JP2023122896A - 温度調節器 - Google Patents

温度調節器 Download PDF

Info

Publication number
JP2023122896A
JP2023122896A JP2022026672A JP2022026672A JP2023122896A JP 2023122896 A JP2023122896 A JP 2023122896A JP 2022026672 A JP2022026672 A JP 2022026672A JP 2022026672 A JP2022026672 A JP 2022026672A JP 2023122896 A JP2023122896 A JP 2023122896A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer member
along
cross
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022026672A
Other languages
English (en)
Inventor
荘史 齊藤
Takashi Saito
哲 ▲崎▼道
Satoru Sakimichi
仁美 竹中
Hitomi Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2022026672A priority Critical patent/JP2023122896A/ja
Publication of JP2023122896A publication Critical patent/JP2023122896A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】伝熱部材と流体との間における熱移動量を十分に確保することのできる温度調節器、を提供する。【解決手段】温度調節器10は、第1板状部材110と、第1板状部材110と対向する第2板状部材120と、第1板状部材110から第2板状部材120まで伸びる棒状の伝熱部材200と、を備える。伝熱部材200の少なくとも一部は、第1板状部材110の法線方向とは異なる方向に向かって伸びている。【選択図】図2

Description

本開示は、流体を用いた温度調節器に関する。
例えば下記特許文献1に記載された冷却装置のように、流体を用いた温度調節器の内部流路には、流体との接触面積を確保するための棒状(ピン状)の伝熱部材が複数設けられることが多い。このような伝熱部材は、「ピンフィン」等とも称される。尚、ここでいう「温度調節器」には、単一の流体の供給を受けて外側にある部材の温度を調整するものの他、2種類の流体の供給を受けて、それぞれの流体間で熱交換を行わせる熱交換器等も含まれる。
特許第6262422号公報
上記特許文献1には、それぞれの伝熱部材の断面形状を工夫することにより、圧力損失を抑制し得ることについて記載されている。
しかしながら、上記特許文献1に記載された温度調節器では、全ての伝熱部材(放熱フィン)が、流体の流れる方向に対し垂直な方向に伸びるように形成されている。このような構成においては、流路において乱流が比較的生じにくく、温度調節器の性能を十分に発揮させることができないと考えられる。
本開示は、伝熱部材と流体との間における熱移動量を十分に確保することのできる温度調節器、を提供することを目的とする。
本開示に係る温度調節器は、流体を用いた温度調節器(10)であって、第1板状部材(110)と、第1板状部材と対向するように配置された部材であって、第1板状部材と共に、流体の流れる流路を区画する第2板状部材(120)と、第1板状部材から第2板状部材まで伸びる棒状の伝熱部材(200)と、を備える。伝熱部材の少なくとも一部は、第1板状部材の法線方向とは異なる方向に向かって伸びている。
このような構成の温度調節器では、流路を流れる流体の流速に上下方向の速度成分が加えられるため、乱流の発生が促進される。その結果、伝熱部材と流体との間の熱伝達を促進させることができる。
本開示によれば、伝熱部材と流体との間における熱移動量を十分に確保することのできる温度調節器、が提供される。
図1は、第1実施形態に係る温度調節器の構成を模式的に示す図である。 図2は、第1実施形態に係る温度調節器の内部構成を示す図である。 図3は、図2のIII-III断面を示す図である。 図4は、第1実施形態に係る温度調節器の内部に設けられた、複数の伝熱部材の形状および配置を示す図である。 図5は、流体の流速と、圧力損失との関係を示す図である。 図6は、止水域について説明するための図である。 図7は、流路における位置と、熱伝達率との関係を示す図である。 図8は、流路における位置と、伝熱部材の表面積と、の関係を示す図である。 図9は、第2実施形態に係る温度調節器の内部構成を示す図である。 図10は、第3実施形態に係る温度調節器の内部構成を示す図である。
以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
第1実施形態について説明する。本実施形態に係る温度調節器10は、不図示の車両に搭載されるものであり、空気と冷却水との間で熱交換を行うための熱交換器(具体的にはラジエータ)として構成されている。図1には、温度調節器10の構成が模式的に示されている。
図1に示されるように、温度調節器10は、ハウジング11と、空気導入部13と、空気排出部14と、冷却水導入部15と、冷却水排出部16と、を有している。
ハウジング11は、空気が流れる流路FP1と、冷却水が流れる流路FP2と、のそれぞれが内側に形成された容器である。流路FP1及び流路FP2は、それぞれ複数ずつ形成されており、図1における上下方向に沿って交互に並んでいる。互いに隣り合う流路FP1と流路FP2との間は、板状部材であるプレート12によって仕切られている。
空気導入部13は、一方の流体である空気の入口として設けられた部分である。当該空気は、例えば、車両のフロントグリルから導入され、空気導入部13からハウジング11の内側へと導入される。
その後、空気は、それぞれの流路FP1に分配され、各流路FP1を図1の左側から右側に向かって流れる。その際、流路FP2を流れる高温の冷却水からの伝熱により、流路FP1を流れる空気の温度は次第に上昇する。
空気排出部14は、流路FP1を通った空気の出口として設けられた部分である。流路FP1を通り上記のように温度を上昇させた空気は、空気排出部14を通って外部へと排出される。
冷却水導入部15は、他方の流体である冷却水の入口として設けられた部分である。当該冷却水は、内燃機関を通り高温となった後の冷却水であり、冷却水導入部15からハウジング11の内側へと導入される。
その後、冷却水は、それぞれの流路FP2に分配され、各流路FP2を図1の右側から左側に向かって流れる。その際、流路FP1を流れる空気から熱を奪われることにより、流路FP2を流れる冷却水の温度は次第に低下する。
冷却水排出部16は、流路FP2を通った冷却水の出口として設けられた部分である。流路FP2を通り上記のように温度を低下させた冷却水は、冷却水排出部16を通って外部へと排出される。その後、冷却水は再び内燃機関へと供給され、内燃機関の冷却に供される。
尚、空気導入部13から供給された空気をそれぞれの流路FP1に分配するための具体的な構成や、それぞれの流路FP1を通った空気を空気排出部14に集約し排出するための具体的な構成等については、公知となっている種々の構成を採用することができる。このため、その具体的な図示や説明については省略する。冷却水の流れる経路についても同様である。
流路FP1の内部の構成について説明する。図2には、1つの流路FP1が拡大して示されている。当該流路FP1では、矢印で示されるように、空気が左側から右側に向かって流れる。当該流路FP1の下方側を区画するプレート12のことを、以下では「第1板状部材110」とも称する。同様に、当該流路FP1の上方側を区画するプレート12のことを、以下では「第2板状部材120」とも称する。第1板状部材110及び第2板状部材120はいずれも、全体が略平板状に形成されており、互いに平行となるように配置されている。つまり、第1板状部材110及び第2板状部材120は互いに対向するように配置されることで、空気の流れる流路FP1を共に区画している。
流路FP1には、伝熱部材200が設けられている。伝熱部材200は、第1板状部材110から第2板状部材120まで伸びる棒状の部材であって、所謂「ピンフィン」とも称されるものである。図2に示されるように、流路FP1には伝熱部材200が複数設けられている。伝熱部材200により、空気との接触面積が広く確保されるため、空気との間の伝熱が促進される。
第1板状部材110の内面の法線方向に沿った座標位置のことを、以下では「高さ位置」とも称する。第1板状部材110と平行な断面における伝熱部材200の重心を、いずれの高さ位置においても通るような仮想的な線のことを、伝熱部材200の「中心軸」と定義する。また、当該中心軸が伸びる方向のことを、伝熱部材200の「長手方向」と定義する。本実施形態では、伝熱部材200の中心軸は直線となっており、伝熱部材200の長手方向は、第1板状部材110の内面の法線方向とは異なる方向となっている。つまり、伝熱部材200の長手方向は、第1板状部材110の内面の法線方向に対して傾斜している。
図3には、図2のIII-III断面が示されている。当該断面は、図2に示される伝熱部材200うちの1つを、第1板状部材110の内面と平行に切断した場合の断面である。以下においては、特に断らない限り、第1板状部材110の内面と平行に切断した場合の断面を意味するものとして「断面」の語を用いることとする。
図3に示されるように、伝熱部材200の断面形状は流線形となっている。図3のP1は、伝熱部材200の断面のうち、流体(空気)の流れる方向に沿って最も上流側となる位置を示している。この位置のことを、以下では「最上流位置P1」とも称する。
図3のP3は、伝熱部材200の断面のうち、流体の流れる方向に沿って最も下流側となる位置を示している。この位置のことを、以下では「最下流位置P3」とも称する。
図3のP2は、流体の流れる方向に沿って最上流位置P1と最下流位置P3との間となる位置であって、伝熱部材200の幅寸法が最も大きくなる位置を示している。尚、ここでいう「幅寸法」とは、図3の断面において、流体の流れる方向に対し垂直な方向に沿った寸法のことである。P2で示される位置のことを、以下では「最大位置P2」とも称する。
本実施形態では、流体の流れる方向に沿った、最上流位置P1から最大位置P2までの長さL1よりも、流体の流れる方向に沿った、最大位置P2から最下流位置P3までの長さL2の方が長くなるように、それぞれの伝熱部材200が形成されている。
伝熱部材200の断面形状は、伝熱部材200の長手方向に沿ったいずれの高さ位置で切断した場合でも、図3のような断面形状となっており、L1<L2となっている。ただし、当該断面の大きさは、伝熱部材200が設けられている位置によって異なっている。
図4には、特定の高さ位置(例えば図2のIII-IIIの位置)を通り、且つ、第1板状部材110の内面と平行な面に沿って切断した場合における、温度調節器10の断面が示されている。同図に示されるように、点線DLよりも左側、すなわち、空気の流れる方向に沿った上流側においては、単位面積あたりに設けられている伝熱部材200の数が比較的少なくなっている。一方、点線DLよりも右側、すなわち、空気の流れる方向に沿った下流側においては、単位面積あたりに設けられている伝熱部材200の数が比較的多くなっている。換言すれば、図4のように、第1板状部材110及び第2板状部材120が対向している方向に沿って見た場合には、点線DLよりも下流側において単位面積あたりに設けられている伝熱部材200の数が、上流側において単位面積あたりに設けられている伝熱部材200の数よりも多くなっている。
更に本実施形態では、点線DLよりも下流側に設けられている伝熱部材200の断面積が、上流側に設けられている伝熱部材200の断面積よりも小さくなっている。
尚、点線DLの位置は、流路FP1の流路方向に沿った中央となる位置でもよいが、それとは異なる位置であってもよい。また、点線DLの左右それぞれの領域において、伝熱部材200が流路方向に沿って直線状に並んでいなくてもよい。更に、単位面積あたりに設けられている伝熱部材200の数が、上流側から下流側に行くに従って次第に多くなっていくような態様であってもよい。同様に、伝熱部材200の断面積が、上流側から下流側に行くに従って次第に小さくなっていくような態様であってもよい。
伝熱部材200の形状や配置を以上のようなものとしたことの効果について説明する。図5には、流路FP1を流れる空気の流速(横軸)と、空気が流れる際の圧力損失(縦軸)との関係が示されている。G11は、伝熱部材200の断面形状が円形である場合における圧力損失を示しており、G12は、本実施形態のように伝熱部材200の断面形状が流線形(図3)である場合における圧力損失を示している。本実施形態では、伝熱部材200の断面形状を図3のような流線形としたことにより、流路FP1を空気が流れる際の圧力損失(G12)が、全ての流速域において従来(G11)よりも小さく抑えられている。
図6には、比較例に係る伝熱部材200の断面形状と、その周囲における空気の流れとが模式的に示されている。この比較例では、伝熱部材200の断面形状は円形となっている。流体である空気は、伝熱部材200の周囲を左側から右側に向かって流れる。
この場合、流路FP1のうち、伝熱部材200に対し下流側において隣り合う位置では、伝熱部材200により空気の流れが阻害されることで、流速の低い所謂「止水域」と称される淀み領域が形成されやすい。図6では、当該領域に符号「A」が付されている。このような止水域は、一般に知られているように、流路における圧力損失の増加原因となる。
そこで、本実施形態では、伝熱部材200の断面形状を図3に示されるようなものとしている。図3のように、伝熱部材200がL1<L2となる断面形状を有している場合には、最下流位置P3の近傍に向かって空気が滑らかに流入しやすいため、止水域の発生や拡大が抑制され、これにより、流路FP1を空気が流れる際の圧力損失が低減されるものと考えられる。
図7には、流路FP1の流れ方向に沿った位置(横軸)と、空気との間の熱伝達率(縦軸)と、の関係が示されている。G21は、全ての伝熱部材200の断面形状が互いに等しく、且つ、単位面積あたりに設けられている伝熱部材200の数が全体で均等となっている場合における熱伝達率を示している。G22は、本実施形態のように伝熱部材200の断面形状が下流側において小さくなり、且つ、単位面積あたりに設けられている伝熱部材200の数が下流側において多くなっている場合における熱伝達率を示している。
G21及びG22のいずれにおいても、上流側から下流側に行くに従って、熱伝達率が次第に低下していく傾向を有している。これは、下流側に行くほど、伝熱部材200の近傍における速度境界層及び温度境界層が発達しやすくなり、空気との間の伝熱が生じにくくなるためである。
図4を参照しながら説明したように、本実施形態(G22)では、下流側において伝熱部材200の断面形状が小さくなっている。これにより、下流側の部分では、速度境界層及び温度境界層の発達が抑制され、伝熱部材200の近傍において空気が層流として流れる領域が小さくなる。換言すれば、伝熱部材200の近傍において乱流が生じる領域が大きくなる。これにより、図7のG22に示されるように、下流側における熱伝達率は上昇することとなる。
図8には、流路FP1の流れ方向に沿った位置(横軸)と、伝熱部材200の表面積(縦軸)との関係が示されている。尚、ここでいう「伝熱部材200の表面積」とは、横軸の方向に沿った微小長さの範囲に含まれる伝熱部材200の表面積、のことである。G31は、全ての伝熱部材200の断面形状が互いに等しく、且つ、単位面積あたりに設けられている伝熱部材200の数が全体で均等となっている場合における表面積を示している。G32は、本実施形態のように伝熱部材200の断面形状が下流側において小さくなり、且つ、単位面積あたりに設けられている伝熱部材200の数が下流側において多くなっている場合における表面積を示している。その定義より明らかなように、比較例(G31)では、流路FP1の流れ方向に沿ったいずれの位置においても、伝熱部材200の表面積は同じである。一方、本実施形態(G32)では、下流側において伝熱部材200の表面積が大きくなっている。
このように、本実施形態では、伝熱部材200の配置及び断面形状を工夫することにより、下流側においては、伝熱部材200と空気との間の熱伝達率が従来よりも大きくなっており、且つ、伝熱部材200の表面積についても大きくなっている。両者を掛け合わせた値に比例する熱移動量は、下流側においても十分に確保されるので、下流側における温度調節器10の性能低下を抑制することができる。
先に述べたように、本実施形態における伝熱部材200は、その中心軸が、第1板状部材110の内面の法線方向とは異なる方向に向かって、すなわち傾斜した方向に向かって伸びるように形成されている。伝熱部材200の中心軸が伸びる方向は、全ての伝熱部材200において同一とはなっていない。
図2において符号「211」付された伝熱部材200は、上方側に行くほど左側に向かうような方向に伸びている。符号「211」付された伝熱部材200の中心軸が伸びる方向は、本実施形態における「第1方向」に該当する。
図2において符号「212」付された伝熱部材200は、上方側に行くほど右側に向かうような方向に伸びている。符号「212」付された伝熱部材200の中心軸が伸びる方向は、本実施形態における「第2方向」に該当する。
このように、本実施形態に係る温度調節器10が有する複数の伝熱部材200には、第1板状部材110の内面の法線方向とは異なる第1方向に向かって伸びているものと、第1板状部材110の内面の法線方向とは異なる方向であって、第1方向とも異なる第2方向に向かって伸びているものと、の両方が含まれている。
このような構成において、図2の矢印AR11に沿って流路FP1を流れる空気の一部は、伝熱部材211に当たってその流れ方向を変化させ、図2の矢印AR12の方向に流れる。また、当該空気の他の一部は、伝熱部材212に当たってその流れ方向を変化させ、図2の矢印AR13の方向に流れる。
流路FP1では、空気の流速に対し上下方向の速度成分が加えられることとなるので、各伝熱部材200の中心軸が上下方向に伸びている場合に比べると、乱流が生じやすくなる。その結果、空気と伝熱部材200との間の熱伝達が促進されるので、温度調節器10の性能を従来に比べて向上させることができる。
尚、伝熱部材200は、その中心軸の全体が上記の第1方向や第2方向に向かって伸びるような形状としてもよいが、中心軸の一部のみが、第1方向や第2方向に向かって伸びるような形状としてもよい。つまり、1つの伝熱部材200のうちの一部のみにおいて、中心軸が第1板状部材110の内面の法線方向に向かって伸びているような構成であってもよい。
本実施形態における上記の第1方向や第2方向は、流路FP1を空気が流れる方向に沿っている。例えば、図2に示される伝熱部材211のうち第1板状部材110の端部(下端)は、第2板状部材120の端部(上端)よりも、空気が流れる方向に沿った下流側(図2における右側)となる位置に配置されている。しかしながら、上記の第1方向や第2方向としては、様々な方向を採用することができる。例えば、伝熱部材200のうち第1板状部材110の端部(下端)が、第2板状部材120の端部(上端)よりも、図2における紙面奥側もしくは手前側となる位置に配置されていてもよい。
本実施形態では、伝熱部材200が伸びる方向(第1方向及び第2方向)が複数存在している。このような態様に換えて、全ての伝熱部材200が同じ方向に向かって伸びており、且つ、当該方向が第1板状部材110の法線方向に対し傾斜していてもよい。
尚、伝熱部材200が伸びる方向を、第1板状部材110の法線方向に対し傾斜させたことの効果が十分な場合には、伝熱部材200の断面形状を、図3とは異なる形状(例えば円形)としてもよい。また、伝熱部材200の配置ピッチを流路FP1の全体で均等としてもよく、全ての伝熱部材200の断面形状を互いに同一としてもよい。
以上のように、本実施形態では、流路FP1に複数の伝熱部材200を設け、その形状や配置を工夫することにより、温度調節器10の性能を向上させている。以上に述べた伝熱部材200の形状や配置は、流路FP1のみならず流路FP2に適用してもよい。
以上においては、温度調節器10が、空気と冷却水との熱交換を行う熱交換器として構成されている場合の例を説明した。しかしながら、温度調節器10を流れる流体の種類は、適宜変更してもよい。
また、温度調節器10に流路FP1のみが形成されており、単一の流体のみが流れる構成であってもよい。例えば、温度調節器10が、その内部を流れる流体を用いて、表面に設置された機器(例えば半導体素子)の冷却等を行うものであってもよい。
第2実施形態について説明する。以下では、第1実施形態と異なっている点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。本実施形態では、伝熱部材200の形状においてのみ第1実施形態と異なっている。
図9には、本実施形態に係る伝熱部材200の形状が模式的に描かれている。尚、本実施形態の伝熱部材200も、第1実施形態(図2)と同様に、その長手方向が、第1板状部材110の内面の法線方向に対して傾斜している。ただし、図9においては説明の便宜上、伝熱部材200が上記法線方向に沿って伸びるように模式的に描かれている。
伝熱部材200の断面形状は、伝熱部材200の長手方向に沿ったいずれの高さ位置で切断した場合でも、図3のような断面形状となっており、L1<L2となっている。ただし、本実施形態における当該断面の大きさは、伝熱部材200の高さ位置によって異なっている。
図9に示されるように、それぞれの伝熱部材200は、その長手方向に沿った中央(H1の高さ位置)において最も断面形状が小さくなっており、その長手方向に沿った端部(0及びH2の高さ位置)において最も断面形状が大きくなっている。
図9に示されるH2の高さ位置は、伝熱部材200の長手方向に沿った端部の高さ位置であって、最も第2板状部材120寄りの位置である。当該位置は、本実施形態における「第1位置」に該当する。
図9に示されるH1の高さ位置は、伝熱部材200の長手方向に沿った中央の高さ位置であって、第1板状部材110と第2板状部材120との中間の位置である。当該位置は、上記の第1位置とは異なる位置であり、本実施形態における「第2位置」に該当する。本実施形態では上記のように、第1位置(H2)における伝熱部材200の断面形状と、第2位置(H1)における伝熱部材200の断面形状と、が互いに異なっている。具体的には、第2位置(H1)における伝熱部材200の断面積が、第1位置(H2)を含む他のいずれの高さ位置における伝熱部材200の断面積よりも小さくなっている。
流路FP1を流れる空気の流速は、第1板状部材110や第2板状部材120の内面近傍において最も小さくなり、両者の中央(図9のH1における高さ位置)において最も大きくなる傾向がある。流速が大きくなると、図6のAに示される止水域も大きくなりやすい。
そこで、本実施形態では、図9のH1における高さ位置において、伝熱部材200の断面形状が最も小さくなるように、伝熱部材200の形状を工夫している。これにより、当該位置において高速で流れる空気が伝熱部材200に衝突すること、によって生じる圧力損失を更に低減することが可能となっている。尚、伝熱部材200の断面形状を高さ位置に応じて異ならせることの効果は、例えば、伝熱部材200の断面形状を本実施形態とは異なる形状(例えば円形)とした場合においても奏することができる。
本実施形態の構成においては、伝熱部材200の断面形状は、その長手方向に沿った端部において最も大きくなる。この場合、伝熱部材200と第1板状部材110等との間の接合強度を確保し得る、という副次的な効果も得ることができる。
第3実施形態について説明する。以下では、第1実施形態と異なっている点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。本実施形態でも、伝熱部材200の形状においてのみ第1実施形態と異なっている。図10には、本実施形態に係る伝熱部材200の形状が、図9と同様の方法で描かれている。本実施形態の伝熱部材200も、第1実施形態(図2)と同様に、その長手方向が、第1板状部材110の内面の法線方向に対して傾斜している。ただし、図10においては説明の便宜上、伝熱部材200が上記法線方向に沿って伸びるように模式的に描かれている。
図10に示されるH12の高さ位置は、伝熱部材200の長手方向に沿った中央の高さ位置であって、第1板状部材110と第2板状部材120との中間の位置である。本実施形態では、このH12の高さ位置において、伝熱部材200の断面積が最も大きくなっている。
伝熱部材200の断面積は、図10のH11及びH13のそれぞれの高さ位置において最も小さくなっている。H11の高さ位置は、H12よりも第1板状部材110側の高さ位置であり、且つ、伝熱部材200の長手方向に沿った第1板状部材110側の端部とは異なる高さ位置である。H13の高さ位置は、H12よりも第2板状部材120側の高さ位置であり、且つ、伝熱部材200の長手方向に沿った第2板状部材120側の端部とは異なる高さ位置である。H11及びH13のそれぞれの高さ位置は、本実施形態における「第1位置」に該当する。H12の高さ位置は、本実施形態における「第2位置」に該当する。
流体の流れる方向に沿った伝熱部材200の寸法のことを、以下では「厚さ寸法」とも称する。図10では、H11の高さ位置における厚さ寸法が「L11」として示されており、H12の高さ位置における厚さ寸法が「L12」として示されており、H13の高さ位置における厚さ寸法が「L13」として示されている。L11とL13とは互いに等しい。L12は、L11及びL13のいずれよりも大きい。その結果、伝熱部材200は、H12の高さ位置において下流側へと突出した形状を有している。
伝熱部材200がこのような形状を有している場合、流路FP1を流れる空気の一部は、図10の矢印AR1のように流れる。つまり、空気の一部は、伝熱部材200の表面に沿って、伝熱部材200の長手方向に沿った中央に向かって流れる。つまり、空気の一部が、最も止水域が広く生じやすい中央の領域に向かって流入する。これにより、止水域の発生や拡大を抑制し、流路FP1を空気が流れる際の圧力損失を低減することができる。
以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
10:温度調節器
110:第1板状部材
120:第2板状部材
200:伝熱部材

Claims (11)

  1. 流体を用いた温度調節器(10)であって、
    第1板状部材(110)と、
    前記第1板状部材と対向するように配置された部材であって、前記第1板状部材と共に、前記流体の流れる流路を区画する第2板状部材(120)と、
    前記第1板状部材から第2板状部材まで伸びる棒状の伝熱部材(200)と、を備え、
    前記伝熱部材の少なくとも一部は、前記第1板状部材の法線方向とは異なる方向に向かって伸びている、温度調節器。
  2. 複数の前記伝熱部材には、
    少なくとも一部が、前記第1板状部材の法線方向とは異なる第1方向に向かって伸びているものと、
    少なくとも一部が、前記第1板状部材の法線方向とは異なる方向であって、前記第1方向とも異なる第2方向に向かって伸びているものと、が含まれる、請求項1に記載の温度調節器。
  3. 前記第1板状部材及び前記第2板状部材が対向している方向に沿って見た場合において、
    前記流体の流れる方向に沿った下流側において、単位面積あたりに設けられている前記伝熱部材の数は、
    前記流体の流れる方向に沿った上流側において、単位面積あたりに設けられている前記伝熱部材の数よりも多い、請求項1又は2に記載の温度調節器。
  4. 前記第1板状部材に対し垂直な方向に沿った特定の位置においては、
    前記流体の流れる方向に沿った下流側に設けられている前記伝熱部材の断面積は、
    前記流体の流れる方向に沿った上流側に設けられている前記伝熱部材の断面積よりも小さい、請求項3に記載の温度調節器。
  5. 前記伝熱部材の断面において、
    前記流体の流れる方向に沿って最も上流側となる位置を最上流位置とし、
    前記流体の流れる方向に沿って最も下流側となる位置を最下流位置とし、
    前記最上流位置と前記最下流位置との間の位置であって、前記伝熱部材の幅寸法が最も大きくなる位置を最大位置としたときに、
    前記流体の流れる方向に沿った、前記最上流位置から前記最大位置までの長さよりも、
    前記流体の流れる方向に沿った、前記最大位置から前記最下流位置までの長さの方が長い、請求項4に記載の温度調節器。
  6. 前記第1板状部材に対し垂直な方向に沿った特定の位置を第1位置とし、
    前記第1板状部材に対し垂直な方向に沿った特定の位置であって、前記第1位置とは異なる位置を第2位置としたときに、
    前記第1位置における前記伝熱部材の断面形状と、前記第2位置における前記伝熱部材の断面形状と、が互いに異なる、請求項1乃至5のいずれか1項に記載の温度調節器。
  7. 前記第1位置とは、前記伝熱部材の長手方向に沿った端部の位置であり、
    前記第2位置とは、前記伝熱部材の長手方向に沿った端部以外の位置である、請求項6に記載の温度調節器。
  8. 前記第2位置における前記伝熱部材の断面積が、
    前記第1位置における前記伝熱部材の断面積よりも小さい、請求項7に記載の温度調節器。
  9. 前記第2位置とは、前記伝熱部材の長手方向に沿った中央の位置である、請求項8に記載の温度調節器。
  10. 前記第1位置とは、前記伝熱部材の長手方向に沿った中央とは異なる位置であり、且つ、前記伝熱部材の長手方向に沿った端部とも異なる位置であり、
    前記第2位置とは、前記伝熱部材の長手方向に沿った中央の位置であり、
    前記第2位置における前記伝熱部材の断面積が、
    前記第1位置における前記伝熱部材の断面積よりも大きい、請求項6に記載の温度調節器。
  11. 前記伝熱部材の断面積は、前記第2位置において最も大きくなっている、請求項10に記載の温度調節器。
JP2022026672A 2022-02-24 2022-02-24 温度調節器 Pending JP2023122896A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022026672A JP2023122896A (ja) 2022-02-24 2022-02-24 温度調節器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022026672A JP2023122896A (ja) 2022-02-24 2022-02-24 温度調節器

Publications (1)

Publication Number Publication Date
JP2023122896A true JP2023122896A (ja) 2023-09-05

Family

ID=87885535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022026672A Pending JP2023122896A (ja) 2022-02-24 2022-02-24 温度調節器

Country Status (1)

Country Link
JP (1) JP2023122896A (ja)

Similar Documents

Publication Publication Date Title
JP4776032B2 (ja) 熱交換器
KR100821180B1 (ko) 열교환기용 방열핀
JP2010027963A (ja) 冷却器
JP2010223508A (ja) 車両用エンジンのインタークーラ
JP6577282B2 (ja) 熱交換器
US11603790B2 (en) Heat exchanger
JP2023122896A (ja) 温度調節器
JP2023122894A (ja) 温度調節器
WO2020012921A1 (ja) 熱交換器
JP2023122895A (ja) 温度調節器
JP4415712B2 (ja) 熱交換器
US9903670B2 (en) Insert for heat exchanger and heat exchanger having the same
KR20080107024A (ko) 열교환기
JP2009236470A (ja) 熱交換器
JP2005077012A (ja) ラジエータ
JP2020091056A (ja) 熱交換器
US11874075B2 (en) Heat exchanger
KR101927125B1 (ko) 핀-튜브 열교환기
KR20110080899A (ko) 열교환기용 핀
US20230175791A1 (en) Additively manufactured heat exchanger layer
KR101318624B1 (ko) 열교환기
US20230392869A1 (en) 221-0240 heat exchanger for a vehicle
KR20210025302A (ko) 차량용 라디에이터
KR101318626B1 (ko) 증발기
KR101100114B1 (ko) 열교환기용 핀