JP2023109579A - Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles - Google Patents

Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles Download PDF

Info

Publication number
JP2023109579A
JP2023109579A JP2022011155A JP2022011155A JP2023109579A JP 2023109579 A JP2023109579 A JP 2023109579A JP 2022011155 A JP2022011155 A JP 2022011155A JP 2022011155 A JP2022011155 A JP 2022011155A JP 2023109579 A JP2023109579 A JP 2023109579A
Authority
JP
Japan
Prior art keywords
inorganic particles
particle size
group
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022011155A
Other languages
Japanese (ja)
Inventor
英範 三好
Hidenori Miyoshi
琢磨 中岡
Takuma Nakaoka
誠也 小峯
Seiya Komine
達也 中野
Tatsuya Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2022011155A priority Critical patent/JP2023109579A/en
Publication of JP2023109579A publication Critical patent/JP2023109579A/en
Pending legal-status Critical Current

Links

Abstract

To provide inorganic particles that have excellent strength despite having high porosity and can prevent penetration of liquid materials into the interior of the particles.SOLUTION: Provided are inorganic particles having an average particle outer diameter of 0.1 to 70 μm and a specific surface area of 50 m2/g or less, and including two or more spaces inside. The inorganic particles herein can be produced by a method for producing inorganic particles having two or more spaces inside, the method including a seed particle liquid preparation step in which an inorganic compound is hydrolyzed and condensed in a solution to prepare a seed particle liquid, a particle size growth step in which an inorganic compound containing solution is added to the seed particle liquid and the mixture is stirred to grow the particle size, a measurement step in which the particle size is measured continuously or at predetermined intervals during the particle size growth step, and a reaction stop step in which the reaction is stopped during the particle size growth step.SELECTED DRAWING: Figure 1

Description

本発明は、無機粒子および該無機粒子を用いた低誘電材料および低屈折率材料、並びに無機粒子の製造方法に関する。 TECHNICAL FIELD The present invention relates to inorganic particles, a low dielectric material and a low refractive index material using the inorganic particles, and a method for producing the inorganic particles.

内部に空間を有する無機粒子は、フィラー、スペーサー、セラミックス原料、樹脂改良剤、吸着剤、電子材料、半導体材料、塗料、化粧料等、幅広い分野で用いられている。近年、無機粒子の性能の向上や各種用途に応じた特性の付与等を目的に、様々な技術が開発されつつある。 Inorganic particles having internal spaces are used in a wide range of fields such as fillers, spacers, ceramic raw materials, resin modifiers, adsorbents, electronic materials, semiconductor materials, paints and cosmetics. In recent years, various techniques are being developed for the purpose of improving the performance of inorganic particles and imparting properties according to various uses.

例えば、特許文献1には、分散質であるシリカとシリカ以外の無機酸化物からなるコロイド粒子であって、当該コロイド粒子の表面は、シリカまたは合成樹脂等の被膜により薄く被覆されており、このときの被覆前のコロイド粒子は多孔性の微粒子であるコロイド粒子が開示されている。 For example, Patent Document 1 discloses colloidal particles made of silica as a dispersoid and an inorganic oxide other than silica, and the surfaces of the colloidal particles are thinly coated with a film such as silica or a synthetic resin. The colloidal particles prior to coating are disclosed as colloidal particles that are porous microparticles.

特許文献2には、ポリオルガノシロキサンの重合体が含まれる重合体粒子に、ポリオルガノシロキサン被膜を形成することで被覆重合体粒子を得る被覆工程と、その被覆重合体粒子を焼成する焼成工程と、を行うことで、中空部に無機粒子が存在する無機粒子を製造する技術が記載されている。 Patent Document 2 discloses a coating step of obtaining coated polymer particles by forming a polyorganosiloxane film on polymer particles containing a polyorganosiloxane polymer, and a baking step of baking the coated polymer particles. , to produce inorganic particles in which the inorganic particles are present in the hollow portion.

特開平7-133105号公報JP-A-7-133105 特開2011-132087号公報JP 2011-132087 A 特開2002-80598号公報JP-A-2002-80598

前述のように、無機粒子の性能の向上や各種用途に応じた特性の付与等を目的に、様々な技術が開発されつつあり、例えば、誘電率の低下や、屈折率の低下等の目的にて、樹脂やセラミックス等の材料に中空を有する無機粒子を混練して、材料の内部に空気層を作る手法が利用されている。この際、他材料に無機粒子を均一に分散させるため、材料と無機粒子を混練する際に、撹拌混合等、力を加えるが、その力により無機粒子が割れてしまい、材料内に空気層を作れないといった問題がある。 As described above, various techniques are being developed for the purpose of improving the performance of inorganic particles and imparting properties according to various uses. For this purpose, a method of kneading hollow inorganic particles into a material such as resin or ceramics to create an air layer inside the material is used. At this time, in order to uniformly disperse the inorganic particles in the other material, a force such as stirring is applied when kneading the material and the inorganic particles, but the force breaks the inorganic particles and creates an air layer in the material. I have a problem with not being able to do it.

一方で、中空を有する無機粒子の強度を向上させるために、外殻を厚くすればするほど、空隙率が低下し、材料の内部に空気層を作るといった本来の効果が発揮されないといった問題がある。 On the other hand, in order to improve the strength of hollow inorganic particles, the thicker the outer shell, the lower the porosity, and there is a problem that the original effect of creating an air layer inside the material cannot be exhibited. .

また、前記特許文献1のように、屈折率の低下を目的として、多孔質粒子の表面を被覆することにより、粒子の細孔入り口を閉鎖する技術も提案されているが、実際には、被覆層を緻密化することは難しく、細孔を有する表面となってしまい、液状物が粒子内部にまで浸透してしまうといった問題があった。 Further, as in Patent Document 1, for the purpose of lowering the refractive index, a technique has been proposed in which the pore entrances of the particles are closed by coating the surface of the porous particles. It is difficult to densify the layer, resulting in a surface with pores, and there is a problem that the liquid material penetrates into the inside of the particles.

そこで、本技術では、空隙率が高いにも関わらず、強度に優れ、粒子内部への液状物の浸透が防止できる無機粒子を提供することを主目的とする。 Therefore, the main object of the present technology is to provide inorganic particles that are excellent in strength despite having a high porosity and that are capable of preventing permeation of liquid substances into the interior of the particles.

本出願人は、先に、ポリオルガノシロキサン粒子の製造技術を新規に見出し、特許文献3の特許出願を行った。この製造技術で製造されるポリオルガノシロキサン粒子は、内部に空間を有さない粒子であるが、この製造技術に工夫を加えることで、前記の課題を解決し得る、内部に2以上の空間を有する無機粒子を製造することに成功し、本発明を完成させるに至った。 The present applicant previously discovered a new technology for producing polyorganosiloxane particles and filed a patent application of Patent Document 3. The polyorganosiloxane particles produced by this production technique are particles that do not have internal spaces, but by devising this production technique, it is possible to solve the above problems by creating two or more internal spaces. The present inventors have succeeded in producing inorganic particles having such properties, and have completed the present invention.

すなわち、本技術では、まず、平均粒子外径が0.1~70μm、
比表面積が50m/g以下、
内部に2以上の空間を有する、無機粒子を提供する。
本技術に係る無機粒子は、下記の一般式(1)で表されるケイ素化合物を原料とすることができる。
[化1]

(式中、Rは非加水分解性基であって、炭素数1~20のアルキル基、(メタ)アクリロイルオキシ基若しくはエポキシ基を有する炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基、Rは炭素数1~6のアルキル基、nは1~3の整数を示し、Rが複数ある場合、各Rはたがいに同一であっても異なっていてもよく、ORが複数ある場合、各ORはたがいに同一であっても異なっていてもよい。)
本技術に係る無機粒子の体積に対する前記空間の合計容積の比率は、5~50%とすることができる。
本技術に係る無機粒子は、シランカップリング剤により表面処理することができる。
That is, in the present technology, first, the average particle outer diameter is 0.1 to 70 μm,
a specific surface area of 50 m 2 /g or less,
An inorganic particle having two or more spaces inside is provided.
The inorganic particles according to the present technology can be made from a silicon compound represented by the following general formula (1).
[Chemical 1]

(In the formula, R 1 is a non-hydrolyzable group, an alkyl group having 1 to 20 carbon atoms, a (meth)acryloyloxy group or an epoxy group-containing alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 to 3, and when there are multiple R 1 , each R 1 may be the same or different, and when there are multiple OR 2 , each OR 2 may be the same or different.)
The ratio of the total volume of the spaces to the volume of the inorganic particles according to the present technology can be 5 to 50%.
The inorganic particles according to the present technology can be surface-treated with a silane coupling agent.

本技術に係る無機粒子は、低誘電材料や低屈折率材料に使用することができる。 Inorganic particles according to the present technology can be used for low dielectric materials and low refractive index materials.

本技術では、次に、溶液中で無機化合物を加水分解および縮合させてシード粒子液を調製するシード粒子液調製工程と、
前記シード粒子液に、無機化合物含有溶液を添加、撹拌して、粒子径を成長させる粒子径成長工程と、
前記粒子径成長工程中に、連続的または所定の間隔で粒子径を測定する測定工程と、
粒子径成長途中で、反応を停止させる反応停止工程と、
を行う、内部に2以上の空間を有する無機粒子の製造方法を提供する。
In the present technology, next, a seed particle liquid preparation step of hydrolyzing and condensing an inorganic compound in a solution to prepare a seed particle liquid;
a particle size growth step of adding an inorganic compound-containing solution to the seed particle liquid and stirring to grow the particle size;
a measuring step of measuring the particle size continuously or at predetermined intervals during the particle size growing step;
a reaction stopping step of stopping the reaction during particle size growth;
and providing a method for producing inorganic particles having two or more spaces inside.

本発明によれば、空隙率が高いにも関わらず、強度に優れ、粒子内部への液状物の浸透が防止できる無機粒子を提供することができる。
なお、ここに記載された効果は、必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。
According to the present invention, it is possible to provide inorganic particles that are excellent in strength despite having a high porosity and that can prevent permeation of liquid substances into the interior of the particles.
Note that the effects described here are not necessarily limited, and may be any of the effects described in this specification.

本技術に係る無機粒子1の断面構造の一例を示す断面イメージ図である。1 is a cross-sectional image diagram showing an example of a cross-sectional structure of an inorganic particle 1 according to the present technology; FIG. 本技術に係る無機粒子1の製造方法のフロー図である。1 is a flowchart of a method for manufacturing inorganic particles 1 according to the present technology; FIG. 実施例9に係る無機粒子の光学顕微鏡写真である。10 is an optical micrograph of inorganic particles according to Example 9. FIG.

以下、本発明を実施するための好適な形態について、図面を参照しながら詳細に説明する。
なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
Preferred embodiments for carrying out the present invention will be described in detail below with reference to the drawings.
It should be noted that the embodiments described below are examples of representative embodiments of the present invention, and the scope of the present invention should not be construed narrowly.

<1.無機粒子1>
図1は、本技術に係る無機粒子1の断面構造の一例を示す断面イメージ図である。本発明に係る無機粒子1は、平均粒子外径が0.1~70μm、比表面積が50m/g以下、内部に2以上の空間11を有することを特徴とする。
<1. Inorganic particles 1>
FIG. 1 is a cross-sectional image diagram showing an example of the cross-sectional structure of inorganic particles 1 according to the present technology. The inorganic particles 1 according to the present invention are characterized by having an average particle outer diameter of 0.1 to 70 μm, a specific surface area of 50 m 2 /g or less, and two or more spaces 11 inside.

本技術に係る無機粒子1の平均粒子外径は、0.1~70μmである。本技術に係る無機粒子1の粒子外径を、0.1μm以上とすることで、凝集せずに一次粒子の状態で分散している粒子の割合が多くなる。また、本技術に係る無機粒子1の粒子外径を、70μm以下とすることで、樹脂等の他材料と混合する際に、粒子の充填率を高めることが可能となり、低誘電率、低屈折率等の目的とする効果を十分に発揮させることができる。 The average particle outer diameter of the inorganic particles 1 according to the present technology is 0.1 to 70 μm. By setting the particle outer diameter of the inorganic particles 1 according to the present technology to 0.1 μm or more, the proportion of particles dispersed in the state of primary particles without aggregating increases. In addition, by setting the particle outer diameter of the inorganic particles 1 according to the present technology to 70 μm or less, it is possible to increase the filling rate of the particles when mixing with other materials such as resins, resulting in a low dielectric constant and a low refractive index. It is possible to sufficiently exhibit the intended effect such as the rate.

本技術に係る無機粒子1の粒子外径は、平均粒子外径が0.1~70μmの範囲内であれば、目的に応じて適宜設計することができる。本技術では特に、無機粒子1の平均粒子外径を、0.1~30μmとすることが好ましく、0.5~10μmとすることがより好ましい。 The particle outer diameter of the inorganic particles 1 according to the present technology can be appropriately designed according to the purpose, as long as the average particle outer diameter is within the range of 0.1 to 70 μm. Particularly in the present technology, the average particle outer diameter of the inorganic particles 1 is preferably 0.1 to 30 μm, more preferably 0.5 to 10 μm.

本技術に係る無機粒子1は、比表面積が50m/g以下であり、表面に細孔を有さない構造をしている。そのため、粒子内部への液状物の浸透を防止することができる。本技術に係る無機粒子1の比表面積は、50m/g以下であれば特に限定されないが、好ましくは45m/g以下であり、より好ましくは40m/g以下である。 The inorganic particles 1 according to the present technology have a specific surface area of 50 m 2 /g or less and have a structure without pores on the surface. Therefore, it is possible to prevent penetration of the liquid substance into the inside of the particles. The specific surface area of the inorganic particles 1 according to the present technology is not particularly limited as long as it is 50 m 2 /g or less, preferably 45 m 2 /g or less, and more preferably 40 m 2 /g or less.

本技術に係る無機粒子1には、内部に2以上の空間11を有する。2以上の空間11を備えることで、混練する材料に十分な空気層を作ることができ、その結果、低誘電率、低屈折率等の目的とする効果を十分に発揮させることができる。また、1つの空間ではなく2以上の空間とすることで、無機粒子1の内部がピラー構造となるため、空間比率が同一で1つの空間からなる無機粒子に比べて、強度を向上させることができる。 The inorganic particles 1 according to the present technology have two or more spaces 11 inside. By providing two or more spaces 11, a sufficient air layer can be created in the material to be kneaded, and as a result, the desired effects such as low dielectric constant and low refractive index can be sufficiently exhibited. In addition, by having two or more spaces instead of one space, the inside of the inorganic particle 1 has a pillar structure, so that the strength can be improved compared to inorganic particles having the same space ratio and one space. can.

本技術に係る無機粒子1に備える空間11の個数は、2以上であれば、空間11の大きさや形態等に応じて、自由に設定することができる。本技術では特に、本技術に係る無機粒子1に備える空間11の個数は、3以上が好ましく、5以上がより好ましい。 The number of spaces 11 provided in the inorganic particles 1 according to the present technology can be freely set according to the size, form, and the like of the spaces 11 as long as the number is two or more. Particularly in the present technology, the number of spaces 11 provided in the inorganic particles 1 according to the present technology is preferably 3 or more, more preferably 5 or more.

本技術に係る無機粒子1の体積に対する空間11の合計容積の比率は、本技術の効果を損なわない限り自由に設定することができるが、5~50%に設定することが好ましく、10~50%がより好ましく、20~50%が更に好ましい。本技術に係る無機粒子1の体積に対する空間11の合計容積の比率を5%以上とすることで、混練する材料に十分な空気層を作ることができ、その結果、低誘電率、低屈折率等の目的とする効果を十分に発揮させることができる。本技術に係る無機粒子1の体積に対する空間11の合計容積の比率を50%以下とすることで、粒子の強度を向上させることができる。 The ratio of the total volume of the space 11 to the volume of the inorganic particles 1 according to the present technology can be freely set as long as the effect of the present technology is not impaired. % is more preferred, and 20 to 50% is even more preferred. By setting the ratio of the total volume of the space 11 to the volume of the inorganic particles 1 according to the present technology to be 5% or more, it is possible to create a sufficient air layer in the material to be kneaded, resulting in a low dielectric constant and a low refractive index. It is possible to sufficiently exhibit the intended effect such as. By setting the ratio of the total volume of the spaces 11 to the volume of the inorganic particles 1 according to the present technology to 50% or less, the strength of the particles can be improved.

本技術に係る無機粒子1のCV値(粒度分布の変動係数)は、本技術の効果を損なわない限り特に限定されない。本技術では特に、無機粒子1のCV値は、20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることが更に好ましい。 The CV value (coefficient of variation of particle size distribution) of the inorganic particles 1 according to the present technology is not particularly limited as long as the effect of the present technology is not impaired. Particularly in the present technology, the CV value of the inorganic particles 1 is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less.

本技術の係る無機粒子1のCV値が20%以下であると、平均粒子外径よりも大きな粒子の割合が少なくなり、粗大粒子の混入が嫌われる用途に適した材料となる。 When the CV value of the inorganic particles 1 according to the present technology is 20% or less, the ratio of particles larger than the average particle outer diameter decreases, and the material is suitable for applications in which inclusion of coarse particles is disliked.

なお、本技術において、CV値は、以下の数式により算出した値である。
CV値(%)={[粒子外径の標準偏差(μm)]/[平均粒子外径(μm)]}×100
Note that, in the present technology, the CV value is a value calculated by the following formula.
CV value (%) = {[standard deviation of particle outer diameter (μm)]/[average particle outer diameter (μm)]}×100

本技術に係る無機粒子1の真球度は、本技術の効果を損なわない限り特に限定されない。本技術では特に、無機粒子1の真球度は、0.8以上であることが好ましく、0.9以上であることがより好ましい。 The sphericity of the inorganic particles 1 according to the present technology is not particularly limited as long as the effects of the present technology are not impaired. Particularly in the present technology, the sphericity of the inorganic particles 1 is preferably 0.8 or more, more preferably 0.9 or more.

本技術に係る無機粒子1の真球度が、0.8以上であると、樹脂等の他材料と混合する際に、粒子の流動性が高くなり、粘度の上昇を抑制することができる。 When the sphericity of the inorganic particles 1 according to the present technology is 0.8 or more, the fluidity of the particles increases when mixed with other materials such as resin, and an increase in viscosity can be suppressed.

なお、本技術において、真球度は、以下の数式により算出した値である。
真球度=[粒子外径の短径]/[粒子外径の長径]
In addition, in the present technology, the sphericity is a value calculated by the following formula.
Sphericality = [minor diameter of particle outer diameter]/[long diameter of particle outer diameter]

本技術に係る無機粒子1を形成する材料は特に限定されず、一般的な無機粒子に用いることができる材料で形成することができる。本技術では特に、下記の一般式(1)で表されるケイ素化合物を用いることが好ましい。 The material forming the inorganic particles 1 according to the present technology is not particularly limited, and can be formed from materials that can be used for general inorganic particles. In particular, it is preferable to use a silicon compound represented by the following general formula (1) in the present technology.


(式中、Rは非加水分解性基であって、炭素数1~20のアルキル基、(メタ)アクリロイルオキシ基若しくはエポキシ基を有する炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基、Rは炭素数1~6のアルキル基、nは1~3の整数を示し、Rが複数ある場合、各Rはたがいに同一であっても異なっていてもよく、ORが複数ある場合、各ORはたがいに同一であっても異なっていてもよい。)

(In the formula, R 1 is a non-hydrolyzable group, an alkyl group having 1 to 20 carbon atoms, a (meth)acryloyloxy group or an epoxy group-containing alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 to 3, and when there are multiple R 1 , each R 1 may be the same or different, and when there are multiple OR 2 , each OR 2 may be the same or different.)

ここで、非加水分解性基であるRにおいて、炭素数1~20のアルキル基としては、炭素数1~10のものが好ましく、またこのアルキル基は直鎖状、分岐状、環状のいずれであってもよい。このアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 Here, in the non-hydrolyzable group R 1 , the alkyl group having 1 to 20 carbon atoms preferably has 1 to 10 carbon atoms, and the alkyl group may be linear, branched or cyclic. may be Examples of this alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl and cyclopentyl. group, cyclohexyl group, and the like.

非加水分解性基であるRにおいて、(メタ)アクリロイルオキシ基若しくはエポキシ基を有する炭素数1~20のアルキル基としては、上記置換基を有する炭素数1~10のアルキル基が好ましく、またこのアルキル基は直鎖状、分岐状、環状のいずれであってもよい。この置換基を有するアルキル基の例としては、γ-アクリロイルオキシプロピル基、γ-メタクリロイルオキシプロピル基、γ-グリシドキシプロピル基、3,4-エポキシシクロヘキシル基などが挙げられる。 In R 1 , which is a non-hydrolyzable group, the alkyl group having 1 to 20 carbon atoms having a (meth)acryloyloxy group or an epoxy group is preferably an alkyl group having 1 to 10 carbon atoms having the above substituents, and This alkyl group may be linear, branched or cyclic. Examples of alkyl groups having this substituent include γ-acryloyloxypropyl group, γ-methacryloyloxypropyl group, γ-glycidoxypropyl group, 3,4-epoxycyclohexyl group and the like.

非加水分解性基であるRにおいて、炭素数2~20のアルケニル基としては、炭素数2~10のアルケニル基が好ましく、また、このアルケニル基は直鎖状、分岐状、環状のいずれであってもよい。このアルケニル基の例としては、ビニル基、アリル基、ブテニル基、ヘキセニル基、オクテニル基などが挙げられる。 In the non-hydrolyzable group R 1 , the alkenyl group having 2 to 20 carbon atoms is preferably an alkenyl group having 2 to 10 carbon atoms, and the alkenyl group may be linear, branched or cyclic. There may be. Examples of this alkenyl group include vinyl group, allyl group, butenyl group, hexenyl group, octenyl group and the like.

非加水分解性基であるRにおいて、炭素数6~20のアリール基としては、炭素数6~10のものが好ましく、例えばフェニル基、トリル基、キシリル基、ナフチル基などが挙げられる。炭素数7~20のアラルキル基としては、炭素数7~10のものが好ましく、例えばベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基などが挙げられる。 In the non-hydrolyzable group R 1 , the aryl group having 6 to 20 carbon atoms preferably has 6 to 10 carbon atoms, such as phenyl, tolyl, xylyl and naphthyl groups. The aralkyl group having 7 to 20 carbon atoms preferably has 7 to 10 carbon atoms, such as benzyl group, phenethyl group, phenylpropyl group and naphthylmethyl group.

炭素数1~6のアルキル基であるRは、直鎖状、分岐状、環状のいずれであってもよく、その例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 R 2 , which is an alkyl group having 1 to 6 carbon atoms, may be linear, branched, or cyclic, and examples thereof include methyl, ethyl, n-propyl, isopropyl, n -butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group and the like.

前記一般式(I)で表されるケイ素化合物の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、ジメチルジエトキシシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリビニルメトキシシラン、トリビニルエトキシシラン等が挙げられ、これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いることも可能である。 Examples of the silicon compound represented by the general formula (I) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, Methoxysilane, propyltriethoxysilane, butyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, dimethyldiethoxysilane, divinyldimethoxysilane, Divinyldiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trivinylmethoxysilane, trivinylethoxysilane, etc., may be mentioned, and these may be used singly or in combination of two or more. It is possible.

本技術に係る無機粒子1は、樹脂等の他材料と混合する際の流動性向上や粘度上昇抑制を目的として、その表面を樹脂やシランカップリング剤等により処理していてもよい。 The surface of the inorganic particles 1 according to the present technology may be treated with a resin, a silane coupling agent, or the like for the purpose of improving fluidity and suppressing viscosity increase when mixed with other materials such as resin.

シランカップリング剤の具体例としては、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、アルキルトリエトキシシラン、アルキルトリメトキシシラン、ジアルキルジエトキシシラン、ジアルキルジメトキシシラン、アルキルトリメトキシシラン等が挙げられ、これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いることも可能である。 Specific examples of silane coupling agents include phenyltriethoxysilane, phenyltrimethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, N- 2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, 3-glycides xypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, alkyltriethoxysilane, alkyltrimethoxysilane, dialkyldiethoxysilane, dialkyldimethoxysilane , alkyltrimethoxysilane, etc., and these may be used singly or in combination of two or more.

本技術の係る無機粒子1は、異なる平均粒径を持つ無機粒子1を2種類以上混合しても良い。2種類以上の粒径が存在することにより、樹脂やセラミックス等の材料に混練する際、粒子の充填率を向上させることができ、空気層の割合も向上させることができる。その結果、低誘電率、低屈折率等の目的とする効果を十分に発揮させることができる。 The inorganic particles 1 according to the present technology may be a mixture of two or more inorganic particles 1 having different average particle diameters. By having two or more types of particle sizes, the filling rate of the particles can be improved when kneading into materials such as resins and ceramics, and the ratio of the air layer can also be improved. As a result, the desired effects such as low dielectric constant and low refractive index can be sufficiently exhibited.

以上説明した本技術に係る無機粒子1の用途は特に限定されず、一般的な無機粒子1の様々な用途に適用することができる。本技術に係る無機粒子1は、特に、誘電率調整用や屈折率調製用の粒子として好適に用いることができる。 Applications of the inorganic particles 1 according to the present technology described above are not particularly limited, and the general inorganic particles 1 can be applied to various uses. The inorganic particles 1 according to the present technology can be suitably used as particles for dielectric constant adjustment and refractive index adjustment.

<2.低誘電材料、低屈折率材料>
本技術に係る無機粒子1は、その誘電率の低下作用や、屈折率の低下作用を利用して、低誘電材料や、低屈折率材料に好適に用いることができる。本技術に係る無機粒子1を用いた低誘電材料および低屈折率材料は、フィラー、スペーサー、セラミックス原料、樹脂改良剤、吸着剤、電子材料、半導体材料、塗料、化粧料等、幅広い分野において、低誘電材料および低屈折率材料として用いることができる。
<2. Low Dielectric Material, Low Refractive Index Material>
The inorganic particles 1 according to the present technology can be suitably used for low dielectric materials and low refractive index materials by utilizing their dielectric constant lowering action and refractive index lowering action. Low dielectric materials and low refractive index materials using inorganic particles 1 according to the present technology are used in a wide range of fields such as fillers, spacers, ceramic raw materials, resin modifiers, adsorbents, electronic materials, semiconductor materials, paints, cosmetics, etc. It can be used as a low dielectric material and a low refractive index material.

<3.無機粒子1の製造方法>
図2は、本技術に係る無機粒子1の製造方法のフロー図である。本技術に係る無機粒子1の製造方法は、少なくとも、シード粒子液調製工程S1と、粒子径成長工程S2と、測定工程S3と、反応停止工程S4と、を行う方法である。また、本技術では、必要に応じて、乾燥工程S5、焼成工程S6を行うことも可能である。以下、各工程について、時系列に沿って、詳細に説明する。
<3. Method for producing inorganic particles 1>
FIG. 2 is a flow diagram of a method for manufacturing inorganic particles 1 according to the present technology. The method for manufacturing the inorganic particles 1 according to the present technology is a method that performs at least the seed particle liquid preparation step S1, the particle size growth step S2, the measurement step S3, and the reaction termination step S4. Moreover, in the present technology, it is also possible to perform the drying step S5 and the baking step S6 as necessary. Each step will be described in detail below in chronological order.

(1)シード粒子液調製工程S1
シード粒子液調製工程S1は、溶液中で無機化合物を加水分解および縮合させてシード粒子液を調製する工程である。
(1) Seed particle liquid preparation step S1
The seed particle liquid preparation step S1 is a step of hydrolyzing and condensing an inorganic compound in a solution to prepare a seed particle liquid.

溶液には、水性媒体を用いることが好ましく、水または水と水混和性有機溶剤との混合物を用いることができる。ここで、水混和性有機溶剤の例としては、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコール類、アセトンなどのケトン類などが挙げられる。これらは単独で水と混合してもよいし、2種以上を組み合わせて水と混合してもよい。 An aqueous medium is preferably used for the solution, and water or a mixture of water and a water-miscible organic solvent can be used. Examples of water-miscible organic solvents include lower alcohols such as methanol, ethanol, propanol and butanol, and ketones such as acetone. These may be mixed with water alone, or may be mixed with water in combination of two or more.

シード粒子形成用液の調製は、上記水性媒体中に、前記一般式(1)で表される化合物を添加し、例えば、0~50℃程度の温度で撹拌して均一な水性溶液とすることにより、行われる。この際、前記一般式(1)で表される化合物の濃度は、20質量%以下が好ましく、容積効率などの観点からは、5~15質量%の範囲がより好ましい。 The seed particle-forming liquid is prepared by adding the compound represented by the general formula (1) to the aqueous medium and stirring at a temperature of about 0 to 50° C. to obtain a uniform aqueous solution. It is done by In this case, the concentration of the compound represented by the general formula (1) is preferably 20% by mass or less, and more preferably in the range of 5 to 15% by mass from the viewpoint of volumetric efficiency.

(2)粒子径成長工程S2
粒子径成長工程S2は、前記シード粒子液調製工程S1で調製したシード粒子液に、無機化合物含有溶液を添加、撹拌して、粒子径を成長させる工程である。
(2) Particle size growth step S2
The particle diameter growth step S2 is a step of adding an inorganic compound-containing solution to the seed particle liquid prepared in the seed particle liquid preparation step S1 and stirring to grow the particle diameter.

無機化合物含有溶液は、前記シード粒子液調製工程S1で調製したシード粒子液と全く同一の溶液を用いることもできるし、前記一般式(1)で表される化合物の種類、その濃度及び水性媒体の種類などは、前記シード粒子形成用液の異なっていてもよい。作業性や得られる粒子の性状などの観点からは、無機化合物含有溶液は、前記シード粒子液調製工程S1で調製したシード粒子液と全く同一の溶液を用いることが好ましい。 As the inorganic compound-containing solution, the same solution as the seed particle liquid prepared in the seed particle liquid preparation step S1 can be used. The type of liquid may be different from that of the seed particle forming liquid. From the viewpoint of workability and the properties of the obtained particles, it is preferable to use the completely same solution as the seed particle liquid prepared in the seed particle liquid preparing step S1 as the inorganic compound-containing solution.

粒子径成長工程S2では、触媒を用いることが好ましい。触媒としては、例えば、アンモニアおよび/またはアミンを用いることが好ましい。具体的には、前記シード粒子液調製工程S1で調製したシード粒子液に、無機化合物含有溶液を添加、撹拌する際に、アンモニア含有水性溶液および/またはアミン含有水性溶液を一気に添加し、前記一般式(1)で表される化合物を加水分解、縮合させて、粒子径を成長させる。 A catalyst is preferably used in the particle size growth step S2. As a catalyst, it is preferable to use, for example, ammonia and/or amines. Specifically, when the inorganic compound-containing solution is added to the seed particle liquid prepared in the seed particle liquid preparation step S1 and stirred, the ammonia-containing aqueous solution and/or the amine-containing aqueous solution are added at once, and the general The compound represented by Formula (1) is hydrolyzed and condensed to grow the particle size.

アミンとしては、例えば、モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、エチレンジアミン等が挙げられ、これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いることも可能である。 Examples of amines include monomethylamine, dimethylamine, monoethylamine, diethylamine, ethylenediamine and the like, and these may be used singly or in combination of two or more.

本技術では、毒性が少なく、除去が容易で、かつ安価なことから、触媒としては、アンモニアが好適である。 In the present technology, ammonia is suitable as the catalyst because it is less toxic, easy to remove, and inexpensive.

また、アンモニア含有水性溶液および/またはアミン含有水性溶液としては、水または水と水混和性有機溶剤との混合溶剤にアンモニアおよび/またはアミンを溶解した溶液が挙げられる。ここで、水混和性有機溶剤の例としては、前記(1)のシード粒子形成用液の調製についての説明において例示したものと同じものを挙げることができる。 Further, examples of the ammonia-containing aqueous solution and/or amine-containing aqueous solution include a solution obtained by dissolving ammonia and/or amine in water or a mixed solvent of water and a water-miscible organic solvent. Here, examples of the water-miscible organic solvent are the same as those exemplified in the explanation of the preparation of the seed particle forming liquid in (1) above.

アンモニア含有水性溶液および/またはアミン含有水性溶液の添加量は、本技術の効果を損なわない限り特に限定されないが、シード粒子形成後のシード粒子液のpHが、好ましくは8.2~11.0の範囲になるように設定することが好ましい。反応温度は、原料の前記一般式(1)で表される化合物の種類等に応じて自由に設定することができるが、例えば0~50℃の範囲で設定することができる。シード粒子の形成時間も特に限定されないが、通常1時間以内で十分である。 The amount of the ammonia-containing aqueous solution and/or the amine-containing aqueous solution to be added is not particularly limited as long as it does not impair the effects of the present technology, but the pH of the seed particle liquid after seed particle formation is preferably 8.2 to 11.0. is preferably set within the range of The reaction temperature can be freely set according to the kind of the compound represented by the general formula (1) as a starting material, and can be set, for example, in the range of 0 to 50°C. The formation time of the seed particles is also not particularly limited, but usually within 1 hour is sufficient.

(3)測定工程S3
測定工程S3は、前記粒子径成長工程S2中に、連続的または所定の間隔で粒子径を測定する工程である。
(3) Measurement step S3
The measuring step S3 is a step of measuring the particle size continuously or at predetermined intervals during the particle size growing step S2.

粒子径の測定方法は特に限定されず、微小粒子の測定が可能な一般的な測定方法を自由に選択して用いることができる。例えば、光学顕微鏡ビデオミクロメーターを用いた測定方法や、コールターカウンターを用いた測定方法等が挙げられる。 The method for measuring the particle size is not particularly limited, and a general measuring method capable of measuring microparticles can be freely selected and used. Examples thereof include a measuring method using an optical microscope video micrometer and a measuring method using a Coulter counter.

(4)反応停止工程S4
反応停止工程S4は、粒子径成長途中で、反応を停止させる工程である。本技術に係る無機粒子1の製造方法では、反応の停止を、粒子径が成長する途中で行うことがポイントである。粒子径が成長しきった後に反応の停止を行うと、内部に空間のない無機粒子となってしまう可能性があるが、粒子径成長途中で、反応を停止させることで、内部に2以上の空間を有する無機粒子1を製造することができる。
(4) Reaction stop step S4
The reaction stopping step S4 is a step of stopping the reaction during particle size growth. In the method for producing the inorganic particles 1 according to the present technology, it is important to stop the reaction while the particle diameter is growing. If the reaction is stopped after the particle size has grown completely, there is a possibility that the inorganic particles will have no internal space. Inorganic particles 1 having

具体的には、前記粒子径成長工程S2を行いながら、連続的または所定の間隔で測定工程S3を行い、粒子径の変化が起きている時点で、アンモニア含有水性溶液および/またはアミン含有水性溶液を添加して熟成を行う。この熟成は、原料の前記一般式(1)で表される化合物の種類等に応じて自由に設定することができるが、例えば0~50℃の範囲で、6~24時間程度行うことができる。 Specifically, while performing the particle size growth step S2, the measurement step S3 is performed continuously or at predetermined intervals, and when the particle size changes, the ammonia-containing aqueous solution and/or the amine-containing aqueous solution is added for aging. This aging can be freely set according to the type of the compound represented by the general formula (1), which is the raw material. .

(5)乾燥工程S5
乾燥工程S5は、前記反応停止工程S4の終了後に、生成した粒子を乾燥する工程である。乾燥工程S5を行うことで、無機粒子1の凝集の発生を防止することができる。
(5) Drying step S5
The drying step S5 is a step of drying the produced particles after the termination step S4. By performing the drying step S5, it is possible to prevent the aggregation of the inorganic particles 1 from occurring.

具体的には、前記反応停止工程S4が終了後、生成した粒子を常法に従って充分に洗浄したのち、必要ならば分級処理を行い、極大粒子または極小粒子を取り除き、乾燥処理を行う。分級処理方法としては特に制限はないが、粒径により沈降速度が異なるのを利用して分級を行う湿式分級法等を用いることができる。乾燥処理は、例えば、100~200℃の範囲の温度で行うことができる。 Specifically, after completion of the reaction stop step S4, the generated particles are sufficiently washed in accordance with a conventional method, and if necessary, classified to remove extremely large or extremely small particles, followed by drying. The classification treatment method is not particularly limited, but a wet classification method or the like can be used in which the sedimentation velocity is different depending on the particle diameter. Drying treatment can be performed at a temperature in the range of, for example, 100 to 200°C.

(6)焼成工程S6
焼成工程S6は、前記乾燥工程S5の終了後に、粒子を焼成する工程である。粒子を焼成することで、粒子中の有機基が分解し、無機粒子1を得ることができる。
(6) Firing step S6
The firing step S6 is a step of firing the particles after the drying step S5. By firing the particles, the organic groups in the particles are decomposed, and the inorganic particles 1 can be obtained.

焼成工程S6における焼成方法は、本技術の効果を損なわない限り、自由に設定することができるが、粒子中に含まれる有機基の分解温度より100℃低い温度以上で、かつ当該有機基の分解温度未満の範囲の温度において予備焼成処理したのち、当該有機基の分解温度以上の温度で焼成処理することが好ましい。粒子に含まれる有機基の分解温度以上の温度に直ちに昇温して焼成すると、当該有機基の分解、脱離が急激に起こり、粒子の破壊強度が低下したり、場合によっては急激な収縮に耐えきれず、粒子が割れたりするなど、好ましくない事態を招来することがある。しかし、当該有機基の分解温度より100℃低い温度以上で、かつ当該有機基の分解温度未満の範囲の温度で予備焼成処理を行ってから、当該有機基の分解温度以上の温度で焼成処理することにより、上記の好ましくない事態を回避することができる。 The firing method in the firing step S6 can be freely set as long as the effect of the present technology is not impaired. It is preferable to preliminarily calcine at a temperature below the temperature, and then calcine at a temperature equal to or higher than the decomposition temperature of the organic group. If the temperature is immediately raised to a temperature higher than the decomposition temperature of the organic groups contained in the particles and fired, the decomposition and detachment of the organic groups will occur rapidly, and the breaking strength of the particles will decrease, and in some cases, they will shrink rapidly. It may lead to unfavorable situations such as cracking of particles. However, after performing a pre-baking treatment at a temperature that is at least 100°C lower than the decomposition temperature of the organic group and below the decomposition temperature of the organic group, the baking treatment is performed at a temperature that is at least the decomposition temperature of the organic group. By doing so, it is possible to avoid the above-mentioned undesirable situation.

焼成工程S6における焼成温度および焼成時間は、粒子を構成する有機基の種類等に応じて自由に設定することができる。熱分解しやすい有機基を有する場合、比較的低い温度で処理するのが望ましく、反対に熱分解しにくい有機基を有する場合には高温で処理するのが好ましい。 The sintering temperature and sintering time in the sintering step S6 can be freely set according to the type of organic group constituting the particles. If it has an organic group that is easily thermally decomposed, it is desirable to treat it at a relatively low temperature, and if it has an organic group that is difficult to thermally decompose, it is preferable to treat it at a high temperature.

具体的な一例を挙げると、ポリメチルシルセスキオキサン(PMSO)/ポリビニルシルセスキオキサン(PVSO)複合粒子の場合、300~500℃の範囲の温度において3~50時間程度保持して予備焼成処理を行ったのち、600~1300℃の範囲の温度において3~50時間程度保持して焼成処理し、有機基を完全に分解することができる。 As a specific example, in the case of polymethylsilsesquioxane (PMSO)/polyvinylsilsesquioxane (PVSO) composite particles, pre-baking is maintained at a temperature in the range of 300 to 500° C. for about 3 to 50 hours. After the treatment, the substrate is maintained at a temperature in the range of 600 to 1300° C. for about 3 to 50 hours for firing treatment, whereby the organic groups can be completely decomposed.

焼成工程S6における雰囲気としては、粒子中の有機基を酸化分解するために、酸素濃度が一定以上、例えば10容量%以上であることが好ましい。また、焼成装置についても特に限定されず、電気炉やロータリーキルンなど一般的な焼成装置を用いることができる。 The atmosphere in the firing step S6 preferably has an oxygen concentration of a certain level or more, for example, 10% by volume or more, in order to oxidatively decompose the organic groups in the particles. Also, the firing device is not particularly limited, and a general firing device such as an electric furnace or a rotary kiln can be used.

以下、実施例に基づいて本発明を更に詳細に説明する。
なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
The present invention will be described in more detail below based on examples.
It should be noted that the examples described below are examples of representative examples of the present invention, and the scope of the present invention should not be construed narrowly.

<実験例1>
実験例1では、無機粒子の形態の違いによる誘電率の違いについて、検証を行った。
<Experimental example 1>
In Experimental Example 1, the difference in dielectric constant due to the difference in the form of inorganic particles was verified.

1.無機粒子の製造
下記の方法で、実施例1~9に係る無機粒子を製造した。
1. Production of Inorganic Particles Inorganic particles according to Examples 1 to 9 were produced by the following method.

[実施例1]
(1)シード粒子液の調製
イオン交換水5000gに、メチルトリメトキシシラン(以下、MTMSと略記する。)500gを加え、30℃にて100rpmで撹拌した。MTMS添加当初は、水溶液中に油滴の状態で分散していたが、約3時間後、MTMSは完全に溶解して均一溶液となり、これをシード粒子形成用液とした。
[Example 1]
(1) Preparation of Seed Particle Liquid 500 g of methyltrimethoxysilane (hereinafter abbreviated as MTMS) was added to 5000 g of ion-exchanged water, and the mixture was stirred at 30° C. and 100 rpm. At the beginning of the addition of MTMS, it was dispersed in the aqueous solution in the form of oil droplets, but after about 3 hours, MTMS was completely dissolved to form a uniform solution, which was used as the seed particle forming liquid.

(2)粒子径成長用液の調製
イオン交換水33000gにMTMS3300gを加え、30℃にて100rpmで撹拌した。MTMS添加当初は、水溶液中に油滴の状態で分散していたが、約1時間後、MTMSは完全に溶解して均一な溶液となり、これを粒子径成長用液とした。
(2) Preparation of Particle Size Growth Liquid 3300 g of MTMS was added to 33000 g of deionized water, and the mixture was stirred at 30° C. and 100 rpm. At the beginning of the addition of MTMS, it was dispersed in the aqueous solution in the form of oil droplets, but after about 1 hour, MTMS was completely dissolved to form a uniform solution, which was used as the particle size growth liquid.

(3)シード粒子の形成
上記(1)で調製したシード粒子形成用液において、撹拌速度を30rpmに下げ、1モル/リットルアンモニア水50ミリリットルを一気に添加した。アンモニア水を添加してから2分後には、粒子が成長し、溶液が白濁した。
(3) Formation of Seed Particles In the seed particle-forming solution prepared in (1) above, the stirring speed was lowered to 30 rpm, and 50 ml of 1 mol/liter ammonia water was added at once. Two minutes after the addition of aqueous ammonia, particles grew and the solution became cloudy.

(4)粒子径の成長
上記(2)の粒子径成長用液の全量36300gを20rpmで撹拌しながらこれに、上記(3)で得たシード粒子液3360gを添加した。
(4) Growth of Particle Diameter 3360 g of the seed particle liquid obtained in (3) was added to the total amount of 36,300 g of the particle diameter growth liquid obtained in (2) while stirring at 20 rpm.

(5)反応停止
上記(4)におけるシード粒子液の添加後から10分毎に、光学顕微鏡ビデオミクロメーターで粒子径を測定した。粒子径成長途中である添加から50分後に、25質量%アンモニア水500gを定量ポンプにて滴下して熟成を室温で16時間行った。
(5) Termination of Reaction Every 10 minutes after the addition of the seed particle solution in (4) above, the particle diameter was measured with an optical microscope video micrometer. 50 minutes after the addition during particle size growth, 500 g of 25% by mass aqueous ammonia was added dropwise with a metering pump, and aging was carried out at room temperature for 16 hours.

(6)乾燥・焼成
得られた粒子を乾燥させた後、空気流量2リットル/分の条件で、室温から400℃まで昇温し、その温度で24時間保持して予備焼成したのち、900℃まで昇温し、その温度で9時間保持して本焼成した。本焼成後、室温まで冷却し、無機粒子を製造した。
(6) Drying and Firing After drying the obtained particles, the temperature is raised from room temperature to 400° C. under the condition of an air flow rate of 2 liters/minute, and after pre-firing at that temperature for 24 hours, 900° C. and maintained at that temperature for 9 hours for main firing. After main firing, the mixture was cooled to room temperature to produce inorganic particles.

[実施例2]
実施例1において、(1)のMTMS添加量を5g、(2)のMTMS添加量を33gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 2]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 5 g and the amount of MTMS added in (2) was changed to 33 g.

[実施例3]
実施例1において、(1)のMTMS添加量を10g、(2)のMTMS添加量を100gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 3]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 10 g and the amount of MTMS added in (2) was changed to 100 g.

[実施例4]
実施例1において、(1)のMTMS添加量を20g、(2)のMTMS添加量を500gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 4]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 20 g and the amount of MTMS added in (2) was changed to 500 g.

[実施例5]
実施例1において、(1)のMTMS添加量を100g、(2)のMTMS添加量を1000gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 5]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 100 g and the amount of MTMS added in (2) was changed to 1000 g.

[実施例6]
実施例1において、(1)のMTMS添加量を200g、(2)のMTMS添加量を2000gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 6]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 200 g and the amount of MTMS added in (2) was changed to 2000 g.

[実施例7]
実施例1において、(1)のMTMS添加量を700g、(2)のMTMS添加量を4950gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 7]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 700 g and the amount of MTMS added in (2) was changed to 4950 g.

[実施例8]
実施例1において、(1)のMTMS添加量を1000g、(2)のMTMS添加量を4950gとした以外は同様の操作を行い、無機粒子を製造した。
[Example 8]
Inorganic particles were produced in the same manner as in Example 1 except that the amount of MTMS added in (1) was changed to 1000 g and the amount of MTMS added in (2) was changed to 4950 g.

[実施例9]
(1)シード粒子形成用液の調製
イオン交換水1000gに、MTMS200gを加え、20℃にて100rpmで撹拌した。MTMS添加当初は、水溶液中に油滴の状態で分散していたが、約3時間後、MTMSは完全に溶解して均一溶液となり、これをシード粒子形成用液とした。
[Example 9]
(1) Preparation of Seed Particle Forming Liquid 200 g of MTMS was added to 1000 g of ion-exchanged water, and the mixture was stirred at 20° C. and 100 rpm. At the beginning of the addition of MTMS, it was dispersed in the aqueous solution in the form of oil droplets, but after about 3 hours, MTMS was completely dissolved to form a uniform solution, which was used as the seed particle forming liquid.

(2)1段目粒子径成長用液の調製
イオン交換水1000gにMTMS200gを加え、30℃にて100rpmで撹拌した。MTMS添加当初は、水溶液中に油滴の状態で分散していたが、約1時間後、MTMSは完全に溶解して均一な溶液となり、これを1段目粒子径成長用液とした。
(2) Preparation of first-stage particle size growth liquid 200 g of MTMS was added to 1000 g of ion-exchanged water, and the mixture was stirred at 30° C. and 100 rpm. At the beginning of the addition of MTMS, it was dispersed in the aqueous solution in the form of oil droplets, but after about 1 hour, MTMS was completely dissolved to form a uniform solution, which was used as the first-stage particle size growth liquid.

(3)2段目粒子径成長用液の調製
イオン交換水30000gにMTMS6000gを加え、30℃にて100rpmで撹拌した。MTMS添加当初は、水溶液中に油滴の状態で分散していたが、約1時間後、MTMSは完全に溶解して均一な溶液となり、これを1段目粒子径成長用液とした。
(3) Preparation of Second-Step Particle Size Growth Liquid 6000 g of MTMS was added to 30000 g of deionized water, and the mixture was stirred at 30° C. and 100 rpm. At the beginning of the addition of MTMS, it was dispersed in the aqueous solution in the form of oil droplets, but after about 1 hour, MTMS was completely dissolved to form a uniform solution, which was used as the first-stage particle size growth liquid.

(4)シード粒子の形成
上記(1)で調製したシード粒子形成用液において、撹拌速度を30rpmに下げ、1モル/リットルアンモニア水10ミリリットルを一気に添加した。アンモニア水を添加して30分撹拌を続け、シード粒子を得た。
(4) Formation of Seed Particles In the seed particle-forming solution prepared in (1) above, the stirring speed was lowered to 30 rpm, and 10 ml of 1 mol/liter ammonia water was added at once. Aqueous ammonia was added and stirring was continued for 30 minutes to obtain seed particles.

(5)粒子径の成長 1段目
上記(2)の1段目粒子径成長用液の全量1200gを20rpmで撹拌しながらこれに、上記(4)で得たシード粒子液300gを添加し、45分撹拌を続けて1段目粒子径成長粒子を得た。
(5) Particle size growth 1st stage 300 g of the seed particle solution obtained in (4) above is added to the total amount of 1200 g of the first stage particle size growth liquid of (2) above while stirring at 20 rpm, Stirring was continued for 45 minutes to obtain first-stage particle size growth particles.

(6)粒子径の成長 2段目
上記(3)の2段目粒子径成長用液の全量36000gを20rpmで撹拌しながらこれに、上記(5)で得た1段目粒子径成長粒子液1500gを添加し、10時間撹拌を続けた。
(6) Growth of particle size, second stage: While stirring the total amount of 36,000 g of the liquid for second-stage particle size growth in (3) above at 20 rpm, the liquid for first-stage particle size growth obtained in (5) above is added. 1500 g was added and stirring continued for 10 hours.

(7)反応停止
上記(6)における10時間撹拌後に、25質量%アンモニア水500gを定量ポンプにて滴下して熟成を室温で3時間行った。
(7) Termination of Reaction After stirring for 10 hours in (6) above, 500 g of 25% by mass aqueous ammonia was added dropwise with a metering pump, and aging was carried out at room temperature for 3 hours.

(8)乾燥・焼成
得られた粒子を乾燥させた後、空気流量2リットル/分の条件で、室温から340℃まで昇温し、その温度で24時間保持して焼成し、室温まで冷却して、無機粒子を製造した。
(8) Drying and Firing After drying the obtained particles, the temperature is raised from room temperature to 340° C. under the condition of an air flow rate of 2 liters/minute, and the temperature is maintained for 24 hours for firing, and then cooled to room temperature. to produce inorganic particles.

2.測定
前記で製造した無機粒子の平均粒子径、比表面積、比重、空間比率、誘電率について、下記の方法を用いて測定した。なお、比較例として、平均粒子径が5.027μmで、内部に空間を含有しないシリカ粒子(「ハイプレシカFQ N2N」宇部エクシモ株式会社製)を用いた。また、実施例9の無機粒子について、光学顕微鏡で観察した。顕微鏡写真を図3に示す。
2. Measurement The average particle size, specific surface area, specific gravity, spatial ratio, and dielectric constant of the inorganic particles produced above were measured using the following methods. As a comparative example, silica particles having an average particle diameter of 5.027 μm and containing no internal space (“Hipresica FQ N2N” manufactured by Ube Exsimo Co., Ltd.) were used. In addition, the inorganic particles of Example 9 were observed with an optical microscope. A photomicrograph is shown in FIG.

[平均粒子径]
コールターカウンターにて、平均粒子径を測定した。
[Average particle size]
The average particle size was measured with a Coulter counter.

[比表面積]
ガス吸着法により、比表面積を測定した。
[Specific surface area]
The specific surface area was measured by the gas adsorption method.

[比重]
ガス置換法にて窒素ガスを用いて比重を測定した。
[specific gravity]
The specific gravity was measured using nitrogen gas by the gas replacement method.

[空間比率]
下記の数式を用いて、空間比率を算出した。
空間比率={([比較例1の比重]-[各実施例の比重])/[比較例1の比重]}×100
[Spatial ratio]
The space ratio was calculated using the following formula.
Spatial ratio = {([Specific gravity of Comparative Example 1] - [Specific gravity of each example]) / [Specific gravity of Comparative Example 1]} x 100

[誘電率]
エポキシ樹脂(「jER828」三菱ケミカル株式会社製):硬化剤(「YH306」三菱ケミカル株式会社製):2-エチル-4-メチルイミダゾール=5:6:0.05の重量比で混合した樹脂混合物に対して、前記で製造した無機粒子それぞれ20重量%となるように添加し、スパチュラにより混練した。次に、混練した樹脂混合物をギャップ0.08mmに調整したロールミル(「卓上ロールミル」小平製作所製)混練を3回繰り返して行うことで、樹脂混合物を作製した。得られた樹脂混合物を1.2mm×1.2mm×70mmの型に流し入れ、120℃にて6時間加熱硬化させ、誘電率評価用サンプルを作製した。得られたサンプルについて、空洞共振器摂動法を用いて、周波数5.8GHzにて誘電率測定を行った。
[Permittivity]
Epoxy resin (“jER828” manufactured by Mitsubishi Chemical Co., Ltd.): curing agent (“YH306” manufactured by Mitsubishi Chemical Co., Ltd.): 2-ethyl-4-methylimidazole = 5: 6: 0.05 weight ratio resin mixture 20% by weight of the inorganic particles prepared above were added to the mixture and kneaded with a spatula. Next, the kneaded resin mixture was kneaded three times with a roll mill ("desktop roll mill" manufactured by Kodaira Seisakusho Co., Ltd.) adjusted to a gap of 0.08 mm to prepare a resin mixture. The resulting resin mixture was poured into a mold of 1.2 mm×1.2 mm×70 mm and cured by heating at 120° C. for 6 hours to prepare a dielectric constant evaluation sample. The dielectric constant of the obtained sample was measured at a frequency of 5.8 GHz using the cavity resonator perturbation method.

3.結果
結果を下記の表1に示す。
3. Results The results are shown in Table 1 below.

4.考察
図3に示す通り、本技術に係る無機粒子は、内部に2以上の空間を有していた。また、表1に示す通り、内部の空間のない比較例1の無機粒子に比べて、実施例1~9の無機粒子は、比重が低く、誘電率も低かった。また、実施例1~9の無機粒子の比表面積は50m/g以下であり、粒子表面に細孔は、ほとんど存在しないことが確認された。
4. Discussion As shown in FIG. 3, the inorganic particles according to the present technology had two or more spaces inside. Further, as shown in Table 1, the inorganic particles of Examples 1 to 9 had lower specific gravities and lower dielectric constants than the inorganic particles of Comparative Example 1, which had no internal space. It was also confirmed that the inorganic particles of Examples 1 to 9 had a specific surface area of 50 m 2 /g or less, and almost no pores were present on the particle surfaces.

1:無機粒子
11:空間
1: inorganic particles 11: space

Claims (7)

平均粒子外径が0.1~70μm、
比表面積が50m/g以下、
内部に2以上の空間を有する、無機粒子。
an average particle outer diameter of 0.1 to 70 μm,
a specific surface area of 50 m 2 /g or less,
Inorganic particles having two or more spaces inside.
下記の一般式(1)で表されるケイ素化合物を原料とする無機粒子である、請求項1に記載の無機粒子。
[化1]

(式中、Rは非加水分解性基であって、炭素数1~20のアルキル基、(メタ)アクリロイルオキシ基若しくはエポキシ基を有する炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基、Rは炭素数1~6のアルキル基、nは1~3の整数を示し、Rが複数ある場合、各Rはたがいに同一であっても異なっていてもよく、ORが複数ある場合、各ORはたがいに同一であっても異なっていてもよい。)
2. The inorganic particles according to claim 1, which are inorganic particles made from a silicon compound represented by the following general formula (1).
[Chemical 1]

(In the formula, R 1 is a non-hydrolyzable group, an alkyl group having 1 to 20 carbon atoms, a (meth)acryloyloxy group or an epoxy group-containing alkyl group having 1 to 20 carbon atoms, an alkenyl group, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 to 3, and when there are multiple R 1 , each R 1 may be the same or different, and when there are multiple OR 2 , each OR 2 may be the same or different.)
前記無機粒子の体積に対する前記空間の合計容積の比率が5~50%である、請求項1または2に記載の無機粒子。 3. The inorganic particles according to claim 1, wherein the ratio of the total volume of said spaces to the volume of said inorganic particles is 5 to 50%. シランカップリング剤により表面処理されている、請求項1から3のいずれか一項に記載の無機粒子。 4. The inorganic particles according to any one of claims 1 to 3, which are surface-treated with a silane coupling agent. 請求項1から4のいずれか一項に記載の無機粒子を使用した低誘電材料。 A low dielectric material using the inorganic particles according to any one of claims 1 to 4. 請求項1から4のいずれか一項に記載の無機粒子を使用した低屈折率材料。 A low refractive index material using the inorganic particles according to any one of claims 1 to 4. 溶液中で無機化合物を加水分解および縮合させてシード粒子液を調製するシード粒子液調製工程と、
前記シード粒子液に、無機化合物含有溶液を添加、撹拌して、粒子径を成長させる粒子径成長工程と、
前記粒子径成長工程中に、連続的または所定の間隔で粒子径を測定する測定工程と、
粒子径成長途中で、反応を停止させる反応停止工程と、
を行う、内部に2以上の空間を有する無機粒子の製造方法。
a seed particle liquid preparation step of hydrolyzing and condensing an inorganic compound in a solution to prepare a seed particle liquid;
a particle size growth step of adding an inorganic compound-containing solution to the seed particle liquid and stirring to grow the particle size;
a measuring step of measuring the particle size continuously or at predetermined intervals during the particle size growing step;
a reaction stopping step of stopping the reaction during particle size growth;
A method for producing inorganic particles having two or more spaces inside.
JP2022011155A 2022-01-27 2022-01-27 Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles Pending JP2023109579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022011155A JP2023109579A (en) 2022-01-27 2022-01-27 Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022011155A JP2023109579A (en) 2022-01-27 2022-01-27 Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles

Publications (1)

Publication Number Publication Date
JP2023109579A true JP2023109579A (en) 2023-08-08

Family

ID=87522639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022011155A Pending JP2023109579A (en) 2022-01-27 2022-01-27 Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles

Country Status (1)

Country Link
JP (1) JP2023109579A (en)

Similar Documents

Publication Publication Date Title
JP5817621B2 (en) Sol-gel solution for forming ferroelectric thin films
US20060159938A1 (en) Composition for forming low dielectric thin film comprising polymer nanoparticles and method of preparing low dielectric thin film using the same
JP2010195604A (en) Method for producing surface-reformed porous silica, surface-reformed porous silica, slurry composition for addition to resin, filler for resin, and resin composition
JP2008088430A (en) Production method for polyorganosiloxane particle, and production method for silica particle
US6359667B1 (en) Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays
JP5147095B2 (en) Silica-based filler and transparent resin composition containing the same
JP2008074699A (en) Method for manufacturing high dielectric-constant inorganic/organic hybrid film containing crystalline barium titanate nanoparticle
JP5041625B2 (en) Method for producing polyorganosiloxane particles and method for producing silica particles
KR20150076578A (en) preparation method for silica particles containing single or multiple functional groups and silica particles prepared thereby
JP2023109579A (en) Inorganic particles, and low dielectric material and low refractive index material including the inorganic particles, and method for producing inorganic particles
JP3824766B2 (en) Organopolysiloxane fine particles, method for producing the same, and liquid crystal display device
JP2004262981A (en) Preparation process for polyorganosiloxane particle and preparation process for silica particle
KR101874234B1 (en) Silica particles and method of manufacturing the same
EP1598388B1 (en) Method for producing polyorganosiloxane particles and for producing silica particles
JP2007145675A (en) Composite fine particle and its manufacturing method
TW200417586A (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
CN102275350B (en) Namometer SiO2-doped polymer laminated film and preparation method thereof
JP4098893B2 (en) Method for producing polyorganosiloxane fine particles
JP2012214340A (en) Method for producing silica particle
US20230312355A1 (en) Hollow inorganic particle and method for producing said hollow inorganic particle
JP4464058B2 (en) Method for producing polyorganosiloxane particles
JP4491200B2 (en) Method for producing polyorganosiloxane particles and method for producing silica particles
JP2004224876A (en) Method for producing polyorganosiloxane particle and method for producing silica particle
CN114350260A (en) Fluorine release coating with wear resistance and high stability and preparation method thereof
JP3824767B2 (en) Organopolysiloxane fine particles, method for producing the same, and liquid crystal display device