JP2023122758A - Low temperature liquefied gas tank and construction method of the same - Google Patents

Low temperature liquefied gas tank and construction method of the same Download PDF

Info

Publication number
JP2023122758A
JP2023122758A JP2022026445A JP2022026445A JP2023122758A JP 2023122758 A JP2023122758 A JP 2023122758A JP 2022026445 A JP2022026445 A JP 2022026445A JP 2022026445 A JP2022026445 A JP 2022026445A JP 2023122758 A JP2023122758 A JP 2023122758A
Authority
JP
Japan
Prior art keywords
tank
liquefied gas
plate
panel
gas tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022026445A
Other languages
Japanese (ja)
Inventor
聡 堀野
Satoshi Horino
友巳 熊野
Tomomi Kumano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2022026445A priority Critical patent/JP2023122758A/en
Publication of JP2023122758A publication Critical patent/JP2023122758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To provide a low temperature liquefied gas tank including a vacuum heat insulation structure which is excellent in processability and ease of assembly of outer tank panels and may be applied to achieve high capacity, and to provide a construction method of the low temperature liquefied gas tank.SOLUTION: A low temperature liquefied gas tank 1 includes: an inner tank 12 in which a low temperature liquefied gas LG is stored; an outer tank 11 formed by an assembly of multiple outer tank panels 2 and enclosing the inner tank 12; and a vacuum heat insulation layer 13 between the inner tank 12 and the outer tank 11. The outer tank panels 2 include: an inner panel 21 and an outer panel 22 which face each other while forming a predetermined space therebetween; and a honeycomb structure 23 disposed between the inner panel 21 and the outer panel 22. The honeycomb structure 23 is formed by an aggregate of multiple honeycomb hollow columns 24 arranged in a honeycomb form.SELECTED DRAWING: Figure 1

Description

本開示は、低温液化ガスを貯留する低温液化ガスタンクおよびその構築方法に関する。 The present disclosure relates to a cryogenic liquefied gas tank for storing cryogenic liquefied gas and a construction method thereof.

低温の液化ガスを貯留する施設として、多重殻タンクが知られている。一般に多重殻タンクは、低温液化ガスを貯留する内槽と、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の断熱層とを含む。貯留する低温液化ガスの蒸発率(BOR値)を低値とする観点からは、前記断熱層を真空断熱構造とすることが望ましい(例えば特許文献1)。 A multi-shell tank is known as a facility for storing low-temperature liquefied gas. A multi-shell tank generally includes an inner tank for storing cryogenic liquefied gas, an outer tank surrounding the inner tank, and a heat insulating layer between the inner tank and the outer tank. From the viewpoint of reducing the evaporation rate (BOR value) of the stored low-temperature liquefied gas, it is desirable that the heat insulating layer has a vacuum heat insulating structure (for example, Patent Document 1).

特開2020-104884号公報JP 2020-104884 A

真空断熱構造を採用するに際しては、真空外圧に耐えるよう、外槽の板厚の厚肉化が必要となる。容量の大きいタンクを構築する場合は、さらなる外槽の厚肉化が求められる。外槽は、球面加工を施した複数枚の鋼板パネルの溶接によって組み立てられる。しかし、鋼板パネルを過度に厚肉化すると、球面加工や溶接が困難となる。 When adopting a vacuum insulation structure, it is necessary to increase the plate thickness of the outer tank so as to withstand the external vacuum pressure. When constructing a tank with a large capacity, it is necessary to increase the thickness of the outer tank. The outer tank is assembled by welding a plurality of steel panels with spherical surfaces. However, if the steel plate panel is excessively thickened, spherical processing and welding become difficult.

本開示の目的は、外槽用パネルの加工性や組み立て性に優れ、大容量化に適応可能な真空断熱構造を備えた低温液化ガスタンクおよびその構築方法を提供することにある。 An object of the present disclosure is to provide a low-temperature liquefied gas tank having excellent workability and assembling properties of the outer tank panel, and having a vacuum insulation structure that can be adapted to increase in capacity, and a method of constructing the same.

本開示の一局面に係る低温液化ガスタンクは、低温液化ガスを貯留する内槽と、複数のパネルの組立体からなり、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の真空層と、を備え、前記パネルは、所定間隔を置いて互いに対向する内板および外板と、前記内板と前記外板との間に配設される複数の筒状体とを含む。 A cryogenic liquefied gas tank according to one aspect of the present disclosure includes an inner tank for storing cryogenic liquefied gas, an assembly of a plurality of panels, an outer tank surrounding the inner tank, and a space between the inner tank and the outer tank. the panel includes an inner plate and an outer plate facing each other at a predetermined interval, and a plurality of tubular bodies disposed between the inner plate and the outer plate .

本開示の他の局面に係る低温液化ガスタンクの構築方法は、低温液化ガスを貯留する内槽と、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の真空層と、を備える低温液化ガスタンクの構築方法であって、一端側に第1開口端を、他端側に第2開口端を有する筒状体を準備し、前記内槽を作製し、所定サイズの球形片からなる内板に、複数の前記筒状体の前記第1開口端を各々固定してなるパネル中間体を複数枚作製し、前記内板同士の接合によって、前記内槽を取り囲むように複数枚の前記パネル中間体を組み立てると共に、前記筒状体の前記第2開口端の各々に蓋片を固定することで前記外槽を作製する。 A method for constructing a cryogenic liquefied gas tank according to another aspect of the present disclosure includes an inner tank for storing cryogenic liquefied gas, an outer tank surrounding the inner tank, a vacuum layer between the inner tank and the outer tank, A method for constructing a low-temperature liquefied gas tank comprising: preparing a cylindrical body having a first open end on one end side and a second open end on the other end side; A plurality of panel intermediate bodies are produced by fixing the first opening ends of the plurality of cylindrical bodies to an inner plate made of The outer tank is produced by assembling the panel intermediate body of No. and fixing a lid piece to each of the second open ends of the cylindrical body.

本開示によれば、外槽用パネルの加工性や組み立て性に優れ、大容量化に適応可能な真空断熱構造を備えた低温液化ガスタンクおよびその構築方法を提供することができる。 According to the present disclosure, it is possible to provide a low-temperature liquefied gas tank having excellent workability and assembling properties of the outer tank panel and having a vacuum insulation structure suitable for increasing the capacity, and a method for constructing the same.

図1は、本開示の一実施形態に係る低温液化ガスタンクを示す断面図である。1 is a cross-sectional view of a cryogenic liquefied gas tank according to one embodiment of the present disclosure; FIG. 図2は、前記低温液化ガスタンクの外槽を構成する外槽パネルの分解斜視図である。FIG. 2 is an exploded perspective view of an outer tank panel that constitutes the outer tank of the low-temperature liquefied gas tank. 図3は、前記外槽パネルの斜視図である。FIG. 3 is a perspective view of the outer tub panel. 図4は、前記外槽パネルを構成するハニカム中空柱、内板および六角蓋片を示す斜視図である。FIG. 4 is a perspective view showing a honeycomb hollow column, an inner plate and a hexagonal lid piece that constitute the outer tank panel. 図5は、前記外槽パネルを構成するハニカム構造体の平面図である。FIG. 5 is a plan view of a honeycomb structure constituting the outer tank panel. 図6は、本開示に係る低温液化ガスタンクの構築方法の一例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an example of a method for constructing a cryogenic liquefied gas tank according to the present disclosure.

以下、図面を参照して、本開示に係る低温液化ガスタンクおよびその構築方法の実施形態を詳細に説明する。本開示の低温液化ガスタンクは、低温の液化ガスを貯留するタンクであって、多重殻構造を備えたタンクである。以下に示す実施形態では、球形の二重殻タンクを例示する。本開示は、タンクの形態には限定されず、三重殻タンクや、平底の多重殻タンクにも適用可能である。貯留される液化ガスは、例えば液化水素、液体ヘリウム、液体窒素、液化天然ガス又は液化石油ガスなどの低温液化ガスである。とりわけ、本開示に係る低温液化ガスタンクは、液化水素の貯留に好適である。 Hereinafter, embodiments of a cryogenic liquefied gas tank and a construction method thereof according to the present disclosure will be described in detail with reference to the drawings. The cryogenic liquefied gas tank of the present disclosure is a tank that stores cryogenic liquefied gas and has a multi-shell structure. In the embodiments shown below, a spherical double shell tank is exemplified. The present disclosure is not limited to tank configurations, but is also applicable to triple-hulled tanks and flat-bottom multi-hulled tanks. The stored liquefied gas is a cryogenic liquefied gas such as, for example, liquefied hydrogen, liquid helium, liquid nitrogen, liquefied natural gas or liquefied petroleum gas. In particular, the cryogenic liquefied gas tank according to the present disclosure is suitable for storing liquefied hydrogen.

[タンク構造]
図1は、本開示の第1実施形態に係る低温液化ガスタンク1を示す断面図である。低温液化ガスタンク1は、極低温の液化ガスLGを貯留する多重殻タンクである。低温液化ガスタンク1は、球形の二重殻構造を備えたタンク本体10と、タンク本体10をタンク基礎GLよりも高い位置で支持する支柱14とを含む。
[Tank structure]
FIG. 1 is a cross-sectional view showing a cryogenic liquefied gas tank 1 according to a first embodiment of the present disclosure. The cryogenic liquefied gas tank 1 is a multi-shell tank that stores cryogenic liquefied gas LG. The cryogenic liquefied gas tank 1 includes a tank body 10 having a spherical double-shell structure, and struts 14 supporting the tank body 10 at a position higher than the tank base GL.

タンク本体10は、低温液化ガスLGを貯留する貯留空間1Aを有するタンクであって、球形の外槽11と、外槽11に内包された球形の内槽12と、外槽11と内槽12との間に配置される真空断熱層13(真空層)とを含む。外槽11は、その赤道付近で支柱14にて支持されている。内槽12は、ハンガーロッド15を介して外槽11に支持されている。詳しくは、外槽11に一端が固定されたハンガーロッド15の他端が内槽12に固定されることにより、内槽12は外槽11に吊り支持されている。 The tank main body 10 is a tank having a storage space 1A for storing the low-temperature liquefied gas LG. and a vacuum heat insulating layer 13 (vacuum layer) disposed between. The outer tank 11 is supported by supports 14 near its equator. The inner tub 12 is supported by the outer tub 11 via hanger rods 15 . Specifically, a hanger rod 15 having one end fixed to the outer tub 11 has its other end fixed to the inner tub 12 , whereby the inner tub 12 is suspended and supported by the outer tub 11 .

外槽11は、炭素鋼等の金属で構成された密閉体である。外槽11は、内槽12を取り囲むように突き合わせ溶接等により組み立てられた、複数の外槽パネル2の組立体からなる。図1では、複数の外槽パネル2の一部を図示している。各外槽パネル2は、球形の外槽11の一部を構成するため、球面を持つように曲げ加工されている。後記で詳述するが、本実施形態の外槽11は、所定間隔を置いて互いに対向する内板21および外板22と、内板21と外板22との間に配設される複数の筒状体とを含む。 The outer tank 11 is a sealed body made of metal such as carbon steel. The outer tank 11 is composed of an assembly of a plurality of outer tank panels 2 assembled by butt welding or the like so as to surround the inner tank 12 . In FIG. 1, some of the plurality of outer tub panels 2 are illustrated. Each outer tank panel 2 is bent to have a spherical surface in order to constitute a part of the spherical outer tank 11 . As will be described in detail later, the outer tank 11 of this embodiment includes an inner plate 21 and an outer plate 22 facing each other at a predetermined interval, and a plurality of inner plates 21 and 22 disposed between the inner plate 21 and the outer plate 22. and a tubular body.

内槽12は、実際に低温液化ガスLGを貯留する槽であって、ステンレス鋼板等の金属で構成された密閉体である。内槽12も、複数のパネルの組立体からなる。内槽12は、真空断熱層13となる所定間隔の空間を置いて外槽11によって取り囲まれている。内槽12は、低温液化ガスLGが貯留される貯留空間1Aを有する。貯留空間1Aの上層部には、低温液化ガスLGから気化したガスが溜まっている。 The inner tank 12 is a tank that actually stores the low-temperature liquefied gas LG, and is a closed body made of metal such as a stainless steel plate. The inner tub 12 also consists of an assembly of multiple panels. The inner tank 12 is surrounded by the outer tank 11 with a predetermined space serving as a vacuum insulation layer 13 . The inner tank 12 has a storage space 1A in which the low-temperature liquefied gas LG is stored. Gas vaporized from the low-temperature liquefied gas LG is stored in the upper layer of the storage space 1A.

真空断熱層13は、外槽11と内槽12との間隙を真空断熱空間として利用し、内槽12の保冷性を高めるための層である。内槽12の周囲が真空断熱空間とされることで、内槽12に貯留される低温液化ガスLGが液化水素ガスであっても、BOR値を所定の低レートに抑制することが可能となる。真空断熱層13は、粉体断熱材又は固体断熱材を含んでいても良い。例えば、粒状パーライトやグラスウール等の断熱材が真空断熱層13に充填されていても良い。 The vacuum heat insulating layer 13 is a layer for enhancing the cold insulating property of the inner tank 12 by using the gap between the outer tank 11 and the inner tank 12 as a vacuum heat insulating space. By forming a vacuum insulation space around the inner tank 12, even if the low-temperature liquefied gas LG stored in the inner tank 12 is liquefied hydrogen gas, it is possible to suppress the BOR value to a predetermined low rate. . The vacuum insulation layer 13 may contain powder insulation or solid insulation. For example, the vacuum heat insulating layer 13 may be filled with a heat insulating material such as granular perlite or glass wool.

支柱14は、タンク基礎GLから鉛直方向に立設された金属柱である。タンク基礎GLは、少なくとも支柱14の立設箇所に打設されたコンクリート層である。支柱14は、タンク本体10を周方向に所定ピッチで取り囲むように、複数本が立設されている。隣接する支柱14をブレースで連結して、強度補強を図ることが望ましい。なお、支柱14に代えて、スカート構造体でタンク本体10を支持させても良い。 The strut 14 is a metal pillar erected vertically from the tank foundation GL. The tank foundation GL is a concrete layer placed at least at the erected positions of the pillars 14 . A plurality of struts 14 are erected so as to surround the tank body 10 at a predetermined pitch in the circumferential direction. It is desirable to connect adjacent struts 14 with braces to reinforce strength. Note that the tank body 10 may be supported by a skirt structure instead of the struts 14 .

以上の通り、本実施形態の低温液化ガスタンク1は、真空断熱層13を備えた真空断熱形式のタンクである。他のタンク形式として、常圧断熱形式のタンクがある。常圧断熱タンクでは、多殻タンク構造の断熱空間が常圧とされると共に、前記断熱空間に保冷用の断熱材が充填され、さらに貯留する低温液化ガスLGと同等又はそれより低い沸点を持つガスが封入される。貯留する低温液化ガスLGが液化天然ガス等である場合、上記常圧断熱タンクにてBOR値を低レートに抑制することが可能である。これは、タンク容量が1万mを越えるような大型タンクでも同様である。 As described above, the low-temperature liquefied gas tank 1 of the present embodiment is a vacuum insulation type tank having the vacuum insulation layer 13 . As another tank type, there is a normal pressure adiabatic type tank. In the normal pressure insulation tank, the heat insulation space of the multi-shell tank structure is kept at normal pressure, and the heat insulation space is filled with a heat insulation material for cold storage, and has a boiling point equal to or lower than that of the stored low temperature liquefied gas LG. Gas is enclosed. When the low-temperature liquefied gas LG to be stored is liquefied natural gas or the like, it is possible to suppress the BOR value to a low rate in the above-described normal-pressure adiabatic tank. This is the same for large tanks with a tank capacity exceeding 10,000 m3 .

これに対し、貯留する低温液化ガスLGがマイナス253℃での貯蔵が必要となる液化水素ガスである場合は、様相を異にする。液化水素ガスを貯留する場合、低BOR値とするには、高断熱仕様のタンク、つまり上掲の真空断熱形式の低温液化ガスタンク1が必要となる。真空断熱タンクでは、外槽11と内槽12との間隙空間が真空引きされるため、大気圧と接する外槽11に真空外圧が加わることになる。このため、外槽11には真空外圧に耐える板厚を具備させねばならない。 On the other hand, when the stored low-temperature liquefied gas LG is liquefied hydrogen gas that needs to be stored at minus 253° C., the situation is different. In the case of storing liquefied hydrogen gas, in order to obtain a low BOR value, a tank with high insulation specifications, that is, the low-temperature liquefied gas tank 1 of the above vacuum insulation type is required. In the vacuum insulated tank, the space between the outer tank 11 and the inner tank 12 is evacuated, so the external vacuum pressure is applied to the outer tank 11 which is in contact with the atmospheric pressure. Therefore, the outer tank 11 must have a plate thickness that can withstand the external vacuum pressure.

外槽11の必要板厚は、タンク容量の大型化に伴い増加する。真空断熱タンクにおいてタンク容量が小さい小型タンクであれば、外槽11の必要板厚は、比較的容易に製作が可能なサイズに設定できる。しかしながら、タンク容量が大きい大型タンクとなると、製作の困難性が増大する。具体的には、外槽11を構成する外槽パネル2において、必要板厚が圧肉すぎる故に球面を持たせる湾曲加工が困難である、外槽パネル2同士の突き合わせ溶接が困難である、といった問題が生じる。このような問題に鑑み、本実施形態の低温液化ガスタンク1は、真空断熱形式を採用しながらもタンク容量の大型化に対応可能なように、外槽パネル2に工夫を加えている。以下、本実施形態の外槽パネル2について詳述する。 The required plate thickness of the outer tank 11 increases as the tank capacity increases. If the vacuum insulation tank is a small tank with a small tank capacity, the required plate thickness of the outer tank 11 can be set to a size that can be manufactured relatively easily. However, a large tank with a large tank capacity is more difficult to manufacture. Specifically, in the outer tank panel 2 constituting the outer tank 11, it is difficult to bend the outer tank panel 2 to have a spherical surface because the required plate thickness is too thick, and it is difficult to butt weld the outer tank panels 2 together. A problem arises. In view of such problems, the cryogenic liquefied gas tank 1 of the present embodiment employs a vacuum insulation system, but the outer tank panel 2 is devised so as to be able to cope with an increase in tank capacity. The outer tank panel 2 of this embodiment will be described in detail below.

[外槽パネルの構造]
図2は、低温液化ガスタンク1の外槽11を構成する外槽パネル2の分解斜視図、図3は組み立てられた状態の外槽パネル2の斜視図である。外槽パネル2は、所定間隔を置いて互いに対向する内板21および外板22と、内板21と外板22との間に配設されるハニカム構造体23とを含む。
[Outer tank panel structure]
2 is an exploded perspective view of the outer tank panel 2 constituting the outer tank 11 of the low-temperature liquefied gas tank 1, and FIG. 3 is a perspective view of the outer tank panel 2 in an assembled state. The outer tank panel 2 includes an inner plate 21 and an outer plate 22 facing each other with a predetermined interval, and a honeycomb structure 23 disposed between the inner plate 21 and the outer plate 22 .

ハニカム構造体23は、ハニカム中空柱24の集合体からなる。すなわち外槽パネル2は、ハニカム配列された複数のハニカム中空柱24を内板21および外板22で挟持してなるハニカムサンドイッチ構造を有している。ハニカム中空柱24は断面が正六角形の角筒体であり、複数個のハニカム中空柱24をハニカム状に隙間無く配設することで、ハニカム構造体23が構成されている。内板21、外板22およびハニカム中空柱24は、例えば炭素鋼などの高剛性の金属にて形成することができる。 The honeycomb structure 23 is composed of an assembly of honeycomb hollow columns 24 . That is, the outer tank panel 2 has a honeycomb sandwich structure in which a plurality of honeycomb hollow columns 24 arranged in honeycomb are sandwiched between the inner plate 21 and the outer plate 22 . The honeycomb hollow pillars 24 are prismatic bodies having a regular hexagonal cross section, and the honeycomb structure 23 is formed by arranging a plurality of honeycomb hollow pillars 24 in a honeycomb shape without gaps. The inner plate 21, the outer plate 22 and the honeycomb hollow column 24 can be made of a highly rigid metal such as carbon steel.

ハニカム中空柱24は、その一端側に内板21への固定側となる第1開口端241を、その他端側に外板22への固定側となる第2開口端242を有する。内板21は、複数のハニカム中空柱24の第1開口端241が溶接等で固定可能な平板材で形成されている。内板21には、外槽11の内径に沿う球面を持つように曲げ加工が施される。外板22は、内板21と同様に1枚板で構成しても良いし、図4および図5に基づき後述するように、各々のハニカム中空柱24の第2開口端242に個別に蓋片を固定する態様としても良い。 The honeycomb hollow pillar 24 has a first open end 241 on one end side that is fixed to the inner plate 21 and a second open end 242 on the other end side that is fixed to the outer plate 22 . The inner plate 21 is formed of a flat plate material to which the first open ends 241 of the plurality of honeycomb hollow columns 24 can be fixed by welding or the like. The inner plate 21 is bent so as to have a spherical surface along the inner diameter of the outer tank 11 . The outer plate 22 may be composed of a single plate similarly to the inner plate 21. Alternatively, as will be described later with reference to FIGS. It is good also as a mode which fixes a piece.

ハニカム構造体23は、断面正六角形のハニカム中空柱24に限らず、他の形状を有する筒状体で構成されていても良い。ただし、前記筒状体が角筒体であって、当該角筒体は複数個を隙間無く配設可能な形状を有していることが望ましい。例えば、断面四角形、断面六角形あるいは断面三角形の角筒体の複数個を密に配列してハニカム構造体23を構成しても良い。この場合、隣接する角筒体の側面同士が互いに接触する状態の配列となり、複数の角筒体が高密度に配設されたハニカム構造体23を実現できる。また、複数個の円筒体を可及的に密に配列してなるハニカム構造体23としても良い。これらの中で、断面正六角形のハニカム中空柱24をハニカム配列したハニカム構造体23を内板21および外板22で挟持させてなる外槽パネル2は、最も高剛性化を図り易く、よりタンク容量の大型化に対応し易いので好ましい。 The honeycomb structure 23 is not limited to the honeycomb hollow column 24 having a regular hexagonal cross section, and may be a cylindrical body having another shape. However, it is desirable that the tubular body is a square tubular body, and that the square tubular bodies have a shape in which a plurality of square tubular bodies can be arranged without gaps. For example, the honeycomb structure 23 may be formed by densely arranging a plurality of prismatic bodies each having a square cross section, a hexagonal cross section, or a triangular cross section. In this case, the side surfaces of the adjacent rectangular tubes are arranged in contact with each other, and the honeycomb structure 23 in which a plurality of rectangular tubes are arranged at high density can be realized. Alternatively, the honeycomb structure 23 may be formed by arranging a plurality of cylindrical bodies as densely as possible. Among these, the outer tank panel 2, in which a honeycomb structure 23 in which honeycomb hollow columns 24 having a regular hexagonal cross section are arranged in a honeycomb manner, is sandwiched between an inner plate 21 and an outer plate 22 is the most rigid and can be used as a tank. It is preferable because it is easy to cope with an increase in capacity.

[外槽パネルの製造例]
続いて、図4および図5を参照して、外槽パネル2の好ましい製造例を説明する。ここでは、外板22が各々のハニカム中空柱24の第2開口端242に個別に固定された六角蓋片25(蓋片)の集合で形成される例を示す。図4は、外槽パネル2の製造過程を示す図であって、ハニカム中空柱24、内板21および六角蓋片25を示す斜視図である。図5は、外槽パネル2を外板22側から見た平面図である。
[Manufacturing example of outer tank panel]
Next, a preferable manufacturing example of the outer tub panel 2 will be described with reference to FIGS. 4 and 5. FIG. Here, an example in which the outer plate 22 is formed by a set of hexagonal lid pieces 25 (lid pieces) individually fixed to the second open ends 242 of the honeycomb hollow columns 24 is shown. FIG. 4 is a diagram showing the manufacturing process of the outer tank panel 2, and is a perspective view showing the honeycomb hollow column 24, the inner plate 21 and the hexagonal lid piece 25. FIG. FIG. 5 is a plan view of the outer tub panel 2 viewed from the outer plate 22 side.

先ず、内板21に複数のハニカム中空柱24をハニカム配列状態で固定する。内板21は、外槽11の一部を構成する所定サイズの球形片の形状を有するように、予め曲げ加工が施される。タンク本体10のサイズに比べて、外槽パネル2のサイズは小さいので、1枚の内板21に対する前記曲げ加工は、曲率の小さい曲げ加工となる。内板21に対し、ハニカム中空柱24の第1開口端241が溶接により固定される。 First, a plurality of honeycomb hollow columns 24 are fixed to the inner plate 21 in a honeycomb arrangement. The inner plate 21 is bent in advance so as to have the shape of a spherical piece of a predetermined size forming part of the outer tank 11 . Since the size of the outer tank panel 2 is smaller than the size of the tank main body 10, the bending process for one inner plate 21 is a bending process with a small curvature. The first open end 241 of the honeycomb hollow column 24 is fixed to the inner plate 21 by welding.

一つのハニカム中空柱24は、一対の半割れ片24Aの組み合わせにより形成される。一つの半割れ片24Aは、6つの側面を有するハニカム中空柱24のうち、3つの側面を有している。半割れ片24Aの上端および下端には、溶接用の開先加工が施されることが望ましい。組み立ての一例を挙げると、先ずは内板21上に一方の半割れ片24Aを立設すると共に、当該半割れ片24Aの下端を内板21に溶接する。図4では、前記溶接の部分を、溶接部WEとして図示している。溶接部WEは、開先加工を施さず、すみ肉溶接で形成しても良い。 One honeycomb hollow column 24 is formed by combining a pair of half pieces 24A. One half piece 24A has three sides of the honeycomb hollow column 24 having six sides. It is desirable that the upper and lower ends of the half pieces 24A are grooved for welding. To give an example of assembly, first, one half piece 24A is erected on the inner plate 21 and the lower end of the half piece 24A is welded to the inner plate 21 . In FIG. 4, the welded portion is illustrated as welded portion WE. The welded portion WE may be formed by fillet welding without beveling.

続いて、他方の半割れ片24Aを、一つのハニカム中空柱24が形成されるように、固定済みの一方の半割れ片24Aに突き合わせて配置する。他方の半割れ片24Aの下端を内板21に溶接して溶接部WEを作る。さらに、互いに対向する一方の半割れ片24Aの側端縁243と他方の半割れ片24Aの側端縁243とを溶接して、半割れ片24A同士を固定する溶接部WEを作る。半割れ片24Aの側端縁243は、一方および他方の側端縁243の突き合わせ箇所に自然開先が形成されるような形状とされることが望ましい。なお、先に一対の半割れ片24Aを溶接してハニカム中空柱24を形成した上で、当該ハニカム中空柱24を内板21に溶接しても良い。 Subsequently, the other half piece 24A is placed against the fixed one half piece 24A so that one honeycomb hollow column 24 is formed. The lower end of the other half piece 24A is welded to the inner plate 21 to form the welded portion WE. Further, the side edge 243 of one half piece 24A and the side edge 243 of the other half piece 24A facing each other are welded to form a welded portion WE for fixing the half pieces 24A. The side edges 243 of the half pieces 24A are desirably shaped so that a natural bevel is formed where the one side edge 243 and the other side edge 243 meet. Alternatively, the honeycomb hollow column 24 may be welded to the inner plate 21 after the honeycomb hollow column 24 is formed by welding the pair of half pieces 24A.

一つのハニカム中空柱24が形成されたら、これに隣接して別のハニカム中空柱24を同様の手順で形成する。最終的には、図5に示すように、内板21に複数のハニカム中空柱24がハニカム状に密に配列され、ハニカム構造体23が形成される。内板21の周縁付近には、一つのハニカム中空柱24が収まらない箇所が生じ得る。このような箇所には、図5に示すように半割れ片24Aだけを配置しておくことができる。或いは、空き箇所としておいて、内板21と他の外槽パネル2の内板21とを溶接後に、ハニカム中空柱24を割り入れるようにしても良い。 After one honeycomb hollow column 24 is formed, another honeycomb hollow column 24 is formed adjacent thereto in the same procedure. Finally, as shown in FIG. 5 , a plurality of honeycomb hollow columns 24 are densely arranged in a honeycomb shape on the inner plate 21 to form a honeycomb structure 23 . In the vicinity of the peripheral edge of the inner plate 21, there may be a place where one honeycomb hollow column 24 cannot be accommodated. At such locations, only the half pieces 24A can be placed as shown in FIG. Alternatively, after the inner plate 21 and the inner plate 21 of the other outer tank panel 2 are welded to each other, the honeycomb hollow column 24 may be inserted into the space.

その後、各々のハニカム中空柱24の第2開口端242に、六角蓋片25が固定される。六角蓋片25は、第2開口端242の開口部分を塞ぐサイズを有する、平面視で六角形状を有する平板である。六角蓋片25の前記固定は、第2開口端242に形成した開先、若しくは六角蓋片25の側端縁に形成した開先を利用した溶接によって実現できる。溶接に代えて、締結ボルト等の固定具を用いて六角蓋片25を第2開口端242に固定しても良い。 After that, the hexagonal lid piece 25 is fixed to the second open end 242 of each honeycomb hollow column 24 . The hexagonal lid piece 25 is a flat plate having a hexagonal shape in a plan view and having a size that closes the opening of the second open end 242 . The fixation of the hexagonal lid piece 25 can be achieved by welding using the groove formed in the second open end 242 or the groove formed in the side edge of the hexagonal lid piece 25 . Instead of welding, the hexagonal lid piece 25 may be fixed to the second open end 242 using fasteners such as fastening bolts.

内板21に固定されたハニカム中空柱24の全てに対し六角蓋片25が固定されることで、これら六角蓋片25の集合体が外槽パネル2の外板22を構成する。六角蓋片25の集合体からなる外板22の強度を向上させるため、図5に示すように、隣接する六角蓋片25の端縁同士を溶接してなる溶接部WEを形成することが望ましい。 By fixing the hexagonal lid pieces 25 to all of the honeycomb hollow columns 24 fixed to the inner plate 21 , an assembly of these hexagonal lid pieces 25 constitutes the outer plate 22 of the outer tank panel 2 . In order to improve the strength of the outer plate 22, which is an assembly of the hexagonal lid pieces 25, it is desirable to form a welded portion WE by welding the edges of the adjacent hexagonal lid pieces 25 together, as shown in FIG. .

外槽パネル2を構成する各部の寸法の一例を示しておく。内板21の厚さt1は、曲げ加工や隣接する内板21との突き合わせ溶接が容易に厚さとすることが望ましく、例えば15mm~40mmの範囲から選定できる。外板22、すなわち六角蓋片25の厚さt2は、例えば10mm~30mmの範囲から選定できる。ハニカム中空柱24の厚さt3は、8mm~15mm程度の範囲から、ハニカム中空柱24の高さhは、100mm~200mmの範囲から選定できる。また、一つのハニカム中空柱24の幅wは、タンク本体10の直径にもよるが、2.0m~3.0m程度に設定することができる。 An example of the dimensions of each part constituting the outer tank panel 2 is shown. The thickness t1 of the inner plate 21 is desirably a thickness that facilitates bending or butt welding with the adjacent inner plate 21, and can be selected from a range of 15 mm to 40 mm, for example. The thickness t2 of the outer plate 22, that is, the hexagonal lid piece 25 can be selected from a range of 10 mm to 30 mm, for example. The thickness t3 of the honeycomb hollow column 24 can be selected from a range of approximately 8 mm to 15 mm, and the height h of the honeycomb hollow column 24 can be selected from a range of 100 mm to 200 mm. Further, the width w of one honeycomb hollow column 24 depends on the diameter of the tank body 10, but can be set to approximately 2.0 m to 3.0 m.

以上の通り、本実施形態では、外槽11のセグメントとして用いられる外槽パネル2が、内板21、外板22および複数のハニカム中空柱24からなるハニカム構造体23で構成されるサンドイッチ構造を有する。このようなサンドイッチ構造の外槽パネル2は、中空部分を備える複数のハニカム中空柱24が用いられているゆえ軽量である一方で、ハニカム構造を備える故に高剛性を有する。また、外槽パネル2の球面加工等の加工は内板21または外板22単体で行え、溶接による接続は、隣接する内板21同士若しくは外板22同士で行える。その上、ハニカム配列されたハニカム中空柱24で外槽パネル2の剛性が確保できるので、内板21および外板22の肉厚を薄肉化できる。従って、加工性や組み立て性に優れた低温液化ガスタンク1を提供できる。 As described above, in the present embodiment, the outer tank panel 2 used as a segment of the outer tank 11 has a sandwich structure composed of the honeycomb structure 23 composed of the inner plate 21, the outer plate 22, and the plurality of honeycomb hollow columns 24. have. The outer tank panel 2 having such a sandwich structure is lightweight due to the use of a plurality of honeycomb hollow columns 24 having hollow portions, and has high rigidity due to the honeycomb structure. Processing such as spherical surface processing of the outer tank panel 2 can be performed on the inner plate 21 or the outer plate 22 alone, and connection by welding can be performed between adjacent inner plates 21 or outer plates 22 . In addition, the rigidity of the outer tank panel 2 can be ensured by the honeycomb-arranged honeycomb hollow columns 24, so that the thickness of the inner plate 21 and the outer plate 22 can be reduced. Therefore, it is possible to provide the low-temperature liquefied gas tank 1 excellent in workability and assembly.

[タンクの構築方法]
図6は、低温液化ガスタンク1の構築方法の一例を説明するための模式図である。ここでは、専らタンク本体10の構築手順を示す。図6では、工場サイドでの作業と、タンク設置現場サイドにおける作業とに区分している。工場では、内槽12のセグメントとなる複数の内槽パネルを作製する工程S11と、外槽パネル2の完成前の中間品である外槽パネル中間体20を作製する工程S12との作業が行われる。タンク設置現場では、前記内槽パネルを用いて内槽12を組み立てる工程S21と、外槽パネル中間体20を用いて外槽11を組み立てる工程S22との作業が行われる。
[How to build a tank]
FIG. 6 is a schematic diagram for explaining an example of a construction method of the low-temperature liquefied gas tank 1. As shown in FIG. Here, only the construction procedure of the tank body 10 is shown. In FIG. 6, the work is divided into work on the factory side and work on the tank installation site side. At the factory, a process S11 of fabricating a plurality of inner tank panels, which are segments of the inner tank 12, and a process S12 of fabricating an outer tank panel intermediate body 20, which is an intermediate product before completion of the outer tank panel 2, are performed. will be At the tank installation site, a process S21 of assembling the inner tank 12 using the inner tank panel and a process S22 of assembling the outer tank 11 using the outer tank panel intermediate body 20 are performed.

工程S11では、例えばステンレス鋼板からなる所定サイズの矩形平板に、内槽12の球径に沿うように曲げ加工を施すことで、内槽パネルが作製される。作製された所要枚数の内槽パネルは、タンク設置現場に搬入される。工程S21では、準備された内槽パネル群を順次球形を形成するように組み上げつつ溶接し、内槽12を組み立てる。内槽12の構築方法は従前と同様であるので、その詳細は割愛する。 In step S<b>11 , an inner tank panel is produced by bending a rectangular flat plate made of, for example, a stainless steel plate and having a predetermined size along the spherical diameter of the inner tank 12 . The required number of manufactured inner tank panels are carried to the tank installation site. In step S21, the prepared inner tank panel group is sequentially assembled and welded so as to form a spherical shape, and the inner tank 12 is assembled. Since the construction method of the inner tank 12 is the same as before, its details are omitted.

工程S12では、外槽パネル2を構成する内板21およびハニカム中空柱24が準備される。内板21は、例えば炭素鋼からなる所定サイズの矩形平板である。内板21は、外槽11の内径に沿う球面を持つように曲げ加工が施され、球形片とされる。ハニカム中空柱24は、例えば炭素鋼からなり、図4に例示したように、内板21への固定側となる第1開口端241と、外板22への固定側となる第2開口端242とを有する六角の筒状体である。 In step S12, the inner plate 21 and the honeycomb hollow columns 24 that constitute the outer tank panel 2 are prepared. The inner plate 21 is a rectangular flat plate of a predetermined size made of carbon steel, for example. The inner plate 21 is bent so as to have a spherical surface along the inner diameter of the outer tank 11 to form a spherical piece. The honeycomb hollow column 24 is made of, for example, carbon steel, and as illustrated in FIG. It is a hexagonal cylindrical body having

外槽パネル中間体20の作製に際しては、曲げ加工が施与された内板21の凸側表面に、複数のハニカム中空柱24をハニカム配列しつつ、それらの第1開口端241を各々溶接にて固定する。図4に例示したように、一対の半割れ片24Aで一つのハニカム中空柱24を構成する場合、予め一対の半割れ片24Aを溶接で一体化してハニカム中空柱24を作製した後に、内板21に当該ハニカム中空柱24を溶接固定しても良いし、半割れ片24Aの単位で内板21に溶接固定して行くようにしても良い。所要数のハニカム中空柱24を内板21に固定してハニカム構造体23が形成されることで、外槽パネル中間体20の作製が完了する。この工程S12の段階では、ハニカム中空柱24の第2開口端242には、外板22を構成する六角蓋片25は取り付けられない。作製された外槽パネル中間体20は、タンク設置現場に搬入される。 When manufacturing the outer tank panel intermediate body 20, a plurality of honeycomb hollow columns 24 are arranged in a honeycomb pattern on the convex surface of the inner plate 21 that has been bent, and the first open ends 241 thereof are welded. to secure it. As illustrated in FIG. 4, when a pair of half pieces 24A constitutes one honeycomb hollow column 24, the pair of half pieces 24A are integrated in advance by welding to produce the honeycomb hollow column 24, and then the inner plate is The honeycomb hollow column 24 may be welded and fixed to the inner plate 21, or may be welded and fixed to the inner plate 21 in units of half pieces 24A. By fixing the required number of honeycomb hollow columns 24 to the inner plate 21 to form the honeycomb structure 23, the manufacture of the outer tank panel intermediate body 20 is completed. At the stage of this step S12, the hexagonal lid piece 25 that constitutes the outer plate 22 is not attached to the second open end 242 of the honeycomb hollow column 24 . The manufactured outer tank panel intermediate body 20 is carried to the tank installation site.

工程S22の外槽11の組み立ては、隣接する外槽パネル中間体20の内板21同士を溶接接合する工程S23と、六角蓋片25をハニカム中空柱24に溶接固定する工程S24とを含む。工程S23では、内槽12を取り囲むように複数枚の外槽パネル中間体20を球形に組み立てつつ、隣り合う内板21の側端縁同士を例えば突き合わせ溶接で接合する。図6では3枚の外槽パネル中間体20が、溶接部WEで接合されている状態を簡略的に示している。実際は、外槽パネル中間体20の接合体は、外槽11の形状に沿うように球形に湾曲した形状を有する。なお、外槽パネル中間体20は、隣り合う内板21同士が十字継手とならない配置で球形に組み立てられる。 The assembly of the outer tub 11 in step S22 includes a step S23 of welding the inner plates 21 of the adjacent outer tub panel intermediates 20 together and a step S24 of welding and fixing the hexagonal lid pieces 25 to the honeycomb hollow columns 24 . In step S23, while a plurality of outer tank panel intermediate bodies 20 are assembled into a spherical shape so as to surround the inner tank 12, side edges of adjacent inner plates 21 are joined by, for example, butt welding. FIG. 6 schematically shows a state in which three outer tub panel intermediate bodies 20 are joined together at the welded portion WE. Actually, the joined body of the outer tub panel intermediate body 20 has a spherically curved shape along the shape of the outer tub 11 . The outer tank panel intermediate body 20 is assembled in a spherical shape so that adjacent inner plates 21 do not form a cross joint.

工程S24では、各々のハニカム中空柱24に対して六角蓋片25が準備される。ハニカム中空柱24の第2開口端242の各々に、六角蓋片25が溶接により固定される。また、図5に示したように、隣り合う六角蓋片25も溶接で固定される。以上の作業により、外槽11が作製される。なお、内板21の周縁付近でハニカム中空柱24の装填されていない部分があれば、隣り合う内板21に跨がる形で、ハニカム中空柱24を溶接する。この際、内板21同士の溶接部WEと、ハニカム中空柱24と内板21との溶接部WEとが重ならないよう、スカラップを取ることが望ましい。 In step S<b>24 , hexagonal lid pieces 25 are prepared for each honeycomb hollow column 24 . A hexagonal lid piece 25 is fixed by welding to each of the second open ends 242 of the honeycomb hollow columns 24 . Also, as shown in FIG. 5, adjacent hexagonal lid pieces 25 are also fixed by welding. The outer tank 11 is produced by the above operations. If there is a portion near the peripheral edge of the inner plate 21 where the honeycomb hollow column 24 is not loaded, the honeycomb hollow column 24 is welded so as to straddle the adjacent inner plates 21 . At this time, it is desirable to remove scallops so that the welded portion WE between the inner plates 21 and the welded portion WE between the honeycomb hollow column 24 and the inner plate 21 do not overlap.

以上説明した低温液化ガスタンク1の構築方法によれば、内板21、外板22およびハニカム構造体23で構成されるサンドイッチ構造を有する外槽パネル2を用いた外槽11の構築作業の一部を工場で行い、残部作業をタンク設置現場で行わせることができる。すなわち、外槽パネル中間体20を工場製作とするので外槽パネル2の作製作業性が向上し、タンク設置現場での溶接作業を抑制できる。結果として、タンク構築の作業性を向上させることができる。また、サンドイッチ構造を有する外槽パネル2を用いた外槽11は、軽量であると共に曲げ加工や溶接が容易に行える一方で、大きな真空外圧に耐える強度を有する。従って、本実施形態の低温液化ガスタンク1は、例えば液化水素ガスを貯留する真空断熱形式を採用した大容量のタンクとして好適である。 According to the method for constructing the cryogenic liquefied gas tank 1 described above, part of the work for constructing the outer tank 11 using the outer tank panel 2 having a sandwich structure composed of the inner plate 21, the outer plate 22, and the honeycomb structure 23 can be done at the factory and the rest of the work can be done at the tank installation site. That is, since the outer tank panel intermediate body 20 is factory-manufactured, the workability of manufacturing the outer tank panel 2 is improved, and the welding work at the tank installation site can be suppressed. As a result, the workability of tank construction can be improved. Further, the outer tank 11 using the outer tank panel 2 having a sandwich structure is lightweight, can be easily bent and welded, and has strength to withstand a large external vacuum pressure. Therefore, the low-temperature liquefied gas tank 1 of this embodiment is suitable as a large-capacity tank adopting a vacuum insulation type for storing liquefied hydrogen gas, for example.

[本開示のまとめ]
以上説明した具体的実施形態には、以下の構成を有する開示が含まれている。
[Summary of this disclosure]
The specific embodiments described above include disclosures having the following configurations.

本開示の一局面に係る低温液化ガスタンクは、低温液化ガスを貯留する内槽と、複数のパネルの組立体からなり、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の真空層と、を備え、前記パネルは、所定間隔を置いて互いに対向する内板および外板と、前記内板と前記外板との間に配設される複数の筒状体とを含む。 A cryogenic liquefied gas tank according to one aspect of the present disclosure includes an inner tank for storing cryogenic liquefied gas, an assembly of a plurality of panels, an outer tank surrounding the inner tank, and a space between the inner tank and the outer tank. the panel includes an inner plate and an outer plate facing each other at a predetermined interval, and a plurality of tubular bodies disposed between the inner plate and the outer plate .

この低温液化ガスタンクによれば、外槽の構成部材として、内板、外板および複数の筒状体で構成されるサンドイッチ構造を有するパネルが用いられる。このようなサンドイッチ構造のパネルは、複数の筒状体が用いられているゆえ軽量である一方で、高剛性を有する。また、パネルの球面加工等の加工は内板若しくは外板単体で、溶接接続等は、隣接する内板同士若しくは外板同士で行える。その上、複数の筒状体でパネルの剛性が確保できるので内板および外板は薄肉化できる。従って、パネルの加工性や組み立て性に優れた低温液化ガスタンクを提供できる。 According to this cryogenic liquefied gas tank, a panel having a sandwich structure composed of an inner plate, an outer plate, and a plurality of cylindrical bodies is used as a constituent member of the outer tank. Such a sandwich-structured panel is lightweight due to the use of a plurality of cylindrical bodies, and has high rigidity. Processing such as spherical surface processing of the panel can be performed on the inner plate or outer plate alone, and welding connection or the like can be performed on adjacent inner plates or outer plates. In addition, since the rigidity of the panel can be ensured with a plurality of cylindrical bodies, the thickness of the inner plate and the outer plate can be reduced. Therefore, it is possible to provide a low-temperature liquefied gas tank which is excellent in workability and assembling property of the panel.

上記の低温液化ガスタンクにおいて、前記筒状体は、前記内板への固定側となる第1開口端と、前記外板への固定側となる第2開口端とを有し、前記内板は、複数の前記筒状体の前記第1開口端が固定可能な板材で形成され、前記外板は、各々の前記筒状体の前記第2開口端に個別に固定された蓋片の集合で形成されることが望ましい。 In the low-temperature liquefied gas tank described above, the cylindrical body has a first open end that is fixed to the inner plate and a second open end that is fixed to the outer plate, and the inner plate is , the first open ends of the plurality of cylindrical bodies are formed of a plate material to which the first open ends can be fixed, and the outer plate is a set of lid pieces individually fixed to the second open ends of the respective cylindrical bodies. preferably formed.

この低温液化ガスタンクによれば、外板が個々の筒状体に固定される蓋体の集合からなるので、一枚板の外板を用いる場合に比べて、外板と筒状体との接合作業を容易化することができる。また、例えば内板に複数の筒状体を取り付けたパネル中間体を工場で製作し、タンク設置現場で前記パネル中間体を組み立てると共に前記筒状体の第2開口端に蓋片を取り付けることによって外槽を作製するという、作業性に優れるタンク構築が可能となる。 According to this low-temperature liquefied gas tank, since the outer plate consists of a set of lids fixed to the individual cylindrical bodies, the bonding between the outer plate and the cylindrical body is more difficult than in the case of using a single outer plate. Work can be facilitated. Alternatively, for example, by manufacturing a panel intermediate body in which a plurality of cylindrical bodies are attached to an inner plate at a factory, assembling the panel intermediate body at the tank installation site, and attaching a lid piece to the second open end of the cylindrical body It is possible to construct an outer tank with excellent workability.

上記の低温液化ガスタンクにおいて、前記筒状体が角筒体であって、当該角筒体は複数個を隙間無く配設可能な形状を有することが望ましい。 In the low-temperature liquefied gas tank described above, it is preferable that the cylindrical body is a square cylinder, and that the square cylinders have a shape that allows a plurality of square cylinders to be arranged without gaps.

この低温液化ガスタンクによれば、外槽パネルを、ハニカム配列された角筒体を内板および外板で挟持してなるハニカムサンドイッチ構造とすることができる。従って、前記パネルの高剛性化を図ることができ、よりタンク容量の大型化に対応し易い。 According to this low-temperature liquefied gas tank, the outer tank panel can have a honeycomb sandwich structure in which the honeycomb-arranged rectangular cylinders are sandwiched between the inner and outer plates. Therefore, it is possible to increase the rigidity of the panel, and it is easier to cope with an increase in tank capacity.

とりわけ、前記角筒体が、断面が正六角形のハニカム中空柱であることが望ましい。この態様であれば、より一層、パネルの高剛性化を図ることができる。 In particular, it is desirable that the rectangular tubular body is a honeycomb hollow column having a regular hexagonal cross section. With this aspect, it is possible to further increase the rigidity of the panel.

本開示の他の局面に係る低温液化ガスタンクの構築方法は、低温液化ガスを貯留する内槽と、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の真空層と、を備える低温液化ガスタンクの構築方法であって、一端側に第1開口端を、他端側に第2開口端を有する筒状体を準備し、前記内槽を作製し、所定サイズの球形片からなる内板に、複数の前記筒状体の前記第1開口端を各々固定してなるパネル中間体を複数枚作製し、前記内板同士の接合によって、前記内槽を取り囲むように複数枚の前記パネル中間体を組み立てると共に、前記筒状体の前記第2開口端の各々に蓋片を固定することで前記外槽を作製する。 A method for constructing a cryogenic liquefied gas tank according to another aspect of the present disclosure includes an inner tank for storing cryogenic liquefied gas, an outer tank surrounding the inner tank, a vacuum layer between the inner tank and the outer tank, A method for constructing a low-temperature liquefied gas tank comprising: preparing a cylindrical body having a first open end on one end side and a second open end on the other end side; A plurality of panel intermediate bodies are produced by fixing the first opening ends of the plurality of cylindrical bodies to an inner plate made of The outer tank is produced by assembling the panel intermediate body of No. and fixing a lid piece to each of the second open ends of the cylindrical body.

この低温液化ガスタンクの構築方法によれば、外槽構築の一部作業を工場作業とし、残部作業をタンク設置現場で行わせることが可能であり、タンク構築の作業性を向上させることができる。すなわち、内板に複数の筒状体を取り付けたパネル中間体を工場作業で製作し、これをタンク設置現場に搬入する。そして、内板同士の接合によって前記パネル中間体を外槽の形状に組み立てると共に、前記第2開口端に外板を構成する蓋片を取り付けることによって外槽を作製できる。 According to this method of constructing a low-temperature liquefied gas tank, part of the work for constructing the outer tank can be carried out as factory work, and the rest of the work can be carried out at the tank installation site, thereby improving the workability of constructing the tank. That is, a panel intermediate body in which a plurality of cylindrical bodies are attached to an inner plate is manufactured in a factory and carried to the tank installation site. Then, the inner plates are joined together to assemble the panel intermediate body into the shape of the outer tank, and the outer tank can be manufactured by attaching a lid piece constituting the outer plate to the second opening end.

1 低温液化ガスタンク
11 外槽
12 内槽
13 真空断熱層(真空層)
2 外槽パネル(パネル)
20 外槽パネル中間体(パネル中間体)
21 内板
22 外板
23 ハニカム構造体
24 ハニカム中空柱(角筒体)
241 第1開口端
242 第2開口端
25 六角蓋片(蓋片)
LG 低温液化ガス
1 low-temperature liquefied gas tank 11 outer tank 12 inner tank 13 vacuum insulation layer (vacuum layer)
2 Outer tank panel (panel)
20 outer tank panel intermediate (panel intermediate)
21 inner plate 22 outer plate 23 honeycomb structure 24 honeycomb hollow column (square cylinder)
241 First open end 242 Second open end 25 Hexagonal lid piece (lid piece)
LG Cryogenic liquefied gas

Claims (5)

低温液化ガスを貯留する内槽と、
複数のパネルの組立体からなり、前記内槽を取り囲む外槽と、
前記内槽と前記外槽との間の真空層と、を備え、
前記パネルは、所定間隔を置いて互いに対向する内板および外板と、前記内板と前記外板との間に配設される複数の筒状体とを含む、低温液化ガスタンク。
an inner tank for storing cryogenic liquefied gas;
an outer tank comprising an assembly of a plurality of panels and surrounding the inner tank;
a vacuum layer between the inner tank and the outer tank;
The low-temperature liquefied gas tank, wherein the panel includes an inner plate and an outer plate facing each other with a predetermined gap therebetween, and a plurality of cylindrical bodies disposed between the inner plate and the outer plate.
請求項1に記載の低温液化ガスタンクにおいて、
前記筒状体は、前記内板への固定側となる第1開口端と、前記外板への固定側となる第2開口端とを有し、
前記内板は、複数の前記筒状体の前記第1開口端が固定可能な板材で形成され、
前記外板は、各々の前記筒状体の前記第2開口端に個別に固定された蓋片の集合で形成されている、低温液化ガスタンク。
In the cryogenic liquefied gas tank according to claim 1,
The cylindrical body has a first open end that is fixed to the inner plate and a second open end that is fixed to the outer plate,
The inner plate is formed of a plate material to which the first open ends of the plurality of cylindrical bodies can be fixed,
The low-temperature liquefied gas tank, wherein the outer plate is formed by a set of lid pieces individually fixed to the second opening end of each of the cylindrical bodies.
請求項1又は2に記載の低温液化ガスタンクにおいて、
前記筒状体が角筒体であって、当該角筒体は複数個を隙間無く配設可能な形状を有する、低温液化ガスタンク。
In the cryogenic liquefied gas tank according to claim 1 or 2,
The low-temperature liquefied gas tank, wherein the tubular body is a square tubular body, and a plurality of square tubular bodies can be arranged without gaps.
請求項3に記載の低温液化ガスタンクにおいて、
前記角筒体が、断面が正六角形のハニカム中空柱である、低温液化ガスタンク。
In the cryogenic liquefied gas tank according to claim 3,
The low-temperature liquefied gas tank, wherein the square cylinder is a honeycomb hollow column having a regular hexagonal cross section.
低温液化ガスを貯留する内槽と、前記内槽を取り囲む外槽と、前記内槽と前記外槽との間の真空層と、を備える低温液化ガスタンクの構築方法であって、
一端側に第1開口端を、他端側に第2開口端を有する筒状体を準備し、
前記内槽を作製し、
所定サイズの球形片からなる内板に、複数の前記筒状体の前記第1開口端を各々固定してなるパネル中間体を複数枚作製し、
前記内板同士の接合によって、前記内槽を取り囲むように複数枚の前記パネル中間体を組み立てると共に、前記筒状体の前記第2開口端の各々に蓋片を固定することで前記外槽を作製する、低温液化ガスタンクの構築方法。
A method for constructing a cryogenic liquefied gas tank comprising an inner tank for storing cryogenic liquefied gas, an outer tank surrounding the inner tank, and a vacuum layer between the inner tank and the outer tank,
preparing a cylindrical body having a first open end on one end side and a second open end on the other end side;
Producing the inner tank,
preparing a plurality of panel intermediates each having the first opening ends of the plurality of cylindrical bodies fixed to an inner plate made of a spherical piece of a predetermined size;
By joining the inner plates together, a plurality of the panel intermediate bodies are assembled so as to surround the inner tank, and the outer tank is formed by fixing a cover piece to each of the second open ends of the cylindrical body. A method of constructing a cryogenic liquefied gas tank.
JP2022026445A 2022-02-24 2022-02-24 Low temperature liquefied gas tank and construction method of the same Pending JP2023122758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022026445A JP2023122758A (en) 2022-02-24 2022-02-24 Low temperature liquefied gas tank and construction method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022026445A JP2023122758A (en) 2022-02-24 2022-02-24 Low temperature liquefied gas tank and construction method of the same

Publications (1)

Publication Number Publication Date
JP2023122758A true JP2023122758A (en) 2023-09-05

Family

ID=87885887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022026445A Pending JP2023122758A (en) 2022-02-24 2022-02-24 Low temperature liquefied gas tank and construction method of the same

Country Status (1)

Country Link
JP (1) JP2023122758A (en)

Similar Documents

Publication Publication Date Title
JP4880582B2 (en) Planning and manufacturing method of LNG storage tank and the like, and aluminum LNG storage tank manufactured by the method
WO2013015296A1 (en) Lng tank loaded on board lng ship, and method for producing same
US6626319B2 (en) Integrated tank erection and support carriage for a semi-membrane LNG tank
JP2002527303A (en) Liquefied gas storage tank
US4461398A (en) Storage tank for cryogenic liquefied gases such in particular as hydrogen
JP5049331B2 (en) Production method of liquefied gas storage tank for land
JP2023122758A (en) Low temperature liquefied gas tank and construction method of the same
JP2015048621A (en) Low temperature storage tank and construction method thereof
JPS5827159B2 (en) Liquefied gas transfer equipment
JP4987948B2 (en) Unit wall structure for the production of liquefied gas storage tanks for terrestrial use
JP4611505B2 (en) Storage tank and storage tank construction method
JP2001165565A (en) Cold box, corresponding air rectifier, and corresponding construction method
KR20000074754A (en) liquefied natural gas lang storage tank side wall structure and method
JP7273498B2 (en) double shell tank
KR101978405B1 (en) Method for building a liquefied gas storage tank
JP5672787B2 (en) Construction method of cylindrical tank
JPS5838233Y2 (en) Liquefied gas cold storage tank
JP5743597B2 (en) Manufacturing method of vertical cryogenic liquid storage tank
JP3407026B2 (en) Segment for shield method for underground tank construction and underground tank for storage of LNG etc.
CN217178256U (en) Dome and ceiling integrated structure for LNG storage tank and LNG storage tank
JP2021533309A (en) Free-standing closed tank wall
CN117869776A (en) Film gas storage tank
JPH07293798A (en) Combined cylindrical canister
KR20190024165A (en) Liquefied gas storage tank for land having permanently attached precast concrete panel
JP4374762B2 (en) Containment method