventor
典生 堀江
Norio Horie
真吾 岡田
Shingo Okada
由基 耳野
Yuki Mimino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miminotex Inc
MYCOM Inc
Original Assignee
Miminotex Inc
MYCOM Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miminotex Inc, MYCOM Inc filed Critical Miminotex Inc
Priority to JP2022029744A priority Critical patent/JP2023125564A/en
Publication of JP2023125564A publication Critical patent/JP2023125564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Cultivation Of Plants (AREA)

Abstract

To provide both the cultivation of pesticide-free and herbicide-free paddy rice and the suppression of methane gas generation.SOLUTION: Seed rice is soaked in seed soaking water generated by including chelated iron in an activated water β, seed rice is germinated in a rice nursery 200 with the activated water supplied, and seedlings 2 are raised. In paddy rice cultivation, the seedlings are transplanted to a paddy field 100, and subsequently a chelate iron ε is added to pudding water without midseason drainage to raise a rice 3. As a result, methane emissions from rice fields are suppressed.SELECTED DRAWING: Figure 3

Description

本発明は無農薬除草剤不使用水稲栽培を行うに適した水稲苗育苗方法、水稲栽培方法、浸種用水生成装置、浸種用水生成方法及び水田からのメタン放出抑制方法に関する。 The present invention relates to a method for raising paddy rice seedlings, a method for cultivating paddy rice, an apparatus for producing water for soaking seeds, a method for producing water for soaking seeds, and a method for suppressing methane release from paddy fields, which are suitable for cultivating paddy rice without pesticides or herbicides.

最近、タンニン鉄(いわゆる鉄ミネラル)を用いた農法が着目されている。これは、タンニン鉄が植物等に吸収され易い性質を有することを利用したもので、タンニン鉄のコロイド液を鉄分供給剤として用いて農作物の育成を行う内容になっている(特許文献1等参照)。 Recently, agricultural methods using iron tannins (so-called iron minerals) have been attracting attention. This method takes advantage of the fact that iron tannins have the property of being easily absorbed by plants, etc., and uses a colloidal solution of iron tannins as an iron supplying agent to grow crops (see Patent Document 1, etc.) ).

また、同農法により育成された農作物は消費者の健康面を考慮して有機栽培を行い無農薬無化学肥料で育成されることが多い。 In addition, crops grown using this farming method are often grown organically and without pesticides or chemical fertilizers, taking into consideration the health of consumers.

特開2018-45752号公報JP 2018-45752 Publication

しかしながら、上記農法により水稲栽培を行う場合、中干し後の除草作業が非常に煩わしく、これを回避するために除草剤を使用するのが一般的である。ただ、地球温暖化防止のために水田から放出されるメタンを抑制する観点から中干し期間の延長が要請されているところ、同期間が延長されると雑草が一層繁殖することから、除草剤の使用が不可欠になるのが現状である。要するに、水稲栽培においては、中干しがネックになって無農薬除草剤不使用栽培とメタンガス発生抑制化との双方を図ることが困難である。 However, when cultivating paddy rice using the above-mentioned farming method, weeding work after mid-drying is very troublesome, and to avoid this, it is common to use herbicides. However, in order to prevent global warming, there is a request to extend the mid-drying period from the perspective of suppressing methane emitted from rice fields. The current situation is that it is indispensable. In short, in wet rice cultivation, mid-drying becomes a bottleneck, making it difficult to achieve both pesticide-free, herbicide-free cultivation and suppression of methane gas generation.

本発明は上記した背景の下で創作されたものであって、その目的とするところは、無農薬除草剤不使用水稲栽培とメタンガス発生抑制化との双方を図ることを可能にする水稲苗育苗方法、同方法を用いた水稲栽培方法、浸種用水生成方法、浸種用水生成装置及び水田からのメタン放出抑制方法を提供することにある。 The present invention was created against the above-mentioned background, and its purpose is to raise paddy rice seedlings that enable both pesticide-free and herbicide-free paddy rice cultivation and suppression of methane gas generation. An object of the present invention is to provide a rice cultivation method using the same method, a method for producing water for soaking seeds, a water generating device for soaking seeds, and a method for suppressing methane release from rice fields.

本発明に係る水稲苗育苗方法は、活性水にタンニン鉄その他のキレート鉄を含めて生成された浸種用水を種籾に浸種させ、当該種籾を発芽・生育させるようにした。 In the method for raising rice seedlings according to the present invention, seed rice is soaked in seed soaking water generated by containing tannin iron and other chelated iron in activated water, and the seed rice is germinated and grown.

上記水稲苗育苗方法による場合、キレート鉄が含められた活性水である浸種用水により種籾が育成されることから、水稲苗の発育が良好になって根が太くなり、これに伴って水稲苗の根張りが強くなる。その結果、水稲栽培を行う過程で中干しを省略することが可能になる。よって、除草剤を用いる必要がなく除草作業を大幅に簡単化され、無農薬除草剤不使用水稲栽培を行うことが可能になる。 In the case of the above method for raising rice seedlings, the seed rice is grown in the seed soaking water, which is activated water containing chelated iron, so the growth of the rice seedlings is improved and the roots become thicker. Roots become stronger. As a result, it becomes possible to omit mid-drying in the process of cultivating wet rice. Therefore, there is no need to use herbicides, and weeding work is greatly simplified, making it possible to cultivate paddy rice without using pesticides or herbicides.

本発明に係る他の水稲苗育苗方法は、更に、活性水をベースとして生成された塩水を塩水選工程において用いる。 Another method for raising rice seedlings according to the present invention further uses salt water generated based on activated water in the salt water selection step.

上記水稲苗育苗方法による場合、種籾に対する上記活性水の吸収量が多くなることから、水稲苗の発育が一層良好になり、これに伴って水稲栽培において水稲苗の根張りを十分にすることが可能になる。 In the case of the above-mentioned paddy rice seedling raising method, since the amount of the above-mentioned active water absorbed by the seed rice increases, the growth of the paddy rice seedlings becomes even better, and along with this, it is possible to ensure sufficient rooting of the paddy rice seedlings in paddy rice cultivation. It becomes possible.

本発明に係る他の水稲苗育苗方法は、更に、苗代田又は育苗器に前記活性水を入れた状態で種籾の発芽・生育させる。 In another method for raising paddy rice seedlings according to the present invention, the rice seedlings are further germinated and grown in a seedling field or a seedling grower in which the activated water is placed.

上記水稲苗育苗方法による場合、水稲苗に対する上記活性水の吸収量が多くなることから、水稲苗の発育が一層良好になり、これに伴って水稲栽培において水稲苗の根張りを十分にすることが可能になる。 In the case of the above-mentioned paddy rice seedling raising method, since the amount of the above-mentioned active water absorbed by the paddy rice seedlings increases, the growth of the paddy rice seedlings becomes even better, and along with this, the paddy rice seedlings have sufficient rooting in paddy rice cultivation. becomes possible.

本発明に係る水稲栽培方法は、上記水稲苗育苗方法により育苗された水稲苗を移植し、その後、中干しを実施することなく且つ代かき水にタンニン鉄その他のキレート鉄を入れた状態で当該水稲苗を生育した。 The paddy rice cultivation method according to the present invention involves transplanting the paddy rice seedlings grown by the above-mentioned method for raising paddy rice seedlings, and then transplanting the paddy rice seedlings without performing mid-drying and with iron tannins and other chelated iron added to the substitute water. was grown.

上記水稲栽培方法による場合、中干しを実施しないことから、除草剤の使用を回避できる。また、浸種用水に含められたキレート鉄と代かき水に入れられたキレート鉄との相乗効果により、農薬等を使用することなく水稲の発育が良好になる。 In the case of the rice cultivation method described above, since mid-drying is not performed, the use of herbicides can be avoided. Furthermore, due to the synergistic effect of the chelated iron contained in the seed soaking water and the chelated iron added to the irrigation water, the growth of paddy rice is improved without using pesticides or the like.

しかも代かき水にキレート鉄が入れられていることから、酸化鉄含量が多い土壌となる。その結果、土壌に含まれる硝酸等の還元により生成され得る硫化水素が硫化化鉄として無害化され、還元最終段階のメタンガス生成も抑制される。 Moreover, since chelated iron is added to the irrigation water, the soil has a high iron oxide content. As a result, hydrogen sulfide that may be generated by reducing nitric acid and the like contained in the soil is rendered harmless as iron sulfide, and methane gas production in the final stage of reduction is also suppressed.

要するに、無農薬除草剤不使用水稲栽培とメタンガス発生抑制化との双方を図ることが可能になる。 In short, it is possible to cultivate rice without pesticides or herbicides and to suppress methane gas generation.

本発明に係る浸種用水生成装置は、前記種籾に浸種させる浸種用水を生成する装置であって、水をイオン化して活性水を生成する活性水生成部と、前記キレート鉄を入れるためのキレート鉄用容器と、前記活性水生成部から導かれた活性水に前記キレート鉄用容器から導かれたキレート鉄を含め、これにより浸種用水を生成する浸種用水生成部と備えている。 The seed soaking water generating device according to the present invention is a device for generating seed soaking water for seed soaking the rice seed, and includes an activated water generating section that ionizes water to generate active water, and a chelate iron for introducing the chelate iron. and a seeding water generating section that generates seeding water by including chelated iron guided from the chelate iron container in the activated water guided from the activated water generating section.

上記浸種用水生成装置による場合、装置自体の構成がシンプルであるので、低コスト化を図ることができる。 In the case of the above-mentioned seed soaking water generation device, the structure of the device itself is simple, so that cost reduction can be achieved.

本発明に係る他の浸種用水生成装置は、更に、前記浸種用水生成部の浸種用水と前記活性水生成部の活性水とが排出可能な構成になっている。 Another seed soaking water generating device according to the present invention is further configured such that the seed soaking water from the seed soaking water generating section and the activated water from the activated water generating section can be discharged.

上記浸種用水生成装置による場合、浸種用水と活性水との両方を生成する機能を有していることから、浸種工程において活性水を十分に使用でき、使い勝手が良好になる。また、活性水生成の設備が不要になり、この点で設備上の低コスト化を図ることが可能になる。特に、苗代の育成・販売を行う事業者にとっては 非常に便利な装置となる。 In the case of the above-mentioned seed soaking water generation device, since it has a function of generating both seed soaking water and activated water, the activated water can be used sufficiently in the seed soaking step, and the usability is improved. Furthermore, equipment for generating activated water is not required, and in this respect it is possible to reduce equipment costs. This equipment is particularly useful for businesses that grow and sell seedlings.

本発明に係る浸種用水生成方法は、前記種籾に浸種させる浸種用水を生成する方法であって、水をイオン化して活性水を生成し、当該活性水に前記キレート鉄を含めて浸種用水を生成した。 The method for producing water for seed soaking according to the present invention is a method for producing water for seed soaking in which the rice seed is soaked, in which water is ionized to produce active water, and the activated water contains the chelated iron to produce water for seed soaking. did.

上記浸種用水生成方法による場合、方法自体がシンプルであるので、低コスト化を図ることができる。 In the case of the above-mentioned method for producing water for seed soaking, the method itself is simple, and therefore costs can be reduced.

本発明に係るメタン放出抑制方法は、水稲栽培の過程で中干しを実施することなく且つ代かき水にタンニン鉄その他のキレート鉄を入れる。 The method for suppressing methane release according to the present invention does not require mid-drying during the rice cultivation process, and adds iron tannins and other chelated iron to the water for irrigation.

上記メタン放出抑制方法による場合、中干しを実施しないことから、除草剤の使用を回避することが可能になる。また、代かき水にキレート鉄を入れたことから、酸化鉄含量が多い土壌となる。その結果、土壌に含まれる硝酸等の還元により生成され得る硫化水素が硫化化鉄として無害化され、還元最終段階のメタンガス生成も抑制される。即ち、水田から放出されるメタンガスを抑制することが可能になる。
要するに、無農薬除草剤不使用水稲栽培とメタンガス発生抑制化との双方を図ることが可能になる。特に、方法自体が非常にシンプルであるため、その実施につき大きなコストを要しないことから、水田のメタンガス発生抑制化の実効を図ることが可能になり、ひいては地球温暖化防止を図る上で大きな意義が期待される。
In the case of the above method for suppressing methane release, since mid-drying is not performed, it is possible to avoid the use of herbicides. In addition, since chelated iron is added to the irrigation water, the soil has a high iron oxide content. As a result, hydrogen sulfide that may be generated by reducing nitric acid and the like contained in the soil is rendered harmless as iron sulfide, and methane gas production in the final stage of reduction is also suppressed. That is, it becomes possible to suppress methane gas released from rice fields.
In short, it is possible to cultivate rice without pesticides or herbicides and to suppress methane gas generation. In particular, the method itself is very simple and does not require large costs to implement, making it possible to effectively suppress methane gas generation in rice fields, which in turn has great significance in preventing global warming. There is expected.

本発明の実施形態に係る浸種用水生成装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the water generation apparatus for seed soaking based on embodiment of this invention. 本発明の実施形態に係る水稲苗育苗方法を説明するための主として浸種工程の流れを示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which mainly showed the flow of a seed soaking process for demonstrating the paddy rice seedling raising method based on embodiment of this invention. 本発明の実施形態に係る水稲栽培方法を説明するための水田を示した図である。1 is a diagram showing a paddy field for explaining a rice cultivation method according to an embodiment of the present invention. 本発明の実施形態に係る水稲栽培方法を説明するための水稲栽培の流れを示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which showed the flow of rice cultivation for demonstrating the rice cultivation method based on embodiment of this invention.

以下、本発明の実施の形態を図面を参照して説明する。ここでは無農薬除草剤不使用で有機水稲栽培を行っており、種籾1につき塩水選工程、浸種工程、育苗工程を順次的に行って苗代2(水稲苗)を作っている。 Embodiments of the present invention will be described below with reference to the drawings. Organic rice cultivation is carried out here without the use of pesticides or herbicides, and for each seed paddy, two seedlings (paddy rice seedlings) are created by sequentially performing a salt water selection process, a seed soaking process, and a seedling raising process.

本実施形態に係る浸種用水生成装置Aは図1に示された基本構成となっており、塩水選工程、浸種工程、育苗工程を行うに当たり使用され、活性水β水及び浸種用水γを生成して別々に排出可能な機能を有している。 The seed soaking water generating device A according to this embodiment has the basic configuration shown in FIG. 1, and is used to perform the salt water selection process, the seed soaking process, and the seedling raising process, and generates activated water β water and seed soaking water γ. It has a function that allows it to be discharged separately.

同装置Aは、具体的には、水道等の水を取り込んで水に所定圧力の水を送り出すポンプ40と、ポンプ40から導入された水をマイナスイオン化して活性水βを生成する活性水生成部20と、キレート鉄αを入れて貯蔵するためのキレート鉄用容器10と、活性水生成部20から導かれた活性水βにキレート鉄用容器10から導かれたキレート鉄αを混入させて浸種用水γを生成する浸種用水生成部30と、浸種用水生成部30の浸種用水γを装置外に排出すための浸種用水排出口60と、活性水生成部20の活性水βを装置外に排出するための活性水排出口50と、図外の操作パネルのスイッチ操作に従って上記各部を所定のシーケンスで動作させる制御部70とを備える。 Specifically, the device A includes a pump 40 that takes in water from a tap or the like and pumps water at a predetermined pressure into the water, and an activated water generator that negatively ionizes the water introduced from the pump 40 to generate activated water β. The chelate iron α introduced from the chelate iron container 10 is mixed into the activated water β introduced from the active water generation unit 20, and the chelate iron container 10 for storing the chelated iron α. A seed soaking water generating section 30 that generates seed soaking water γ, a seed soaking water outlet 60 for discharging the seed soaking water γ of the seed soaking water generating section 30 to the outside of the apparatus, and a seed soaking water outlet 60 for discharging the seed soaking water γ of the seed soaking water generating section 30 to the outside of the apparatus, and the activated water β of the activated water generating section 20 to the outside of the apparatus. It includes an activated water outlet 50 for discharging activated water, and a control section 70 that operates the above-mentioned sections in a predetermined sequence according to switch operations on an operation panel (not shown).

ポンプ40については、制御部70からの指令信号に従って起動する電動ポンプであって、水道管を通じて導かれた水を引き込んで装置内に送り込むようになっている。なお、ポンプ機能が不要である形態のときはポンプ40の代わりに制御弁に置き換えても良い。 The pump 40 is an electric pump that is activated in accordance with a command signal from the control unit 70, and is designed to draw in water introduced through a water pipe and send it into the apparatus. In addition, when the pump function is not required, the pump 40 may be replaced with a control valve.

活性水生成部20については、ポンプ40から送り込まれた水の質、構造等に変化を与えて水を活性化させる機能を有した活水化装置である。ここでは、株式会社TAMURA製、商品名「ディレカ」(登録商標)の活水器を使用している。 The activated water generation unit 20 is a water activation device that has a function of activating water by changing the quality, structure, etc. of the water sent from the pump 40. Here, we use a water activator manufactured by TAMURA Co., Ltd. with the trade name "Direca" (registered trademark).

キレート鉄用容器10については、キレート鉄αの液体を貯める容器本体と、容器本体の下端部に設けられており且つ制御部70からの指令信号に従ってキレート鉄αの排出量を制御するための電動弁とを有した構成になっている。 Container 10 for chelate iron includes a container body for storing liquid chelate iron α, and an electric motor which is provided at the lower end of the container body and controls the discharge amount of chelate iron α according to a command signal from the control unit 70. The structure includes a valve.

キレート鉄αについては、植物の生育に必要な微量要素「鉄」をキレート化し、沈殿せず吸収し易い形にした鉄(EDTA-Fe)である。ここでは3価のタンニン鉄のコロイド液を使用しており、鉄製の平皿に茶葉を水とともに入れて放置して生成したものである。 Chelated iron α is iron (EDTA-Fe) that chelates the trace element "iron" necessary for plant growth to form a form that is easily absorbed without precipitating. Here, a colloidal solution of trivalent iron tannins is used, which is produced by placing tea leaves with water in a flat iron plate and leaving them to stand.

浸種用水生成部30については、活性水βとキレート鉄αとを混合させ、その混合水を浸種用水γとして排出する2液混合器である。ここでは活性水βとキレート鉄αとの混合比を2:1程度に設定している。 The seed soaking water generating section 30 is a two-liquid mixer that mixes activated water β and chelate iron α and discharges the mixed water as seed soaking water γ. Here, the mixing ratio of activated water β and chelated iron α is set to about 2:1.

活性水排出口50については、活性水生成部20の出力側と浸種用水生成部30の入口側との間を接続する配管から分岐した配管の端末に設けられており、制御部70からの指令信号に従って活性水βの排出の有無を切り換える弁機能を有している。 The activated water outlet 50 is provided at the end of a pipe branching from the pipe connecting the output side of the activated water generation unit 20 and the inlet side of the seeding water generation unit 30, and is configured to receive commands from the control unit 70. It has a valve function that switches whether or not activated water β is discharged according to a signal.

浸種用水排出口60については、浸種用水生成部30の出力側に接続された配管の端末に接続されており、制御部70からの指令信号に従って浸種用水γの排出の有無を切り換える弁機能を有している。 The seeding water discharge port 60 is connected to the terminal of a pipe connected to the output side of the seeding water generating section 30, and has a valve function to switch whether or not to discharge the seeding water γ according to a command signal from the control section 70. are doing.

制御部70については、内蔵メモリに予め記録されたシーケンスプログラムに従って上記指令信号を生成するマイクロコンピュータ等の制御回路である。その入出力部には図外の操作パネルの他に上記構成部が接続されている。具体的には、活性水生成のスイッチ操作が行われたときは、ポンプ40及び活性水生成部20を作動させ、活性水排出口50を閉状態から開状態に切り替え、この状態を所定時間続ける。一方、浸種用水生成のスイッチ操作が行われたときは、ポンプ40及び活性水生成部20を作動させ、キレート鉄用容器10及び浸種用水排出口60を閉状態から開状態にし、この状態を所定時間続ける。 The control unit 70 is a control circuit such as a microcomputer that generates the command signal according to a sequence program recorded in advance in a built-in memory. The above-mentioned components are connected to the input/output section in addition to an operation panel (not shown). Specifically, when a switch operation for activated water generation is performed, the pump 40 and the activated water generation unit 20 are operated, the activated water outlet 50 is switched from a closed state to an open state, and this state is continued for a predetermined period of time. . On the other hand, when the switch operation for generating water for seeding is performed, the pump 40 and the activated water generation section 20 are operated, the chelate iron container 10 and the water outlet 60 for seeding are changed from the closed state to the open state, and this state is maintained at a predetermined state. Continue time.

なお、本実施形態に係る浸種用水生成方法は、浸種用水生成装置Aに実現された方法である。具体的には、種籾1に浸種させる浸種用水γを生成する方法であって、水をイオン化して活性水βを生成し、活性水βにキレート鉄αを含めて浸種用水γを生成した。 The seed soaking water generation method according to the present embodiment is a method realized in the seed soaking water generation device A. Specifically, this is a method of generating seed soaking water γ for soaking rice seed 1, in which water is ionized to generate activated water β, and chelate iron α is included in the activated water β to generate seed soaking water γ.

本実施形態に係る水稲苗育苗方法は、浸種用水生成装置Aにより生成された浸種用水γを種籾1に浸種させ、種籾1を発芽・生育させる内容になっている。図2及び図3を参照してその詳細を説明する。 The method for raising rice seedlings according to the present embodiment includes soaking the seed rice 1 in the seed soaking water γ generated by the seed soaking water generation device A, and causing the seed rice 1 to germinate and grow. The details will be explained with reference to FIGS. 2 and 3.

塩水選工程においては、まず、予め準備された種籾1から芒を除去し、種籾1を活性水βと共に容器に入れて掻き混ぜる(図2(a)参照)。この段階で容器に浮き上がった種籾1を取り除く。その後、容器の底に沈んだ種籾1を残して、容器から活性水βのみ取り出し、塩(ここでは通常の食塩を使用)と活性水βを容器に入れる(図2(b)参照)。そして容器を再び掻き回して浮いた種籾1を取り除く。即ち、活性水βをベースとした塩水により塩水選工程を行う。ここでは塩水の比重を1.13にした。この結果、中身の詰まった良質の種籾1が容器の底に沈む。浮いた種籾1を全て取り除いた後、活性水βを容器に入れて塩分を洗い流し、容器の底に沈んだ種籾1を洗浄する(図2(c)参照)。これで塩水選工程が終了となる。 In the brine selection process, first, the awns are removed from the rice seeds 1 prepared in advance, and the seeds 1 are placed in a container with activated water β and stirred (see FIG. 2(a)). At this stage, remove the seed rice 1 that has risen to the top of the container. Thereafter, only the activated water β is taken out from the container, leaving the rice seeds 1 that have sunk to the bottom of the container, and salt (normal table salt is used here) and activated water β are put into the container (see FIG. 2(b)). Then, stir the container again to remove the floating seed rice 1. That is, the brine selection step is performed using brine based on activated water β. Here, the specific gravity of the salt water was set to 1.13. As a result, the solid, high-quality rice seed 1 sinks to the bottom of the container. After removing all the floating rice seeds 1, activated water β is poured into the container to wash away the salt and wash the rice seeds 1 that have sunk to the bottom of the container (see FIG. 2(c)). This completes the brine selection process.

浸種工程においては、種籾1を別の容器に移し替えて浸種用水γを同容器に入れた状態で行う。ただ、水温が高くなると種籾1が乳酸発酵するため、バブリングして酸素を供給する他、水入れ替えを毎日行う(図2(d)参照)。なお、浸種工程が完了した種籾1はゴザやムシロに広げて風で乾燥させる。 In the seed soaking step, the rice seed 1 is transferred to another container and the seed soaking water γ is placed in the same container. However, when the water temperature rises, the rice seed 1 undergoes lactic acid fermentation, so in addition to supplying oxygen by bubbling, the water is replaced every day (see Figure 2(d)). The seed rice 1 that has undergone the seed soaking process is spread on mats or straw mats and dried with the wind.

浸種する日数は水温により異なるが、浸種用水γにキレート鉄αが含まれていることから、種籾1内の酵素の活性が上がり、発芽に必要なエネルギーが高まる。その結果、浸種に要する日数が従来に比べて5~7日短くなる他、発芽ムラが少なくなる。しかも発根が促進され、これに伴って太い苗になる。 The number of days for seed soaking varies depending on the water temperature, but since the seed soaking water γ contains chelated iron α, the activity of enzymes in the rice seeds 1 increases, increasing the energy required for germination. As a result, the number of days required for seed soaking is reduced by 5 to 7 days compared to conventional methods, and uneven germination is reduced. Moreover, rooting is promoted, resulting in thicker seedlings.

育苗工程においては、図3に示されているようにハウス内の苗代田200に活性水βを入れ、浸種が完了した種籾1を並べて、苗代田200上で種籾1を発芽・生育させる。このようにして苗代2が育成される。 In the seedling-raising process, as shown in FIG. 3, activated water β is poured into the seedling field 200 in the greenhouse, the seed rice 1 that has been soaked is lined up, and the seed rice 1 is germinated and grown on the seedling field 200. Seedling generation 2 is grown in this way.

なお、苗代田200の代わりに育苗器を用いてもかまわない。この場合であっても育苗器に活性水βを入れる点を除いては従来と同様である。 Note that a seedling raising device may be used instead of the seedling field 200. Even in this case, the process is the same as the conventional method except that activated water β is added to the seedling grower.

本実施形態に係る水稲栽培方法は、苗代田200等で育苗された苗代2を水田100に移植し、その後、中干しを実施することなく且つ代かき水にキレート鉄εを入れた状態で苗代2を生育させて稲3を作っている。この場合の水稲栽培の流れと水管理の内容については、図4に示されている通りである。このような水稲栽培工程につき従来と異なるのは以下の点である。なお、それ以外は堆肥を使用して有機栽培を行う点を含めて従来と同様であるので、その説明については省略するものとする。 The paddy rice cultivation method according to the present embodiment involves transplanting seedlings 2 grown in a rice field 200 or the like to a paddy field 100, and then transplanting the seedlings 2 without performing mid-drying and with chelated iron ε added to the replacement water. I am growing it and making rice 3. The flow of rice cultivation and water management in this case are as shown in FIG. This rice cultivation process differs from conventional methods in the following points. Note that since the rest is the same as the conventional method, including the use of compost for organic cultivation, the explanation thereof will be omitted.

第1の相違点は水稲栽培において中干しを実施しない点である。具体的には、田植え時は浅水にして行い、田植え後、穂が出る時期まで深水のまま栽培する。 The first difference is that mid-drying is not performed during wet rice cultivation. Specifically, the rice is planted in shallow water, and after planting, the rice is cultivated in deep water until the ears appear.

第2の相違点は水稲栽培において代かき水にキレート鉄εを入れる点である。具体的には、代かき2回目の時期にキレート鉄εを水田100に入れている。ここではキレート鉄εとしてタンニン鉄を用いている。この場合、目の細かい網状の袋に粉茶(ここでは10kg)と鋳物等の鉄を入れ、これを水田100に沈めることにより、3価のタンニン鉄のコロイド液を水中にて生成している。このように生成されたキレート鉄εについてはキレート鉄αと同一のものになる。 The second difference is that chelated iron ε is added to the irrigation water during rice cultivation. Specifically, chelated iron ε is added to the paddy field 100 during the second puddling period. Here, tannin iron is used as the chelate iron ε. In this case, a colloidal solution of trivalent iron tannins is generated in water by placing powdered tea (10 kg in this case) and cast iron in a fine mesh bag and submerging it in a rice field. . The chelate iron ε produced in this way is the same as the chelate iron α.

なお、キレート鉄εは水田100の縁に位置する給水口や用水路110に同袋を取り付ける方法で水田100に入れるようにしても良い。 Note that the chelated iron ε may be put into the paddy field 100 by attaching the same bag to a water supply port or an irrigation canal 110 located at the edge of the paddy field 100.

なお、本実施形態に係るメタン放出抑制方法は、上記水稲栽培方法に含められた方法である。具体的には、水田100に苗代2を移植し、その後、中干しを実施することなく且つ水田100にキレート鉄εを入れるという内容になっている。 Note that the methane release suppression method according to this embodiment is a method included in the rice cultivation method described above. Specifically, the seedling seedling 2 is transplanted into the paddy field 100, and then chelated iron ε is added to the paddy field 100 without performing mid-drying.

上記した本発明の実施形態による場合、水稲栽培において中干しを実施しないことから、除草剤の使用を回避することが可能になる。除草剤を使用しない場合、これに伴って除草作業が必要になるものの、水田から水が抜かれない点で雑草が大きく繁殖することがなく、この点で除草作業自体が楽になる。また、浸種工程で用いられた浸種用水γ、育苗工程等で用いられた活性水β、水稲栽培工程で用いられたキレート鉄εにより苗代2、稲3の発育が十分になる。その結果、無農薬除草剤不使用水稲栽培が可能になり、良質の米を作ることが可能になる。しかもキレート鉄α,εとしてタンニン鉄を用いたことから、鉄分が豊富であり且つ健康面に優れた米を作ることが可能になる。 According to the embodiment of the present invention described above, mid-drying is not performed during rice cultivation, making it possible to avoid the use of herbicides. When herbicides are not used, weeding work is required, but since water is not drained from the rice fields, weeds do not grow large, making the weeding work itself easier. In addition, the seedling water γ used in the seed soaking process, the activated water β used in the seedling raising process, and the chelated iron ε used in the paddy rice cultivation process ensure sufficient growth of seedlings 2 and rice 3. As a result, it becomes possible to cultivate paddy rice without using pesticides or herbicides, making it possible to produce high-quality rice. Moreover, since iron tannins are used as the chelated irons α and ε, it becomes possible to produce rice that is rich in iron and is excellent in health.

さらに、水稲栽培の過程で水田100にキレート鉄εが入れられていることから、酸化鉄含量が多い土壌となり、土壌に含まれる硝酸等の還元により生成され得る硫化水素が硫化化鉄として無害化され、還元最終段階のメタンガス生成も抑制される。即ち、水田から放出されるメタンガスを抑制することが可能になる。 Furthermore, since chelated iron ε is added to the paddy field 100 during the rice cultivation process, the soil has a high iron oxide content, and hydrogen sulfide, which may be generated by reducing nitric acid contained in the soil, becomes harmless as iron sulfide. This also suppresses methane gas production in the final stage of reduction. That is, it becomes possible to suppress methane gas released from rice fields.

要するに、無農薬除草剤不使用水稲栽培とメタンガス発生抑制化との双方を図ることが可能になる。特に、方法自体が非常にシンプルであるため、その実施につき大きなコストを要するものではなく、水稲栽培における水田100のメタンガス発生抑制化の実効を図ることが可能になり、ひいては地球温暖化防止を図る上で大きな意義が期待される。 In short, it is possible to cultivate rice without pesticides or herbicides and to suppress methane gas generation. In particular, since the method itself is very simple, it does not require a large cost to implement, making it possible to effectively suppress methane gas generation in 100 rice fields during rice cultivation, and in turn, prevent global warming. It is expected that this will be of great significance.

なお、本願に係る発明は上記実施形態に限定されず、下記のように変更してもかまわない。例えば、活性水については、イオン化等がされた水であればその生成方法を含めて問われることがない。キレート鉄については、タンニン鉄と同等又は類似した性質を有する素材のものを用いても良い。 Note that the invention according to the present application is not limited to the above embodiments, and may be modified as described below. For example, with regard to activated water, as long as it is water that has been ionized, there are no questions asked, including how it is produced. As for chelated iron, a material having properties equivalent to or similar to tannin iron may be used.

水稲栽培については、米の種類及び各地の土壌等の事情に応じた流れのものに適宜変更すると良い。キレート鉄を田植え後に入れる形態でも良い。 Regarding rice cultivation, it is best to change the method of rice cultivation as appropriate depending on the type of rice and local soil conditions. It is also possible to add chelated iron after rice planting.

浸種用水生成装置については、キレート鉄用容器につき、原料を入れて容器内でタンニン鉄を生成する機能を有するものを用いても良い。また、浸種用水のみ生成して排出可能な形態のものでもかまわない。 As for the water generation device for seed soaking, a container for chelated iron having a function of storing raw materials and generating tannin iron within the container may be used. Alternatively, a type in which only water for seed soaking can be generated and discharged may be used.

メタン放出抑制方法については、水稲栽培の過程で中干しを実施することなく且つ代かき水にキレート鉄を入れる形態である限り、それ以外の如何なる変更を行っても良い。 As for the method of suppressing methane release, any other changes may be made as long as drying is not carried out during the rice cultivation process and chelated iron is added to the irrigation water.

A 浸種用水生成装置
10 キレート鉄用容器
20 活性水生成部
30 浸種用水生成部
40 ポンプ
50 活性水排出口
60 浸種用水排出口
α キレート鉄
β 活性水
γ 浸種用水
ε キレート鉄
1 種籾
2 苗代
3 稲
100 水田
200 苗代田
A Water generation device for seeding 10 Container for chelated iron 20 Activated water generation unit 30 Water generation unit for seeding 40 Pump 50 Activated water outlet 60 Water outlet for seeding α Chelated iron
β activated water
γ Seeding water
ε Chelated iron 1 Seed rice 2 Seedling 3 Rice 100 Paddy 200 Seedling

Claims (8)

活性水にタンニン鉄その他のキレート鉄を含めて生成された浸種用水を種籾に浸種させ、当該種籾を発芽・生育したことを特徴とする水稲苗育苗方法。 A method for raising rice seedlings, which comprises soaking seed rice in seed soaking water generated by containing tannin iron and other chelated iron in activated water, and germinating and growing the seed rice. 請求項1記載の水稲苗育苗方法において、前記活性水をベースとして生成された塩水を塩水選工程で用いたことを特徴とする水稲苗育苗方法。 2. The method for raising paddy rice seedlings according to claim 1, wherein the salt water generated based on the activated water is used in the salt water selection step. 請求項1又は2記載の水稲苗育苗方法において、苗代田又は育苗器に前記活性水を入れた状態で種籾の発芽・生育したことを特徴とする水稲苗育苗方法。 3. The method for raising paddy rice seedlings according to claim 1 or 2, characterized in that the seed rice is germinated and grown in a seedling field or a seedling grower in which the activated water is placed. 請求項1乃至3の水稲苗育苗方法により育苗された水稲苗を移植し、その後、中干しを実施することなく且つ代かき水にタンニン鉄その他のキレート鉄を入れた状態で当該水稲苗を生育したことを特徴とする水稲栽培方法。 The paddy rice seedlings raised by the method for raising paddy rice seedlings according to claims 1 to 3 were transplanted, and then the paddy rice seedlings were grown without performing drying and in a state where iron tannins and other chelated iron were added to the fresh water. A rice cultivation method characterized by: 前記浸種用水を生成する装置であって、水をイオン化して活性水を生成する活性水生成部と、前記キレート鉄を入れるためのキレート鉄用容器と、前記活性水生成部から導かれた活性水に前記キレート鉄用容器から導かれたキレート鉄を含めて浸種用水を生成する浸種用水生成部とを備えたことを特徴とする浸種用水生成装置。 The apparatus for generating water for seed soaking includes an activated water generation section that ionizes water to generate active water, a chelate iron container for containing the chelated iron, and an activated water generation section that generates activated water led from the activated water generation section. A seed soaking water generation device comprising a seed soaking water generating section that generates seed soaking water by including chelate iron guided from the chelate iron container in water. 請求項5記載の浸種用水生成装置において、前記浸種用水生成部の浸種用水と前記活性水生成部の活性水とが排出可能な構成となっていることを特徴とする浸種用水生成装置。 6. The seed soaking water generating device according to claim 5, wherein the seed soaking water generating device is configured such that the seed soaking water in the seed soaking water generating section and the activated water in the activated water generating section can be discharged. 前記浸種用水を生成する方法であって、水をイオン化して活性水を生成し、当該活性水に前記キレート鉄を含め、これにより前記浸種用水を生成したことを特徴とする浸種用水生成方法。 The method for producing water for seed soaking, the method comprising: ionizing water to produce activated water; containing the chelated iron in the activated water; thereby generating the water for seed soaking. 水稲栽培の過程で中干しを実施することなく且つ代かき水にタンニン鉄その他のキレート鉄を入れることを特徴とする水田からのメタン放出抑制方法。
A method for suppressing methane emission from paddy fields, which is characterized by not performing mid-drying in the process of paddy rice cultivation and by adding tannic iron or other chelated iron to the paddy water.
JP2022029744A 2022-02-28 2022-02-28 Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields Pending JP2023125564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022029744A JP2023125564A (en) 2022-02-28 2022-02-28 Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022029744A JP2023125564A (en) 2022-02-28 2022-02-28 Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields

Publications (1)

Publication Number Publication Date
JP2023125564A true JP2023125564A (en) 2023-09-07

Family

ID=87887221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022029744A Pending JP2023125564A (en) 2022-02-28 2022-02-28 Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields

Country Status (1)

Country Link
JP (1) JP2023125564A (en)

Similar Documents

Publication Publication Date Title
CN101843203B (en) Oxygenating cultivation method for irrigating rice with micro-nano bubble water
CN104396530A (en) High-quality and high-output planting method for hot pepper
CN103814785A (en) Cultivation method of Xiangya Xiangnian rice
CN104303857B (en) A kind of method utilizing light ground mass to cultivate oil tea grafting-cuttage Seedling
CN104350990A (en) Organic matrix seedling raising method for mechanically-planted paddy formula
CN102715006A (en) Rice dry land pit type seedling culture method
CN106688844A (en) Plug-seedling method for tomatoes in summer
CN102992877A (en) Flower seedling wood cutting medium
CN102487749A (en) Method for improving sprouting rate and seedling rate of callicarpa nudiflora
CN106613813A (en) Sowing and seedling growing method of alpine azaleas
CN101861770B (en) Method for improving germination rate of coixseeds
JP3558677B2 (en) Structure of nursery and method of growing seedlings
CN107711238A (en) A kind of method for culturing seedlings of jujube seed
CN102812833A (en) Technology for planning organic crop by using biogas slurry
CN106069471A (en) A kind of breeding method of nursery stock
CN105409565A (en) Industrialized seedling method for super-enriched plant herb of Chinese brake
Shekara et al. Effect of irrigation schedules on growth and yield of aerobic rice (Oryza sativa) under varied levels of farmyard manure in Cauvery command area
JP2023125564A (en) Method for raising paddy rice seedlings, method for cultivating paddy rice, device for generating seed soaking water, method for generating seed soaking water, and method for suppressing methane emissions from rice fields
CN105359902B (en) A kind of seedbed method for culturing seedlings of early rice
CN108391550A (en) A kind of method for culturing seedlings of shatian pomelo
CN101411300A (en) Technique for soiless drought seedling cultivation of cotton with substrate replanting and antagonistic effect
JP2007222111A (en) Cultivation soil for cell-formed seedling, and method for producing cell-formed seedling
CN106305244A (en) Organic rice above-ground seedling culture method
CN108055985A (en) A kind of celery seedling raising method
JP2859570B2 (en) Wet powder for plants