JP2023123890A - 熱伝導部材 - Google Patents

熱伝導部材 Download PDF

Info

Publication number
JP2023123890A
JP2023123890A JP2021087998A JP2021087998A JP2023123890A JP 2023123890 A JP2023123890 A JP 2023123890A JP 2021087998 A JP2021087998 A JP 2021087998A JP 2021087998 A JP2021087998 A JP 2021087998A JP 2023123890 A JP2023123890 A JP 2023123890A
Authority
JP
Japan
Prior art keywords
wick structure
metal plate
wick
porous
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021087998A
Other languages
English (en)
Inventor
征志 高尾
Masashi Takao
仕▲ゆ▼ 楊
Shi Yu Yang
敏彦 小関
Toshihiko Koseki
雅昭 花野
Masaaki Hanano
淳一 石田
Junichi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Chaun Choung Technology Corp
Original Assignee
Nidec Corp
Chaun Choung Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp, Chaun Choung Technology Corp filed Critical Nidec Corp
Priority to PCT/JP2021/028344 priority Critical patent/WO2022025249A1/ja
Publication of JP2023123890A publication Critical patent/JP2023123890A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】熱輸送効率を向上できる熱伝導部材を提供する。【解決手段】本発明は、内部空間10aを有する筐体10と、第1ウィック構造体31と、第2ウィック構造体32と、作動媒体20と、を備える。筐体10は、対向して配置される第1金属板11及び第2金属板12と、内部空間に配置される柱部15と、を有する。柱部は、第1金属板及び第2金属板を支持する中実な中実柱部を有する。作動媒体と、第1ウィック構造体と、第2ウィック構造体と、は、内部空間に収容される。第1ウィック構造体は、第1金属板の内面に配置される。第2ウィック構造体は、前記第2金属板の内面に配置される。【選択図】図2

Description

本発明は、熱伝導部材に関する。
従来の熱伝導部材は、コンテナと、ウィック構造体と、作動流体と、を有する。コンテナは、内部に内部空間を有する。ウィック構造体は、コンテナの内面に配置される。作動流体は、内部空間に収容される。
コンテナは、発熱体と接触して配置される。作動流体は、発熱体によって加熱されてウィック構造体から気化する。気化した作動流体は、コンテナの内部を放熱側に移動する。放熱側では、放熱によって作動流体が冷却され、凝縮する。凝縮した作動流体は、毛細管現象によってウィック構造体中を発熱体側に移動する。これにより、発熱体側から放熱側に熱が輸送される(例えば、特許文献1参照)。
特開2019-82264号公報
しかしながら、上記のような熱伝導部材は、気化した作動流体が凝縮し難く、熱輸送効率が低い問題があった。
本発明は、熱輸送効率を向上できる熱伝導部材を提供することを目的とする。
本発明の例示的な熱伝導部材は、内部空間を有する筐体と、第1ウィック構造体と、第2ウィック構造体と、作動媒体と、を備える。筐体は、対向して配置される第1金属板及び第2金属板と、柱部と、を有する。柱部は、内部空間に配置され、第1金属板及び第2金属板を支持する中実柱部を有する。作動媒体と、第1ウィック構造体と、第2ウィック構造体と、は、内部空間に収容される。第1ウィック構造体は、第1金属板の内面に配置される。第2ウィック構造体は、前記第2金属板の内面に配置される。
本発明によると、熱輸送効率を向上できる熱伝導部材を提供することができる。
図1は、本発明の実施形態に係る熱伝導部材の斜視図である。 図2は、本発明の実施形態に係る熱伝導部材の模式的な側面断面図である。 図3は、本発明の実施形態の変形例に係る熱伝導部材の模式的な側面断面図である。
以下、本発明の例示的な実施形態について、図面を参照しつつ説明する。なお、図面においては、適宜、3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。Z軸方向は、後述する第1金属板11と第2金属板12との対向方向でもある。X軸方向は、Z軸方向と直交する方向を指し、その一方向及び逆方向を、それぞれ+X方向及び-X方向とする。Y軸方向は、Z軸方向及びX軸方向の両方向と直交する方向を指し、その一方向及び逆方向を、それぞれ+Y方向及び-Y方向とする。ただし、これは、あくまで説明の便宜のために方向を定義したものであって、本発明に係る熱伝導部材1の製造時及び使用時の向きを限定するものではない。また、平行、と表現する場合、数学的に厳密に平行である場合のみを指すものではなく、例えば本開示における効果を奏する程度に平行である場合を含む。
また、本明細書において、「焼結」とは、金属の粉末又は金属の粉体を含むペーストを、金属の融点よりも低い温度まで加熱して、金属の粒子を焼き固める技術を指す。また、「焼結体」とは、焼結によって得られる物体を指す。
<1.熱伝導部材の構成>
図1は、本発明の例示的な実施形態に係る熱伝導部材1の斜視図であり、図2は、熱伝導部材1の模式的な側面断面図である。なお、図2は、図1の一点鎖線A-Aに沿う断面図である。熱伝導部材1は、ベーパーチャンバーとも呼ばれ、発熱体Hの熱を輸送する。発熱体Hとしては、例えば、車両の車輪を駆動するためのトラクションモータに備えられるインバータのパワートランジスタが挙げられる。当該パワートランジスタは、例えばIGBT(Insulated Gate Bipolar Transistor)である。この場合、熱伝導部材1は、トラクションモータに搭載される。IGBTの発熱量は、一般的に100W以上である。
熱伝導部材1は、被加熱部101と、放熱部102と、を備える(図2参照)。被加熱部101は、例えば発熱体Hと接して配置され、発熱体Hが発する熱によって加熱される。放熱部102は、被加熱部101で加熱された後述の作動媒体20が有する熱を外部に放出する。また、放熱部102には放熱性を向上させるために、放熱フィンやヒートシンク等の熱交換手段(図示せず)が熱的に接続してもよい。その場合、熱交換手段に冷却媒体を流す。冷却媒体は、例えば水や油であってもよいし、空気でもよい。
熱伝導部材1は、筐体10と、作動媒体20と、第1ウィック構造体31と、第2ウィック構造体32と、を備える。被加熱部101は、筐体10の一部により形成される。放熱部102は、筐体10の他の一部により形成される。熱伝導部材1のZ方向の厚みは、例えば5mm以上である
<1-1.筐体の構成>
筐体10は、内部空間10aを有する。作動媒体20と、第1ウィック構造体31と、第2ウィック構造体32と、は内部空間10aに収容される。筐体10は対向して配置される第1金属板11及び第2金属板12と、柱部15と、を有する。
第1金属板11及び第2金属板12は、上面視において水平方向に拡がる矩形の板状である。第2金属板12の下面には発熱体Hが接触する。第1金属板11は、第2金属板12の上面を覆う。なお、本実施形態の第1金属板11及び第2金属板12は、上面視において四角形であるがこの限りではない。例えば、上面視において複数の角を有する多角形、又は円形であってもよい。
第1金属板11は、周縁から下方に延びる第1側壁部13aを有する。第2金属板12は、周縁から上方に延びる第2側壁部13bを有する。第1側壁部13aの下面と第2側壁部13bの上面とが接合部14で接合される。なお、第2側壁部13bを省いて、第1側壁部13aの下面と第2金属板12の上面とを接合してもよい。又は、第1側壁部13aを省いて、第2側壁部13bの上面と第1金属板11の下面とを接合してもよい。
内部空間10aは、第1金属板11及び第2金属板12で囲まれて形成される。内部空間10aは、密閉空間であり、例えば大気圧よりも気圧が低い減圧状態に維持される。内部空間10aが減圧状態であることにより、内部空間10aに収容される作動媒体20が蒸発しやすくなる。作動媒体20は、例えば水であるが、アルコールなどの他の液体であってもよい。
接合部14は、上方視において、第1ウィック構造体31及び第2ウィック構造体32の周囲に位置する。第1側壁部13aと第2側壁部13bとの接合方法は、特に限定されない。例えば、熱と圧力を加えて接合する方法、拡散接合、ろう材を用いた接合、などのいずれの接合方法であってもよい。
なお、接合部14は、封止部を含んでいてもよい。封止部は、例えば、熱伝導部材1の製造過程において、作動媒体20を筐体10内に注入するための注入口を溶接によって封止した箇所である。
柱部15は、少なくとも1つの中実な中実柱部151と、少なくとも1つの多孔質の多孔質柱部152と、を有する。中実柱部151は、内部空間10aに配置され、第1金属板11及び第2金属板12を支持する。第1金属板11及び第2金属板12は、例えば、銅等の熱伝導性の高い金属から成る。また、銅以外の金属の表面に銅メッキを施して形成されてもよい。銅以外の金属としては、例えばステンレス鋼が考えられる。
本実施形態において、中実柱部151は、第1金属板11及び第2金属板12とは別部材であり、中実な部材である。なお、「中実」な部材は、いわゆるソリッドな部材であることを意味し、中身が密に詰まっており、且つ多孔質でない物体で構成された部材を指す。例えば、「中実」な部材は、内部に空洞が内部材で合ってもよいし、単数又は複数の巨視的な空洞を内部に有する部材であってもよい
中実柱部151は、銅等の熱伝導性の高い金属から成る。中実柱部151は、Z軸方向に延び、中実柱部151の上端部及び下端部は、第1金属板11の下面及び第2金属板12の上面にそれぞれろう材を用いて接合される。なお、中実柱部151は、ろう材による接合以外に溶接などにより第1金属板11及び第2金属板12と接合されてもよい。なお、中実柱部151は、第1金属板11及び第2金属板12の一方と一体であってもよい。このとき、中実柱部151は、第1金属板11又は第2金属板12をエッチング又は切削して形成することができる。
中実柱部151は、例えば、上方視において円形の円柱で構成される。中実柱部151は、XY面内において2次元的に、かつ、規則的に並んで位置する。Z軸方向において中実柱部151が、第1金属板11及び第2金属板12を支持することにより、筐体10のZ軸方向の厚みが一定に保たれる。これにより、筐体10のZ軸方向の変形によって内部空間10aが、狭くなることを抑制できる。
多孔質柱部152は、Z軸方向に延び、例えば、上方視において円形の円柱で構成される。多孔質柱部152は、多孔質の焼結体である。また、多孔質柱部152は、XY面内において2次元的に、かつ、規則的に並んで位置する。多孔質柱部152は、隣り合う中実柱部151の中間に配置されることが好ましい。なお、筐体10は、少なくとも1つの中実な中実柱部151と、少なくとも1つの多孔質の多孔質柱部152と、を有する。
なお、中実柱部151と多孔質柱部152とは、同数であってもよいし、異なる数であってもよい。筐体10の剛性を高めるため、中実柱部151の数が、多孔質柱部152の数よりも多くてもよい。
<1-2.第1ウィック構造体及び第2ウィック構造体及び多孔質柱部の構成>
第1ウィック構造体31及び第2ウィック構造体32は、多孔質であり、作動媒体20の流路を形成する空隙部(不図示)を有する。第1ウィック構造体31は、第1金属板11の内面に配置されて内部空間10aに臨む。第2ウィック構造体32は、第2金属板12の内面に配置されて内部空間10aに臨む。なお、本明細書において、内部空間10aに「臨む」とは、内部空間10aと「向かい合う」ことを指す。
多孔質柱部152は、柱状であり、内部空間10a内に配置され、第1ウィック構造体31及び第2ウィック構造体32を支持する。多孔質柱部152は、Z軸方向に延び、例えば、上方視において円形の円柱で構成される。また、多孔質柱部152は、XY面内において2次元的に、かつ、規則的に並んで位置する。多孔質柱部152は、隣り合う中実柱部151の中間に配置されることが好ましい。
多孔質柱部152は、第1ウィック構造体31及び第2ウィック構造体32を介して第1金属板11及び第2金属板12を支持する。これにより、多孔質柱部152が、中実柱部151を補強して筐体10のZ軸方向の変形をより抑制できる。
また、第1ウィック構造体31と、第2ウィック構造体32と、多孔質柱部152と、は、それぞれ多孔質の焼結体であり、一体である。第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152を多孔質の焼結体とすることにより、メッシュ材よりも容易に製造可能であり、熱伝導部材1の製造コストを下げることができる。また、多孔質柱部152を設けることにより、第1ウィック構造体31から第2ウィック構造体32への作動媒体20の流路を増やすことができる。
第2ウィック構造体32の厚みW2は、第1ウィック構造体31の厚みW1よりもZ方向に大きい。被加熱部101において、発熱体H側に配置される第2ウィック構造体32は、第1ウィック構造体31よりも液状の作動媒体20の気化が、促進される。このため、第2ウィック構造体32の厚みW2を、第1ウィック構造体31の厚みW1よりもZ方向に大きくすることにより、第2ウィック構造体32の作動媒体20の保持性を第1ウィック構造体31の作動媒体20の保持性よりも高くできる。
また、第2ウィック構造体32の作動媒体20の保持性が、向上することにより、発熱体HとZ方向に重なる領域において、第2ウィック構造体32の保持する液状の作動媒体20が完全に気化する、いわゆるドライアウトの発生を抑制できる。
さらに、Z方向(第1金属板11及び第2金属板12の対向方向)において、第1ウィック構造体31の厚みW1と、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3とは、式(1)を満たすことが好ましい。
W3>W2+W1 ・・・(1)
内部空間10aにおいて、第1ウィック構造体31と第2ウィック構造体32とのZ方向の隙間を大きく設けることにより、第2ウィック構造体32から気化した作動媒体20が、内部空間10a内でXY面内に拡散し易くなる。これにより、第1ウィック構造体31における作動媒体20の凝縮が促進される。
さらに、Z方向(第1金属板11及び第2金属板12の対向方向)において、第1ウィック構造体31の厚みW1と、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3とは、式(2)~式(4)を満たすことがより好ましい。
4W1≧W2≧2W1 ・・・(2)
7W1≧W3≧5W1 ・・・(3)
W3+W2=9W1 ・・・(4)
すなわち、第2ウィック構造体32の厚みW2を第1ウィック構造体31の厚みW1の2倍以上4倍以下とし、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3を第1ウィック構造体31の厚みW1の5倍以上7倍以下とすることが好ましい。これにより、第2ウィック構造体32の作動媒体20の保持性を確保しながら、第1ウィック構造体31における作動媒体20の凝縮をより促進することができる。
一方、発熱体Hとは反対側の放熱面側に配置される第1ウィック構造体31は、第2ウィック構造体32よりも気化した作動媒体20の凝縮が、促進される。このため、第1ウィック構造体31は、第2ウィック構造体32と比べて作動媒体20の冷却効率が高いことが好ましい。
また、第2ウィック構造体32は、第1ウィック構造体31よりも空隙率が高い。これにより、第2ウィック構造体32の毛細管力が、第1ウィック構造体31の毛細管力よりも大きくなる。
ここで、第1ウィック構造体31及び第2ウィック構造体32の全体積に対する空間の体積の割合を、空隙率と呼ぶ。空隙率の単位は%である。空隙率は以下の方法によって求められる。例えば、ウィック構造体の断面写真から、空間の面積を測定し、空間の面積が全体に占める割合を算出することにより、空隙率を求めることができる。第1ウィック構造体31及び第2ウィック構造体32の断面の観察においては、被写界深度の深い走査型電子顕微鏡を用いることが好ましい。なお、断面の観察の方法は、金属部分と空間とを容易に判別できる方法であればよく、特に限定されない。
なお、本実施形態では、第1ウィック構造体31及び第2ウィック構造体32を多孔質の焼結体で構成しているが、第1ウィック構造体31又は第2ウィック構造体32を複数の金属線状部材が編み込まれたメッシュ部材であってもよい。第2ウィック構造体32をメッシュ材で構成し、第1ウィック構造体31を多孔質の焼結体で構成することにより、第2ウィック構造体32の毛細管力を、第1ウィック構造体31の毛細管力よりも大きく容易に形成することができる。
また、第1ウィック構造体31又は第2ウィック構造体32を第1金属板11の内面及び第2金属板12の内面に形成された複数の溝部により構成してもよい。これにより、メッシュ材及び焼結体で構成する場合と比べて第1ウィック構造体31又は第2ウィック構造体32を薄く形成できる。従って、内部空間10aをZ軸方向に広げることができる。また、内部空間10aを狭めずに筐体10をZ軸方向に薄型化できる。また、第1ウィック構造体31又は第2ウィック構造体32の一方を溝部で構成ことにより、内部空間10aを狭めずに第1ウィック構造体31又は第2ウィック構造体32のZ軸方向の厚みを大きくできる。
第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152は、例えば、以下のように形成される。まず、マイクロ銅粒子、銅体及び樹脂を含む金属粉体を接合前の第1金属板11の下面及び第2金属板12の上面に吹き付け塗布する。次に、柱状に成形した金属粉体を挟んで第1金属板11及び第2金属板12を接合する。その後、筐体10を加熱して金属粉体を焼成する。これにより、筐体10の内部空間10aに、第1ウィック構造体31と、第2ウィック構造体32と、多孔質柱部152と、を、容易に一体に形成できる。これにより、熱伝導部材1の製造コストを抑制することができる。なお、第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152を別々に焼成した後に、第1金属板11及び第2金属板12を接合してもよい。
なお、本明細書において、「塗布」とは、第1金属板11の下面及び第2金属板12の上面に金属粉体を付着させることを指す。吹き付け塗布する方法以外に、金属粉体を直接塗布してもよい。
マイクロ銅粒子は、複数の銅原子が凝集又は結合した粒子である。マイクロ銅粒子の粒径は、1μm以上1mm未満である。マイクロ銅粒子は、例えば多孔質である。
銅体は、マイクロ銅粒子よりも小さいサブマイクロ銅粒子が焼結により溶融して固まった銅溶融体である。サブマイクロ銅粒子は、複数の銅原子が凝集又は結合した粒子である。溶融前のサブマイクロ銅粒子の粒径は、0.1μm以上1μm未満である。
樹脂は、マイクロ銅粒子及び銅体を構成する銅の融点以下の温度で揮発する揮発性の樹脂である。このような揮発性の樹脂としては、例えば、メチルセルロース、エチルセルロースなどのセルロース樹脂、アクリル樹脂、ブチラール樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂などを用いることができる。これらの中では、熱分解性の高いアクリル樹脂を用いることが好ましい。
(2.熱伝導部材の動作)
図2において、作動媒体20が気化して生成される蒸気の流れを熱伝導部材1内の黒矢印で示し、液状の作動媒体20の流れを熱伝導部材1内の白抜き矢印で示す。
上記の構成の熱伝導部材では、発熱体Hで発生した熱により、被加熱部101が加熱される。被加熱部101の温度が上昇すると、第2ウィック構造体32に含まれた液状の作動媒体20が、気化する。
気化した作動媒体20は、内部空間10aを放熱部102側に移動する。このとき、気化した作動媒体20の一部は、第1ウィック構造体31に接触して冷却され、凝縮する。第1ウィック構造体31は、第1金属板11の下面よりも表面積が大きく冷却効率が高い。このため、第1ウィック構造体31を設けることにより、気化した作動媒体20の冷却効率が向上して凝縮が促進される。
第1ウィック構造体31で凝縮した作動媒体20の一部は、滴下して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、第1ウィック構造体31中及び多孔質柱部152中を移動して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、中実柱部151の外面に沿って移動して第2ウィック構造体32に吸収される。
放熱部102に移動した気化した作動媒体20は、放熱部102で冷却されて凝縮する。凝縮した作動媒体20は、毛細管現象によって第2ウィック構造体32中を被加熱部101に向かって移動する。また、第1ウィック構造体31から第2ウィック構造体32に吸収された作動媒体20も、毛細管現象によって第2ウィック構造体32中を被加熱部101に向かって移動する。
このとき、第2ウィック構造体32の毛細管力は、第1ウィック構造体31の毛細管力よりも高いため、第2ウィック構造体32を介して凝縮した作動媒体20を発熱体Hが配置される被加熱部101により早く移動させることができる。従って、作動媒体20による熱輸送効率が向上する。
また、第2ウィック構造体32の厚みW2を、第1ウィック構造体31の厚みW1よりもZ方向に大きくし、発熱体HとZ方向に重なる領域において、ドライアウトの発生を抑制する。これにより、第2ウィック構造体32中において、被加熱部101に向かって液状の作動媒体20を連続して円滑に移動させることができる。従って、ドライアウトの発生による、作動媒体20の熱輸送効率の低下を抑制できる。
上記のように作動媒体20が状態変化を伴いながら移動することにより、被加熱部101側から放熱部102側への熱輸送が連続的に行われる。
<3.蒸気空間について>
蒸気空間Sは、第1ウィック構造体31と第2ウィック構造体32との間の隙間空間から中実柱部151及び多孔質柱部152により占有される空間を除いた空間である。すなわち、蒸気空間Sは、内部空間10aにおける第1ウィック構造体31、第2ウィック構造体32、多孔質柱部152及び中実柱部151以外の空間である。
そして、本実施形態では、下記式(5)が満たされる。
V1>V2 ・・・(5)
ただし、V1:蒸気空間Sの体積、V2:合計体積
このとき、合計体積は、第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152の各体積を合計した体積である。すなわち、本実施形態において、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の合計体積に多孔質柱部152の体積をさらに含む。
なお、本実施形態では、多孔質柱部152が設けられているが、多孔質柱部152が設けられていない場合、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の各体積を合計して算出される。また、蒸気空間Sは、内部空間10aにおける第1ウィック構造体31、第2ウィック構造体32及び中実柱部151以外の空間である。
このようにすることで、蒸気空間Sの体積を確保し、作動媒体20の蒸気の拡散を促進することができる。従って、熱伝導部材1の熱輸送効率を向上させることができる。
また、中実柱部151は、筐体10の強度を確保することができるが、配置することにより蒸気空間Sが狭くなる要因となり、そのような中実柱部151を設ける場合でも上記式(5)を満たすことで蒸気の拡散を促進できる。
また、上記式(5)より、蒸気空間Sの体積は、第1ウィック構造体31と第2ウィック構造体32と多孔質柱部152との各体積の総和よりも大きくなる。
<4.中実柱部と多孔質柱部>
本実施形態では、中実柱部151と多孔質柱部152は、次のような構成であることが好ましい。
中実柱部151の上面と第1金属板11の下面とが接合される接合面積の総和は、多孔質柱部152の上面と第1ウィック構造体31の下面とが接合される接合面積の総和よりも大きい。かつ、中実柱部151の下面と第2金属板12の上面とが接合される接合面積の総和は、多孔質柱部152の下面と第2ウィック構造体32の上面とが接合される接合面積の総和よりも大きい。なお、接合面積の総和とは、1本の中実柱部151又は多孔質柱部152についての接合面積のすべての本数分の総和のことである。
ただし、図3に変形例を示すように、多孔質柱部152が第1ウィック構造体31を貫通して第1金属板11に接合されるとともに、第2ウィック構造体32を貫通して第2金属板12に接合されてもよい。このような場合には、中実柱部151の上面と第1金属板11の下面とが接合される接合面積の総和は、多孔質柱部152の上面と第1金属板11の下面とが接合される接合面積の総和よりも大きい。かつ、中実柱部151の下面と第2金属板12の上面とが接合される接合面積の総和は、多孔質柱部152の下面と第2金属板12の上面とが接合される接合面積の総和よりも大きい。
すなわち、中実柱部151の一方側端部が第1金属板11と接する接触面積の総和は、多孔質柱部152の一方側端部が第1ウィック構造体31又は第1金属板11と接する接触面積の総和よりも広く、かつ、中実柱部151の他方側端部が第2金属板12と接する接触面積の総和は、多孔質柱部152の他方側端部が第2ウィック構造体32又は第2金属板12と接する接触面積の総和よりも広い。
中実な中実柱部151の強度は、多孔質柱部152の強度よりも高い。従って、上記のような接触面積の大小関係により、多孔質柱部152を用いる構成であっても、中実柱部151によって筐体10の強度を十分に確保することができる。
<5.その他>
以上、本発明の実施形態を説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。
例えば、第1ウィック構造体31をメッシュ材で構成し、第2ウィック構造体32を多孔質の焼結体で構成してもよい。または、多孔質柱部152を設けないようにしてもよい。
各種発熱体の冷却に利用することができる。
1 熱伝導部材
10 筐体
10a 内部空間
11 第1金属板
12 第2金属板
13a 第1側壁部
13b 第2側壁部
14 接合部
15 柱部
20 作動媒体
31 第1ウィック構造体
32 第2ウィック構造体
33 第3ウィック構造体
H 発熱体

Claims (14)

  1. 内部空間を有する筐体と
    第1ウィック構造体と、
    第2ウィック構造体と、
    作動媒体と、を備え、
    前記筐体は、
    対向して配置される第1金属板及び第2金属板と、
    前記内部空間に配置される柱部と、を有し、
    前記柱部は、前記第1金属板及び前記第2金属板を支持する少なくとも1つの中実な中実柱部を有し、
    前記作動媒体と、前記第1ウィック構造体と、前記第2ウィック構造体と、は、前記内部空間に収容され、
    前記第1ウィック構造体は、前記第1金属板の内面に配置され、
    前記第2ウィック構造体は、前記第2金属板の内面に配置される、熱伝導部材。
  2. 前記第1ウィック構造体は、多孔質の焼結体である、請求項1に記載の熱伝導部材。
  3. 前記第2ウィック構造体は、複数の金属線状部材が編み込まれたメッシュ部材である、請求項1又は請求項2に記載の熱伝導部材。
  4. 前記第2ウィック構造体は、多孔質の焼結体である、請求項2に記載の熱伝導部材。
  5. 前記柱部は、少なくとも1つの多孔質の多孔質柱部を有する請求項1~請求項4のいずれかに記載の熱伝導部材。
  6. 前記筐体は、少なくとも1つの多孔質の多孔質柱部を有し、
    前記第1ウィック構造体と、前記第2ウィック構造体と、前記多孔質柱部と、が、一体である、請求項4に記載の熱伝導部材。
  7. 前記第2ウィック構造体の厚みは、前記第1ウィック構造体の厚みよりも大きい、請求項4又は請求項6に記載の熱伝導部材。
  8. 前記第1金属板及び前記第2金属板の対向方向において、前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(1)を満たす、請求項1~請求項7に記載の熱伝導部材。
    W3>W2+W1 ・・・(1)
    W1:第1ウィック構造体の厚み
    W2:第2ウィック構造体の厚み
    W3:前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さ
  9. 前記第1金属板及び前記第2金属板の対向方向において、前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(2)~式(4)を満たす、請求項1~請求項8に記載の熱伝導部材。
    4W1≧W2≧2W1 ・・・(2)
    7W1≧W3≧5W1 ・・・(3)
    W3+W2=9W1 ・・・(4)
  10. 前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体及び前記中実柱部以外の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積と、前記第1ウィック構造体及び前記第2ウィック構造体の合計体積とは、下記式(5)を満たす、請求項1~請求項4のいずれかに記載の熱伝導部材。
    V1>V2 ・・・(5)
    V1:前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体及び前記柱部以外の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積
    V2:前記第1ウィック構造体及び前記第2ウィック構造体の合計体積
  11. 前記筐体は、前記内部空間内に配置され、前記第1ウィック構造体及び前記第2ウィック構造体を連結し、少なくとも1つの多孔質の多孔質柱部を有し、
    前記蒸気空間は、前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体、前記中実柱部及び前記多孔質柱部以外の空間であり、
    前記合計体積は、前記多孔質柱部の体積をさらに含む、請求項10に記載の熱伝導部材。
  12. 前記筐体は、前記内部空間内に配置され、前記第1ウィック構造体及び前記第2ウィック構造体を連結し、少なくとも1つの多孔質の多孔質柱部を有し、
    前記中実柱部の一方側端部が前記第1金属板と接する接触面積の総和は、前記多孔質柱部の一方側端部が前記第1ウィック構造体又は前記第1金属板と接する接触面積の総和よりも広く、かつ、前記中実柱部の他方側端部が前記第2金属板と接する接触面積の総和は、前記多孔質柱部の他方側端部が前記第2ウィック構造体又は前記第2金属板と接する接触面積の総和よりも広い、請求項1~請求項4のいずれかに記載の熱伝導部材。
  13. 前記第2ウィック構造体は、前記第1ウィック構造体よりも空隙率が高い、請求項4~請求項9のいずれかに記載の熱伝導部材。
  14. 前記第2ウィック構造体の毛細管力は、前記第1ウィック構造体の毛細管力よりも高い、請求項1~請求項13のいずれかに記載の熱伝導部材。
JP2021087998A 2020-07-31 2021-05-25 熱伝導部材 Pending JP2023123890A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028344 WO2022025249A1 (ja) 2020-07-31 2021-07-30 熱伝導部材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020131230 2020-07-31
JP2020131230 2020-07-31
JP2020183305 2020-10-30
JP2020183305 2020-10-30

Publications (1)

Publication Number Publication Date
JP2023123890A true JP2023123890A (ja) 2023-09-06

Family

ID=87886593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087998A Pending JP2023123890A (ja) 2020-07-31 2021-05-25 熱伝導部材

Country Status (1)

Country Link
JP (1) JP2023123890A (ja)

Similar Documents

Publication Publication Date Title
US10495387B2 (en) Multi-layer wick structures with surface enhancement and fabrication methods
WO2019022214A1 (ja) ウィック構造体及びウィック構造体を収容したヒートパイプ
US11740029B2 (en) Vapor chamber
JP2023123890A (ja) 熱伝導部材
WO2022025249A1 (ja) 熱伝導部材
WO2022025256A1 (ja) 熱伝導部材
WO2022025253A1 (ja) 熱伝導部材
WO2022025252A1 (ja) 熱伝導部材
WO2022025257A1 (ja) 熱伝導部材
WO2022025255A1 (ja) 熱伝導部材
WO2022025254A1 (ja) 熱伝導部材
WO2022025251A1 (ja) 熱伝導部材
WO2022025261A1 (ja) 熱伝導部材
JP2023127010A (ja) 熱伝導部材
JP2023127011A (ja) 熱伝導部材
JP2023127012A (ja) 熱伝導部材
JP2023127013A (ja) 熱伝導部材
JP2023127009A (ja) 熱伝導部材
JP2023127008A (ja) 熱伝導部材
CN111818756B (zh) 带有集成的两相散热器的热交换器
JP2023123892A (ja) 熱伝導部材
WO2022025258A1 (ja) 熱伝導部材
WO2022025259A1 (ja) 熱伝導部材
JP2023127007A (ja) 熱伝導部材
JP2023127006A (ja) 熱伝導部材