JP2023123882A - Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device - Google Patents

Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device Download PDF

Info

Publication number
JP2023123882A
JP2023123882A JP2020119391A JP2020119391A JP2023123882A JP 2023123882 A JP2023123882 A JP 2023123882A JP 2020119391 A JP2020119391 A JP 2020119391A JP 2020119391 A JP2020119391 A JP 2020119391A JP 2023123882 A JP2023123882 A JP 2023123882A
Authority
JP
Japan
Prior art keywords
rare earth
group
luminescent material
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020119391A
Other languages
Japanese (ja)
Inventor
靖哉 長谷川
Yasuchika Hasegawa
テン ツァン
Teng Zhang
裕一 北川
Yuichi Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2020119391A priority Critical patent/JP2023123882A/en
Priority to PCT/JP2021/025663 priority patent/WO2022009930A1/en
Publication of JP2023123882A publication Critical patent/JP2023123882A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

To provide a novel light-emitting material that contains a rare earth complex fixed on a substrate and has high emission quantum efficiency.SOLUTION: Disclosed is a light-emitting material including: a substrate that includes a metal oxide and/or a metal sulfide; two or more linker groups bonded to the substrate; a phosphine oxide ligand bonded to each of the linker groups, each phosphine oxide ligand having one phosphine oxide group; and a rare earth ion. A rare earth complex is formed by one rare earth ion and two or more phosphine oxide ligands.SELECTED DRAWING: Figure 6

Description

本発明は、発光材料、発光インク、発光体及び発光デバイスに関する。 The present invention relates to luminescent materials, luminescent inks, emitters and luminescent devices.

シリカ等を含む基材上に発光性の希土類錯体を固定することが試みられている(例えば特許文献1、非特許文献1)。 Attempts have been made to immobilize a luminescent rare earth complex on a substrate containing silica or the like (for example, Patent Document 1, Non-Patent Document 1).

特許文献1は、多孔質シリカに硝酸アルミニウム水溶液及び硝酸ユーロピウム水溶液を添加し混合後、乾燥及び焼成して得た焼成物に、シランカップリング剤で表面処理をして蛍光体を得る方法を開示する。アルミニウム及びユーロピウムはシリカ上に固定されているものの、それがどのような形式であるかは明らかでなく不均一に付着しているものと考えられる。 Patent Document 1 discloses a method of obtaining a phosphor by adding an aqueous solution of aluminum nitrate and an aqueous solution of europium nitrate to porous silica, mixing the mixture, drying and firing the mixture, and surface-treating the fired product with a silane coupling agent. do. Although aluminum and europium are fixed on silica, it is not clear in what form it is and it is thought that they adhere unevenly.

非特許文献1、2は、ホスフィンオキシド配位子又はビピリジン配位子のような二座配位子が1つのリンカー基を介してシリカに結合したユーロピウム錯体含有粒子を開示する。 Non-Patent Documents 1 and 2 disclose europium complex-containing particles in which bidentate ligands such as phosphine oxide ligands or bipyridine ligands are bound to silica via one linker group.

国際公開第2018/037914号WO2018/037914

Biju Fracis et al., Eur. J. Inorg. Chem, 2017, 3205-3213Biju Fracis et al., Eur. J. Inorg. Chem, 2017, 3205-3213 Langmuir, 2013, 29, 5878-5888Langmuir, 2013, 29, 5878-5888

基材上に固定された希土類錯体を含む従来の発光材料は、固定されない希土類錯体と比較して低い発光量子効率を示す傾向があった。そこで本発明の一側面は、基材上に固定された希土類錯体を含み、高い発光量子効率示す新規な発光材料を提供する。 Conventional luminescent materials comprising rare earth complexes immobilized on substrates tended to exhibit lower luminous quantum efficiencies compared to unimmobilized rare earth complexes. Accordingly, one aspect of the present invention provides a novel luminescent material that includes a rare earth complex immobilized on a substrate and exhibits high luminous quantum efficiency.

本発明の一側面は、金属酸化物又は金属硫化物のうち少なくとも一方を含む基材と、前記基材に結合した2以上のリンカー基と、それぞれの前記リンカー基に結合した、1つのホスフィンオキシド基を有するホスフィンオキシド配位子と、希土類イオンとを含む発光材料を提供する。1つの前記希土類イオンと2以上の前記ホスフィンオキシド配位子とで希土類錯体が形成されている。 One aspect of the invention is a substrate comprising at least one of a metal oxide or metal sulfide, two or more linker groups attached to the substrate, and one phosphine oxide attached to each of the linker groups. A luminescent material is provided that includes a phosphine oxide ligand having a group and a rare earth ion. A rare earth complex is formed by one of the rare earth ions and two or more of the phosphine oxide ligands.

本発明の別の一側面は、上記発光材料と、前記発光材料が分散した分散媒と、を含む、発光インクを提供する。 Another aspect of the present invention provides a luminescent ink containing the luminescent material and a dispersion medium in which the luminescent material is dispersed.

本発明の更に別の一側面は、上記発光材料を含む発光体、及び、発光体を備える発光デバイスを提供する。 Yet another aspect of the present invention provides a light emitter containing the light emitting material, and a light emitting device comprising the light emitter.

発明の一側面によれば、基材上に固定された希土類錯体を含み、高い発光量子効率示す新規な発光材料が提供される。 According to one aspect of the invention, novel luminescent materials are provided that include a rare earth complex immobilized on a substrate and exhibit high luminous quantum efficiency.

シリカナノ粒子の透過型電子顕微鏡写真である。1 is a transmission electron micrograph of silica nanoparticles. シリカナノ粒子及び希土類錯体を含む発光材料の透過型電子顕微鏡写真である。1 is a transmission electron micrograph of a luminescent material containing silica nanoparticles and rare earth complexes. シリカナノ粒子及び希土類錯体を含む発光材料のEDSスペクトルである。2 is an EDS spectrum of a luminescent material containing silica nanoparticles and rare earth complexes; 発光材料又は希土類錯体のFT-IRスペクトルである。FT-IR spectra of luminescent materials or rare earth complexes. 配位子、希土類錯体又は発光材料の励起スペクトルである。Excitation spectra of ligands, rare earth complexes or luminescent materials. 発光材料又は希土類錯体の発光スペクトルである。1 is an emission spectrum of a luminescent material or a rare earth complex; 発光材料又は希土類錯体の発光減衰を示すグラフである。4 is a graph showing luminescence attenuation of luminescent materials or rare earth complexes.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Several embodiments of the invention are described in detail below. However, the present invention is not limited to the following embodiments.

一実施形態に係る発光材料は、金属酸化物又は金属硫化物のうち少なくとも一方を含む基材と、基材に結合した2以上のリンカー基と、及び該リンカー基に結合した、1つのホスフィンオキシド基を有する複数のホスフィンオキシド配位子と、複数の希土類イオンとを含む。1つの希土類イオンと2以上のホスフィンオキシド配位子とで希土類錯体が形成されている。 A luminescent material according to one embodiment comprises a substrate comprising at least one of a metal oxide or a metal sulfide, two or more linker groups bonded to the substrate, and one phosphine oxide bonded to the linker group. A plurality of phosphine oxide ligands having groups and a plurality of rare earth ions. A rare earth complex is formed by one rare earth ion and two or more phosphine oxide ligands.

下記化学式(I)は、発光材料の一例を模式的に示す。

Figure 2023123882000002
The following chemical formula (I) schematically shows an example of the luminescent material.
Figure 2023123882000002

式(I)中、Xは基材を示し、Lは基材X及びホスフィンオキシド配位子((Ar)Ar)P=O)に結合したリンカー基を示し、Ln(III)は希土類イオンを示す。Ar及びArは、それぞれ独立に、置換基を有していてもよいアリール基を示す。Zは希土類イオンM(III)と配位結合を形成しているn座の配位子を示す。式(I)において、1つの希土類イオンM(III)、2つのホスフィンオキシド配位子、及び6/n個の配位子Zとで希土類錯体が形成されている。1つのリンカー基Lに結合したホスフィンオキシド基の数は、典型的には1つである。式(I)では1つの希土類錯体のみが図示されているが、通常、多数の希土類錯体がリンカー基Lを介して基材Xに結合している。本発明者らの知見によれば、2つ以上のリンカー基を介して基材X上に希土類錯体を固定することで、基材X上に希土類錯体が安定的に固定化され、基材に固定されない希土類錯体と比較して、より高い量子収率で発光することが実現できると考えられる。 In formula (I), X represents a substrate, L represents a linker group attached to the substrate X and the phosphine oxide ligand ((Ar 1 )Ar 2 )P=O), Ln(III) represents a rare earth indicates an ion. Ar 1 and Ar 2 each independently represent an optionally substituted aryl group. Z represents an n-dentate ligand forming a coordination bond with the rare earth ion M(III). In formula (I), one rare earth ion M(III), two phosphine oxide ligands, and 6/n ligands Z form a rare earth complex. The number of phosphine oxide groups bonded to one linker group L is typically one. Although only one rare earth complex is illustrated in formula (I), typically multiple rare earth complexes are attached to the substrate X via linker groups L. According to the findings of the present inventors, by immobilizing the rare earth complex on the substrate X via two or more linker groups, the rare earth complex is stably immobilized on the substrate X, and the substrate It is believed that light emission with a higher quantum yield can be achieved compared to unfixed rare earth complexes.

基材Xの形状は特に限定されず、例えば基材Xが粒子、フィルム又は板状体であってもよい。基材Xが粒子である場合、通常、希土類錯体が導入された発光材料も粒子状である。粒子状の発光材料は、例えば、発光インク、又は、バイオメディカル分野で用いられる蛍光粒子としての応用が期待される。基材としてのフィルムは、例えばプラスチックフィルムであってもよい。基材としての板状体は、例えばガラス板であってもよい。 The shape of the base material X is not particularly limited, and for example, the base material X may be a particle, film or plate. When the base material X is particles, the luminescent material into which the rare earth complex is introduced is usually also particulate. Particulate luminescent materials are expected to be applied, for example, as luminescent ink or fluorescent particles used in the biomedical field. A film as a substrate may be, for example, a plastic film. A plate-like body as a substrate may be, for example, a glass plate.

基材Xが粒子である場合、その平均粒径が1000nm以下、500nm以下、又は100nm以下であってもよく、10nm以上であってもよい。ナノオーダーの粒径を有するナノ粒子を基材Xとして有する粒子状の発光材料は、各種の分散媒に対して良好な分散性を有し易い。希土類錯体が導入された発光材料の粒子径が、1000nm以下、500nm以下、又は100nm以下であってもよく、10nm以上であってもよい。 When the substrate X is particles, the average particle size may be 1000 nm or less, 500 nm or less, 100 nm or less, or 10 nm or more. A particulate luminescent material having nanoparticles having a nano-order particle size as a base material X tends to have good dispersibility in various dispersion media. The particle diameter of the luminescent material into which the rare earth complex is introduced may be 1000 nm or less, 500 nm or less, 100 nm or less, or 10 nm or more.

基材Xは金属酸化物、金属硫化物又はこれらの両方を含む。金属酸化物の例としては、二酸化ケイ素(シリカ)、酸化亜鉛、酸化カルシウム、酸化チタン、酸化アルミニウム、及び酸化インジウムスズ(ITO)が挙げられる。金属硫化物の例としては、硫化亜鉛及び硫化カドミウムが挙げられる。基材Xが、ガラス体(例えば、シリカガラス、ITOガラス、フッ素ガラス)、又は結晶であってもよい。基材Xにおける金属酸化物及び金属硫化物の合計の含有量は、基材Xの質量を基準として50~100質量%、60~100質量%、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 Substrate X includes metal oxides, metal sulfides, or both. Examples of metal oxides include silicon dioxide (silica), zinc oxide, calcium oxide, titanium oxide, aluminum oxide, and indium tin oxide (ITO). Examples of metal sulfides include zinc sulfide and cadmium sulfide. The base material X may be a glass body (for example, silica glass, ITO glass, fluorine glass) or a crystal. The total content of metal oxides and metal sulfides in the substrate X is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, based on the mass of the substrate X, Or it may be 90 to 100% by mass.

リンカー基Lは、基材Xの金属酸化物又は金属硫化物と結合を形成している官能基を有する。官能基は、例えば加水分解性シリル基の残基であることができる。リンカー基Lが、ホスフィンオキシド基と結合したアリーレン基を更に有していてもよい。加水分解性シリル基の残基及びアリーレン基を含むリンカー基は、例えば下記式(1)で表される基のうち、Xを除く部分であってもよい。 The linker group L has a functional group forming a bond with the metal oxide or metal sulfide of the substrate X. Functional groups can be, for example, residues of hydrolyzable silyl groups. The linker group L may further have an arylene group bound to the phosphine oxide group. The linker group containing a residue of a hydrolyzable silyl group and an arylene group may be, for example, a moiety other than X among groups represented by the following formula (1).

Figure 2023123882000003
Figure 2023123882000003

式(1)中、Xは基材を示し、Rは2価の有機基を示し、Rは炭素数1~5、又は1~3のアルキル基を示し、Arはホスフィンオキシド基と結合しているアリーレン基(例えばフェニレン基、ビフェニレン基、ナフチレン基)を示す。pはSiに結合した3つの酸素原子のうち基材Xと結合しているものの数に対応する1~3の整数を示す。*はホスフィンオキシド基のリン原子と結合している部分を示す。Rは、通常、リンカー基を誘導する合成経路に由来する有機基である。例えば、Rがアミド基を含む基であってもよく、その場合のリンカー基Lの一例は下記式(1a)で表される。式(1a)中のRはアルキレン基を示す。Rとしてのアルキレン基の炭素数は、例えば、1以上又は2以上であってもよく、20以下、15以下又は10以下であってもよい。 In formula (1), X represents a base material, R 1 represents a divalent organic group, R 2 represents an alkyl group having 1 to 5 carbon atoms or 1 to 3 carbon atoms, and Ar 3 represents a phosphine oxide group and Indicates a bonded arylene group (eg, phenylene, biphenylene, naphthylene). p is an integer of 1 to 3 corresponding to the number of atoms bonded to the substrate X among the three oxygen atoms bonded to Si. * indicates the portion of the phosphine oxide group that is bonded to the phosphorus atom. R 1 is typically an organic group derived from a synthetic route deriving a linker group. For example, R 1 may be a group containing an amide group, and an example of the linker group L in that case is represented by the following formula (1a). R 3 in formula (1a) represents an alkylene group. The number of carbon atoms in the alkylene group as R 3 may be, for example, 1 or more or 2 or more, and may be 20 or less, 15 or less, or 10 or less.

Figure 2023123882000004
Figure 2023123882000004

式(I)中のAr及びArは、それぞれ独立に、置換基を有していてもよいアリール基を示す。Ar又はArとしてのアリール基は、芳香族化合物から1個の水素原子を除いた残基であることができる。アリール基の具体例としては、置換又は無置換のベンゼン、置換又は無置換のナフタレン、置換又は無置換のアントラセン、又は置換又は無置換のフェナントレンから1個の水素原子を除いた残基が挙げられる。特に、Ar及びArが置換又は無置換のフェニル基であってもよい。アリール基が有する置換基は、ハロゲン原子であってもよい。 Ar 1 and Ar 2 in formula (I) each independently represent an optionally substituted aryl group. An aryl group as Ar 1 or Ar 2 can be the residue of an aromatic compound with one hydrogen atom removed. Specific examples of aryl groups include substituted or unsubstituted benzene, substituted or unsubstituted naphthalene, substituted or unsubstituted anthracene, or substituted or unsubstituted phenanthrene with one hydrogen atom removed. . In particular, Ar 1 and Ar 2 may be substituted or unsubstituted phenyl groups. A halogen atom may be sufficient as the substituent which an aryl group has.

発光材料に導入される希土類錯体を構成する希土類イオンは、通常、三価の希土類イオンである。希土類イオンは、発光色等に応じて、適宜選択することができる。希土類イオンは、例えば、Eu(III)イオン、Tb(III)イオン、Gd(III)イオン、Sm(III)イオン、Yb(III)イオン、Nd(III)イオン、Er(III)イオン、Y(III)イオン、Dy(III)イオン、Ce(III)イオン、及びPr(III)イオンからなる群より選ばれる少なくとも一種であることができる。高い発光強度を得る観点から、希土類イオンは、Eu(III)イオン、Tb(III)イオン又はGd(III)イオンであってもよい。 The rare earth ions that constitute the rare earth complex introduced into the light-emitting material are usually trivalent rare earth ions. Rare earth ions can be appropriately selected according to the emission color and the like. Rare earth ions are, for example, Eu(III) ions, Tb(III) ions, Gd(III) ions, Sm(III) ions, Yb(III) ions, Nd(III) ions, Er(III) ions, Y ( It can be at least one selected from the group consisting of III) ions, Dy(III) ions, Ce(III) ions, and Pr(III) ions. From the viewpoint of obtaining high emission intensity, the rare earth ions may be Eu(III) ions, Tb(III) ions or Gd(III) ions.

式(I)として例示される発光材料は、希土類錯体と配位結合を形成している、リンカー基Lを有するホスフィンオキシド配位子以外のn座の配位子Zを更に有する。配位子Zは二座配位子であってもよく、その例としては下記式(2)で表されるジケトン配位子が挙げられる。ジケトン配位子は、光増感作用により希土類錯体の発光強度等の更なる向上に寄与することができる。 The luminescent material exemplified as formula (I) further has an n-dentate ligand Z other than the phosphine oxide ligand with the linker group L, forming a coordinate bond with the rare earth complex. The ligand Z may be a bidentate ligand, examples of which include diketone ligands represented by the following formula (2). The diketone ligand can contribute to further improvement of the emission intensity of the rare earth complex through its photosensitizing action.

Figure 2023123882000005
Figure 2023123882000005

式(2)中、R11及びR12は、それぞれ独立に置換基を有していてもよい脂肪族基又は置換基を有していてもよい芳香族基を示し、R13は水素原子、置換基を有していてもよい脂肪族基又は置換基を有していてもよい芳香族基を示し、R13がR11又はR12と結合して、置換基を有していてもよい環状基を形成していてもよい。R13は重水素原子であってもよい。 In formula (2), R 11 and R 12 each independently represent an optionally substituted aliphatic group or an optionally substituted aromatic group, R 13 is a hydrogen atom, represents an optionally substituted aliphatic group or an optionally substituted aromatic group, wherein R 13 optionally has a substituent by bonding to R 11 or R 12 A cyclic group may be formed. R 13 may be a deuterium atom.

11、R12及びR13は、それぞれ独立にアルキル基(例えば、メチル基、tert-ブチル基)、ハロゲン化アルキル基、アリール基又はハロゲン化アリール基であってもよい。アルキル基及びハロゲン化アルキル基の炭素数は1~10であってもよい。R11、R12又はR13としてのハロゲン化アルキル基は、炭素数1~5のフルオロアルキル基(例えばトリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基)であってもよい。R11、R12又はR13としてのアリール基は、フェニル基、ナフチル基、又はチエニル基であってもよく、これらがハロゲン化されていてもよい。 R 11 , R 12 and R 13 may each independently be an alkyl group (eg, methyl group, tert-butyl group), halogenated alkyl group, aryl group or halogenated aryl group. The alkyl group and the halogenated alkyl group may have 1 to 10 carbon atoms. The halogenated alkyl group as R 11 , R 12 or R 13 is a fluoroalkyl group having 1 to 5 carbon atoms (eg, trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group). The aryl group as R 11 , R 12 or R 13 may be a phenyl group, naphthyl group or thienyl group, which may be halogenated.

13がR11又はR12と結合して形成される環状基は、置換基を有していてもよい環状の脂肪族基、芳香族基又はこれらの組み合わせからなる基であってもよい。 The cyclic group formed by combining R 13 with R 11 or R 12 may be an optionally substituted cyclic aliphatic group, an aromatic group, or a group consisting of a combination thereof.

配位子Zが光学活性を有していてもよい。光学活性を有する配位子Zを発光材料に導入することにより、発光材料に円偏光特性が付与され得る。光学活性を有する配位子Zは、例えば、下記式(20)で表されるカンファ―誘導体又はその鏡像異性体であってもよい。2種の鏡像異性体を任意の比率で組み合わせてもよい。 The ligand Z may have optical activity. By introducing an optically active ligand Z into a light-emitting material, the light-emitting material can be endowed with circularly polarized light properties. The optically active ligand Z may be, for example, a camphor derivative represented by the following formula (20) or an enantiomer thereof. Any ratio of the two enantiomers may be combined.

Figure 2023123882000006
Figure 2023123882000006

式(20)中、R21は式(2)中のR11と同義である。R22、R23及びR24はそれぞれ独立に置換基を有していてもよい炭化水素基を示し、R25、R26、R27及びR28はそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよい炭化水素基を示す。R21、R22及びR23は置換基を有していてもよいアルキル基であってもよく、その炭素数は1~5であってもよい。R21、R22及びR23の具体例としては、メチル基が挙げられる。R24、R25、R26及びR27はそれぞれ独立に置換されていてもよいアルキル基であってもよく、その炭素数は1~5であってもよい。R24、R25、R26及びR27が水素原子であってもよい。式(20)で表されるカンファー誘導体及びその鏡像異性体の具体例としては、3-(トリフルオロアセチル)カンホラート、及び3-(パーフルオロブチリル)-(±)-カンホラートが挙げられる。 In formula (20), R 21 has the same definition as R 11 in formula (2). R 22 , R 23 and R 24 each independently represent an optionally substituted hydrocarbon group, R 25 , R 26 , R 27 and R 28 each independently represent a hydrogen atom, a halogen atom, or a substituted indicates a hydrocarbon group which may have a group. R 21 , R 22 and R 23 may be optionally substituted alkyl groups and may have 1 to 5 carbon atoms. A specific example of R 21 , R 22 and R 23 is a methyl group. R 24 , R 25 , R 26 and R 27 may each independently be an optionally substituted alkyl group and may have 1 to 5 carbon atoms. R 24 , R 25 , R 26 and R 27 may be hydrogen atoms. Specific examples of camphor derivatives represented by formula (20) and enantiomers thereof include 3-(trifluoroacetyl)camphorate and 3-(perfluorobutyryl)-(±)-camphorate.

発光材料は、例えば、基材Xの金属酸化物又は金属硫化物と結合を形成する官能基(例えば加水分解性シリル基)を含むリンカー基、及び、ホスフィンオキシド基を含むホスフィンオキシド配位子を有する化合物を、基材Xに結合させる工程と、基材Xにリンカー基を介して結合したホスフィンオキシド配位子と希土類イオンとで希土類錯体を形成させる工程とを含む方法によって得ることができる。下記式(3)は、発光材料の製造に用いることのできる、加水分解性シリル基を含むリンカー基、及びホスフィンオキシド配位子を有する化合物の一例を示す。式(3)中のR、R、Ar、Ar及びArは前記と同義である。 The luminescent material includes, for example, a linker group containing a functional group (for example, a hydrolyzable silyl group) that forms a bond with the metal oxide or metal sulfide of the substrate X, and a phosphine oxide ligand containing a phosphine oxide group. A compound having the compound can be obtained by a method comprising the steps of: bonding to a substrate X; and forming a rare earth complex with a phosphine oxide ligand bonded to the substrate X via a linker group and a rare earth ion. Formula (3) below shows an example of a compound having a linker group containing a hydrolyzable silyl group and a phosphine oxide ligand, which can be used in the production of a luminescent material. R 1 , R 2 , Ar 1 , Ar 2 and Ar 3 in formula (3) are as defined above.

Figure 2023123882000007
Figure 2023123882000007

式(3)の化合物は、例えば、下記式(11)で表される、加水分解性シリル基及びアミノ基を有する化合物と、下記式(12)で表される、ホスフィンオキシド基及びカルボキシル基を有する化合物又はその誘導体との反応により得ることができる。式(11)及び(12)のようにアミノ基及びカルボキシル基の反応に限られず、反応により化学結合を生成し得る官能基の組み合わせを含む化合物を任意に適用することができる。 The compound of formula (3) is, for example, a compound having a hydrolyzable silyl group and an amino group represented by formula (11) below, and a phosphine oxide group and a carboxyl group represented by formula (12) below. It can be obtained by reaction with a compound having or a derivative thereof. Any compound containing a combination of functional groups capable of forming a chemical bond by reaction can be arbitrarily applied without being limited to the reaction of amino groups and carboxyl groups as in formulas (11) and (12).

Figure 2023123882000008
Figure 2023123882000008

一実施形態に係る発光インクは、粒子状の発光材料と、発光材料が分散した分散媒とを含むことができる。発光インクを用いた印刷法等により発光体の膜を形成することができる。分散媒は特に制限されないが、例えばメタノール、エタノール、水、アセトン、ヘキサン、クロロホルム、ジクロロメタン、ジエチルエーテル、酢酸エチル、ベンゼン、トルエン、又はこれらの組み合わせであってもよい。発光インクが、スチレン、アクリル酸、メタクリル酸、アクリル酸誘導体、メタクリル酸誘導体を(メタクリル酸メチル、メタクリル酸エチルなど)、又はポリマー(ポリスチレン、ポリメタクリル酸メチルなど)を含んでもよい。 A luminescent ink according to one embodiment may include a particulate luminescent material and a dispersion medium in which the luminescent material is dispersed. A luminescent film can be formed by a printing method or the like using luminescent ink. The dispersion medium is not particularly limited, and may be, for example, methanol, ethanol, water, acetone, hexane, chloroform, dichloromethane, diethyl ether, ethyl acetate, benzene, toluene, or combinations thereof. Luminescent inks may include styrene, acrylic acid, methacrylic acid, acrylic acid derivatives, methacrylic acid derivatives (methyl methacrylate, ethyl methacrylate, etc.), or polymers (polystyrene, polymethyl methacrylate, etc.).

本実施形態に係る発光体は、上述の実施形態に係る発光材料を含む。この発光体は、各種の発光デバイス、又はセキュリティ材を構成することができる。発光デバイスの例としては、マイクロLED、交通標識及び電飾看板のような表示装置、液晶バックライト、並びに照明ディスプレイが挙げられる。 A light emitter according to this embodiment includes the light emitting material according to the above-described embodiments. This light emitter can constitute various light emitting devices or security materials. Examples of light emitting devices include micro LEDs, displays such as traffic signs and illuminated signs, liquid crystal backlights, and illuminated displays.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to these examples.

1.合成
(1)Eu(hfa)3(H2O)2
酢酸ユーロピウム 1水和物(0.87 g, 2 mmol)を10 mLを蒸留水に溶解させた。そこに、1,1,1,5,5,5-Hexafluoro-2,4-pentandinone(0.9 mL, 6 mmol)の溶液を滴下した。室温で4時間の撹拌し、析出した黄色粉体を濾別し、メタノール/水の混合溶媒から再結晶させた。得られた結晶をトルエンで洗浄し、真空下で乾燥して、Eu(hfa)3(H2O)2を得た(収量1.12 g, 収率69%)。
IR spectrum (cm-1): ν(C=O) 1647 (s), ν(C-F) 1251-1136 (s)cm-1
1H NMR (CD3OD, 400 MHz, 300K) δ, ppm: 3.90 (s, 3H, CF3CH); 19F NMR (CD3OD,376 MHz, 300 K) δ, ppm: -80.8 (s, CF3) ppm
1. Synthesis (1) Eu(hfa) 3 ( H2O ) 2
10 mL of europium acetate monohydrate (0.87 g, 2 mmol) was dissolved in distilled water. A solution of 1,1,1,5,5,5-Hexafluoro-2,4-pentandinone (0.9 mL, 6 mmol) was added dropwise thereto. After stirring at room temperature for 4 hours, the precipitated yellow powder was separated by filtration and recrystallized from a mixed solvent of methanol/water. The resulting crystals were washed with toluene and dried under vacuum to give Eu(hfa) 3 (H 2 O) 2 (1.12 g, 69% yield).
IR spectrum (cm -1 ): ν(C=O) 1647 (s), ν(CF) 1251-1136 (s)cm -1
1 H NMR (CD 3 OD, 400 MHz, 300K) δ, ppm: 3.90 (s, 3H, CF 3 CH); 19 F NMR (CD 3 OD, 376 MHz, 300 K) δ, ppm: -80.8 (s , CF3 ) ppm

(2)4-(ジフェニルホスフィノ)安息香酸の合成

Figure 2023123882000009
(2) Synthesis of 4-(diphenylphosphino)benzoic acid
Figure 2023123882000009

ジフェニル(p-トリル)ホスフィン(5.0 g)をシュレンク管に入れ、更にKMnO4(11.1 g)及びNaOH(0.43 M, 65 mL)を加えた。シュレンク管を90℃で15時間加熱し、高温の懸濁液をセライトを用いて濾過した。得られた溶液をジエチルエーテルで2回洗浄し、50% H2SO4を加えること固形分を析出させた。固形分を濾別し、エタノールから再結晶させた。回収された白色結晶をジエチルエーテルで洗浄し真空下で乾燥させて、4-(ジフェニルホスフィノ)安息香酸を得た(収量3.1 g, 収率55%)。
IR spectrum (cm-1): ν(COO) 1705(s) and 1251(s), ν(P=O)1155(s)
1H NMR (CD3OD, 400 MHz, 300K) δ (ppm): 8.16 (m, 2H, Ar); 7.76 (m, 2H, Ar); 7.67 (m, 6H, Ar); 7.58 (m, 4H,Ar). 31P NMR (CD3OD,162 MHz, 300K) δ (ppm) : 32.1 (s)
Diphenyl(p-tolyl)phosphine (5.0 g) was placed in a Schlenk tube followed by KMnO 4 (11.1 g) and NaOH (0.43 M, 65 mL). The Schlenk tube was heated at 90° C. for 15 hours and the hot suspension was filtered through celite. The resulting solution was washed twice with diethyl ether and 50% H 2 SO 4 was added to precipitate solids. Solids were filtered off and recrystallized from ethanol. The collected white crystals were washed with diethyl ether and dried under vacuum to obtain 4-(diphenylphosphino)benzoic acid (3.1 g, 55% yield).
IR spectrum (cm -1 ): ν(COO) 1705(s) and 1251(s), ν(P=O)1155(s)
1 H NMR (CD 3 OD, 400 MHz, 300K) δ (ppm): 8.16 (m, 2H, Ar); 7.76 (m, 2H, Ar); 7.67 (m, 6H, Ar); 7.58 (m, 4H ,Ar). 31 P NMR (CD 3 OD, 162 MHz, 300K) δ (ppm) : 32.1 (s)

(3)ホスフィンオキシド配位子TPPO-Si(OEt)3

Figure 2023123882000010
(3) Phosphine oxide ligand TPPO-Si(OEt) 3
Figure 2023123882000010

4-(ジフェニルホスフィノ)安息香酸(0.61 g, 1.95 mmol)をシュレンク管に入れ、窒素雰囲気下、塩化チオニル(12mL)を加えた。室温で2時間の反応の後、過剰の塩化チオニルを除去して、単黄色の固体を得た。この固体を乾燥アセトトリル(10 mL)に溶解し、溶液にトリエチルアミン(2.16 mL, 15.34 mmol)及び3-アミノプロピルトリエトキシシラン(0.49 mL, 2.05 mmol)を加え、溶液を室温で1.5時間撹拌した。溶媒を除去し、固体を水に懸濁させ、塩化メチレンで抽出した。塩化メチレン層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、溶媒を除去して、暗褐色の粗生成物を得た。粗生成物を、酢酸エチルを溶出液として用いたシリカゲルカラムクロマトグラフィーによって精製して、TPPO-Si(OEt)3を得た(収量577 mg, 収率56%)。
Elemental analysis calcd for C28H36NO5PSi(525.66): C, 63.98; H, 6.90; N, 2.66; Found: C, 63.64; H, 6.97; N, 2.60
1H NMR (CD3OD, 400 MHz, 300K) δ (ppm): 7.94 (m, 2H, Ar), 7.54-7.78 (m, 12H, Ar) overlapping with (t, 1H, CO-NH),3.83 (t, 6H, CH2-O-Si), 3.38 (m, 2H, N-CH2CH2CH2-Si),1.72(t, 2H, -CH2-CH2-Si), 1.20 (t, 9H, CH3-CH2-O-),0.68 (t, 2H, -CH2-Si)
31P NMR (CDCl3,162 MHz, 300K) δ (ppm) : 32.1 (s)
4-(Diphenylphosphino)benzoic acid (0.61 g, 1.95 mmol) was placed in a Schlenk tube and thionyl chloride (12 mL) was added under a nitrogen atmosphere. After 2 hours of reaction at room temperature, excess thionyl chloride was removed to give a pale yellow solid. This solid was dissolved in dry acetotrile (10 mL), triethylamine (2.16 mL, 15.34 mmol) and 3-aminopropyltriethoxysilane (0.49 mL, 2.05 mmol) were added to the solution and the solution was stirred at room temperature for 1.5 hours. did. Solvent was removed and the solid was suspended in water and extracted with methylene chloride. The methylene chloride layer was washed with saturated brine, dried over magnesium sulfate, and the solvent was removed to give a dark brown crude product. The crude product was purified by silica gel column chromatography using ethyl acetate as eluent to give TPPO-Si(OEt) 3 (577 mg, 56% yield).
Elemental analysis calcd for C28H36NO5PSi ( 525.66 ): C, 63.98; H, 6.90 ; N, 2.66; Found: C, 63.64; H, 6.97;
1 H NMR (CD 3 OD, 400 MHz, 300K) δ (ppm): 7.94 (m, 2H, Ar), 7.54-7.78 (m, 12H, Ar) overlapping with (t, 1H, CO-NH), 3.83 (t, 6H, CH2 - O-Si), 3.38 (m, 2H , N - CH2CH2CH2 -Si), 1.72(t, 2H, -CH2- CH2 - Si), 1.20 (t , 9H, CH3 - CH2 -O-),0.68 (t, 2H, -CH2 -Si)
31 P NMR (CDCl 3 , 162 MHz, 300K) δ (ppm): 32.1 (s)

(4)Eu錯体(Eu(hfa)3[TPPO-Si(OEt)3]2

Figure 2023123882000011
(4) Eu complex (Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 )
Figure 2023123882000011

Eu(hfa)3(H2O)2を1×10-3mbarの減圧下、135℃で4時間加熱することにより脱水させた。脱水させたEu(hfa)3(H2O)2(90mg, 0.11 mmol)をシュレンク管に入れ、窒素雰囲気下、乾燥エタノール(10 mL)を加え、その後、TPPO-Si(OEt)3(115 mg. 0.22 mmol)を加えた。形成された黄色の溶液を室温で5時間撹拌した。続いて溶媒を除去し、生成物を真空下で乾燥させて、)Eu(hfa)3[TPPO-Si(OEt)3]2を得た(収量189 mg, 収率94%)。
Elemental analysis calcd (%) for C71H75EuF18N2O16P2Si2(1824.4): C, 46.74; H, 4.14; N, 1.54; Found: C, 46.59; H, 4.38; N, 1.53
Eu(hfa) 3 (H 2 O) 2 was dehydrated by heating at 135° C. for 4 hours under a vacuum of 1×10 −3 mbar. Dehydrated Eu(hfa) 3 (H 2 O) 2 (90 mg, 0.11 mmol) was placed in a Schlenk tube, dry ethanol (10 mL) was added under a nitrogen atmosphere, and then TPPO-Si(OEt) 3 (115 mg. 0.22 mmol) was added. The yellow solution formed was stirred at room temperature for 5 hours. The solvent was then removed and the product was dried under vacuum to give )Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 (yield 189 mg, 94% yield).
Elemental analysis calcd (%) for C71H75EuF18N2O16P2Si2 ( 1824.4 ) : C , 46.74; H , 4.14 ; N, 1.54; Found : C, 46.59; H, 4.38;

(5)シリカナノ粒子
アンモニア溶液(28%, 9.5 mL)、トリエトキシシラン(7.0 mL)、及び無水エタノール(183 mL)を丸底フラスコに入れた。形成された溶液を45℃で1晩撹拌して、シリカナノ粒子を含む乳白色の分散液を得た。4000rpmの遠心分離によってシリカナノ粒子を回収し、無水エタノール(185mL)中に超音波法によって分散させた。
(5) Silica nanoparticles Ammonia solution (28%, 9.5 mL), triethoxysilane (7.0 mL), and absolute ethanol (183 mL) were placed in a round bottom flask. The formed solution was stirred overnight at 45° C. to obtain a milky white dispersion containing silica nanoparticles. Silica nanoparticles were collected by centrifugation at 4000 rpm and dispersed in absolute ethanol (185 mL) by ultrasonic method.

(6)シリカナノ粒子に固定されたEu錯体を有する発光材料(SiO2-Eu(hfa)3[TPPO-Si(O)3]2

Figure 2023123882000012
(6) Luminescent material with Eu complex immobilized on silica nanoparticles ( SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 )
Figure 2023123882000012

シリカナノ粒子のエタノール分散液(6 mL)を丸底フラスコに入れ、そこに窒素雰囲気下、TPPO-Si(OEt)3(142mg, 0.270 mmol)を徐々に加え、混合液を室温で一晩撹拌した。次いで、脱水させたEu(hfa)3(H2O)2(109 mg, 0.135 mmol)を加え、形成された反応液を室温で12時間撹拌した。シリカナノ粒子を遠心分離によって単離し、赤色の排出物が紫外光(365 nm)で観測されなくなるまでジエチルエーテルで洗浄した。洗浄後の粒子を真空下で乾燥させて、Eu錯体によって修飾された淡黄色のシリカナノ粒子(SiO2-Eu(hfa)3[TPPO-Si(O)3]2)を得た。 An ethanol dispersion of silica nanoparticles (6 mL) was placed in a round-bottomed flask, to which TPPO-Si(OEt) 3 (142 mg, 0.270 mmol) was slowly added under a nitrogen atmosphere, and the mixture was stirred overnight at room temperature. . Then dehydrated Eu(hfa) 3 (H 2 O) 2 (109 mg, 0.135 mmol) was added and the resulting reaction was stirred at room temperature for 12 hours. Silica nanoparticles were isolated by centrifugation and washed with diethyl ether until no red effluent was observed under UV light (365 nm). The washed particles were dried under vacuum to obtain pale yellow silica nanoparticles (SiO 2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 ) modified with Eu complexes.

2.評価
(1)粒径
Eu錯体による修飾前のシリカナノ粒子、及び、Eu錯体で修飾されたシリカナノ粒子である発光材料(SiO2-Eu(hfa)3[TPPO-Si(O)3]2)を動的光散乱法によって測定した。修飾前のシリカナノ粒子の平均粒径は36nmであり、粒子状の発光材料(SiO2-Eu(hfa)3[TPPO-Si(O)3]2)の平均粒径は53nmであった。
2. Evaluation (1) Particle size Silica nanoparticles before modification with an Eu complex and a luminescent material ( SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 ) which is silica nanoparticles modified with an Eu complex. Measured by dynamic light scattering method. The average particle size of the silica nanoparticles before modification was 36 nm, and the average particle size of the particulate luminescent material ( SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 ) was 53 nm.

(2)透過型電子顕微鏡(TEM),エネルギー分散型X線分析(EDS)
修飾前のシリカナノ粒子、及び、Eu錯体で修飾されたシリカナノ粒子(SiO2-Eu(hfa)3[TPPO-Si(O)3]2)を透過型電子顕微鏡によって観察した。図1は修飾前のシリカナノ粒子の透過型電子顕微鏡写真であり、図2は、粒子状の発光材料(SiO2-Eu(hfa)3[TPPO-Si(O)3]2)の透過型電子顕微鏡写真である。SiO2-Eu(hfa)3[TPPO-Si(O)3]2の像において、Eu錯体に由来すると考えられる暗領域が多数観察された。さらに、SiO2-Eu(hfa)3[TPPO-Si(O)3]2の像をエネルギー分散型X線分析(EDS)によって分析したところ、Eu、P、F、Si、C及びOの存在が確認され、このことからもEu錯体がシリカナノ粒子上に導入されたことが示唆された。図3は、SiO2-Eu(hfa)3[TPPO-Si(O)3]2のEDSスペクトルである。
(2) Transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS)
Silica nanoparticles before modification and silica nanoparticles modified with an Eu complex (SiO 2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 ) were observed with a transmission electron microscope. Figure 1 is a transmission electron micrograph of silica nanoparticles before modification, and Figure 2 is a transmission electron micrograph of particulate luminescent material ( SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 ). It is a photomicrograph. In the image of SiO 2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 , many dark regions thought to be derived from Eu complexes were observed. Furthermore, when an image of SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 was analyzed by energy dispersive X-ray spectroscopy (EDS), the presence of Eu, P, F, Si, C and O was confirmed, which also suggested that the Eu complex was introduced onto the silica nanoparticles. FIG. 3 is an EDS spectrum of SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 .

(3)フーリエ変換赤外分光(FT-IR)
図4は、TPPO-Si(OEt)3、Eu(hfa)3[TPPO-Si(OEt)3]2、及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2のFT-IRスペクトルである。Eu(hfa)3(TPPO)2及びEu(hfa)3[TPPO-Si(OEt)3]2のFT-IRスペクトルにおいて、TPPO-Si(OEt)3の場合に観測されたP=O伸縮に由来する1184cm-1のシグナルは観測されず、1142cm-1のシグナルが観測され、このようなシグナルのシフトから、P=O基とEu(III)との配位結合の形成が示唆された。
(3) Fourier transform infrared spectroscopy (FT-IR)
FIG . 4 shows the FT- _ _ IR spectrum. In the FT-IR spectra of Eu(hfa) 3 (TPPO) 2 and Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 , the P=O stretching observed in the case of TPPO-Si(OEt) 3 No derived signal at 1184 cm −1 was observed and a signal at 1142 cm −1 was observed, such a signal shift suggesting the formation of a coordinate bond between the P═O group and Eu(III).

(4)熱重量分析
熱重量分析により、Eu(hfa)3[TPPO-Si(OEt)3]2及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2の分解温度がそれぞれ208℃及び306℃であることが確認された。
(4) Thermogravimetric Analysis By thermogravimetric analysis, the decomposition temperatures of Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 and SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 were respectively 208°C and 306°C were confirmed.

(5)光物理的特性
図5は、固体状態のEu(hfa)3(H2O)2、Eu(hfa)3[TPPO-Si(OEt)3]2、及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2の励起スペクトルである。Eu(hfa)3[TPPO-Si(OEt)3]2、及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2の励起スペクトルでは、304nm及び334nmにおいてπ-π遷移に起因する幅広い吸収が観測された。
( 5 ) Photophysical Properties _ _ 3 Excitation spectrum of [TPPO-Si(O) 3 ] 2 . Excitation spectra of Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 and SiO 2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 show A broad absorption due to

図6は、固体状態のEu(hfa)3(H2O)2、Eu(hfa)3[TPPO-Si(OEt)3]2、及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2の発光スペクトル(励起光:356nm)である。SiO2-Eu(hfa)3[TPPO-Si(O)3]2は、Eu(hfa)3(H2O)2、及びEu(hfa)3[TPPO-Si(OEt)3]2と比較して顕著に強い発光を示した。 FIG. 6 shows solid-state Eu(hfa) 3 ( H2O ) 2 , Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 , and SiO2 -Eu(hfa) 3 [TPPO-Si(O). ) 3 ] 2 emission spectrum (excitation light: 356 nm). SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 was compared with Eu(hfa) 3 ( H2O ) 2 and Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 . and showed remarkably strong luminescence.

図7は、固体状態のEu(hfa)3(H2O)2、Eu(hfa)3[TPPO-Si(OEt)3]2、及びSiO2-Eu(hfa)3[TPPO-Si(O)3]2、並びに溶液中でのEu(hfa)3[TPPO-Si(OEt)3]2の発光減衰を示すグラフである。SiO2-Eu(hfa)3[TPPO-Si(O)3]2は、Eu(hfa)3(H2O)2、及びEu(hfa)3[TPPO-Si(OEt)3]2と比較して長い発光寿命を示した。表1に各Eu錯体の光物理的特性(発光寿命τobs、放射速度定数k、無放射速度定数knr、4f-4f遷移の発光量子効率Φf-f及びトータルの発光量子収率Φtot)を示す。SiO2-Eu(hfa)3[TPPO-Si(O)3]2は比較的大きなkrを示し、小さなknrを示した。SiO2-Eu(hfa)3[TPPO-Si(O)3]2は、2つ以上のリンカー基を用いた基材X上への希土類錯体の固定化によって、基材X上に希土類錯体が安定的に固定化することで、放射速度増大と熱失活過程の抑制が可能となり高い発光量子効率を示すと考えられる。 FIG. 7 shows solid-state Eu(hfa) 3 ( H2O ) 2 , Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 , and SiO2 -Eu(hfa) 3 [TPPO-Si(O). ) 3 ] 2 and Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 in solution. SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 was compared with Eu(hfa) 3 ( H2O ) 2 and Eu(hfa) 3 [TPPO-Si(OEt) 3 ] 2 . and exhibited a long emission lifetime. Table 1 shows the photophysical properties of each Eu complex (luminescence lifetime τ obs , radiative rate constant k r , non-radiative rate constant k nr , 4f-4f transition luminescence quantum efficiency Φ ff and total luminescence quantum yield Φ tot ). SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 showed a relatively large kr and a small knr. SiO2 -Eu(hfa) 3 [TPPO-Si(O) 3 ] 2 is prepared by immobilizing the rare earth complex on the substrate X using two or more linker groups. It is thought that the stable immobilization enables an increase in radiation velocity and suppression of the thermal deactivation process, resulting in high luminescence quantum efficiency.

Figure 2023123882000013
Figure 2023123882000013

Claims (9)

金属酸化物又は金属硫化物のうち少なくとも一方を含む基材と、
前記基材に結合した2以上のリンカー基と、
ぞれぞれの前記リンカー基に結合した、1つのホスフィンオキシド基を有するホスフィンオキシド配位子と、
希土類イオンと、
を含み、
1つの前記希土類イオンと2以上の前記ホスフィンオキシド配位子とで希土類錯体が形成されている、
発光材料。
a substrate comprising at least one of a metal oxide or a metal sulfide;
two or more linker groups attached to the substrate;
a phosphine oxide ligand having one phosphine oxide group attached to each said linker group;
rare earth ions;
including
a rare earth complex is formed by one of the rare earth ions and two or more of the phosphine oxide ligands;
Luminescent material.
前記リンカー基が加水分解性シリル基の残基及びアリーレン基を含む、請求項1に記載の発光材料。 2. The luminescent material of claim 1, wherein the linker group comprises residues of hydrolyzable silyl groups and arylene groups. 前記基材が二酸化ケイ素を含む、請求項1又は2に記載の発光材料。 3. A luminescent material according to claim 1 or 2, wherein the substrate comprises silicon dioxide. 当該発光材料が、前記希土類イオンと配位結合を形成している、光学活性を有する配位子を更に含む、請求項1~3のいずれか一項に記載の発光材料。 The luminescent material according to any one of claims 1 to 3, further comprising an optically active ligand forming a coordinate bond with the rare earth ion. 前記基材が粒子である、請求項1~4のいずれか一項に記載の発光材料。 A luminescent material according to any one of claims 1 to 4, wherein the substrate is a particle. 前記基材が平均粒径100nm以下の粒子である、請求項1~4のいずれか一項に記載の発光材料。 The luminescent material according to any one of claims 1 to 4, wherein the substrate is particles having an average particle size of 100 nm or less. 請求項5又は6に記載の発光材料と、前記発光材料が分散した分散媒と、を含む、発光インク。 A luminescent ink comprising the luminescent material according to claim 5 or 6 and a dispersion medium in which the luminescent material is dispersed. 請求項1~6のいずれか一項に記載の発光材料を含む発光体。 An emitter comprising the luminescent material according to any one of claims 1-6. 請求項8に記載の発光体を備える発光デバイス。 A light emitting device comprising the light emitter according to claim 8 .
JP2020119391A 2020-07-10 2020-07-10 Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device Pending JP2023123882A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020119391A JP2023123882A (en) 2020-07-10 2020-07-10 Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device
PCT/JP2021/025663 WO2022009930A1 (en) 2020-07-10 2021-07-07 Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020119391A JP2023123882A (en) 2020-07-10 2020-07-10 Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device

Publications (1)

Publication Number Publication Date
JP2023123882A true JP2023123882A (en) 2023-09-06

Family

ID=79553159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020119391A Pending JP2023123882A (en) 2020-07-10 2020-07-10 Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device

Country Status (2)

Country Link
JP (1) JP2023123882A (en)
WO (1) WO2022009930A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310108A (en) * 1994-12-28 1996-11-26 Hitachi Maxell Ltd Printed matter, ink composition and thermal transfer recording medium
JPH09249834A (en) * 1996-03-14 1997-09-22 Hitachi Maxell Ltd Fluorescent ink composition and fluorescent mark formed from the fluorescent ink composition
JP3668966B2 (en) * 2001-09-07 2005-07-06 関西ティー・エル・オー株式会社 Rare earth complex, optical functional material and light emitting device using the same
JP5470921B2 (en) * 2008-03-11 2014-04-16 国立大学法人 奈良先端科学技術大学院大学 Method for producing rare earth metal complex and wavelength conversion material
EP2342161A4 (en) * 2008-10-03 2012-11-07 Life Technologies Corp Sulfonate modified nanocrystals
JP6666009B2 (en) * 2015-03-09 2020-03-18 国立大学法人北海道大学 Polymer complex and method for producing the same
WO2019098286A1 (en) * 2017-11-17 2019-05-23 国立大学法人北海道大学 Rare earth compound, light-emitting body, light-emitting device, wavelength conversion material, and security material
WO2020004656A1 (en) * 2018-06-28 2020-01-02 国立大学法人北海道大学 Rare earth complex, optical imaging agent for radiation therapy, scintillator for neutron detection, and carborane derivative

Also Published As

Publication number Publication date
WO2022009930A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
CN110218220B (en) Functionalized metal-organic framework compound, complex formed by functionalized metal-organic framework compound, and preparation method and application of functionalized metal-organic framework compound
TWI708777B (en) Pyrrolomethylene boron complex, color conversion composition, color conversion film, light source unit, display and lighting device
JP5737719B2 (en) Rare earth complexes and their use
WO2010032395A1 (en) Rare earth complex nanocrystals and applications thereof
JP2019532912A (en) Compound and color conversion film containing the same
JP2015071751A (en) Rare earth complex polymer and manufacturing method of the same, and plastic molding
CN111647402A (en) Carbon quantum dot, preparation method thereof and tracer
WO2022009930A1 (en) Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device
JP2008222885A (en) Fluorescent film
JP2007326846A (en) Azobenzene derivative, fluorescent particle and method for producing the fluorescent particle
TWI807198B (en) Pyrromethene boron complex, color conversion composition, color conversion film, light source unit, display and lighting device
CN115160588A (en) Full-spectrum luminescent nanoscale zirconium-based metal organic framework material and preparation method thereof
CN110312729B (en) Phosphine precursor for preparing quantum dots and quantum dots prepared from phosphine precursor
Wu et al. Synthesis and luminescent properties of a silylated-terpyridine derivative and its metalated complexes in solutions and self-assembled monolayers
JP7274134B2 (en) Rare earth compounds, light emitters, light emitting devices, wavelength conversion materials and security materials
JP2022146969A (en) Rare earth complex with phenanthroline ligand
JP4660721B2 (en) Azobenzene derivative compound, particle and method for producing the same
CN113024443A (en) 9-acyl-3-iodocarbazole compounds and application thereof as phosphorescent materials
WO2023167278A1 (en) Light-emitting material, oxygen sensor, and coating material
CN112384518B (en) Rare earth complex, luminescent material, luminescent device, interlayer for laminated glass, windshield for vehicle, wavelength conversion material, and security material
WO2020241498A1 (en) Luminescent europium complex
KR102595255B1 (en) Phosphine precursor for preparing quantum dot and quantum dot prepared therefrom
WO2020137638A1 (en) Rare earth compound, phosphine oxide compound, and luminescent body
JP3594670B2 (en) Novel phthalocyanine compound and method for producing the same
CN115304749A (en) Fluorescent conjugated polymer containing catechol side group and preparation method thereof